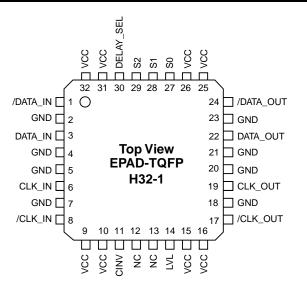


2.5V/3.3V 2.5GHz DIFFERENTIAL 2-CHANNEL PRECISION CML DELAY LINE

SuperLite™ SY55856U FINAL


FEATURES

- Guaranteed AC parameters over temp and voltage
 - > 2.5GHz F_{MAX}
 - < 384ps prop delay</p>
 - < 120ps T_r/T_f
- Delay either clock or data
- 50ps increments
- ± 350ps total delay
- Delay either clock or data
- Source terminated CML outputs
- Full differential I/O
- Wide supply voltage spectrum: 2.3V to 3.6V
- Available in a tiny 32-pin EPAD-TQFP package

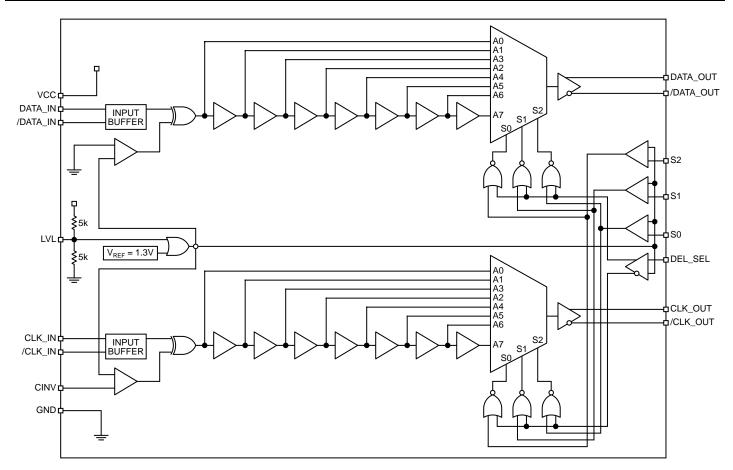
APPLICATIONS

- Data communications systems
- Telecom systems
- High-speed backplanes
- Signal de-skewing
- Pulse alignment
- Digitally controlled delay lines

PIN CONFIGURATION

PIN NAMES

Pin	Function
CLK_IN, /CLK_IN	Differential Clock Input (CML compatible)
CLK_OUT, /CLK_OUT	Differential Clock Output (CML)
CINV	Clock Inversion Control (CML compatible)
DATA_IN, /DATA_IN	Differential Data Input (CML compatible)
DATA_OUT, /DATA_OUT	Differential Data Output (CML)
LVL	Control Level Select (CML compatible)
DELAY_SEL	Delay Path Control (CML compatible)
S2, S1, S0	Delay Selection Control (LSB=S0)
GND	Ground
V _{cc}	V _{cc}


SuperLite™

DESCRIPTION

The SY55856U is a 2.5GHz, two-channel, fully differential CML (Current Mode Logic) delay line. The device is optimized to adjust the relative delay between two channels, such as clock and data, in 50ps increments. Both inputs may be adjusted in either direction in 7 increments of 50ps, for a total adjustment range of \pm 350ps. In addition, the clock input maybe inverted through the CINV control pin.

The SY55856U inputs are designed to accept singleended or differential CML signals. The differential CML outputs are optimized for 50Ω loads (50Ω source terminated), thus only requires a single 100Ω resistor across the output pair. Output rise and fall time is an extremely fast 110ps(max)and the differential swing is 400mV. The maximum throughput of the SY55856U is guaranteed to exceed 2.5GHz (1.25Gbps).

BLOCK DIAGRAM

PIN DESCRIPTIONS

CLK_IN, /CLK_IN - CML Input (Differential)

This is one of the differential CML inputs, the clock in signal. A delayed version of this input appears at CLK_OUT, /CLK_OUT.

CINV – VT Input (Single Ended)

This is the clock inversion select signal. This input optionally inverts the CLK_IN, /CLK_IN signal which results in an inverted CLK_OUT, /CLK_OUT. A voltage below the VT threshold results in no inversion. A voltage above the threshold value results in an inversion from the clock input to the clock output. Refer to the "VT input" section below.

CLK_OUT, /CLK_OUT – CML Output (Differential)

This is one of the CML outputs, the clock output. It is a delayed, copy of CLK_IN, /CLK_IN.

DATA_IN, /DATA_IN – CML Input (Differential)

This is one of the CML inputs, the data in signal. A delayed version of this signal appears at DATA_OUT, /DATA_OUT.

