
DSPLib For The Hitachi SH1
7000 Series Microcontroller

Application Note

19-031/1.0

June 1996

 Hitachi Micro Systems Europe Ltd 1996



When using this document, keep the following in mind,

1,  This document may, wholly or partially, be subject to change without notice.
2,  All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole or part of this document without Hitachi’s permission.
3,  Hitachi will not be held responsible for any damage to the user that may result from accidents or any other reasons during the operation of the user’s unit according to this
document.
4, Circuitry and other examples described herein are meant only to indicate the characteristics and performance of Hitachi’s semiconductor products.  Hitachi assumes no
responsibility for any intellectual property claims or other problems that may result from applications based on the examples therein.
5,  No license is granted by implication or otherwise under any patents or other rights of any third party or Hitachi, Ltd.
6,  MEDICAL APPLICATIONS:  Hitachi’s products are not authorised for use in MEDICAL APPLICATIONS without the written consent of the appropriate officer of Hitachi’s
sales company.  Such use includes, but is not limited to, use in life support systems.  Buyers of Hitachi’s products are requested to notify the relevant sales office when planning to
use the products in MEDICAL APPLICATIONS.

Copyright Hitachi, Ltd.,1996.  All rights reserved



DSPLib For SH                                Application Note(19-031/1.0)                                              Preface

Preface

This manual is intended as a user guide for the Digital Signal Processing library
DSPLib.  DSPLib has been developed for use with the Hitachi ‘Super H’ range of RISC
microcontrollers, and in particular the SH-1 device.

The organisation of this manual is as follows :

Overview: Gives an overview of the library and its performance.

Function Descriptions: Describes the use of each function, including 
background theory and software examples where 
necessary.

DSPLib Implementation: Takes the reader through a typical DSPLib 
implementation.  Includes notes on hardware interfacing 
to the SH-1 as well as examples of typical software 
routines.

Related Manuals

The reader should refer to the following Hitachi manuals when using DSPLib:

DSPLib For SH User Guide

SH7032/SH7034 Hardware Manual

SH7000 Series Programming Manual

SH Series C Compiler

SH Series Cross Assembler

H Series Linkage Editor

For software development tools, contact your Hitachi sales office.
Hitachi Micro Systems Europe Ltd i



DSPLib For SH                               Application Note (19-031/1.0)                                           Contents

Hitachi Micro Systems Europe Ltd ii

TABLE OF CONTENTS

PREFACE ................................................................................................................................................i

1.0 OVERVIEW......................................................................................................................................1

1.1 GENERAL DESCRIPTION.......................................................................................................................1
1.1.2 Note About Data Types................................................................................................................2

1.2 FUNCTION TIMINGS .............................................................................................................................3
1.2.1 FFT Timings ................................................................................................................................3
1.2.2 Filter Timings ..............................................................................................................................3
1.2.3 Convolution & Correlation Timings ............................................................................................4

2.0 FAST FOURIER TRANSFORMS (FFT).......................................................................................5

2.1 FFT BACKGROUND THEORY...............................................................................................................5
2.1.1 Not In Place FFT.........................................................................................................................6
2.1.2 In-Place FFT ...............................................................................................................................7
2.1.3 FFT Scaling .................................................................................................................................8
2.1.4 Input / Output Array Format .......................................................................................................8

2.2 ROUTINE DESCRIPTIONS......................................................................................................................9
2.2.1 FftReal .........................................................................................................................................9
2.2.2 FftComplex ................................................................................................................................13
2.2.3 IfftComplex ................................................................................................................................14
2.2.4 IfftReal .......................................................................................................................................16
2.2.5 FftInComplex .............................................................................................................................17
2.2.6 FftInReal....................................................................................................................................17
2.2.7 IfftInComplex .............................................................................................................................18
2.2.8 IfftInReal....................................................................................................................................18

3.0 WINDOW FUNCTIONS................................................................................................................21

3.1 FUNCTION DESCRIPTIONS..................................................................................................................21
3.2 USING WINDOW FUNCTIONS..............................................................................................................24
3.3 FFT APPLICATION OF WINDOW FUNCTIONS......................................................................................24

4.0 FILTERS .........................................................................................................................................31

4.1 FILTER BACKGROUND THEORY.........................................................................................................31
4.1.1 Finite Impulse Response Filters (FIR).......................................................................................32
4.1.2 Infinite Impulse Response Filters (IIR)......................................................................................33
4.1.3 Filter Specification ....................................................................................................................35

4.2 ROUTINE DESCRIPTIONS....................................................................................................................37
4.2.1 Fir ..............................................................................................................................................37
4.2.2 Fir1 ............................................................................................................................................39
4.2.3 Iir ...............................................................................................................................................41
4.2.4 Iir1 .............................................................................................................................................43
4.2.5 DIir ............................................................................................................................................44
4.2.6 DIir1 ..........................................................................................................................................49
4.2.7 Lms.............................................................................................................................................50
4.2.8 Lms1...........................................................................................................................................57

5.0 CONVOLUTION AND CORRELATION ...................................................................................59

5.1 BACKGROUND THEORY.....................................................................................................................59
5.1.1 Convolution ...............................................................................................................................59
5.1.2 Correlation ................................................................................................................................60

5.2 ROUTINE DESCRIPTIONS....................................................................................................................61
5.2.1 ConvComplete............................................................................................................................61
5.2.2 ConvCyclic.................................................................................................................................62



DSPLib For SH                               Application Note (19-031/1.0)                                           Contents

Hitachi Micro Systems Europe Ltd iii

5.2.3 ConvPartial................................................................................................................................64
5.2.4 Correlate....................................................................................................................................65
5.2.5 CorrCyclic .................................................................................................................................67

5.3 CORRELATION EXAMPLE ...................................................................................................................68

6.0 MISCELLANEOUS FUNCTIONS ...............................................................................................71

6.1.1 GenGWnoise ..............................................................................................................................71
6.1.2 MatrixMult .................................................................................................................................72
6.1.3 VectorMult .................................................................................................................................73
6.1.4 MsPower ....................................................................................................................................74
6.1.5 Mean ..........................................................................................................................................74
6.1.6 Variance.....................................................................................................................................75
6.1.7 MaxI...........................................................................................................................................76
6.1.8 MinI ...........................................................................................................................................76
6.1.9 Peakl ..........................................................................................................................................77

7.0 DSPLIB IMPLEMENTATION.....................................................................................................79

7.1 HARDWARE .......................................................................................................................................79
7.1.1 Analogue to Digital Conversion ................................................................................................80
7.1.2 Digital To Analogue Conversion ...............................................................................................81
7.1.3 Circuit Description ....................................................................................................................82

7.2 SOFTWARE.........................................................................................................................................84
7.2.1 Main() ........................................................................................................................................84
7.2.2 system() ......................................................................................................................................86
7.2.3 adc(short*).................................................................................................................................87
7.2.4 detect(short*) .............................................................................................................................88
7.2.5 dac(short*).................................................................................................................................89
7.3 Timing...........................................................................................................................................90

APPENDIX ONE ..................................................................................................................................92

ENSIGMA SOFTWARE GUIDE FOR DSPLIB ...............................................................................................92



DSPLib For SH                               Application Note (19-031/1.0)                                          Overview
1.0 Overview

1.1 General Description

DSPLib represents a number of standard ‘off the shelf’ fixed point DSP operations
which can be used either stand alone or in series to form an optimised DSP process
which will run on a microcontroller.  The functions offered by the library come in five
distinct groups.

Fast Fourier Transforms

Window Functions

Filters

Convolution & Correlation

Miscellaneous

The library offers each function in both ANSI C source code and also optimised SH
assembler.  The C code is provided only for debugging and reference.  It is not
recommended that the C code be used in a finished system due to the inefficiencies
introduced by the C compiler.

As well as the DSP functions, DSPLib offers a number of example programs to
demonstrate to the user how easily DSPLib can be integrated into standard ANSI C
code.

In order to reduce development times, this document has been written to take the reader
through each function indicating typical pitfalls, as well as hints to improve execution
speed.  The document forms a type of user guide for the main part, and towards the end
indicates some hardware design considerations as well when designing with the Hitachi
SH series.

All the functions offered by DSPLib do not use any local static variables, thus enabling
the functions to be called from interrupt routines without affecting the operation of the
main program.

In order to use DSPLib with the Hitachi SH series of microcontrollers, the user will
require the Hitachi tool chain to build programs.  This tool chain consists of the
following :-

SH Series Cross Assembler

SH Series C Compiler

H Series Linkage Editor
Hitachi Micro Systems Europe Ltd 1



DSPLib For SH                               Application Note (19-031/1.0)                                          Overview
Although a set of GNU tools are available for the Hitachi SH series, the optimised SH
assembler in DSPLib is not compatible, and is therefore unsuitable.  The ANSI C code
can be compiled by the GNU tool, but will result in a very inefficient implementation.

DSPLib is supplied on a 3.5” disk in MS-DOS format.  The disk consists of a file
ensigma.lib which contains the entire library ready built in object form.  Also on the
disk is a header file called ensigdsp.h, as well as the ANSI C and optimised assembler
functions.  Some example code is also supplied on the disk, details of which may be
found in the related Ensigma documentation.  A number of test routines are included to
allow the user to verify correct operation.

The directory structure of DSPLib is as follows :-

When installing DSPLib, create a directory for the above tree to sit in.  The Hitachi tools
should be installed in a separate directory, and the path then set such that the include and
lib directories of DSPLib are visible when building programs.  To copy the library onto
a hard drive called c:\, place DSPLib into drive A:\ and type the following :-

XCOPY A:\* C:\shc\shc2.0 /s

Further details on installation and library building are included in the related Ensigma
documentation.

1.1.2 Note About Data Types

DSPLib makes use of a number of ANSI C data types.  Representation of these types on
an SH-1 device are as follows :-

Byte 8 bits

Word 16 bits

Long 32 bits

Float 32 bits

Double 64 bits
Hitachi Micro Systems Europe Ltd 2



DSPLib For SH                               Application Note (19-031/1.0)                                          Overview
1.2 Function Timings

The execution times are based on a 20Mhz SH1 device, and should be adjusted
accordingly for other clock speeds.

