

3.3V 3.2Gbps SONET/SDH LASER DRIVER WITH OUTPUT DISABLE

SY88932L Final

FEATURES

- Up to 3.2Gbps operation
- Modulation current to 60mA
- Rise/fall times 65ps typical
- Input 50Ω internally terminated to V_{CC}
- **TTL /EN with internal 75k** Ω pull-down
- Designed for use with MIC3000 optical transceiver management IC
- Voltage programmable laser modulation current
- Single 3.3V power supply
- Operating temperature range of -40°C to 85°C
- Available in tiny 16-pin MLF[™] package

DESCRIPTION

The SY88932L is the smallest laser driver with programmable modulation current for SONET/SDH applications up to 3.2Gbps. The device accepts either CML level or AC-coupled PECL inputs. The SY88932L provides modulation current of up to 60mA for FP (Fabry-Perot) or DFB (Distributed Feedback) lasers. The devices incorporates an active low TTL /EN function which shuts off modulation current when high.

APPLICATIONS

- Fiber optical module
- Transponder
- XAUI CWDM
- SONET/SDH transmission system
- Add-drop mux
- Metro area network
- 2.5Gbps optical transmitter

BLOCK DIAGRAM

PACKAGE/ORDERING INFORMATION

16-Pin MLF™

PIN DESCRIPTION

	-	
Pin Number	Pin Name	Pin Function
2, 3	DIN, /DIN	NRZ differential data (inputs), CML terminated interface with 50 Ω to V _{CC} .
1, 4, 7, 8, 13	GND	Ground.
5, 6,	VCC	Positive power supply.
9, 10, 11, 12,	OUT, /OUT	Open collector (outputs) from the modulation driver.
14	VREF	Voltage reference, nominally 1.25V.
15	VCNTRL	Voltage control of I_{MOD} . 5k Ω input impedance. See "Typical Operating Characteristics."
16	/EN	Enable: TTL compatible active low input with 75k Ω pull-down resistor.

TRUTH TABLE(NOTE 1)

D	/D	/EN	OUT ^(NOTE 2)	/OUT
L	н	L	Н	L
Н	L	L	L	Н
Х	Х	н	Н	L

Note 1. L = LOW, H = HIGH, X = don't care.

Note 2. $I_{OUT} \leq I_{MOD_OFF}$ when /EN is HIGH.

Ordering Information

Part Number	Package Type	Operating Range	Package Marking
SY88932LMI	MLF-16	Industrial	932L
SY88932LMITR*	MLF-16	Industrial	932L

*Tape and Reel

Absolute Maximum Ratings^(Note 1)

Supply Voltage (V _{CC})	–0.5V to +4.0V
CML Input Voltage (V _{IN})	. V _{CC} –1.0V to V _{CC} +0.5V
TTL Control Input Voltage (V_{IN})	0V to V _{CC}
Lead Temperature (soldering, 10	sec.) +300°C
Storage Temperature (T_S)	–65°C to +150°C

Operating Ratings^(Note 2)

Supply Voltage (V _{CC})	+3.0V to +3.6V
Ambient Temperature (T _A)	–40°C to +85°C
Junction Temperature (T _J)	120°C
Package Thermal Resistance MLF™	
(θ_{1A}) still air	59°C/W
$(\tilde{\psi_{JB}})$ still air	32°C/W

Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.

DC ELECTRICAL CHARACTERISTICS

V_{CC} = 3.0 to 3.6V, GND = 0V, T_A = -40°C to +85°C; Typical values at V_{CC} = 3.3V, T_A = 25°C.

Symbol	Parameter	Condition	Min	Тур	Max	Units
I _{CC}	Power Supply Current	Note 1		65	90	mA
I _{MOD}	Modulation Current Range		10		60	mA
I _{MOD_OFF}	Modulation Off Current	/EN = V _{IHEN}			200	μA
V _{IDDIN}	Input Differential Voltage (D _{IN} , /D _{IN})	Note 2	400	800	1600	mVpp
V _{IHEN}	Input HIGH Voltage (/EN)		2.0			V
V _{ILEN}	Input LOW Voltage (/EN)				0.8	V
V _{OUT}	Voltage (OUT, /OUT)	Note 3	V _{CC} -1.5		V _{CC}	V
V _{REF}	Reference Voltage	Note 4	1.2	1.25	1.3	V

Note 1. Excluding I_{MOD}. I_{MOD} set for 60mA.

be
$$\frac{V_{\text{IDDIN}}}{2}$$
 below /D_{IN}.

Note 3. OUT and /OUT are current outputs. This specification defines the voltage range that the user must guarantee these pins remain within for proper operation.

Note 4. V_{REF} intended to source/sink $\leq |5mA|$.

Note 2. V_{IDDIN} is the voltage required to guarantee a stable logic level. For logic "1", D_{IN} must be $\frac{V_{\text{IDDIN}}}{2}$ above / D_{IN} . For stable logic "0", D_{IN} must

AC ELECTRICAL CHARACTERISTICS(NOTE 1)

 V_{CC} = 3.0 to 3.6V, GND = 0V, T_A = -40°C to +85°C; Typical values at V_{CC} = 3.3V, T_A = 25°C.

Symbol	Parameter	Condition	Min	Тур	Max	Units
Dj	Deterministic Jitter	Notes 2, 3			20	ps _{p-p}
t _r , t _f	Output Rise/Fall Times (20% to 80%)	Note 2		65	100	ps

 $\label{eq:Note1.} \mbox{ AC characteristics are guaranteed by design and characterization.}$

Note 2. I_{MOD} = 40mA, 25 Ω resistors each tied from OUT and /OUT to V_{CC}.

Note 3. $I_{MOD} = 40$ mA, 2.5Gbps, 0-1 pattern, BW = 12KHz to 20MHz.

TYPICAL OPERATING CHARACTERISTICS

16 LEAD EPAD-*Micro*LeadFrame[™] (MLF-16)

PCB Thermal Consideration for 16-Pin MLF[™] Package

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel, Inc.

© 2002 Micrel, Incorporated.