

5Gbps DIFFERENTIAL LVPECL 2:1 MUX WITH INTERNAL TERMINATION

Precision Edge™ SY58018U

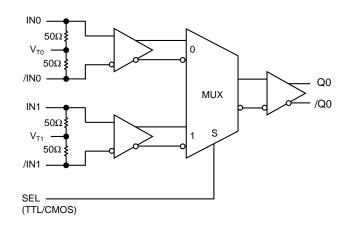
FEATURES

- Guaranteed AC performance over temperature and voltage:
 - > 5Gbps data throughput
 - > 4GHz f_{MAX} (clock)
 - < 260ps propagation delay
 - < 110ps t_r / t_f times
- Ultra-low crosstalk-induced jitter: 1ps_(rms)
- Ultra-low jitter design:
 - < 1ps_(rms) random jitter
 - < 20ps_(pk-pk) deterministic jitter
 - < 10ps_(pk-pk) total jitter (clock)
- Unique input termination and V_T pin accepts DCcoupled and AC-coupled inputs (CML, PECL, LVDS)
- 800mV (100k) LVPECL output swing
- Power supply 2.5V ±5% or 3.3V ±10%
- -40°C to +85°C temperature range
- Available in 16-pin (3mm x 3mm) MLF[™] package

APPLICATIONS

- Redundant clock distribution
- OC-3 to OC-192 SONET/SDH clock/data distribution
- Loopback
- **■** Fibre Channel distribution

Precision Edge™

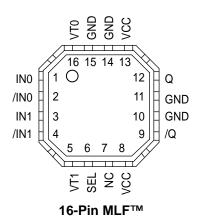

DESCRIPTION

The SY58018U is a 2.5V/3.3V precision, high-speed, 2:1 differential MUX capable of handling clocks up to 4GHz and data up to 5Gbps.

The differential input includes Micrel's unique, 3-pin input termination architecture that allows customers to interface to any differential signal (AC- or DC-coupled) as small as 100mV without any level shifting or termination resistor networks in the signal path. The outputs are 800mV, 100k compatible, LVPECL, with extremely fast rise/fall times guaranteed to be less than 110ps.

The SY58018U operates from a 2.5V $\pm 5\%$ supply or a 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range of -40° C to $+85^{\circ}$ C. For applications that require CML outputs, consider the SY58017U or for 400mV LVPECL outputs the SY58019U. The SY58018U is part of Micrel's high-speed, Precision EdgeTM product line. Data sheets and support documentation can be found on Micrel's web site at www.micrel.com.

FUNCTIONAL BLOCK DIAGRAM


TYPICAL PERFORMANCE

Precision Edge is a trademark of Micrel, Inc. AnyGate is a registered trademark of Micrel, Inc. *Micro*LeadFrame and MLF are trademarks of Amkor Technology, Inc.

> Rev.: A Amendment: /0 Issue Date: August 2003

PACKAGE/ORDERING INFORMATION

Ordering Information^(Note 1)

Part Number	Package Type	Operating Range	Package Marking
SY58018UMI	MLF-16	Industrial	018U
SY58018UMITR ^(Note 2)	MLF-16	Industrial	018U

Note 1. Contact factory for die availability. Die is guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

Note 2. Tape and Reel.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1, 2 3, 4	IN0, /IN0 IN1, /IN1	Differential Input: These input pairs are the differential signal inputs to the device. They accept differential AC- or DC-coupled signals as small as 100mV. Each pin of a pair internally terminates to a V_T pin through 50Ω . Note that these inputs will default to an indeterminate state if left open. Please refer to the "Input Interface Applications" section for more details.
16, 5	VT0, VT1	Input Termination Center-Tap: Each side of the differential input pair terminates to a V_T pin. The V_{T0} and V_{T1} pins provide a center-tap to a termination network for maximum interface flexibility. See "Input Interface Applications" section for more details.
6	SEL	This single-ended TTL/CMOS compatible input selects the inputs to the multiplexer. Note that this input is internally connected to a $25 \mathrm{k}\Omega$ pull-up resistor and will default to a logic HIGH state if left open.
7	NC	No connect.
8, 13	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors. $0.01\mu F$ capacitor should be as close to V_{CC} pin as possible.
12, 9	Q, /Q	Differential Outputs: This 100k compatible LVPECL output pair is the output of the device. Normally terminate with 50Ω to V_{CC} –2V. See "Output Interface Applications" section. It is a logic function of the IN0, IN1, and SEL inputs. Please refer to the "Truth Table" for details.
10, 11, 14, 15	GND, Exposed Pad	Ground. Ground pins and exposed pad must be connected to the same ground plane.