DATA_OUT, /DATA_OUT - CML Output (Differential)

This is one of the CML outputs, the data output. It is a delayed version of CLK_IN, /CLK_IN.

LVL – Analog Input

This input determines what level differentiates logic high from logic low. This input affects the behavior of the CINV, S0, S1 and S2 inputs. Please refer to the "VT input" section below for more details. For the control interface, see Figure 3b. For TTL control interface, see Figure 3b.

DELAY_SEL – VT Input (Single Ended)

CML compatible control logic. This is the delay path control input. Logic high delays the clock signal with respect to the data signal. A logic low delays the data signal with respect to the clock signal. Inputs S2, S1 and S0 control amount of delay.

S0, S1, S2 – VT Input (Single Ended)

CML compatible control logic. This is the delay selection control input. These three bits define how much relative delay will occur between the data and clock signals, as per the truth table shown in Table 2. For the control logic interface, see Figure 3b. For TTL control interface, see Figure 3b. S0=LSB.

FUNCTIONAL DESCRIPTION

Establishing Static Logic Inputs

The true pin of a CML input pair is internally biased to ground through a 75k Ω resistor. The complement pin of a CML input pair is internally biased halfway between V_{CC} and ground by a voltage divider consisting of two 75k Ω resistors. To keep a CML input at static logic zero at V_{CC} > 3.0V, leave both inputs unconnected. For $V_{CC} \leq$ 3.0V, connect the complement input to V_{CC} and leave the true input unconnected. To make an input static logic one, connect the true input to V_{CC} , and leave the complement input unconnected. These are the only safe ways to cause CML inputs to be at a static value. In particular, no CML input should be directly connected. All NC pins in the figures below should be left unconnected.

VT (Variable Threshold) Inputs

Five inputs to SY55856U, CINV, DELAY_SEL, S0, S1, and S2, are variable threshold inputs. The LVL input determines

the Voltage threshold that differentiates logic high from logic low for these five inputs only. If LVL is left unconnected, the

VT inputs will switch at about
$$\frac{V_{CC} + GND}{2}$$
 or V_{TCL} ,

whichever is higher. To obtain a logic switching threshold different from this, the LVL input must be driven with the actual desired threshold voltage. The user may drive the LVL pin with any voltage between $V_{CC} - 0.1V$ and ground. For example, driving LVL with a voltage set at Vcc - 1.3V causes the VT inputs to accept single ended PECL outputs and switch appropriately.

Note that VT inputs are internally clamped so that the threshold will not fall below VTCL Volts. Since driving the LVL input to ground causes the threshold to be somewhere between V_{TCL} (min) and V_{TCL} (max), it is expected that the user will keep the Voltage at the LVL pin at or above V_{TCL} (max). Please refer to Figure 3 for clarification.

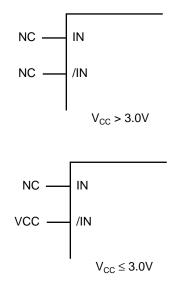
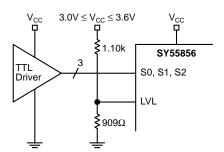



Figure 2. Hard Wiring a Logic "0"⁽¹⁾

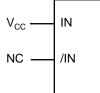


Figure 1. Hard Wiring a Logic "1"⁽¹⁾

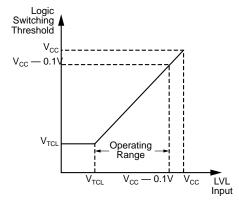


Figure 3a. Logic Switching Threshold

Note 1. IN is either the DATA_IN or the CLK_IN input. /IN is either the / DATA_IN or the /CLK_IN input.

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Rating	Rating			
V _{CC}	Power Supply Voltage		-0.5 to +6.0	V	
V _{IN}	Input Voltage	Input Voltage			
V _{OUT}	CML Output Voltage		–0.5 to V _{CC} +5.0	V	
T _A	Operating Temperature Range		-40 to +85	°C	
T _{store}	Storage Temperature Range		-55 to +125	°C	
θ_{JA}	Package Thermal Resistance (Junction-to-Ambient) Exposed pad soldered to PCB GND pin	– Still Air – 500lfpm	28 20	°C/W °C/W	
θ_{JC}	Package Thermal Resistance (Junction-to-Case)		4	°C/W	

Note 1. Permanent device damage may occur if ABSOLUTE MAXIMUM RATINGS are exceeded. This is a stress rating only and functional operation is not implied at conditions other than those detailed in the operational sections of this data sheet. Exposure to ABSOLUTE MAXIMUM RATING conditions for extended periods may affect device reliability.

CML TERMINATION

All CML inputs accept a CML output from any other member of this family. All CML outputs are source terminated 50 Ω differential drivers as shown in Figure 4. SY55856U expects its inputs to be externally terminated.