1.2.1 FFT Timings

The timings are given below in milliseconds for the execution speed of the FFT
functions.

Not In Place
Forward FFT Inverse FFT

Size Complex Real Complex Real
128 1.94 1.06 2.19 1.20
256 4.43 2.37 4.94 2.66
512 9.98 5.29 11.00 5.88
1024 22.23 11.70 24.28 12.88

In Place
Forward FFT Inverse FFT

Size Complex Real Complex Real
128 1.94 1.06 2.20 1.19
256 4.46 2.37 4.97 2.64
512 10.03 5.32 11.06 5.86
1024 22.39 11.75 24.44 12.83

1.2.2 Filter Timings

The timings are given below in microseconds for the execution speed of the filter
functions.  The multiple sample routines are quoted in a per sample format, computed
by dividing the computational time for 100 samples by 100.

Function
No. Of Coeffs FIR LMS FIR1 LMS1

5 8.6 24.9 17.2 34.7
10 10.3 40.6 18.9 50.4
100 46.1 328.4 54.7 338.2

Function
No. Of

Biquads
IIR DIIR IIR1 DIIR1

1 10.5 40.1 18.1 48.0
2 19.7 77.6 28.8 86.4
20 185.5 752.8 221.4 784.3
Hitachi Micro Systems Europe Ltd 3



DSPLib For SH                               Application Note (19-031/1.0)                                          Overview
1.2.3 Convolution & Correlation Timings

The timings are given below in microseconds for the execution speed of the various
convolution and correlation functions offered by DSPLib.  The timings are quoted per
output sample, thus found by dividing the time to produce n output samples by n.

The table shows the computational time per output sample for a particular input array
size iw.  It should be noted that iw is always the smaller of the two input arrays.

Routine
 Size Of

iw
ConvPartial ConvCyclic CorrCyclic Correlate

5 9.7 9.7 9.0 8.1
10 10.6 11.2 10.2 9.0
100 54.6 55.4 47.7 46.4

NOTE :- Special Case

In certain situations, computation takes place outside the input array boundaries.  When
this happens, the results formed from elements outside the boundary are not calculated.
The effect of this is that the computational time decreases.  An example of such a
situation is when the two input arrays are the same size.  When this happens, there is
only one instance when the solution is formed entirely from elements inside the
boundary.  For all other instances, the number of computations per sample reduce.

Computation outside the array boundaries can take place in the ConvComplete and
Correlate functions only.  Taking the extreme case, when both the input arrays are the
same size, the timings per sample are given below.  Once again, the timings were found
by taking the time required to produce n output samples, and dividing by n.

All timings quoted below are given in microseconds.

Routine
Size Of

iw
No. Of Output

Samples
ConvComplete Correlate

5 9 6.5 8.4
10 19 7.1 8.2
100 199 29.0 26.1
Hitachi Micro Systems Europe Ltd 4



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
2.0 Fast Fourier Transforms (FFT)

Introduction

The Fourier Transform provides a method of performing frequency analysis on a given
time domain signal.  The FFT of a continuous time domain signal returns the
corresponding frequency domain equivalent.  The use of a ready designed software
routine releases the applications engineer from the burden of complicated mathematics
involved with spectrum analysis.  As a result of this, the designer is able to concentrate
directly on the development of the specific application.   Real world applications of the
Fourier Transform are common place, and include such examples as noise analysis (e.g.
analysing E.M.C. compliance), spectrum estimation as well as numerous
telecommunication processes.

DSPLib provides routines which calculate the classical forward and inverse FFTs in
Radix 2 form.  Each routine is described in detail below, with examples of operation
given where necessary.

2.1 FFT Background Theory

The purpose of this section is to reiterate some basic FFT theory such that the reader
will gain an appreciation of the function of each of the software routines described in
this chapter.

DSPLib provides basic building blocks that allow the calculation of Radix two
decimation in time transforms.  Radix two implies that the time domain input data is
required in blocks that are a power of two.  This means that an FFT cannot be performed
on a sample by sample process, but instead must be presented in blocks of samples.  The
choice of size of the block of time domain samples presented to the FFT is determined
by a number of factors such as:-

Frequency Content Of Signal

Required Resolution In Frequency Domain

Processor Time Available To Perform FFT

Must Be Power Of  Two (Radix Two)

It is necessary for the designer to examine each of the above considerations and reach a
favourable compromise in order to implement an efficient FFT for a specific
application.

Although in-depth mathematical knowledge of the FFT is not required to use theDSPLib
FFT functions, an appreciation of the structure is desirable, thus enabling the designer to
understand the required formats for data input and output, as well as understanding the
results generated by the FFT.
Hitachi Micro Systems Europe Ltd 5



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
The forward Fourier transform is defined by the following equation:-

y n e xs j n N
n

n

N

( ) ./= − −

=
∑2 2

0

π

Conversely the inverse transform may be written as :-

y n e xs j n N
n

n

N

( ) ./= −

=
∑2 2

0

π

The exponential powers shown are known as the twiddle factors and are used to
combine two data points within the FFT.  To improve on computational time the
twiddle factors are computed first and stored in a look-up table.  It is desirable to ensure
that the look-up table is stored in internal RAM in order to minimise memory access
times and hence improve FFT performance.  In the case of DSPLib the look-up tables
are generated by executing the InitFft routine first.
DSPLib offers two distinct structures of FFT.  Both will return bit identical results, and
both have near identical execution speeds, however the use of memory differs for the
storage of results.

2.1.1 Not In Place FFT

This version of the FFT takes the block of time domain samples from RAM, performs
the FFT and returns the result to a new location in RAM.  The structure of a not-in-place
FFT can be seen in diagram 2.1 below.

W 0

W 0

W 0

W 0 W 0 W 0

W 0

W 2

W 2

W 1

W 2

W 3

x (0 )

x (1 )

x (2 )

x (3 )

x (4 )

x (5 )

x (6 )

x (7 )

X (0 )

X (1 )

X (2 )

X (3 )

X (4 )

X (5 )

X (6 )

X (7 )

T im e D o m a in  S a m p les F re q u en cy  D o m a in  S a m p le s

Diagram 2.1 : Not In-Place FFT Flowgraph
Hitachi Micro Systems Europe Ltd 6



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
It should be noted from Diagram 2.1 that the inputs to the FFT are not in order.  In order
for the FFT to be performed, the data order must be re-arranged by way of bit reversal.
Since this operation is performed by the SH, the bit reversal technique is implemented
in software (unlike some DSP cores which have bit reversed addressing to enhance
execution speed) by the library code, and is of no concern to the user.  The output of the
FFT is in order, and so no further modifying of the addresses of the samples is
necessary.

The weightings applied at each of the butterflies on the Flowgraph are the twiddle
factors which were described earlier.  The twiddle factors are stored in a look-up table in
order to enhance speed.

2.1.2 In-Place FFT

This version takes the block of time domain samples in memory, performs the FFT
operation and deposits the results into the same memory locations in RAM.  This
method has the advantage of using less memory space (50% less), at the expense of
execution time.  The hardware arrangements for in-place FFTs require careful planning,
since for each sample that is processed there are two memory accesses, a read and a
write to the same location.  To maximise speed, on chip RAM should be used.

Stage 1 Stage 2 Stage 3

X(0)

X(4)

X(2)

X(6)

X(1)

X(5)

X(3)

X(7)W0

W0

W0

W0

W0

W0

W2

W2

W0

W2

W1

W3

x(0)

x(1)

x(2)

x(3)

x(4)

x(5)

x(6)

x(7)

Time Domain
     Samples

Frequency Domain
        Samples

Diagram 2.2 : In-Place FFT Flowgraph

As can be seen in the above flow diagram, bit reversal is still necessary with in-place
FFTs.   The above diagram shows bit reversal is necessary on the output data. In reality,
the difference in execution time between the two functions is negligible.  Therefore, the
only real consideration when deciding on the implementation is the amount of on chip
RAM that is likely to be needed.  For maximum conservation of memory space, use the
in-place implementation.
Hitachi Micro Systems Europe Ltd 7



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
As with any process where time is important, it is recommended that the whole of
DSPLib is executed from on chip RAM.

2.1.3 FFT Scaling

When implementing an FFT, it is important to have an understanding of the signal being
presented to it such that overflow does not occur at any stage.  There are a number of
different methods of preventing overflow, all based around the scaling of the input data.
When deciding on the scaling applied, it is important to consider the quantisation
introduced against the likelihood of overflow.  The related Ensigma text describes in
detail the method of scaling employed by DSPLib, and should be carefully considered
before implementing a transform.  For most applications the scaling EFFTALLSCALE
(0xFFFFFFFF) will be suitable.  This level of scaling simply performs halfing on every
stage, with a guarentee that no overflow will occur.

To summarise FFT scaling, here are the three levels offered by DSPLib.

EFFTALLSCALE :- Halving performed on every stage, guaranteeing no overflow if the
input samples are all less than 230 .

EFFTMIDSCALE :- Halving performed on alternate stages, hence giving an output with
the same power as the input.

EFFTNOSCALE    :- No scaling performed.  Signal properties must be well understood
when using this.

2.1.4 Input / Output Array Format

DSPLib offers both real and complex FFT computation, and so the format and ordering
of data arrays presented to the transform must be understood.  Firstly, we will look at
purely real arrays, as used in all the real forward and inverse transforms.  The order of
the array is as follows:-

x[2n] = Re{C(n)} i.e. all elements are real on input
x[2n+1] = 0 all imaginary components are zero (real signal)

For a real transform, the input array contains real time domain samples and so contains
no phase information.  The output from the transform is the frequency domain
representation of the signal.  The output of the FFT is in complex array format (see
below), however, in the case of a real signal all the complex samples are zero.  Each real
sample represents the signals frequency content at a certain point.  The highest sample,
i.e. the last sample represents Fs/2.  I.e. the FFT only returns frequency data for half the
sampling frequency.
Hitachi Micro Systems Europe Ltd 8



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
The  complex transforms require data to be presented in complex array format, and
similarly the results are returned in the same format.  The ordering of a complex array is
as follows:-

x[2n] = Re{c(n)} Real elements
x[2n+1] = Im{c(n)} Imaginary elements

I.e. the input and output elements are ordered :- {real, imaginary, real, imaginary ......}

2.2 Routine Descriptions

2.2.1 FftReal

This function performs a purely real forward fast fourier transform.  For a full
description of the definition of the function, the Ensigma documentation should be
consulted.