TRUTH TABLE

	INPUTS					PUTS
IN0	/INO	IN1	/IN1	SEL	Q	/Q
0	1	Х	Х	0	0	1
1	0	Х	Х	0	1	0
Х	Х	0	1	1	0	1
Х	Х	1	0	1	1	0

Absolute Maximum Ratings(Note 1)

0.5V to +4.0V
–0.5V to V _{CC}
50mA
100mA
±100mA
±50mA
220°C
. –65°C to +150°C

Operating Ratings(Note 2)

Power Supply Voltage (V _{CC})	. +2.375V to +2.625V
	+3.0V to +3.6V
Ambient Temperature Range (T _A)	–40°C to +85°C
Package Thermal Resistance, Note 4	
MLF™ (θ _{JA})	
Still-Air	60°C/W
500lpfm	54°C/W
MLF [™] (ψ _{JB})	
Junction-to-Board	33°C/W

DC ELECTRICAL CHARACTERISTICS(Note 5)

 $T_A = -40$ °C to +85°C, unless otherwise stated.

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{CC}	Power Supply Voltage	V _{CC} = 2.5V V _{CC} = 3.3V	2.375 3.0	2.5 3.3	2.625 3.6	V V
I _{CC}	Power Supply Current	No load, max. V _{CC}		50	65	mA
R _{DIFF_IN}	Differential Input Resistance (IN0-to-/IN0, IN1-to-/IN1)		80	100	120	Ω
R _{IN}	$\begin{array}{c} \text{Input Resistance} \\ \text{(IN0-to-V}_{\text{T0}}, \text{/IN0-to-V}_{\text{T0}}, \\ \text{IN1-to-V}_{\text{T1}}, \text{/IN1-to-V}_{\text{T1}}) \end{array}$		40	50	60	Ω
V _{IH}	Input HIGH Voltage (IN0, /IN0, IN1, /IN1)	Note 6	V _{CC} -1.6		V _{CC}	V
V _{IL}	Input LOW Voltage (IN0, /IN0, IN1, /IN1)		0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing (IN0, /IN0, IN1, /IN1)	See Figure 1a	100			mV
V _{DIFF_IN}	Differential Input Voltage Swing IN0, /IN0 , IN1, /IN1	See Figure 1b	200			mV
V _{T IN}	IN to V _T (IN0, /IN0, IN1, /IN1)				1.28	V

- **Note 1.** Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Due to the limited drive capability, use for input of the same package only.
- Note 4. Package thermal resistance assumes exposed pad is soldered (or equivalent) to the device's most negative potential (GND) on the PCB.
- Note 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 6. V_{IH} (min) not lower than 1.2V.

LVPECL OUTPUT DC ELECTRICAL CHARACTERISTICS(Note 7)

 $\rm V_{CC} = 2.5V~\pm5\%~or~3.3V~\pm10\%;~T_A = -40^{\circ}C~to~+85^{\circ}C;~R_L = 50\Omega~to~V_{CC} - 2V,~unless~otherwise~stated.$

Symbol	Parameter	Condition	Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage Q, /Q		V _{CC} -1.145		V _{CC} -0.895	V
V _{OL}	Output LOW Voltage Q, /Q		V _{CC} -1.945		V _{CC} -1.695	V
V _{OUT}	Output Differential Swing Q, /Q	See Figure 1a	550	800		mV
V _{DIFF_OUT}	Differiential Output Voltage Swing Q, /Q	See Figure 1b	1100	1600		mV

LVTTL/CMOS DC ELECTRICAL CHARACTERISTICS(Note 7)

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_{A} = -40°C to 85°C

Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{IH}	Input HIGH Voltage		2.0			V
V_{IL}	Input LOW Voltage				0.8	V
I _{IH}	Input HIGH Current		-125			μΑ
I _{IL}	Input LOW Current					μА

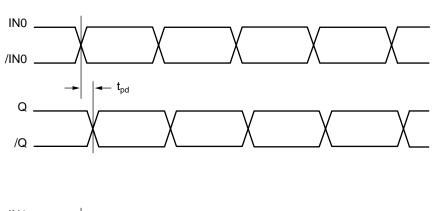
Note 7. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.