SY55856U inputs are designed to accept a termination resistor between the true and complement inputs of a CML differential input pair, as shown in Figure 4.

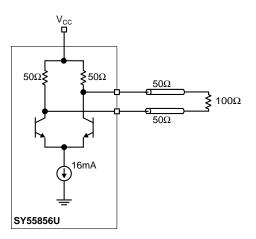


Figure 4. 50 Ω Load CML Output

TRUTH TABLES

DATA_IN	CLK_IN	CINV	DATA_OUT	/DATA_OUT	CLK_OUT	/CLK_OUT
0	0	0	0	1	0	1
0	0	1	0	1	1	0
0	1	0	0	1	1	0
0	1	1	0	1	0	1
1	0	0	1	0	0	1
1	0	1	1	0	1	0
1	1	0	1	0	1	0
1	1	1	1	0	0	1

Table 1. Input to Output Connectivity

S2	S1	S0	DATA_OUT (D_SEL=0) (ps)	CLK_OUT (D_SEL=1) (ps)	(CLK_OUT-CLK_IN) - (DATA_OUT-DATA_IN) (ps)
0	0	0	350	0	-350
0	0	1	300	50	-250
0	1	0	250	100	–150
0	1	1	200	150	-50
1	0	0	150	200	50
1	0	1	100	250	150
1	1	0	50	300	250
1	1	1	0	350	350

Table 2. Nominal Differential Delay Values

- Note 1. Table 2 defines the approximate relative delay between the two paths. For example, if S2, S1, S0 = 000, and an edge appears at CLK_IN at the same instant as an edge appears at DATA_IN, then an edge at CLK_OUT will appear about 350ps earlier than an edge at DATA_OUT. That is, negative values imply CLK_OUT being shifted early with respect to DATA_OUT. Likewise, a positive value in the third column implies that CLK_OUT is shifted late with respect to DATA_OUT. Please consult the "AC ELECTRICAL CHARACTERISTICS" section for more precise delay values.
- Note 2. As another example, if an edge at CLK_IN appears 100ps before an edge at DATA_IN, and if S2, S1, S0 = 100, then an edge at CLK_OUT will appear about 50ps after an edge at DATA_OUT. This setting of the select inputs shifts CLK_IN to CLK_OUT about 150ps later than DATA_IN to DATA_OUT, moving the timing of the "C" side from 100ps early to 50ps late, as compared with the "D" channel, going through the part.

DC ELECTRICAL CHARACTERISTICS⁽¹⁾

		$T_A = -40^{\circ}C$		T _A = +25°C		T _A = +85°C						
Symbol	Parameter	Min.	Тур.	Max.	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit	Condition
V _{CC}	Power Supply Voltage	2.3		3.6	2.3	—	3.6	2.3		3.6	V	
I _{CC}	Power Supply Current	-	_	140	—	115	140	-	-	140	mA	No Load

Note 1. Specification for packaged product only.

VT INPUTS DC ELECTRICAL CHARACTERISTICS⁽¹⁾

$V_{CC} = 2.3V$ to 3.6V; GND = 0V; $T_A = -40^{\circ}C$ to $+85^{\circ}C^{(2)}$

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{ILVL}	Analog Input ⁽³⁾	V _{TCL}		V _{CC} - 0.1	V
V _{IHVT}	V _T Input High Voltage ^(4,5)	V _{SW} + 0.1		V _{CC}	V
V _{ILVT}	V _T Input High Voltage ^(4,5)	0.0		V _{SW} – 0.1	V
V _{IST}	Input Switching Threshold Differential Voltage ⁽⁶⁾	100	50	_	mV
V _{TCL}	Threshold Clamp Voltage	1.2	—	1.4	V

Note 1. Specification for packaged product only.

Note 2. DC parameters are guaranteed after thermal equilibrium has been established.

Note 3. The LVL input determines the voltage switching threshold that differentiates logic high from logic low for the V_T inputs S0, S1, S2, S2, and CINV. LVL may be driven to V_{CC}, but this is not useful, as the V_T inputs could then not get high enough to reliably indicate logic high. Also, as shown in Figure 3, the LVL input internally clamps at V_{TCL}. If LVL is left unconnected, the V_T inputs will switch at about the maximum of

$$\frac{V_{CC} + GND}{2} \left(= \frac{V_{CC}}{2} \right)$$
 and V_{TCL} .

Note 4. V_T inputs are S0, S1, S2, S3, and CINV.

Note 5. V_{SW} is the threshold switching voltage. It is equal to the voltage at the LVL pin, when this voltage is above V_{TCL} (max). V_{SW} is some value between V_{TCL} (min) and V_{TCL} (max) when the Voltage at the LVL pin is below V_{TCL} (max).

