10.7Gbps 2 × 2 DUAL CROSSPOINT SWITCH w/CML OUTPUTS AND INTERNAL TERMINATION Precision Edge™ SY58024U #### **FEATURES** - Guaranteed AC performance over temperature and voltage: - > 10.7Gbps data throughput - < 60ps t_r/t_f times - < 350ps t_{pd} (IN-to-Q) - < 20ps max. skew - Low jitter: - < 10ps_(pk-pk) total jitter (clock) - < 1ps_(rms) random jitter (data) - < 10ps_(pk-pk) deterministic jitter (data) - Crosstalk induced jitter: <1ps_(rms) - Accepts an input signal as low as 100mV - Unique input termination and V_T pin accepts DC-coupled and AC-coupled differential inputs: LVPECL, LVDS, and CML - Fully differential inputs/outputs - 50 Ω source terminated CML outputs - Power supply 2.5V \pm 5% and 3.3V \pm 10% - Industrial -40°C to +85°C temperature range - Available in 32-pin (5mm × 5mm) MLFTM package #### **APPLICATIONS** - Gigabit Ethernet data/clock routing - SONET data/clocking routing - Switch fabric clock routing - Redundant switchover - Backplane redundancy Precision Edge™ #### DESCRIPTION The SY58024U is a 2.5V/3.3V precision, high-speed, fully differential dual CML crosspoint switch. The SY58024U is optimized to provide two identical output copies with less than 20ps of skew and ultra-low jitter. The SY58024U can process clock signals as fast as 5.5GHz or data patterns up to 10.7Gbps. The differential input includes Micrel's unique, 3-pin input termination architecture that allows the SY58024U to directly interface to LVPECL, LVDS, and CML differential signal (AC-coupled or DC-coupled) without any level-shifting or termination resistor networks in the signal path. The CML outputs features a 400mV typical swing into 50Ω loads, and provide an extremely fast rise/fall time guaranteed to be less than 60ps. The SY58024U operates from a 2.5V ±5% supply or 3.3V ±10% supply and is guaranteed over the full industrial temperature range (−40°C to +85°C). For applications that require high-speed single channel CML switches, consider the SY58023U. The SY58024U is part of Micrel's high-speed, Precision Edge[™] product line. Data sheets and support documentation can be found on Micrel's website at www.micrel.com. #### **PACKAGE/ORDERING INFORMATION** # Ordering Information^(Note 1) | Part Number | Package
Type | Operating
Range | Package
Marking | |----------------------------------|-----------------|--------------------|--------------------| | SY58024UMI | MLF-32 | Industrial | 024U | | SY58024UMITR ^(Note 2) | MLF-32 | Industrial | 024U | Note 1. Contact factory for die availability. Die are guaranteed at $T_A = 25$ °C, DC electricals only. Note 2. Tape and Reel. #### PIN DESCRIPTION | Pin Number | Pin Name | Pin Function | |--|--|---| | 25, 27
29, 31,
1, 3,
5, 7 | INA0, /INA0,
INA1, /INA1,
INB1, /INB1
INB0, /INB0 | Differential Signal: Each pin of this pair internally terminates with 50Ω to the V_T pin. Note that this input will default to an indeterminate state if left open. See "Input Interface Application" section. | | 26, 30
2, 6 | VTA0, VTA1,
VTB1, VTB0 | Input Termination Center-Tap: Each input terminates to this pin. The V _T pin provides a center-tap for each input (IN, /IN) to a termination network for maximum interface flexibility. See <i>"Input Interface Application"</i> section. | | 32, 28,
8, 4 | SELA0, SELA1,
SELB1, SELB0 | Select Input: TTL/CMOS select input controls that selects inputs IN0, or IN1, for their respective banks A and B. Note that this input is internally connected to a 25k Ω pull-up resistor and will default to a logic high state if left open. | | 9,24 | GND,
Exposed Pad | Ground. Exposed pad must be connected to a ground plane that is the same potential as the device ground pins. | | 10,13,16,
17, 20, 23 | VCC | Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to the pins as possible. | | 11, 12,
14, 15
18, 19,
21, 22 | /QB0, QB0,
QB1, /QB1,
/QA1, QA1,
