

3.3V 3.2Gbps SONET/SDH LASER DRIVER

SY88912L FINAL

FEATURES

- Up to 3.2Gbps operation
- Modulation current to 60mA

PIN CONFIGURATION

DIN [1

GND

GND

/DIN

- Rise/Fall times <70PS</p>
- Single 3.3V power supply
- Programmable laser modulation current
- Operating temperature range of -40°C to 85°C

GND GND

16-pin

MLF

6 7

VREF RSET GND

Top View

12

11

10

q

OUT

OUT

/OUT

/OUT

16 15 14 13

 \bigcirc

2

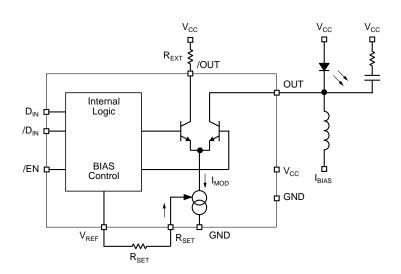
3

■ Available in tiny 16-pin MLF[™] package

DESCRIPTION

The SY88912L is the smallest laser driver with programmable modulation current for SONET/SDH applications up to 3.2Gbps. The device accepts either PECL or CML level data inputs. The SY88912L provides modulation current of up to 60mA for FP (Fabry-Perot) or DFB (Distributed Feedback) laser.

There is a 75k Ω pull-down resistor to V_{EE} at the input of /EN. An active low PECL enable signal shuts off modulation current.


PIN NAMES

Pin	Function			
D _{IN} , /D _{IN}	NRZ differential data inputs.			
/EN	PECL compatible active low input.			
GND	Most negative power supply input.			
OUT, /OUT	Open collector outputs from the modulation driver.			
R _{SET}	An external resistor between V _{REF} and R _{SET} defines the modulation current.			
V _{CC}	Most positive power supply input.			
V _{REF}	Voltage reference for use with R _{SET} .			

APPLICATIONS

- Fiber optical module
- Transponder
- XAUI CWDM
- SONET/SDH transmission system
- Add-drop mux
- Metro area network
- 2.5Gbps optical transmitter

BLOCK DIAGRAM

MLF and Micro LeadFrame are trademarks of Amkor Technology, Inc.

TRUTH TABLE⁽¹⁾

D	/D	/EN	OUT ⁽²⁾	/OUT
L	н	L	Н	L
н	L	L	L	Н
Х	Х	Н	Н	L

NOTES:

1. L = LOW, H = HIGH, X = don't care.

2. $I_{OUT} \leq I_{MOD_OFF}$ when /EN is HIGH.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameter		Value	Unit
V _{CC}	Power Supply Voltage		0 to +5.0	V
V _{IN}	Input Voltage		0 to V _{CC}	V
I _{OUT}	Output Current		65	mA
T _{store}	Storage Temperature		-55 to +125	°C
T _A	Operating Temperature		-40 to +85	°C
P _D	Power Dissipation		500	mW
$\theta_{JA}^{(2)}$	Package Thermal Resistance (Junction-to-Ambient)	-Still-Air	59	°C/W
Ψ_{JB}	Package Thermal Resistance (Junction-to-Board)		32.1	°C/W

NOTE:

1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

2. JEDEC standard test boards with DIE attach pads soldered to PCB.

OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V _{CC}	Power Supply Voltage	+3.15 to +3.45	V
R _{EXT} ⁽¹⁾	Resistor to Dissipate Power	5 (Min.)	Ω
R _{SET}	Resistor to Set I _{MOD}	100 to 10,000	Ω

NOTE:

1.Refer to $\mathrm{V}_{\mathrm{OUT}}$ specification.