The routine is defined as follows :-

int FftReal( output, input, size, scale)

Where,

short output[] positive frequency output data
short input[] real input samples
long size size of FFT
long scale scaling applied to FFT

Using FftReal

The use of FftReal, as with any other function in DSPLib is relatively straight forward.
The user must define the scaling and size of the function, as well as present input data in
a suitable format.

This example, and others in this section use the LogMagnitude function from DSPLib to
present the output of the FFT in log magnitude format.  Although the use of this
function is included in the text, further details of this function are included in the
Ensigma documentation.

Example

The following example outlines a simple application of the FftReal function, intended as
a starting point for the reader when developing more specific applications. In this
example, the signal applied to the FFT contains two frequency components with
different amplitudes.  The FFT is used to determine the frequency and amplitude of the
components of the signal.
Hitachi Micro Systems Europe Ltd 9



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
Data presented to the FFT must be 16 bits or less(including the sign bit), and in blocks
that are a power of two (radix two operation).

In our case, the input consists of 128 samples.  The output will consist of 64 samples
interlaced with zeros, confirming that the input is real, since all complex samples are
null.

It is necessary for the user to determine the size of the FFT, and also the scaling applied
during calculation.  Since there are 128 input samples a 128 point FFT is required for a
single block computation.  Referring to the FFT structure in diagram 2.1, the required
size of  FFT becomes apparent.

In the diagram, an eight point FFT is shown, and is capable of processing data in blocks
of eight.  Therefore, in our case, the 128 input samples can be processed in one block
using a 128 point FFT.

The C code implementation is shown below, and shows how DSPLib is combined in a
standard ANSI C program.  The array INPUT has been created from an earlier source,
either an ADC or generated by the SH in a routine.  The samples in INPUT are
transformed and written to the array OUTPUT.

#include <stdio.h>
#include <math.h> /* Typical Libraries To Be Included */
#include <ensigdsp.h>

#define NSAM  128 /* Number Of Input Samples*/
#define NSAMS  NSAM/2 /* Number Of Output Samples From LogMagnitude */

void main(void)
{

short OUTPUT[NSAM], LOGOUT[NSAMS];

float fscale;

fscale = 1;

/* Enter Code Here To Generate INPUT Data */

/* Generate Twiddle Factor Look-Up Tables */

if(InitFft (NSAM) != EDSP_OK)
printf(“Problem With Generating Look-Up Table”);

/* Perform FFT Operation */

if(FftReal (OUTPUT, INPUT, NSAM, EFFTALLSCALE) != EDSP_OK)
printf(“Problem With Performing FFT Operation”);

/* Log Magnitude Results Returned By FFT */

if(LogMagnitude( LOGOUT, OUTPUT, NSAM, fscale) != EDSP_OK)
printf(“Problem With LogMagnitude Routine”);

}

Hitachi Micro Systems Europe Ltd 10



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
The above example uses a total of three functions from DSPLib, and is centred around
the FftReal function described above.

InitFft calculates the twiddle factors and stores them in a look-up table which is used by
FftReal during its execution.  More details of InitFft can be found in the Ensigma
documentation.

LogMagnitude takes the complex output data from FftReal, and returns a purely real
logarithmic result.  The scale in LogMagnitude may be set to suit the application, and in
this case is set to one.  LogMagnitude can be found in the Ensigma text.  Diagram 2.3
below shows a plot of the 128 samples contained in the array INPUT.  The FFT
processed these samples and returned the results to OUTPUT.  Following the
completion of FftReal, LogMagnitude calculated the log format of the results, and this
can be seen in diagram 2.4 below.

-1500

-1000

-500

0

500

1000

1500

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106 113 120 127

Diagram 2.3 :- 128 Time Domain Input Samples

-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 2.4 :- Result Of FFT (64 Frequency Domain Samples)
Hitachi Micro Systems Europe Ltd 11



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
The result of the FFT is shown in diagram 2.4 above.  There are only two samples which
are not zero, and these represent the two frequency components of the signal shown in
diagram 2.3.

It should be noted that the result of LogMagnitude is half the length (64 samples) of the
original FFT result (128 samples).  This is due to the fact that the real and imaginary
samples are squared, added together and then logged.

Analysis of the above plot in diagram 2.4 will give us detailed information on the
spectrum of the signal in diagram 2.3.  The plot is analysed as follows :-

The two peaks appear at samples 4 and 16.  Since sample 64 is known to correspond to
Fs/2 (half the sampling frequency), other samples may be calculated as follows to form a
table :-

Frequency Sample
     Fs/2 64/1      64
     Fs/4  64/2            32
     Fs/8  64/4        16
     Fs/16  64/16           4

Hence, from the above table we know that our signal contains two components, one at
Fs/4 and the other at Fs/16, which correspond to samples 16 and 4.  Next it is necessary
to determine the amplitude of those components.  Fs/16 and Fs/8 have amplitudes of
20dB and 40dB respectively.  Since the log of a signal is 20 logVpk, where Vpk is the
peak amplitude of the signal, the original signal amplitudes may be found as follows:-

Amplitude of  Fs/16 = anti-log (20/20) = 10

Also

Amplitude of Fs/8 = anti-log (60/20) = 1000

So the result of our FFT process is the complete frequency content of the original signal
up to and including Fs/2.  Clearly higher in the spectrum is of no concern to us due to
the aliasing effects of digitisation.

The method for determining the amplitude of the components shown above is only
applicable if EFFTALLSCALE is used, and if the scale in LogMagnetude is set to one.
For most applications, this arrangement will be satisfactory and provide the simplest
implementation.

This example has omitted the use of windows when taking FFTs.  Windows are used to
compensate for the ‘end effect’ encountered when taking the transform of a finite data
set.  The sudden end of the data generates many harmonics which strictly speaking are
not present in the signal.  The result of this is that the FFT represents frequency
components which are of no interest to the user.
Hitachi Micro Systems Europe Ltd 12



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
In order to counter effect this, the data is applied through a window, which has the effect
of ‘fading’ out the start and finish, thus reducing harmonics caused by straight edges.
There are a number of different window shapes available, and the omittance of a
window is referred to as rectangular windowing, and applies to the above example.

DSPLib provides four windows, being Blackman, Hamming, Hanning and Triangle.
These functions and their use are described in section 1.3.2 .

2.2.2 FftComplex

This routine allows the user to present both real and complex data to the FFT for
processing.  The result of the FFT is in the same format as that in FftReal, only the
complex values will be non-zero(assuming the complex input data is non-zero).  The
use of the routine is very similar to FftReal, and follows on directly from its description.
It is recommended that the reader looks at the FftReal text in the previous section before
continuing here.

The complex FFT is essentially two separate FFTs, one for the complex data and one for
the real.  These FFTs are completely separate, and do not interact in anyway.
FftComplex is not-in-place, and hence returns its solution to a different memory
location to that of the input data.  Diagram 2.1 shows the structure of a not-in-place
FFT.

The related Ensigma documentation gives detailed information regarding the definition
of FftComplex, however there now follows a brief summary of the function for your
reference.

The routine is defined as follows :-

int FftComplex( output, input, size, scale)

Where,

short output[] Complex Output Data
short input[] Complex Input Data
long size Size Of FFT
long scale Scaling Applied To FFT

Use Of FftComplex

 FftComplex is essentially the same to use as FftReal, and so the previous example is
applicable here.  The difference between the two functions is that FftComplex allows
complex data to be processed.  Therefore, the input and output arrays are both in
complex array format, and so the user should ensure familiarity with this.
Hitachi Micro Systems Europe Ltd 13



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
When specifying the size of the FFT, it is important to remember that half the inputs are
complex.  Therefore, if the user has 128 real samples and 128 complex samples, and it is
necessary to process the samples in one block, a 256 point FFT will be required.

A block diagram representation of the above instance is shown in diagram 2.5.  The
diagram shows how two N point FFTs are required to process the real and complex data
samples.  Typically the complex samples are representations of the signals phase
characteristics, but as explained below, this doesn’t have to be the case.

N Point FFT

N Point FFT....

....

Real Input Samples 
x0,x2,x4,x6,....xn

Imaginary Input Samples 
x1,x3,x5,x7,....xn+1

Real Output Samples 
y0,y2,y4,y6,....yn

Imaginary Output Samples 
y1,y3,y5,y7,....yn+1

....

....

Complex FFT

Diagram 2.5 :- Representation Of FftComplex Showing Two Separate FFTs

As the above diagram shows, the FftComplex routine is actually two separate interlaced
FFTs.  This fact can be exploited by way of performing two real FFTs simultaneously.
Real data can be applied to both the real and complex inputs, with the corresponding
results available in the odd and even samples at the output.  In certain applications, this
method can offer time savings over performing two separate FftReal routines.

2.2.3 IfftComplex

This function offers the exact opposite to FftComplex.  IfftComplex calculates the
inverse FFT and returns a not-in-place solution.  The user presents the routine with a set
of frequency domain samples in complex array format.  The highest sample in the array
must correspond to the frequency Fs/2s’ imaginary component.  If the signal is real, all
the imaginary values (odd addresses) will be zero.  The transform will return the
equivalent time domain signal for the given frequency data.  The time domain data will
be in complex array format, and will require separating into real and imaginary if
necessary.  When applying data to IfftComplex, it is important that the samples are not
in logmagnitude form, since this will generate an invalid return on the output.

As with all the FFT routines in DSPLib, the user must specify scale and size.  Full
details of the routines description are in the related Ensigma documentation.
Hitachi Micro Systems Europe Ltd 14



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
The routine definition is summarised below for your reference:-

int IfftComplex( output, input, size, scale)

Where,

short output[] complex output data
short input[] complex input data
long size size of inverse FFT
long scale scaling applied during IFFT execution

Use Of IfftComplex

The routine is very simple to use, and as described above is the exact opposite to the
FftComplex routine described.  One method of establishing correct operation is to
perform both the forward and inverse transforms on a data set, then comparing the
results to the original data input.  If the results are different, there is a problem with one
or both of the functions, such as overflow, excessive quantisation or simply scaling.  An
example of such a program is given below.