/QA0, QA0 | CML Differential Output Pairs: Differential buffered output copy of the selected input signal. The CML single-ended output swing is typically 400mV into 50Ω . Unused output pairs may be left floating with no impact on jitter. See "CML Output Termination" section. | # TRUTH TABLE | SELA0 | SELA1 | SELB0 | SELB1 | QA0 | QA1 | QB0 | QB1 | |-------|-------|-------|-------|------|------|------|------| | L | L | L | L | INA0 | INA0 | INB0 | INB0 | | L | L | L | Н | INA0 | INA0 | INB0 | INB1 | | L | L | Н | L | INA0 | INA0 | INB1 | INB0 | | L | L | Н | Н | INA0 | INA0 | INB1 | INB1 | | L | Н | L | L | INA0 | INA1 | INB0 | INB0 | | L | Н | L | Н | INA0 | INA1 | INB0 | INB1 | | L | Н | Н | L | INA0 | INA1 | INB1 | INB0 | | L | Н | Н | Н | INA0 | INA1 | INB1 | INB1 | | Н | L | L | L | INA1 | INA0 | INB0 | INB0 | | Н | L | L | Н | INA1 | INA0 | INB0 | INB1 | | Н | L | Н | L | INA1 | INA0 | INA1 | INB0 | | Н | L | Н | Н | INA1 | INA0 | INA1 | INB1 | | Н | Н | L | L | INA1 | INA1 | INA0 | INB0 | | Н | Н | L | Н | INA1 | INA1 | INA0 | INB1 | | Н | Н | Н | L | INA1 | INA1 | INA1 | INB0 | | Н | Н | Н | Н | INA1 | INA1 | INA1 | INB1 | ## **FUNCTIONAL BLOCK DIAGRAM** SY58024U Dual 2 × 2 Crosspoint Switch # Absolute Maximum Ratings(Note 1) | Supply Voltage (V _{CC}) –0.5V to +4.0V | |---| | Input Voltage (V _{IN})0.5V to V _{CC} | | CML Output Voltage (V_{OUT}) V_{CC} –1.0V to V_{CC} +0.5V | | Current (V _T) | | Source or Sink Current on V _T pin±100mA | | Input Current (V _T) | | Source or Sink Current on IN, /IN±50mA | | Lead Temperature (soldering, 10 sec.) 270°C | | Storage Temperature (T _S)65°C +150°C | # Operating Ratings^(Note 2) | Supply Voltage (V _{CC}) | . +2.375V to +3.60V | |---------------------------------------|---------------------| | Ambient Temperature (T _A) | –40°C to +85°C | | Package Thermal Resistance (Note 3) | | | $MLF^{TM}\left(\theta_{JA}\right)$ | | | Still-Air | 35°C/W | | 500lfpm | 28°C/W | | MLF™ (Ψ _{JB}), | | | Junction-to-board resistance | 16°C/W | ## DC ELECTRICAL CHARACTERISTICS(Note 4) $T_A = -40^{\circ}C \text{ to } +85^{\circ}C.$ | Symbol | Parameter | Condition | Min | Тур | Max | Units | |----------------------|---------------------------------|--|----------------------|------------|----------------------|-------| | V _{CC} | Power Supply Voltage | 2.5V nominal
3.3V nominal | 2.375
3.0 | 2.5
3.3 | 2.625
3.60 | V | | I _{CC} | Power Supply Current | V_{CC} = max., current through internal 50 Ω source termination resistor included | | 200 | 250 | mA | | V_{IH} | Input HIGH Voltage | IN, /IN; Note 5 | V _{CC} -1.6 | | V _{CC} | V | | V_{IL} | Input LOW Voltage | IN, /IN | 0 | | V _{IH} –0.1 | V | | $\overline{V_{IN}}$ | Input Voltage Swing | IN, /IN, see Figure 1a | 0.1 | | 1.7 | V | | V _{DIFF_IN} | Differential Input Swing | IN, /IN, see Figure 1b | 0.2 | | 3.4 | V | | R _{IN} | IN-to-V _T Resistance | | 40 | 50 | 60 | Ω | | IN to V _T | | | | | 1.28 | V | # CML DC ELECTRICAL CHARACTERISTICS(Note 4) V_{CC} = 3.3V ±10% or 2.5V ±5%; R_L = 100 Ω across each pair, or equivalent; T_A = -40°C to +85°C, unless otherwise stated. | Symbol | Parameter | Condition | | Тур | Max | Units | |-----------------------|----------------------------|---------------------------------|------------------------|-----|-----------------|-------| | V _{OH} | Output HIGH Voltage | Q0, /Q0; Q1, /Q1 | V _{CC} -0.020 | | V _{CC} | V | | V _{OUT} | Output Voltage Swing | Q0, /Q0; Q1, /Q1; see Figure 1a | 325 | 400 | 500 | mV | | V _{DIFF_OUT} | Differential Voltage Swing | Q0, /Q0; Q1, /Q1; see Figure 1b | 650 | 800 | 1000 | mV | | R _{OUT} | Output Source Impedance | Q0, /Q0; Q1, /Q1 | 40 | 50 | 60 | Ω | #### **AC ELECTRICAL CHARACTERISTICS** V_{CC} = 2.5V ±5% or 3.3V ±10%; R_L = 100 Ω across each output pair, or equivalent; T_A = -40°C to +85°C, unless otherwise stated. | Symbol | Paramete | r | Condition | | Min | Тур | Max | Units | |---------------------------------|-------------|-----------------------------|---|----------|------|-----|-----|-----------| | f _{MAX} | Maximum | Operating Frequency | $V_{IN} \ge 100 \text{mV}; V_{OUT} \ge 200 \text{mV}$ | Clock | 6 | | | GHz | | | | | | NRZ Data | 10.7 | | | Gbps | | t _{pd} | Propagation | on Delay | IN-to-Q | | 200 | | 350 | ps | | | | | SEL-to-Q | | 100 | | 400 | ps | | t _{CHAN} | Channel-to | o-Channel (Within Bank) | Note 6 | | | | 20 | ps | | t _{SKEW} | Part-to-Pa | rt Skew | Note 7 | | | | 75 | ps | | t _{JITTER} | Clock | Cycle-to-Cycle Jitter | Note 8 | | | | 1 | ps(rms) | | | | Total Jitter | Note 9 | | | | 10 | ps(pk-pk) | | | Data | Random Jitter | Note 10 | | | | 2 | ps(rms) | | | | Deterministic Jitter | Note 11 | | | | 10 | ps(pk-pk) | | | Cros | sstalk Induced Jitter (rms) | Note 12 | | | <1 | | ps(rms) | | t _r , t _f | Output Ris | se/Fall Time | 20% to 80% at full swing | | 25 | | 60 | ps | - Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability. - Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings. - Note 3. Package Thermal Resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB. - Note 4. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established. - **Note 5.** V_{IH} (min.) not lower than 1.2V. - Note 6. Skew is measured between outputs of the same bank under identical transitions. - Note 7. Skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs. - **Note 8.** Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, $T_n T_{n-1}$ where T is the time between rising edges of the output signal. - Note 9. Total jitter definition: With an ideal clock input of frequency ≤ f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value. - Note 10. Random jitter is measured with a K28.7 comma detect character pattern, measured at 2.5Gbps-3.2Gbps and 10.7Gbps. - Note 11. Deterministic jitter is measured at 2.5Gbps-3.2Gbps and 10.7Gbps with both K28.5 and 2²³-1 PRBS pattern. - Note 12. Crosstalk is measured at the output while applying two similar frequencies that are asynchronous with respect to each other at the inputs. #### SINGLE-ENDED AND DIFFERENTIAL SWINGS Figure 1a. Single-Ended Voltage Swing Figure 1b. Differential Voltage Swing ### TIMING DIAGRAM Figure 2a. AC Timing Diagram IN-to-Q Figure 2b. AC Timing Diagram SEL-to-Q #### **TYPICAL OPERATING CHARACTERISTICS** V_{CC} = 2.5V, V_{IN} = 100mV, T_A = 25°C, unless otherwise noted. ## **FUNCTIONAL CHARACTERISTICS** V_{CC} = 2.5V, V_{IN} = 100mV, T_A = 25°C, unless otherwise noted. TIME (50ps/div.) TIME (50ps/div.) TIME (100ps/div.) #### **INPUT STAGE** Figure 3. Simplified Differential Input Buffer #### INPUT INTERFACE APPLICATIONS Input Interface (Option: may connect V_T to V_{CC}) Figure 4b. AC-Coupled CML Input Interface Figure 4c. DC-Coupled LVPECL Input Interface Figure 4d. AC-Coupled LVPECL Input Interface Figure 4e. LVDS Input Interface #### **CML OUTPUT TERMINATION** Figures 5 and Figure 6 illustrates how to terminate a CML output using both the AC-coupled and DC-coupled configuration. All outputs of the SY58024U are 50Ω with a 16mA current source. Figure 5. CML DC-Coupled Termination Figure 6. CML AC-Coupled Termination #### RELATED PRODUCT AND SUPPORT DOCUMENTATION | Part Number | Function | Data Sheet Link | |-------------|---|--| | SY58023U | 6GHz (10.7Gbps) 2x2 Crosspoint Switch w/CML Outputs | http://www.micrel.com/product-info/products/SY58023U.shtml | | SY58024U | 5.5GHz (10.7Gbps) Dual 2x2 Crosspoint
Switch w/CML Outputs | http://www.micrel.com/product-info/products/sy58024u.shtml | | | 32-MLF Manufactering Guidelines Exposed Pad Application Note | www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf | | | HBW Solutions | http://www.micrel.com/product-info/as/solutions.shtml | #### 32 LEAD *Micro*LeadFrame™ (MLF-32) PCB Thermal Consideration for 32-Pin MLF™ Package (Always solder, or equivalent, the exposed pad to the PCB) #### Package Notes: Note 1. Package meets Level 2 qualification. Note 2. All parts are dry-packaged before shipment. Note 3. Exposed pads must be soldered to a ground for proper thermal management. #### MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. © 2003 Micrel, Incorporated.