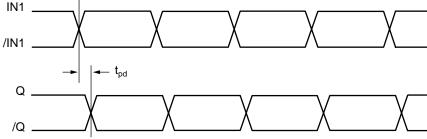
AC ELECTRICAL CHARACTERISTICS(Note 8)

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to 85°C, R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Parameter		Condition		Min	Тур	Max	Units
f _{MAX}	Maximum Ope	erating Frequency		NRZ Data	5			Gbps
			V _{OUT} ≥ 400mV	Clock		4		GHz
t _{pd}	Differential Pr	opagation Delay (IN0 or IN1-to-Q) (SEL-to-Q)			110 50	190 180	260 350	ps ps
t _{SKEW}		Input-to-Input Skew	Note 9			4	15	ps
		Part-to-Part Skew	Note 10				100	ps
tJITTER	Data	Random Jitter	Note 11				1	ps _(rms)
		Deterministic Jitter	Note 12				5	PS(pk-pk)
	Clock	Cycle-to-Cycle Jitter	Note 13				1	ps _(rms)
		Total Jitter	Note 14				10	PS(pk-pk)
	Crosstalk-indu (Clock/Data)	uced Jitter Channel-to-Channel	Note 15			1		ps _(rms)
t _r , t _f	Output Rise/F	all Time	20% to 80%, at full swing		35	75	110	ps

- **Note 8.** High-frequency AC parameters are guaranteed by design and characterization.
- **Note 9.** Input-to-input skew is the difference in time from and input to output in comparasion to any other input-to-output. In addition, the input-input skew does not include the output skew.
- **Note 10.** Part-to-part skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
- Note 11. RJ is measured with a K28.7 comma detect character pattern, measured at 10.7Gbps and 2.5Gbps/3.2Gbps.
- Note 12. DJ is measured at 10.7Gbps and 2.5Gbps/3.2Gbps, with both K28.5 and 2²³–1 PRBS pattern
- Note 13. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, $T_n T_{n-1}$ where T is the time between rising edges of the output signal.
- Note 14. Total jitter definition: With an ideal clock input of frequency ≤ f_{MAX} no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.
- Note 15. Crosstalk is measured at the output while applying two similar frequencies that are asynchronous with respect to each other at the inputs.


SINGLE-ENDED AND DIFFERENTIAL SWINGS



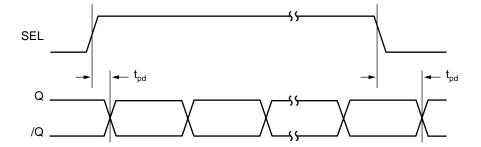
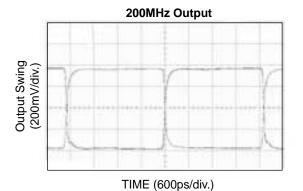
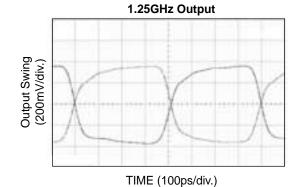
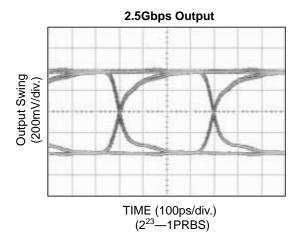

Figure 1a. Single-Ended Voltage Swing

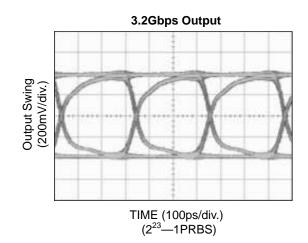
Figure 1b. Differential Voltage Swing

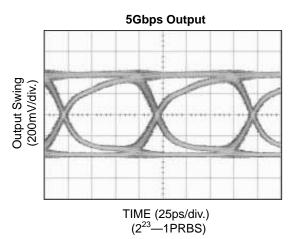
TIMING DIAGRAMS








TYPICAL OPERATING CHARACTERISTICS


 V_{CC} = 3.3V, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.