#include <stdio.h>
#include <math.h> /* Typical Libraries To Be Included */
#include <ensigdsp.h>

#define NSAM  128 /* Number Of Input Samples*/
#define NSAMS  NSAM/2 /* Number Of Output Samples From LogMagnitude */

void main(void)

{
short OUTPUT[NSAM], OUTPUTA[NSAM], LOGOUT[NSAMS];
float fscale;
int I;

fscale = 1;

/* Enter Code Here To Generate INPUT Data */

if(InitFft (NSAM) != EDSP_OK)
printf(“Problem With Generating Look-Up Table”);

if(FftComplex (OUTPUT, INPUT, NSAM, EFFTALLSCALE) != EDSP_OK)
printf(“Problem With Performing FFT Operation”);

       if(IfftComplex (INPUTA, OUTPUT, NSAM, EFFTALLSCALE) != EDSP_OK)
printf(“Problem With Performing IFFT Operation”);
Hitachi Micro Systems Europe Ltd 15



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
for(i=0; I < NSAM; I++)
{

if((INPUT[i] - INPUTA[i]) != 0)
printf(“Problem With Format Of Results”);

}
 }

The above C code shows how both FftComplex and IfftComplex are used as functions
in a program.  The code performs a complex forward not-in-place FFT on the data
stored in INPUT.  The resultant frequency domain data then has an inverse FFT applied
and the result stored in INPUTA.  If both routines are operating correctly, the values
stored in INPUTA should be identical to INPUT.  This is tested by subtracting the two
and comparing to zero.  The result is compared to zero, and if different, an error
message is displayed to indicate to the user that the functions are not operating correctly.
The reader should note the use of the same scaling applied to both forward and inverse
transforms.  As discussed above, a number of factors can lead to the data being
different, and most can be ‘ironed’ out by the user during development.

2.2.4 IfftReal

IfftReal presents a function which calculates the inverse not-in-place FFT.  This
function follows on from the above description of IfftComplex, with the exception of
the format of the returned data.  The user presents the routine with complex frequency
domain samples, with the highest sample corresponding to Fs/2.  The inverse transform
then returns a purley real time domain representation of the input data.  Further details
regarding the definition of the function may be found in the related Ensigma
documentation.  For your reference the definition of the function is as follows:-

int IfftReal( output, input, size, scale)

Where,

short output[] real output data
short input[] complex input data
long size inverse FFT size
long scale scaling applied

Using IfftReal

When using IfftReal, the input must be in complex array format.  However, the signal
returned from the function must be real, and therefore the input must represent a real
signal.  Therefore, the complex input array must represent a positive frequency, and so
all complex array elements must be zero.  Before calling this routine the twiddle factors
should be generated by calling InitFft.
Hitachi Micro Systems Europe Ltd 16



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
2.2.5 FftInComplex

This routine performs the same function as FftComplex which was described earlier in
this section.  The user should choose this routine when memory space is of the essence.
FftInComplex calculates the complex forward FFT in-place.  The flowgraph for an in-
place FFT can be seen in diagram 2.2.  The function is described in detail in the related
Ensigma documentation.  For your reference, the definition of the function is as
follows:-

int FftInComplex( data, size, scale)

Where,

short data[] complex input and output data
long size FFT size
long scale FFT scaling applied

Using FftInComplex

As described this function is identical in operation to FftComplex except for the use of
memory.  The function takes the input data from memory (stack) performs the
calculations, then returns the results to the SAME memory location.  This enables the
user to maximise the use of memory space, but at the expense of overwriting the input
data.

2.2.6 FftInReal

Not surprisingly this follows the same format as FftReal, except that the FFT is
performed in-place.  The user should refer to the section on FftReal for details of
operation when using this routine, and also reference to the related Ensigma
documentation  would be useful.  For your reference the definition of FftReal is as
follows:-

int FftReal( data, size, scale)

Where,

short data[] real data input, complex data output
long size FFT size
long FFT scaling applied

Using FftInReal

The input to the FFT is real data only, where as the output is in complex array format
with the complex array elements equal to zero.  To allow the FFT to be calculated in-
place, the Fs/2 frequency output is stored in the second element of the array.
Hitachi Micro Systems Europe Ltd 17



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
This slightly complicates the output, and should be remembered when using.  For more
details consult the Ensigma documentation.

2.2.7 IfftInComplex

This routine represents an in-place implementation of the complex inverse FFT.  Its
operation is essentially the same as IfftComplex, only with an in-place computation.
As with all of the in-place routines, IfftInComplex should be chosen when memory
usage is critical.  The routine is described in the related Ensigma documentation on.
However, for your reference, here is the definition of IfftInComplex:-

int IfftInComplex( data, size, scale)

Where,

short data[] complex input/output data
long size FFT size
long scale FFT scaling applied

Using IfftInComplex

Operation is identical to the IfftComplex routine described only the results of the inverse
FFT are written to the same memory location as the input.  Hence all input data is
overwritten, but memory usage is optimised.  As with any of the DSPLib routines, it is
desirable to locate data in on chip memory.

2.2.8 IfftInReal

This final routine in the FFT section implements a real inverse in-place FFT.  Operation
is identical to IfftReal described earlier in this section, with the exception of the in-place
computation returning the results to the same memory location as the inputs.  Full
details of IfftInReal can be found in the related Ensigma documentation.  For your
reference the function is defined as follows:-

int IfftInReal( data, size, scale)

Where,

short data[] Complex positive frequency data input, real data output
long size Inverse FFT size
long scale FFT scale applied

Using IfftInReal

As described, this method offers in-place inverse real FFT calculation.  For details on
the use of this function refer to the section detailing IfftReal.  Real output data is in-
place and so overwrites the original input data.  Use of this function should be limited to
applications where memory usage must be optimised.
Hitachi Micro Systems Europe Ltd 18



DSPLib For SH                               Application Note (19-031/1.0)                Fast Fourier Transforms
When applying complex data to IfftInReal, the Fs/2 value should be placed in the
second element of the array where the imaginary component of zero would normally be
stored.  Although this might complicate matters some what, it enables the function to
operate in-place.

Summary

This section is intended to give the reader an insight into the operation of each of the
FFT functions. While keeping the descriptions as general as possible to suit most
applications,  the descriptions should enable the user to choose between functions when
designing a particular application, as well as pointing out certain design considerations.

The detail and theory in this document is not intended to form a reference for FFT
design, but should instead provide a starting point from where further DSP research may
begin.

NOTE

It is important to remember to initiate the twiddle factor tables before using any of the
FFT routines.  These tables are initialised by using the function InitFft in the DSPLib.
Details regarding both this function and the logmagnitude function can be found in the
related Ensigma documentation.
Hitachi Micro Systems Europe Ltd 19



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
3.0 Window Functions
Introduction

This section of DSPLib provides four window generators which may be used for a
number of applications, but essentially are used for counter-effecting the ‘end-effect’
experienced when taking the FFT of a finite data length.

Each of the four routines provide efficient methods of calculating the window, and
deposit the results into a user specified memory location.  The particular window is then
recalled when required and applied accordingly to the desired data.  The four windows
are described below, along with plots of their associated shapes.

Since a window is a continuous signal between limits, it is necessary to divide the
window into equally spaced samples.  The number of samples used to represent the
window is specified by the user when calling the function.  Clearly the more samples
used, the greater the accuracy of representation.

3.1 Function Descriptions

The window generators in DSPLib are defined as follows :-

int GenBlackman( output, win_size)

int GenHamming(output, win_size)

int GenHanning(output, win_size)

int GenTriangle(output, win_size)

Where,

short output[] array to containing window coefficients
long win_size size of window N and length of output[]

Each function will return  EDSP_BAD_ARG if the user specifies a window size that is
smaller than one.  If the function executes correctly, the flag EDSP_OK is returned.
These flags are intended for debug use, and will help the user identify problems in code
development.

The functions generate a window to a size specified by the user.  The shape of the
generated window can be seen in respective diagrams below.  Each diagram shows the
window when size was selected as 128.  Therefore, 128 samples (or window
coefficients) are used to represent the windows.
Hitachi Micro Systems Europe Ltd 21



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
0

5000

10000

15000

20000

25000

30000

35000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

Diagram 3.1 :- Blackman Window

The Blackman window for 128 samples is shown above in Diagram 3.1.  It can be seen
that the side lobes actually extend right down to zero, as well as having a wide centre
lobe.  Mathematically, the Blackman window is defined as follows:-

w n
n

N

n

N
( ) ( ) .42 . cos . cos= − − 



 + 











≤2 1 0 0 5
2

0 08
415 π π

  0 n < N

0

5000

10000

15000

20000

25000

30000

35000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

Diagram 3.2 :- Hamming Window

The Hamming window for 128 samples is shown above in Diagram 3.2.  It can be seen
that the side lobes do not extend right down to zero, but it does have a very wide centre
lobe.  Mathematically, the Hamming window is defined as follows:-

w n
n

N
( ) ( ) . .46 cos= − − 











≤2 1 0 54 0
215 π

  0 n < N
Hitachi Micro Systems Europe Ltd 22



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
-5000

0

5000

10000

15000

20000

25000

30000

35000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

Diagram 3.3 :- Hanning Window

The Hanning window for 128 samples is shown above in Diagram 3.3.  It can be seen
that the side lobes extend right down to zero, and it  has a very wide centre lobe.
Mathematically, the Hanning window is defined as follows:-

w n
n

N
( )

( )
cos= − − 











≤2 1

2
1

215 π
    0 n < N

0

5000

10000

15000

20000

25000

30000

35000

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121

Diagram 3.4 :- Triangular Window

The Triangular window for 128 samples is shown above in Diagram 3.4.  It can be seen
that the side lobes extend right down to zero, and it  has a very narrow centre lobe.
Mathematically, the Triangular window is defined as follows:-

w n
n N

N
( ) ( )= − − − +

+






≤2 1 1
2 1

1
15   0 n < N
Hitachi Micro Systems Europe Ltd 23



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
3.2 Using Window Functions

The use of window functions in DSPLib is very simple, and is demonstrated in the
section of C code given below.  It should be remembered that the execution of each of
the window functions is relatively slow, and increases with the size of the window.  In
applications where time is an issue, such as real time processing, the window should be
pre-calculated and stored in a look-up table.  It is preferable to locate this table in on
chip RAM inorder to minimise access times.  The example below shows the Blackman
window being generated.  The values generated are stored on the stack in an array
defined by the user.  Because, ideally the stack is located in on chip RAM, access to the
generated values should be fast.  The location of the stack is defined by the user in the
linkage editor.

