

6GHz, 1:2 FANOUT BUFFER/ TRANSLATOR w/400mV LVPECL OUTPUTS and INTERNAL INPUT TERMINATION

Precision Edge™ SY58013U

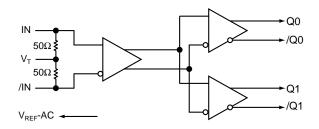
FEATURES

- Precision 1:2, 400mV LVPECL fanout buffer
- Guaranteed AC performance over temperature and voltage:
 - > 6GHz f_{MAX} clock
 - < 80ps t_r/t_f times
 - < 250ps t_{pd}
 - < 15ps max. skew
- Low jitter performance:
 - < 10ps_(pk-pk) total jitter (clock)
 - < 1ps_(rms) random jitter (data)
 - < 10ps_(pk-pk) deterministic jitter (data)
- Accepts an input signal as low as 100mV
- Unique input termination and V_T pin accepts DC-coupled and AC-coupled differential inputs: LVPECL, LVDS and CML
- 400mV LVPECL compatible outputs
- Power supply 2.5V \pm 5% and 3.3V \pm 10%
- -40°C to +85°C temperature range
- Available in 16-pin (3mm × 3mm) MLFTM package

APPLICATIONS

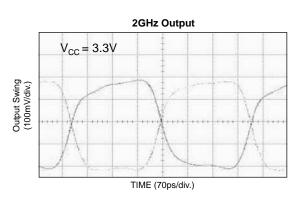
- All SONET and All GigE clock distribution
- Fibre Channel clock and data distribution
- Backplanes
- Data distribution: OC-48, OC-48+FEC, XAUI
- High-end, low-skew, multiprocessor synchronous clock distribution

Precision Edge™


DESCRIPTION

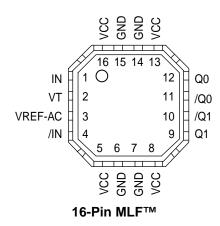
The SY58013U is a 2.5V/3.3V precision, high-speed, fully differential 1:2 LVPECL fanout buffer. Optimized to provide two identical output copies with less than 15ps of skew and less than 10ps_(pk-pk) total jitter, the SY58013U can process clock signals as fast as 6GHz or data patterns up to 10.7Gbps.

The differential input includes Micrel's unique, 3-pin input termination architecture that interfaces to LVPECL, LVDS, and CML differential signals, (AC-coupled or DC-coupled) as small as 100mV without any level-shifting or termination resistor networks in the signal path. For AC-coupled input interface applications, an on-board output reference voltage (V_{REF-AC}) is provided to bias the V_T pin. The outputs are 400mV LVPECL compatible, with extremely fast rise/fall times guaranteed to be less than 80ps.


The SY58013U operates from a 2.5V $\pm 5\%$ supply or 3.3V $\pm 10\%$ supply and is guaranteed over the full industrial temperature range (-40° C to $+85^{\circ}$ C). For applications that require greater output swing or CML compatible outputs, consider the SY58012U 1:2 fanout buffer with 800mV LVPECL outputs, or the SY58011U 1:2 fanout buffer with 400mV CML outputs. The SY58013U is part of Micrel's high-speed, Precision EdgeTM product line. Data sheets and support documentation can be found on Micrel's web site at www.micrel.com.

FUNCTIONAL BLOCK DIAGRAM

Precison Edge is a trademark of Micrel, Inc. MicroLeadFrame and MLF are trademarks of Amkor Technology, Inc.


TYPICAL PERFORMANCE

2GHz with 100mV Input

Rev.: A Amendment: /0 Issue Date: July 2003

PACKAGE/ORDERING INFORMATION

Ordering Information(Note 1)

Part Number	Package Type	Operating Range	Package Marking
SY58013UMI	MLF-16	Industrial	013U
SY58013UMITR ^(Note 2)	MLF-16	Industrial	013U

Note 1. Contact factory for die availability. Die are guaranteed at $T_A = 25^{\circ}C$, DC electricals only.