Note 6. V_{IST} is the voltage difference needed to guarantee a stable logic level. Logic high must be at least V_{IST} above V_{SW} . Logic low must be at most V_{IST} below V_{SW} . Thus, the minimum input swing on a given V_T input pin, that is, $|V_{IHVT} - V_{ILVT}|$, must be at least $2 \times V_{IST}$.

CML DC ELECTRICAL CHARACTERISTICS^(1, 2)

 V_{CC} = 2.3V to 3.6V; GND = 0V; T_A = -40°C to +85°C

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
V _{ID}	Differential Input Voltage	100	—	—	mV	
V _{IH}	Input HIGH Voltage	1.6	—	V _{CC}	V	
V _{IL}	Input LOW Voltage	1.5	—	V _{CC} –0.1	V	
V _{OH}	Output HIGH Voltage	V _{CC} -0.040	V _{CC} -0.010	V _{CC}	V	No Load
V _{OL}	Output LOW Voltage	V _{CC} -1.00	V _{CC} -0.800	V _{CC} –0.65	V	No Load
V _{OUT}	Output Voltage Swing ⁽³⁾	0.650	0.800	1.00	V	No Load
(Swing)			0.400			50Ω Environment
R _{OUT}	Output Source Impedance (CLK_OUT, /CLK_OUT and DATA_OUT, /DATA_OUT)	40	50	60	Ω	

Note 1. Specification for packaged product only.

Note 2. DC parameters are guaranteed after thermal equilibrium has been established.

Note 3. $V_{OUT(SWING)}$ is defined as the swing on one output of a differential pair, that is $|V_{OH} - V_{OL}|$ on one pin. The swing for common mode noise immunity purposes is $2 \times V_{OUT(SWING)}$. Actual voltage levels and differential swing will depend on customer termination scheme. Typically, a 400mV swing is available in a 50 Ω environment. Refer to "CML Termination" figures for more details.

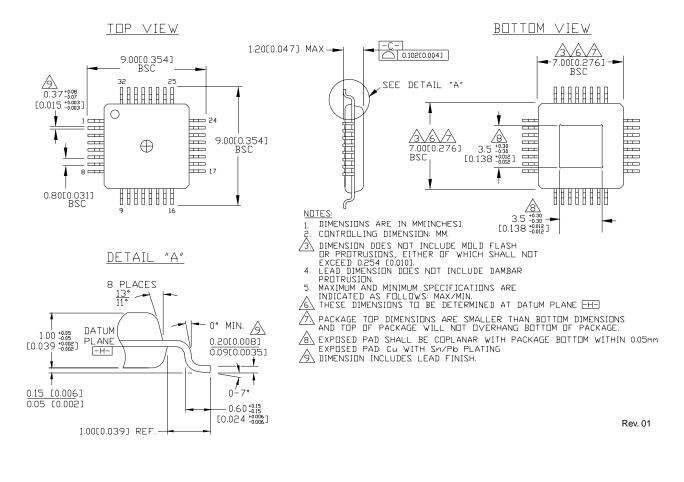
AC ELECTRICAL CHARACTERISTICS^(1, 2)

 $V_{CC} = 2.3V$ to 3.6V; GND = 0V

		T _A = -40°C		T _A =	+25°C	T _A =	+85°C	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
f _{MAX}	Maximum Frequency	2.5	—	2.5		2.5	—	GHz
Δt	Delay step size	36	52	36	52	36	52	ps
t _{PLH} t _{PHL}	Delay line insertion delay ⁽³⁾	232	384	232	384	232	384	ps
t _{DELAY}	Delay line range	250	365	290	420	335	465	ps
t _{JITTER}	Output jitter	_	<1	_	<1	_	<1	ps(rms)
t _{SKEW}	Delay line duty cycle skew (It _{PLH} –t _{PHL} I)	_	50	_	50	_	50	ps
DC	Duty cycle	45	55	45	55	45	55	%
t _r /t _f	CML Output rise/fall time (20% to 80%)	_	100	—	110	_	120	ps

Note 1. Specification for packaged product only.

Note 2. Tested using the 50W load, as shown in Figure 4.


Note 3. Delay line insertion delay is the minimum input-to-output delay with select control set to S2:S0 = 0 for CLK_OUT and S2:S0 = 7 for DATA_OUT. This resulting delay is the inherent propagation delay.

PRODUCT ORDERING CODE

Ordering Code	Package Type	Operating Range	Package Marking
SY55856UHI	H32-1	Industrial	SY55856UHI
SY55856UHITR*	H32-1	Industrial	SY55856UHI

*Tape and Reel

32 LEAD EPAD-TQFP (DIE UP) (H32-1)

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use. Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.