#include <stdio.h>
#include <math.h> /* Typical libraries */
#include <ensigdsp.h> /* MUST be included */
#define WINLEN 128 /* Define length of window */

void main(void)
{

short output[WINLEN]; /* Define array to contain window */
if(GenBlackman( output, WINLEN) != EDSP_OK) /* Generate window */
printf(“ Problem Generating Blackman Window”); /* Report if error has 

occurred */
}

When the above code is executed, the window values are stored in an array called
output[] of length 128.  Although there is not an upper limit to the size of window
generated, care should be taken to ensure that the stack is sufficintly large to
accomodate all the generated values, as well as other values being used in the programs
execution.

The execution speed of the routines is of less importance than other routines described
in DSPLib.  The window function is typically used to generate values which are stored
in a look up table for use in  a real time loop.  Therefore an optimised version is not
available in DSPLib.  The  running time of the routine can be improved by the removal
of the argument checking section of the code.  This is only recommended once the
specified arguments are known to be correct and generate the desired output.

3.3 FFT Application Of Window Functions

Before reading this section, the reader should ensure familiarity with the FFT functions
offered by DSPLib.  Section two of this document will provide the necessary
background material relating to this example.

As described earlier, window functions have a number of different uses ranging from
filter design to FFT pre-processing.  It is the latter that is discussed here.
Hitachi Micro Systems Europe Ltd 24



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
The FFT of a finite data set generates harmonics which are not related to the actual
signal, and so leads to false solutions.  This effect is caused by the sudden end of the
input data, resulting in straight edges at either end.  As familiarity with Fourier series
representation would confirm, a great number of harmonics (infinite for exactly vertical)
are required to represent a straight edge.  It is these harmonics which are quite correctly
represented by the FFT.

 
-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.5 :- Desired FFT Result

Diagram 3.5 shows the desired result from the application of an FFT to a particular
signal.  The signal in question has two frequency components, one at Fs/4 and the other
at Fs/32.  These two frequencies correspond to samples 32 and 4 respectively.  With the
introduction of a finite data set, with a sudden end to the samples corresponding to a
straight edge, the resulting FFT is as shown in Diagram 3.6 below.  Clearly a great
number of harmonics have been generated which spread right across the spectrum of
interest.  The two frequency components are visible, but are completely encompassed by
harmonics.

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.6 :- Result Of FFT On Finite Data Length
Hitachi Micro Systems Europe Ltd 25



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
In order to counter effect the harmonics, the finite time domain signal is multiplied by a
window of the same length as the data set.  The result of this operation is shown below.
The effects of different windows are shown, with varying degrees of success.  The C
code implementation of this example is given at the end of this section.

-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.7 :- Result Of Blackman Windowing

-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.8 :- Result Of Hamming Windowing
Hitachi Micro Systems Europe Ltd 26

(Continued Over)



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.9 :- Result Of Hanning Windowing

-10

0

10

20

30

40

50

60

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 3.10 :- Result Of Triangular Windowing

As can be seen in Diagram 3.9, the Hanning window generates the best result.  The
window has removed most of the harmonics, leaving a clear frequency representation of
the finite data.  In most applications, this type of ‘trial and error’ approach will suffice.

The C code implementation is as follows :-

/**
/** DESCRIPTION: This file Generates a sine wave, applies a Hamming window
/**              applies an FFT and then returns the solution in log format

#include <stdio.h>
#include <math.h>
#include <ensigdsp.h>
#include "testhead.h"
Hitachi Micro Systems Europe Ltd 27



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
#define NSAM     128              /* number of samples */
#define NSAMS    NSAM/2
#define TWOPI     6.283185307

/***************** Exercise To Take The FFT Of Data *******************/

void main(void)
{

/** Declare Local Variables **/

        short   sinea1[NSAM], window[NSAM], signal[NSAM], sinea[NSAM], 
sineb[NSAM],fftouta[NSAM],outputa[NSAMS],outputb[NSAMS];

        int     n, k, len, res_shift;
        float   scale, scalefft;

        scale           =       1;
        res_shift       =       15;
        len             =       NSAM;
        scalefft        =       EFFTALLSCALE

/*** Initiate Twiddle Values ***/

        if(InitFft (MAXSIZE) != EDSP_OK)
        printf("Problem With Initialisation Of FFT");

/*** Generate Sine Wave With Sudden End***/

        if(sine == 0)
        {
        printf("Generating Sine Wave");
        k = len / 64;
        for(n = 6; n < 122; n++)
        {
        sinea1[n] = floor(1000 * sin(TWOPI * k * n / len) + 0.5);
        }

        k = len / 4;
        for(n = 6; n < 122; n++)
        {
        sineb[n] = floor(1000 * sin(TWOPI * k * n / len) + 0.5);
        }

        printf("Done");
        }

/*** Add Sine waves ***/

        for(n = 6; n < 122; n++)
        {
        sinea[n] = sinea1[n] + sineb[n];
        }

        for(n = 0; n < 6; n++)
        {
        sinea[n] = 0;
        }

        for(n = 122; n < 128; n++)
        {
        sinea[n] = 0;       
        }

/*** Generate Windows ***/

        if(GenTriangle( window, NSAM) != EDSP_OK)
        printf(" Problem With Window Generator ");

/** Multiply Window With Signal **/

        if(VectorMult( signal, window, sinea, NSAM, res_shift) != EDSP_OK)
        printf("Problem With Vector Mult");

/*** Take FFTs Of Sine Waves ***/
        

if(FftReal( fftouta, signal, NSAM, scalefft) != EDSP_OK)
       printf("Problem With FFT");
Hitachi Micro Systems Europe Ltd 28



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
/** Covert FFT result to log magnitude format **/

        if(LogMagnitude( outputa, fftouta, NSAMS, scale) != EDSP_OK)
        printf("problem With LogMagnitude");

/** Release FFT RAM **/

        FreeFft();

}

The above C code listing brings together a number of different DSPLib functions, and
provides a good example of DSP processing on the SH.

The reader should be familiar with the FFT content of the program, having read section
2.0 of this document.

Following the flow of the program, the first task was to generate the signal.  Two sine
waves, one of Fs/4 and one of Fs/64 are generated and then added together.  The floor
function used in the generation of the sine waves is contained in the math.h library.
This function takes the solution of the equation to its’ right, and rounds it to the nearest
integer that is not greater than it.  Hence the function rounds down.

Next, six zeros are deliberately inserted into the start and finish of the data set inorder to
create a sudden end to the signal, and hence generate many harmonics, as shown in
Diagram 3.6.  Following that,  a window is generated using one of the functions
discussed in this section.  The particular window function can simply be changed to test
for best results, as was the case in this example.

A window is applied to the signal on a sample by sample bases.  I.e. sample zero of the
signal is multiplied by sample zero of the window, and so on until each element has
been processed.  This task is performed by the function VectorMult which is contained
in DSPLib under the miscellaneous section.  For more details regarding this function,
the reader should consult section 6.0 of this document, as well as the related Ensigma
documentation.
Hitachi Micro Systems Europe Ltd 29



DSPLib For SH                               Application Note (19-031/1.0)                          Window Functions
Once the signal has been windowed, the resultant waveform is applied to the FFT
function.  This function is described in detail in section two of this document, and is of
no concern to us here.

The solution from the FFT is converted to log format, and stored in an array for future
use.  The FFT chosen was ‘not-in-place’, however an ‘in-place’ implementation would
also be suitable and save memory usage.

The results shown in Diagrams 3.5 through 3.10 were generated by the given  C code
running on an SH-1 processor.  Clearly for a real application, the signal would not be
generated on chip, but would instead be read in from an external source such as an
ADC.  Notes on processing real time signals are included in section 7.0 of this
document.
Hitachi Micro Systems Europe Ltd 30



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
4.0 Filters

Introduction

This section of DSPLib provides a number of functions which allow the user to perform
digital filtering on discrete time samples.  Essentially the library offers three different
filter networks, even though it contains eight filter functions.  The three filters are as
follows :-

Finite Impulse Response (FIR)

Infinite Impulse Response (IIR)

Least Mean Squares Adaptive Algorithm (LMS)

DSPLib allows the user to implement the above functions on both blocks of data, or
alternatively on a single sample process which is intended for real time applications.
The accuracy of the LMS algorithm can be further increased by the use of DIIR which is
a double precision IIR implementation allowing the user to specify 32-bit coefficients.

This document is intended to provide the reader with an introduction to the
implementation of digital filters on the SH processor.  This chapter details some
background theory on digital filters, but is not intended to form a comprehensive
reference text.  A certain level of DSP knowledge is assumed, and if the reader requires
further information, a relevant DSP text should be consulted.

4.1 Filter Background Theory

In order to ensure a full appreciation of the function descriptions later in this section,
some basic filter theory is outlined here.  The theory describes the difference between
the filter types, as well as outlining the filter structures used in DSPLib.  It is
recommended that the reader follows this text before moving onto the particular
function description of interest.

The digital filter lies at the heart of DSP processing.  Digital filters have found
applications in many different areas, and their everyday use is common place.  Digital
filters can be found in equipment ranging from compact disc players to mobile
telephones.

Digital filters are implemented with many different structures, and numerous hardware
platforms.  Hardware filters are available which allow the coefficients to be loaded in
from ROM, and clearly dedicated DSP cores allow efficient implementation.  DSPLib
allows the user to take advantage of all the features you would expect when using a
RISC core, as well as utilising the SH MAC (Multiply and ACcumulate) register, DMA
(Direct Memory Access) controller and on chip ADC capabilities which together make
real time micrcontroller DSP a reality.
Hitachi Micro Systems Europe Ltd
31



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
4.1.1 Finite Impulse Response Filters (FIR)

DSPLib offers two implementations of FIR filters.  The basic operation of these
functions is described later in the routine descriptions.