Note 2. Tape and Reel.

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function
1, 4	IN, /IN	Differential Input: This input pair is the signal to be buffered. Each pin is internally terminated with 50Ω to the V_T pin. Note that this input will default to an indeterminate state if left open. See "Input Interface Applications" section.
2	VT	Input Termination Center-Tap: Each input terminates to this pin. The V _T pin provides a center-tap for each input (IN, /IN) to a termination network for maximum interface flexibility. See <i>"Input Interface Applications"</i> section.
3	VREF-AC	Reference Output Voltage: This output biases to V_{CC} –1.4V. It is used for AC-coupled inputs (IN, /IN). Connect V_{REF-AC} directly to the V_{T} pin. Bypass with 0.01 μ F low ESR capacitor to V_{CC} . Maximum curent source or sink is 0.5mA. See "Input Interface Applications" section.
5, 8, 13, 16	VCC	Positive Power Supply: Bypass with $0.1\mu F//0.01\mu F$ low ESR capacitors as close to the V_{CC} pins as possible.
6, 7, 14, 15	GND, (Exposed Pad)	Ground. Exposed pad must be connected to a ground plane that is the same potential as the ground pin.
12, 11 9, 10	Q0, /Q0, Q1, /Q1	LVPECL Differential Output Pairs: Differential buffered output copy of the input signal. The output swing is typically 400mV. Unused output pairs may be left floating with no impact on jitter. See "LVPECL Output Termination" section.

Absolute Maximum Ratings(Note 1)

Power Supply Voltage (V _{CC})	√ to+4.0V
Input Voltage (V _{IN})	5V to V _{CC}
Output Current (I _{OUT})	
Continuous	50mA
Surge	100mA
V _T Current	
Source or sink current on V _T pin	.±100mA
Input Current	
Source or sink current on (IN, /IN)	±50mA
V _{RFF} Current	
Source or sink current on V _{REF} -AC, Note 4	 ±1.5mA
Soldering, (10 sec.)	270°C
Storage Temperature Range (T _{STORE})65 to	o +150°C

Operating Ratings(Note 2)

Power Supply Voltage (V _{CC})	. +2.3/5V to +3.60V
Operating Temperature Range (T _A)	–40°C to +85°C
Package Thermal Resistance, Note 3	
$MLF^{\mathsf{TM}}\left(\theta_{JA}\right)$	
Still-Air	60°C/W
500lpfm	54°C/W
MLF [™] (Ψ _{JB})	

DC ELECTRICAL CHARACTERISTICS(Note 5)

 $T_A = -40^{\circ}C$ to $+85^{\circ}C$

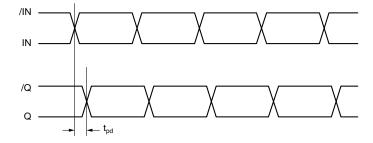
Symbol	Parameter	Condition	Min	Тур	Max	Units
V_{CC}	Power Supply Voltage		2.375		3.60	V
I _{CC}	Power Supply Current	Max. V _{CC} , no load		75	90	mA
V_{IH}	Input HIGH Voltage	IN, /IN, Note 6	V _{CC} -1.6		V _{CC}	V
V_{IL}	Input LOW Voltage	IN, /IN	0		V _{IH} -0.1	V
V _{IN}	Input Voltage Swing	IN, /IN; see Figure 1a	0.1		1.7	V
V _{DIFF_IN}	Differential Input Voltage	IN, /IN; see Figure 1b	0.2		3.4	V
R _{IN}	In to V _T Resistance		40	50	60	Ω
V _{REF} -AC	Output Reference Voltage		V _{CC} -1.525	V _{CC} -1.4	V _{CC} –1.325	V
IN to V _T					1.28	V

LVPECL DC ELECTRICAL CHARACTERISTICS(Note 5)