INPUT AND OUTPUT STAGES

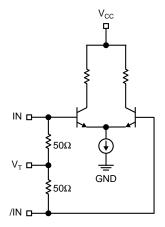


Figure 2a. Simplified Differential Input Stage

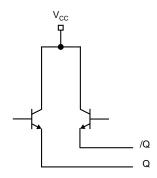


Figure 2b. Simplified LVPECL Output Stage

INPUT INTERFACE APPLICATIONS

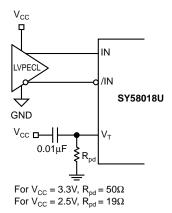


Figure 3a. DC-Coupled LVPECL Interface

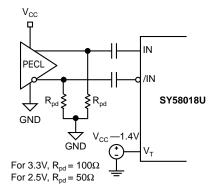


Figure 3b. AC-Coupled LVPECL Interface

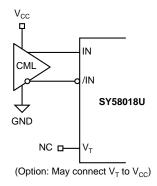


Figure 3c. DC-Coupled CML Interface

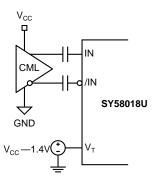


Figure 3d. AC-Coupled CML Interface

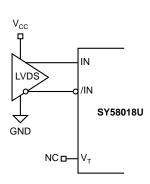


Figure 3e. LVDS Interface

OUTPUT INTERFACE APPLICATIONS

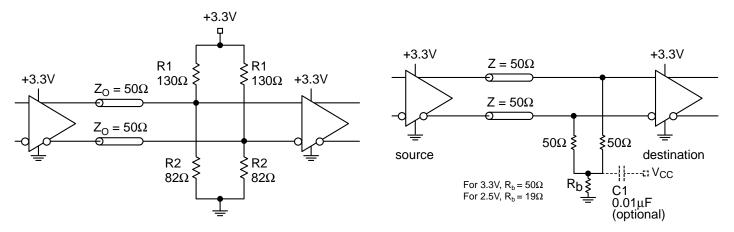


Figure 4a. Parallel Thevenin-Equivalent Termination

Figure 4b. Three-Resistor "Y" Termination

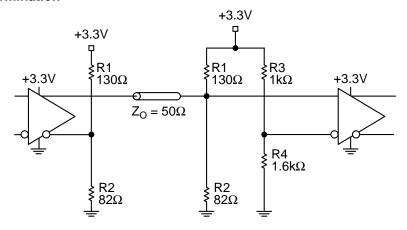
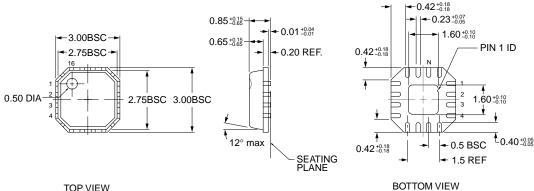
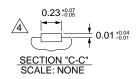



Figure 4c. Terminating Unused I/O

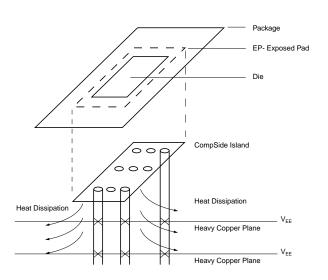
RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION


Part Number	Function	Data Sheet Link
SY58016L	3.3V 10Gbps Differential CML Line Driver/Receiver with Internal Termination	http://www.micrel.com/product-info/products/sy58016l.shtml
SY58017U	10.7Gbps Differential CML 2:1 Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58017u.shtml
SY58019U	10.7Gbps Differential 400mV LVPECL 2:1 Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58019u.shtml
SY58025U	10.7Gbps Dual 2:1 CML Mux with Internal I/O Termination	http://www.micrel.com/product-info/products/sy58025u.shtml
SY58026U	5Gbps Dual 2:1 Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58026u.shtml
SY58027U	10.7Gbps Dual 2:1 400mV LVPECL Mux with Internal Termination	http://www.micrel.com/product-info/products/sy58027u.shtml
SY58051U	10.7Gbps AnyGate [®] with Internal Input and Output Termnation	http://www.micrel.com/product-info/products/sy58051u.shtml
SY58052U	10Gbps Clock/Data Retimer with 50Ω Input Termination	http://www.micrel.com/product-info/products/sy58052u.shtml
	MLF™ Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
HBW Solutions	New Products and Applications	www.micrel.com/product-info/products/solutions.shtml

16 LEAD *Micro*LeadFrame™ (MLF-16)

TOP VIEW

СС 0.5BSC


- 1. DIMENSIONS ARE IN mm.
- 2. DIE THICKNESS ALLOWABLE IS 0.305mm MAX.
- 3. PACKAGE WARPAGE MAX 0.05mm.

4. THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20mm AND 0.25mm FROM TIP.

5. APPLIES ONLY FOR TERMINALS

FOR EVEN TERMINAL/SIDE

Rev. 02

PCB Thermal Consideration for 16-Pin MLF™ Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

- Note 1. Package meets Level 2 qualification.
- All parts are dry-packaged before shipment.
- Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.