The FIR filter has a number of distinct advantages, in particular :-

i) FIR filters implemented in direct form (functions of past and present samples), they
are always stable.

ii) The phase response of an FIR filter is exactly linear.  A filter that doesn’t have linear
phase will cause a phase distortion on the signal passed through it.  Such distortion is
unacceptable in certain applications such as audio, video and various types of data
transmission.

iii) As indicated in the following text, the implementation of an FIR filter is very simple.
The SH series of microcontrollers have an architecture that is particularly suited to the
implementation of such filters.  The heart of the FIR filter is the MAC operation, which
the SH series can perform in three CPU clock cycles.

The FIR filter is described in the time domain as follows :-

y n h k x n k
k

N

( ) ( ) ( )= −
=

−

∑
0

1

Taking the Z transform of the above expression enables us to represent the FIR filter in
the digital domain as follows :-

H Z h k Z k

k

N

( ) ( )= −

=

−

∑
0

1

As can be clearly seen, the entire FIR routine consists of multiplying past and present
samples with the filter coefficients h(k), and summing the solutions.  Hence the
implementation of the filter is entirely MAC operations and delays.

DSPLib implements the FIR filter by way of a transversal structure.  This structure is
shown below in diagram 4.1.

h(0) h(1) h(2) h(3) h(4) h(5) h(6)

Z-1 Z-1 Z-1 Z-1 Z-1Z-1

Σ

x(n)

y(n)

Diagram 4.1 :-  FIR Transversal Structure
Hitachi Micro Systems Europe Ltd
32



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Diagram 4.1 shows the FIR filter structure as implemented by DSPLib.  x(n) represents
the input samples, and y(n) the resulting filtered output.  The h(n) elements represent the
filter coefficients, and it is these that determine the filters frequency response.  For the
DSPLib implementation, the coefficients should be 16-bit signed values.  It is important
to remember this when designing the filter as the quantisation will have a large
influence on the overall response of the filter.

DSPLib doesn’t support any filter design methods.  It is required that the user determine
their own coefficients either by traditional hand calculation methods, or alternatively the
use of one of many commercially available software design packages.  The later is
recommended since different design methods can be tried, and also the analysis of finite
word length effects is often possible by the use of simulation before the actual filter is
implemented on the SH-1.

The implementation of an FIR filter, or indeed any type of digital filter depends upon
the intended use.  DSPLib provides two FIR routines, both implemented using a
transversal structure.  The difference in the routines is the execution.  One routine takes
a finite block of data and performs the filter operation upon it, whilst the second routine
filters the data on a sample by sample process.  Clearly the latter is more suited to real
time applications, in particular situations where the sampling rate introduces harsh time
constraints.  More detail regarding the two functions is included in the routine
description section of this chapter.

Because the FIR filter has no feedback, the filter is inherently stable.  However, a
drawback to this advantage is that to gain a particular performance criteria, an FIR will
be of a higher order to that of the IIR.  Therefore, in general unless any of the properties
described at the start of this section are to be exploited, the IIR filter is used.  The IIR
filter is described below in 4.1.2.

4.1.2 Infinite Impulse Response Filters (IIR)

DSPLib offers four implementations of the IIR, all of which are described later in the
routine description section of this chapter.

The IIR filter has feedback, and it is this feedback which leads to the filters strengths
and weaknesses.  The IIR requires fewer coefficients than FIR for the same set of
specifications.  IIR applications are normally in areas where sharp cut-off is required,
along with high speed and in turn a high throughput of data.  Of course this type of
performance doesn’t come free, and the price we pay for the IIR performance is
decreased stability.  Care must be exercised when designing the filter to ensure that the
filter doesn’t become unstable and result in an oscillating output.

The Z plane transfer function for the IIR is as follows :-

H z
Y Z

X Z

b b Z b Z

a Z a Z
( )

( )

( )
= = + +

− +

− −

− −
0 1

1
2

2

1
1

2
21
Hitachi Micro Systems Europe Ltd
33



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
If we take the inverse Z transform of the above function and then separate out into
difference equations, we arrive at the following :-

w n a w n a w n x n

y n b w n b w n b w n

( ) ( ( ) ( ) ( ))

( ) ( ( ) ( ) ( ))

= − + − +

= + − + −

1 2

0 1 2

1 2

1 2

Where w(n) represents a centre tap in the filter, x(n) is the input data and y(n) is the
resulting filtered data.  Coefficients for the filter are represented as a and b and are
ordered accordingly when being presented to the filter.  The coefficient ordering and
filter scaling is discussed in the routine description section.

All IIR filters in DSPLib are implemented using Direct Form II structure.  This structure
corresponds directly to the difference equations given above.  The structure of this type
of IIR filter is given below in Diagram 4.2

Z

Z -1

-1

X(Z) Y(Z)W(Z) b0

b1

b2

a1

a2

Diagram 4.2 :- Direct Form II Second Order Biquad

The above diagram shows a Direct Form II second order IIR biquad, which is the
implementation used in DSPLib.  If, as in most cases, a higher order filter is required,
the biquads are cascaded.  Hence when specifying your IIR filter order, it should be a
factor of two.

The IIR routine descriptions detail the implementation of the filters.  Care must be
exercised when specifying shifts applied to the data, but again the routine description
section discusses this issue in detail.
Hitachi Micro Systems Europe Ltd
34



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
4.1.3 Filter Specification

Although actual filter design methods are not discussed in this document, it is however
important that the reader has an understanding of methods for specifying filters.  There
are a number of excellent software filter design packages available, all of which require
the user to specify the required response.

Taking a low pass filter as an example, a filter is typically specified by the following
parameters :-

Pass Band Ripple
Stop Band Attenuation
Transition Width
Filter Order

The frequency response of an ideal low pass filter is shown below in Diagram 4.3.  The
frequency response cuts of immediately when we reach the cut off frequency Fc.  Of
course in reality, this kind of filter is not realisable, and so certain compromises must be
reached wen arriving at an acceptable specification.

0dB

Gain(dB)

Frequency(Hz)Fc

Desired Filter Response

Diagram 4.3 :- Ideal Low Pass Filter

Because a finite number of filter coefficients are used in practice to specify a filter, and
also the degree of quantisation introduced to both the coefficients and the data, a
number of errors are introduced.  Diagram 4.4 shows a practical filter response, and
enables the user to gain an understanding of which parameters need to be specified
when designing a filter.
Hitachi Micro Systems Europe Ltd
35



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The order of the filter has a great bearing on the response of the filter, with small order
filters having a poor response.

If a sharp cut off is required, i.e. a small transition width, then the filter order must be
very high.  Clearly this introduces a number of factors which are limiting.

Firstly, a high order filter requires a large amount of computation due to its long length,
this in turn introduces two problems.  The length of the filter means that a long delay is
introduced as the data ripples through the filter.  Secondly, for each sample, a very large
number of computations are required, and so the processing time is increased, hence
reducing the real time capability of the system.

As well as computational problems, large filters introduce another problem.  If a large
number of coefficients are used, a large amount of memory is required to store both the
coefficients and previous samples.  Memory is expensive, and also introduces a
limitation in speed due to the large number of memory accesses required.

When designing a filter it is necessary for the engineer to reach a number of
compromises.  The ideal response is played off against speed and cost, with a suitable
system eventually being derived.

As well as the transition width expanding with a decrease in filter order, several other
effects take place.  The pass band region develops ripple, and the stop band attenuation
becomes less.  Clearly the designer should have a feel for the acceptable levels of ripple
and attenuation such that an optimised filter may be designed.  A practical filter
response showing these effects is shown below in Diagram 4.4.

0dB

Gain(dB)

Frequency(Hz)
Passband Transition

    Band
Stopband

Passband Ripple

  Stopband
Attenuation

Diagram 4.4 :- Actual Low Pass Filter Response

As can be seen above, the actual response is very different to that desired.  Typically
when specifying a filter, the user indicates the acceptable level of ripple in the passband,
the transition width and the required stopband attenuation.
Hitachi Micro Systems Europe Ltd
36



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The software design package will then normally suggest a filter order which would
enable the stated criteria to be satisfied.  Clearly if the user requires a filter with low
pass band ripple, a small transition width and high stop band attenuation, a high order
filter is required.

4.2 Routine Descriptions

4.2.1 Fir

The function FIR implements a Finite Impulse Response filter.  The FIR filter has a
transversal structure which is described in section 4.1.1 of this document.  The related
Ensigma documentation  takes the reader through the definition of the function, but for
the readers reference, the function is defined as follows :-

int Fir(output,input,no_samples,coeff,no_coeffs,res_shift,workspace)

Where,

short output[] output samples y
short input[] input samples x
long no_samples number of samples N to be filtered
short coeff[] array containing filter coefficients h
long no_coeffs length of filter, thus number of coefficients K
int res_shift right shift applied to each output
short *workspace pointer to filter memory

Using Fir

the use of the filter routines is relatively straight forward.  It is important to initialise the
filter memory (on chip), before calling the routine.  The memory is initialised by calling
the routine InitFir.  This routine sets aside a section of on chip RAM for the storage of
coefficients and also past samples which are required for FIR computation.

Coefficient Storage

Coefficients should be calculated as 16 bit fixed point.  The calculated coefficients
should then be stored in an array which can be seen by the compiler.  Assuming that the
array is called coeff, a typical file would follow the following format :-

short coeff[10] = {0,0,12,15,16,16,15,12,0,0};

Clearly when a large number of coefficients are used, it is good practise to store the
coefficients in their own file, and include the array file name in the top of your main
program.
Hitachi Micro Systems Europe Ltd
37



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Example

The following example outlines the use of the Fir routine.  The example is written in C
and is intended to provide the reader with a typical code layout.