 $V_{CC} = 3.3 \text{V} \pm 10\% \text{ or } V_{CC} = 2.5 \pm 5\%; \text{ R}_{L} = 50\Omega \text{ to } V_{CC} - 2\text{V}; \text{ T}_{A} = -40^{\circ}\text{C} \text{ to } 85^{\circ}\text{C}, \text{ unless otherwise stated.}$

Symbol	Parameter Condition		Min	Тур	Max	Units
V _{OH}	Output HIGH Voltage	Q0, /Q0, Q1, /Q1	V _{CC} -1.145	V _{CC} -1.020	V _{CC} -0.895	V
V_{OL}	Output LOW Voltage	Q0, /Q0, Q1, /Q1	V _{CC} -1.545	V _{CC} -1.420	V _{CC} -1.295	V
V _{OUT}	Output Voltage Swing	Q0, /Q0, Q1, /Q1; see Figure 1a	200	400		mV
V _{DIFF_OUT}	Differential Output Voltage Swing	Q0, /Q0, Q1, /Q1; see Figure 1b	400	800		mV

- Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATINGS conditions for extended periods may affect device reliability.
- Note 2. The data sheet limits are not guaranteed if the device is operated beyond the operating ratings.
- Note 3. Thermal performance assumes exposed pad is soldered (or equivalent) to the device's most negative potential on the PCB.
- Note 4. Due to the limited drive capability, use for input of the same package only.
- Note 5. The circuit is designed to meet the DC specifications shown in the above table after thermal equilibrium has been established.
- Note 6. V_{IH} (min.) not lower than 1.2V.


AC ELECTRICAL CHARACTERISTICS(Note 7)

 V_{CC} = 2.5V ±5% or 3.3V ±10%; T_A = -40°C to +85°C; R_L = 50 Ω to V_{CC} -2V, unless otherwise stated.

Symbol	Paramete	r	Condition		Min	Тур	Max	Units
f_{MAX}	Maximum	Operating Frequency		NRZ Data		10		Gbps
			V _{OUT} ≥ 200mV	Clock	6			GHz
t _{pd}	Propagation	on Delay	$V_{IN} \ge 100 mV$		100	180	250	ps
t _{CHAN}	Channel-to	o-Channel Skew	Note 8			4	15	ps
t _{SKEW}	Part-to-Pa	rt Skew	Note 9				100	ps
t _{JITTER}	Data	Random Jitter (RJ) Deterministic Jitter (DJ)	Note 10 Note 11				1 10	ps(rms) ps(pk-pk)
	Clock	Cycle-to-Cycle Jitter Total Jitter (TJ)	Note 12 Note 13				1 10	ps(rms) ps(pk-pk)
t _r , t _f	Output Ris	se/Fall Time	20% to 80%, at full output swing		20	50	80	ps

- Note 7. High frequency AC electricals are guaranteed by design and characterization.
- Note 8. Skew is measured between outputs of the same bank under identical transitions.
- **Note 9.** Skew is defined for two parts with identical power supply voltages at the same temperature and with no skew of the edges at the respective inputs.
- Note 10. RJ is measured with a K28.7 comma detect character pattern, measured at 10.7Gbps and 2.5Gbps/3.2Gbps.
- Note 11. DJ is measured at 10.7Gbps and 2.5Gbps/3.2Gbps with both K28.5 and 2²³–1 PRBS pattern
- Note 12. Cycle-to-cycle jitter definition: The variation of periods between adjacent cycles, $T_n T_{n-1}$ where T is the time between rising edges of the output signal.
- Note 13. Total jitter definition: With an ideal clock input of frequency ≤ f_{MAX}, no more than one output edge in 10¹² output edges will deviate by more than the specified peak-to-peak jitter value.