DC ELECTRICAL CHARACTERISTICS

 $V_{CC} = 3.15$ to 3.45V; GND = 0V; $T_A = -40^{\circ}C$ to +85°C

Symbol	Parameter	Min.	Typ. ⁽²⁾	Max.	Unit	Condition
I _{CC}	Power Supply Current ⁽¹⁾	—	65	80	mA	I _{MOD} = 60mA
I _{MOD}	Modulation Current Range	10	_	60	mA	
I _{MOD_OFF}	Modulation Off Current ⁽²⁾		—	200	μA	$/EN = V_{IHEN}$
V _{IDDIN}	Input Differential Voltage, D _{IN} , /D _{IN}	200	—	1600	mVp-p	(3)
V _{IHDIN}	Input HIGH Voltage, D _{IN} , /D _{IN}	V _{CC} -1.7	_	V _{CC} -0.1	V	
V _{ILDIN}	Input LOW Voltage, D _{IN} , /D _{IN}	V _{CC} -1.9	_	V _{CC} -0.3	V	
V _{IHEN}	Input HIGH Voltage, /EN	V _{CC} –1165	_	V _{CC} –880	mV	
V _{ILEN}	Input LOW Voltage, /EN	V _{CC} –1810	—	V _{CC} –1475	mV	
V _{OUT}	Output Voltage, OUT, /OUT	V _{CC} -1.5	_	V _{CC}	V	(4)
V _{REF}	Reference Voltage	1.5	1.7	1.9	V	

NOTES:

1. Excluding I_{MOD}. I_{MOD} \leq 60 \text{mA}

2. Typical values are under V_{CC} = 3.3V and T_{A} = 25°C.

3. V_{IDDIN} is the voltage required to guarantee a stable logic level. For a logic "1", D_{IN} must be V_{IDDIN} above /D_{IN}. For stable logic "0", D_{IN} must be V_{IDDIN} below /D_{IN}.

4. OUT and /OUT are current outputs. This specification defines the voltage range that the user must guarantee these pins remain within proper operation.

AC ELECTRICAL CHARACTERISTICS⁽¹⁾

 V_{CC} = 3.15 to 3.45V; GND = 0V; T_A = -40°C to +85°C

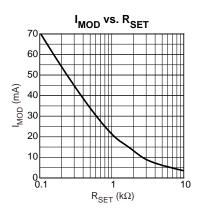
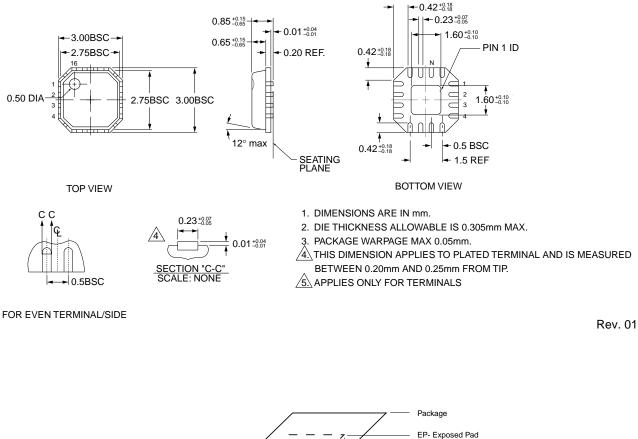
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
DJ	Jitter Generation ^{(2),(3)}	—	—	20	ps	peak-to-peak
t _r , t _f	Rise/Fall Times ⁽²⁾ (20% to 80%)	—	65	_	ps	

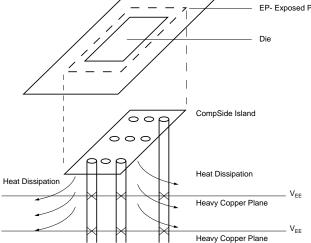
NOTES:

1. AC characteristics are guaranteed by design and characterization.

2. I_{MOD} = 40mA, 25 Ω resistors each tied from OUT and /OUT to $V_{CC}.$

3. $I_{MOD} = 40$ mA, 2.5Gbps, 0-1 pattern, BW = 12KHz to 20MHz.


Figure 1. I_{MOD} vs. R_{SET}

PRODUCT ORDERING CODE

Ordering	Package	Operating	Package
Code	Type	Range	Marking
SY88912LMI	MLF-16	Industrial	912L

16 LEAD EPAD-Micro LEADFRAME™ (MLF-16)

PCB Thermal Consideration for 16-Pin MLF™ Package

MICREL-SYNERGY 3250 SCOTT BOULEVARD SANTA CLARA CA 95054 USA

TEL + 1 (408) 980-9191 FAX + 1 (408) 914-7878 WEB http://www.micrel.com

This information is believed to be accurate and reliable, however no responsibility is assumed by Micrel for its use nor for any infringement of patents or other rights of third parties resulting from its use. No license is granted by implication or otherwise under any patent or patent right of Micrel Inc. © 2001 Micrel Incorporated