#include <stdio.h>
#include <math.h>
#include <ensigdsp.h>
#include "testhead.h"

/*** Include File Containing data to be filtered ***/

#define NSAM     128
/* number of samples */
#define no_coeff  32
#define MAXSUM  67108864

void main(void)
{

/*** Declare Local Variables ***/

short coeff[no_coeff], filout[NSAM];
short *work;
int n, res_shift;
long sum;

/*** Array Containing Coefficients ***/

coeff[32]={0, 0, 9, -1, 62, -253, 99, -168, 1283, -1017, 75, -3560, 
5196, -237, 7506,-26122, 17126, 17126, -26122, 7506, -237, 5196,-3560, 
75, -1017, 1283, -168, 99,-253, 62, -1, 9};

res_shift = 16; /*** Shift Applied To Output Data ***/

/*** Check Scaling Of Coefficients ***/

        for(n = 0; n < no_coeff; n++)
        {
        sum += fabs(coeff[n]);
        }

        if(sum >= MAXSUM)
        printf("Bad Coefficients");

/*** Initiate Filter Workspace ***/

        if(InitFir(&work, no_coeff) != EDSP_OK)
        printf("Problem With InitFir");

/*** Fir Filter The Signal ***/

 if(Fir( filout, signal, NSAM, coeff, no_coeff, res_shift, work) == 
EDSP_BAD_ARG)

 printf("Filter Problem");

}

Hitachi Micro Systems Europe Ltd
38



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The above C code example shows a typical filter routine for processing blocks of
samples.
  In this case, the routine takes a block of 128 samples, and performs a filter operation
on them accordingly.  The filter is of length 32, and the pre-calculated samples are
stored in the array coeff[] at the start of the program.

Before the filter is initialised, the coefficients are checked for scaling.  It is suggested as
a general rule of thumb that the absolute sum of the filter coefficients is less than 226.
Checking this should help to avoid saturation, as long as the result shift is set
accordingly.  Obviously, in an environment where time is an issue, it is desirable to
perform such checks during development, and remove the code for the final version
when the routine is known to be working.

Next, the filter workspace has to be initialised.  The routine InitFir() sets aside an area of
on chip RAM for the filter routine to use as a scratch pad.  The actual area is undefined,
and will vary on each execution.  It is therefore recommended that the user does not
attempt to access this area at any time.  When calling this routine, a pointer must be
specified to the area, in our case the pointer ‘work’ is used.  This pointer must be
specified when calling the actual filter routine.

Finally in our C code example, the FIR filter routine is executed.  The function Fir is
called, with the following arguments:-

filout() = Samples from filter
signal() = Input samples for filter
NSAM = Number of input/output samples
coeff() = Filter coefficients
no_coeff = Number of filter coefficients (length of filter)
res_shift = Shift applied to output
work = Pointer to filter workspace in RAM

These arguments tie in with the Fir definition at the start of this section.  If the
arguments are outside of a particular range, the filter will not operate, and will instead
return a bad argument flag.  This flag, called EDSP_BAD_ARG is tested in the above
example, and its’ generation in turn is used to generate an error message to the user.

The flag EDSP_BAD_ARG is generated if the following occurs :-

no_samples < 1
no_coeffs <= 2
res_shift  <  0
res_shift  >  27

4.2.2 Fir1
This routine follows on directly from the above description of Fir, and it is therefore
recommended that section 4.2.1 is read before moving on to this section.

Fir1 is identical to Fir except for the fact that it processes one sample at a time.
Hitachi Micro Systems Europe Ltd
39



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
This routine is optimised for signal sample computation, and should be used instead of
the above routine when ‘no_samples’ is set to one.  The routines definition is outlined
below :-

Fir1(output,input,coeff,no_coeffs,res_shift,workspace)

Where,
short *output Pointer to single output sample y(n)
short input single input sample x(n)
short coeff[] array containing filter coefficients h
long no_coeffs number of coefficients K (length of filter)
int res_shift right shift applied to output
short *workspace pointer to filter memory

Fir1 will give bit identical results to Fir, and uses the filter workspace to hold previous
samples that are necessary for computation.  The routine finds applications in areas
where real time processing is required, and as a result the filter operation is applied on a
sample by sample bases.

Since this function is essentially identical to the Fir routine, coefficients are stated in an
identical manner to that shown in 4.2.1.  Also, for the purpose of a software example,
the code shown in 4.2.1 is relevant.  For an identical filter as that shown, the above code
may be re-written as follows :-

/*** Fir Filter The Signal ***/

if(InitFir(&work, no_coeff) != EDSP_OK)
printf(“Problem With InitFir”);

for(n=0; n < NSAM; n++)
{

if(Fir1( filout, signal[n], coeff, no_coeff, res_shift, 
work)==EDSP_BAD_ARG)
printf(“Problem With Filter”)

}

The above example is a ‘snippet’ of code which could replace the filter section of the
example code shown in 4.2.1.  The code uses a for loop to filter a number of samples
one at a time.  Clearly, in a real time environment, the loop would be omitted, and the
filter operation would be initiated by the end of the ADC conversion, as an example.

It should be noted that before using Fir1, the filter workspace should be initialised by
calling InitFir.  This is the same initialisation routine as that used for Fir.

In order to minimise quantisation noise and saturation, the same scaling rules apply as
that discussed earlier, being to keep the absolute sum of the coefficients to a level lower
than 226.  The resultant shift should also be set to 26 if overflow is considered to be a
problem, however in most cases this simply isn’t an issue.
Hitachi Micro Systems Europe Ltd
40



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
4.2.3 Iir
Now we move onto IIR filters.  The reader should be familiar with the basic concepts of
IIR filters before reading the following routine descriptions.  Section 4.1.2 of this
document takes the reader through the basic ideas behind IIR filters, as well as
explaining the filter structure for implementing IIR, and in particular the Direct Form II,
as used in the DSPLib routines.

As described above, Iir is implemented using Direct Form II biquads.  A biquad is a
single second order filter stage which may be cascaded in order to form higher order
filters.  Now because second order filters are cascaded to implement the higher order
designs, it is important for the reader to remember that the stated filter order must be a
factor of two.

The Iir function is defined as follows :-

int Iir(output,input,no_samples,coeff,no_sections, 
workspace )

where,

short output[] output samples
short input[] input samples
long no_samples number of samples to be filtered
short coeff[] filter coefficients
long no_sections number of second order sections
short *workspace pointer to workspace

Coefficient Storage

The definition is similar to that shown in the Fir descriptions earlier.  However, due to
the differences in structure, the Iir coefficients are specified in a very different manner.

The filter coefficients are stored in a single array.  By looking at the transfer function of
a single second order biquad, we can see that there are two groups of coefficients for
each stage, being an and bn.

H z
Y Z

X Z

b b Z b Z

a Z a Z
( )

( )

( )
= = + +

− +

− −

− −
0 1

1
2

2

1
1

2
21

Hence, as can be seen from the transfer function, for each second order biquad, the user
must specify five coefficients.  However, another factor is thrown into the equation
which further complicates things.  The Iir functions in DSPLib can have a shift applied
to them at each stage, and the shift applied is stated in the same file as the coefficients.
The Iir difference equations for Iir should make things clearer.
Hitachi Micro Systems Europe Ltd
41



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
 The equations are as follows :-

w n a w n a w n x n

y n b w n b w n b w n a k

( ) ( ( ) ( ) ( )).

( ) ( ( ) ( ) ( )).

= − + − +

= + − + −

−

−

1 2
15

0 1 2

1 2 2

1 2 2 0

If you are not familiar with these equations for the second order biquads, you should
read section 4.1.2 before preceding here.

As can be seen above, each of the two ‘a’ coefficients have a 15 bit right shift applied,
which means that the ‘a’ coefficients MUST be in Q15 format in order to ensure
accurate results.  The ‘b’ coefficients are subject to a user specified shift, which as
described is contained in the same array as the coefficients.  I.e. in the above equation if
the’b’ coefficients are in Q15 format, a0k should be set to 15.  Hopefully, it therefore
becomes clear that the a0k term describes a shift rather than a coefficient.  The k part of
the term describes which cascaded biquad the term belongs to.

Hence, if two biquads were used, the coefficients would be specified as follows :-

{a00,a10,a20,b00,b10,b20,a01,a11,a21,b01,b11,b21}

It should now be clear that in the above array, the terms a00 and a01 are not coefficients,
they represent a right shift which is applied to the ‘b’ coefficients.

Example

There now follows a basic example of how the Iir function is typically used.  The
coefficients have been designed on a separate package and have been quantised to 16 bit
resolution.  The ‘a’ coefficients are in Q15 format, and the ‘b’ coefficients are in Q15
format, with the shift set to 15 as well, thus returning the solution in the correct form.

The C code example is as follows :-

#include <stdio.h>
#include <math.h>
#include <ensigdsp.h>
#include "testhead.h"

/*** Include File Containing data to be filtered ***

#define NSAM     128              /* number of samples */
#define no_sections 2
#define no_coeff 12

void main(void)
{

Hitachi Micro Systems Europe Ltd
42



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
/*** Declare Local Variables ***/

short coeff[no_coeff], output[NSAM];
short *work;

/*** Array Containing Coefficients ***/

coeff[no_coeff]={15,-29186,-11663,9008,18009,9008,15,-27423, 
28914,14004,27934,14004};

/*** Initiate Filter Workspace ***/

       if(InitIir(&work, no_sections) != EDSP_OK)
       printf("Problem With InitFir");

/*** IIR Filter The Signal ***/

 if(Iir( output, signal, NSAM, coeff, no_sections, work) == 
EDSP_BAD_ARG)

 printf("Filter Problem");

}

The above C code takes the reader through a very simple example of how to integrate
the Iir function within a program.  The coefficients are included in the program for
clarity, but could just as easy be in a different file that is pointed to by an include
statement.  The two a0 values of 15 can be easily seen in amongst the coefficients, which
constitute a shift right.

The filter workspace is initiated by calling InitIir.  In a time critical system, this
operation should be performed during the initial set-up, and not included in the main
loop.  The filter only has to be initialised once for a particular filter size, and is
completely independent of the number of function calls made to Iir.