TIMING DIAGRAM

SINGLE-ENDED AND DIFFERENTIAL SWINGS

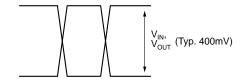
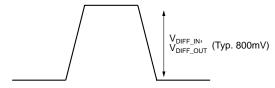
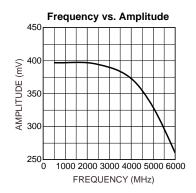
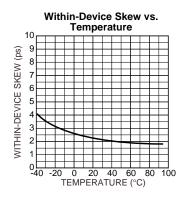
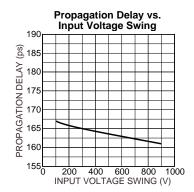
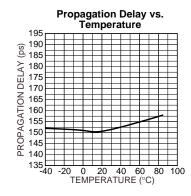


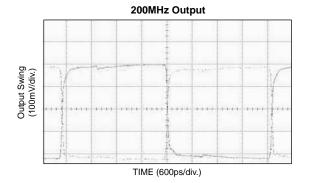
Figure 1a. Single-Ended Voltage Swing

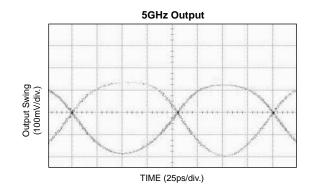




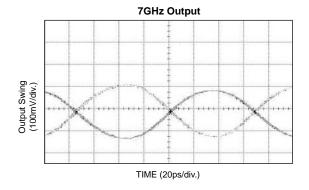

Figure 1b. Differential Voltage Swing

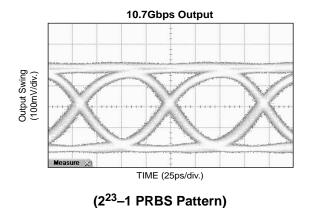

TYPICAL OPERATING CHARACTERISTICS

 V_{CC} = 3.3V, GND = 0, V_{IN} = 100mV, T_A = 25°C, unless otherwise stated.








FUNCTIONAL CHARACTERISTICS

 $\rm V_{CC}$ = 3.3V, $\rm V_{EE}$ = 0V, $\rm V_{IN}$ = 100mV, $\rm T_A$ = 25°C, unless otherwise stated.

INPUT STAGE

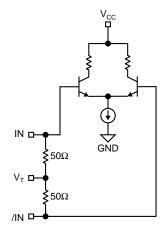


Figure 2. Simplified Differential Input Buffer

INPUT INTERFACE APPLICATIONS

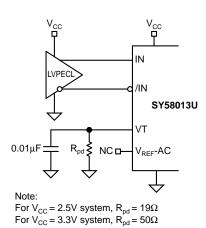


Figure 3a. DC-Coupled LVPECL Input Interface

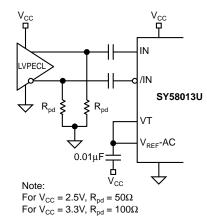


Figure 3b. AC-Coupled LVPECL Input Interface

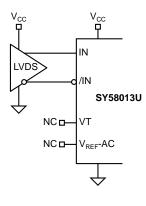


Figure 3c. LVDS Input Interface

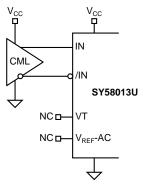
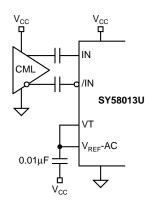



Figure 3d. DC-Coupled CML Input Interface (option: may connect V_T to V_{CC})

oupled Figure 3e. AC-Coupled CML Input Interface

OUTPUT TERMINATION RECOMMENDATIONS

LVPECL outputs have very low output impedance (open emitter), and small signal swing which results in low EMI (electro-magnetic interference). The LVPECL is ideal for driving 50Ω and 100Ω controlled impedance transmission

lines. In addition, LVPECL is compatible for driving standard PECL inputs since PECL inputs require only 100mV input swing. Further, there are several techniques in terminating the LVPECL outputs, as shown in Figure 5 through 7.

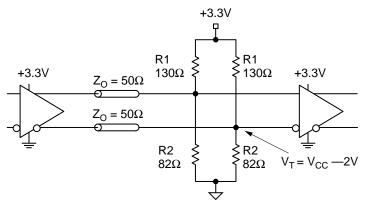


Figure 5. Parallel Termination-Thevenin Equivalent

Note 1. For +2.5V systems: R1 = 250Ω , R2 = 62.5Ω Note 2. For +3.3V systems: R1 = 130Ω , R2 = 82Ω

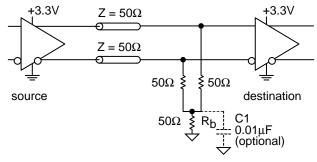


Figure 6. Three-Resistor "Y-Termination"

- **Note 1.** Power-saving alternative to Thevenin termination.
- **Note 2.** Place termination resistors as close to destination inputs as possible.
- **Note 3.** R_b resistor sets the DC bias voltage, equal to V_T .

For +2.5V systems $R_b = 39\Omega$.

For +3.3V systems R_b = 46Ω to 50Ω .

Note 4. C1 is an optional bypass capacitor intended to compensate for any t_r/t_f mismatches.

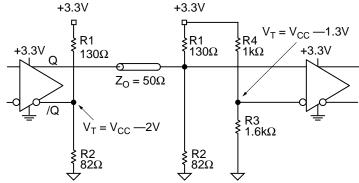
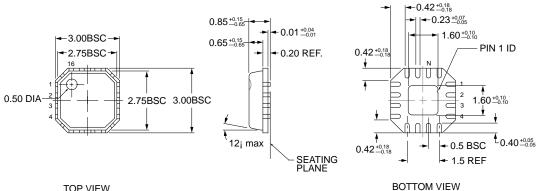


Figure 7. Terminating Unused I/O

- **Note 1.** Unused output (/Q) must be terminated to balance the output.
- Note 2. For +2.5V systems: R1 = 250 Ω , R2 = 62.5 Ω , R3 = 1.25k Ω , R4 = 1.2k Ω .


For +3.3V systems: R1 = 130Ω , R2 = 82Ω , R3 = $1k\Omega$, R4 = $1.6k\Omega$.

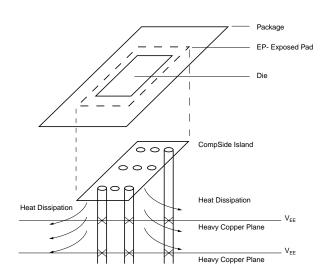
Note 3. Unused output pairs (Q and /Q) may be left floating.

RELATED MICREL PRODUCTS AND SUPPORT DOCUMENTATION

Part Number	Function	Data Sheet Link
SY58011U	7GHz, 1:2 CML Fanout Buffer/Translator With Internal I/O Termination	http://www.micrel.com/product-info/prod/ucts/sy58011u.shtml
SY58012U	5GHz, 1:2 LVPECL Fanout Buffer/Translator With Internal Input Termination	http://www.micrel.com/product-info/products/sy58012u.shtml
SY58013U	6GHz, 1:2 Fanout Buffer/Translator w/400mV LVPECL Outputs and Internal Input Termination	http://www.micrel.com/product-info/products/sy58013u.shtml
	16-MLF™ Manufacturing Guidelines Exposed Pad Application Note	www.amkor.com/products/notes_papers/MLF_AppNote_0902.pdf
M-0317	HBW Solutions	http://www.micrel.com/product-info/as/solutions.shtml

16 LEAD *Micro*LeadFrame™ (MLF-16)

TOP VIEW



- 1. DIMENSIONS ARE IN mm.
- 2. DIE THICKNESS ALLOWABLE IS 0.305mm MAX.
- PACKAGE WARPAGE MAX 0.05mm.

THIS DIMENSION APPLIES TO PLATED TERMINAL AND IS MEASURED BETWEEN 0.20mm AND 0.25mm FROM TIP.

5. APPLIES ONLY FOR TERMINALS

Rev. 02

PCB Thermal Consideration for 16-Pin MLF™ Package (Always solder, or equivalent, the exposed pad to the PCB)

Package Notes:

- Note 1. Package meets Level 2 qualification.
- All parts are dry-packaged before shipment.
- Note 3. Exposed pads must be soldered to a ground for proper thermal management.

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.