The final part of the program details the actual calling of the function.  The data is taken
from the array ‘signal’, which is omitted from the above code.  In reality, ‘signal’ would
be a series of time domain samples stored in its’ own file pointed to by an include
statement.  The function is tested for bad arguments, and returns an error message if
there is a problem.

4.2.4 Iir1
This function follows directly on from the above description of Iir.  Iir1 offers an IIR
filter which performs a filter operation on a single sample, thus making it particularly
suitable for real time operations.  The function is defined as follows :-

int Iir1( output, input, coeff, no_sections, workspace)

Where,
short *output pointer to filtered output sample
short input input sample
short coeff[] filter coefficients
long no_sections number of second order filter sections
short *workspace pointer to start of filter workspace
Hitachi Micro Systems Europe Ltd
43



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The function is used in exactly the same manner as Iir.  Filter coefficients are specified
in the same format as that described in 4.2.3, and the method of applying a shift to the
output is also identical.  When the user wishes to use Iir with no_samples set to one, this
function should be used instead.  Iir1 is optimised for single sample operation, and will
offer some computational savings over Iir in this particular situation.

The software example given in the previous example is directly relevant here.  For the
same routine to be implemented using Iir1, the following change would be made.

/*** IIR Filter The Signal ***/

for( n=0; n <= NSAM; n++)
{
 if(Iir1(output,signal, coeff, no_sections, work) == EDSP_BAD_ARG)
 printf("Filter Problem");
}

I.e the filter section of the routine has been replaced by a for loop which repeatedly runs
the Iir1 routine.  Clearly in a real application it is unlikely that the function would be
used in this manner, but it serves as an example of the function operation.  This routine
will return bit identical solutions to the example using Iir.

Before calling Iir1, it is important to initialise the filter workspace.  Although the filter
performs computation on one sample at a time, the filter must store previous input and
output samples in order to perform the filter operation.  Therefore, as with all the filter
routines in DSPLib, the user must initialise the filter workspace.  When using Iir or Iir1
the function InitIir must first be called.  When calling this routine, the user must provide
a pointer to the start of the workspace, and also indicate the size of the filter.  The
example in section 4.2.3 shows the use of InitIir, and is directly relevant to the use when
calling Iir1.

4.2.5 DIir

This function implements an IIR filter with a direct form II structure.  The filter is made
up of a series of cascaded second order biquads.  If the reader is not familiar with the
structure of an IIR filter, they must consult section 4.1.2 before continuing here.

This routine offers a filter which is essentially the same as that offered by Iir, except that
it allows double precision computation.  This added precision is achieved by the
inclusion of 32 bit coefficients.  Input and output data is still 16 bit, but the added
precision of the coefficients will increase the accuracy of the filter in situations where
accuracy is an issue and could possibly affect filter stability.
Hitachi Micro Systems Europe Ltd
44



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The related Ensigma documentation explains how the double precision is realised, and it
is the purpose of this document to demonstrate how to use the routine.  DIir is defined as
follows :-

int Diir( output, input, no_samples, coeff, no_sections, 
workspace)

Where,

short output[] filter output samples
short input[] filter input samples
long no_samples number of samples to be filtered
long coeff[] 32 bit filter coefficients
long no_sections number of second order sections (biquads)
long *workspace pointer to filter workspace

Using DIir

The use of DIir is essentially the same as using Iir, only the coefficients are 32 bit.
Before calling DIir it is important to initialise the filter workspace.  This is achieved by
calling the function InitDIir.  When calling this function, the user must specify the
number of second order sections in the filter, and also provide a pointer to the area in
RAM which this function sets aside for the filters use.  The reader can see this function
in the C code example below.  It is important that the user doesn’t try to access the filter
workspace at any point for two reasons.  First of all, the area is undefined, and so the
user has no idea of the location or size of the area before or during execution.
Secondly, the filter will access the RAM to store past samples.  The user does not have
access to the method of storage, and so intervention could result in the failure of the
filter.

Coefficient Storage

Since this function implements an IIR filter, the method of storing coefficients is similar
to that shown in section 4.2.3.  However, due to the double precision of the coefficients,
the method of applying shifts to the results is different.  In order to understand the filters
operation, we must first look at the double precision filter difference equations.

w n a d n a d n x nk k k k( ) [ ( ) ( ) ( )].= − + − + −
1 2

31 311 2 2 2

y n b d n b d n b d nk k k k k k
a k( ) [ ( ) ( ) ( )].= + − + − −

0 1 21 2 2 0

The above equations are essentially the same as those given for the Iir function.  The
coefficients are stored in a single array in the same format, which is outlined below.

{a00,a10,a20,b00,b10,b20,a01,a11,a21,b01,b11,b21............}
Hitachi Micro Systems Europe Ltd
45



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The area where this function differs is the specification of shifts applied to outputs of
biquads.  As the difference equations show, the ‘a’ coefficients must be specified in Q31
format.  The output of each biquad can be shifted by the use of a0k and it is important
that the reader fully understands how the shifts work.

When the 16 bit input x(n) is applied to the filter, it is firstly multiplied by 216 to put it
into Q31 format which is suitable for the filter arithmetic.  This shift must be
compensated by the user at the output in order to gain accurate results.  The following
two block diagrams should help to clarify matters.

216 2 2-31 -31

2 231 15

a1,a2
Coeffs

b0,b1,b2
Coeffs

DIir Filter

x(n) y(n)

Diagram 4.5 :- Shifts Applied In A Single Second Order Biquad

Referring to the above diagram, the method of applying shifts to a single second order
biquad can now be explained.

The input samples, x(n) are immediately multiplied by 216 by the function, the user has
no control over this.  Next, all the ‘a’ coefficients must be specified in Q31 format, as
they are multiplied by 2-31 by the filter function, and again the user has no control over
this.  Finally we introduce the ‘b’ coefficients, which are multiplied by a user specified
shift.  This shift, a0k must not only compensate for the format of the ‘b’ coefficients, but
also compensate for the original shift applied to the input data.

 In the diagram above (4.5), the coefficients are stored in Q15 format.  The final result
shift applied is therefore 2-31.  The reason for this is as follows :  The coefficients are in
Q15 format, which means that they have been multiplied by 215 to put them in correct
form.  Also the shift has to compensate for the original 216 shift applied at the start of
the process.  Therefore we arrive at the required shift of 2-31 which will compensate for
both shifts and return the solution in the correct format, whilst allowing the processor to
perform double precision computation.
Hitachi Micro Systems Europe Ltd
46



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
If the filter order is higher than two, i.e. more than one biquad is used, the compensation
doesn’t have to be applied until the last stage, thus allowing the intermediate stages to
be expressed in Q31 format.

 

216 2 2-31 -31

2 231 31

a1,a2
Coeffs

b0,b1,b2
Coeffs

DIir Filter

x(n)

DIir Filter

2-31

231

a1,a2
Coeffs

2

2

b0,b1,b2
Coeffs

31

-47

Diagram 4.6 :- Shifts Applied In A Fourth Order Filter

The function allows the final output stage shift to be expressed right up to and including
48.  This means that on a fourth order system and higher, the filter can be a true dual
precision.  In the example above, it is clear to see that the final shift applied is 47, which
compensates for the Q31 format of the ‘b’ coefficients, and also compensates for the
original 216 shift applied at the start.  It is very important to remember that such a large
shift is only possible on fourth order filters and higher, and as a result, it is not possible
with this function to implement a true second order double precision filter.

Example

The best way to reiterate the above theory is by way of an example.  This example is
written in C as are all the examples in this text.  The example shows the array containing
the filter coefficients, as well as the function calls to implement the filter.  The filter
coefficients were calculated on a design package, and implement a fourth order low pass
filter.  The values obtained from the package were as follows :-

       Design Package Solution  Q31 Format

a10 = 0.6149292 1320550402
a20 = 0.4001465 859308065
b00 = 0.1794281 385318910
b10 = -0.3097076 -665092006
b20 = 0.1794281 385318910
Hitachi Micro Systems Europe Ltd
47



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
a11 = -0.2411804 -517930965
a21 = 0.8682861 1864630202
b01 = 0.7138977 1533083637
b11 = -0.7098694 -1524432929
b21 = 0.7138977 1533083637

Hence the result of the filter design operation is shown on the left, and the Q31 format
value is shown on the right.  These values are then used in the double precision filter
example outlined below.  The reader should take particular notice of the coefficient
array, and especially the a0 values which describe the shift applied during the filter
operation.

#include <stdio.h>
#include <math.h>
#include <ensigdsp.h>
#include "testhead.h"

/*** Include File Containing data to be filtered ***/

#define NSAM     128              /* number of samples */
#define no_sections 2
#define no_coeff 12

void main(void)
{

/*** Declare Local Variables ***/

short coeff[no_coeff], output[NSAM];
short *work;

/*** Array Containing Coefficients ***/

coeff[no_coeff]={31, 1320550402, 859308065, 385318910, -665092006, 
385318910, 47, -517930965, 1864630202, 1533083637, -1524432929, 
1533083637};

/*** Initiate Filter Workspace ***/

        if(InitDIir(&work, no_sections) != EDSP_OK)
        printf("Problem With InitDIir");

/*** DIIR Filter The Signal ***/

 if(DIir( output, signal, NSAM, coeff, no_sections, work) == 
EDSP_BAD_ARG)

 printf("Filter Problem");

}

The above example filters a set of data samples 128 long using the double precision IIR
filter.  Before calling the filter routine, the filter workspace is initialised by calling
InitDIir.  This function requires two arguments, one being a pointer to the workspace,
and the second being the number of second order sections the filter contains, thus
indicating to the function the size of RAM required.
Hitachi Micro Systems Europe Ltd
48



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
The filter coefficients are stored in an array in the main program, and this should clearly
demonstrate the shifts which are required.  All the coefficients are in Q31 format (the ‘a’
coefficients must be in Q31 format), and the two shifts applied are 31, and 47.  The shift
of 47 compensates for the 16 place shift applied at the input as described earlier.

The actual filter routine is called at the end of the program, and will filter the block of
128 samples, and then finish.  The actual calling of the routine and arguments used is
identical to Iir described in 4.2.3, except that the solution although still 16 bit is of a
higher precision.

4.2.6 DIir1
This function offers exactly the same filter operation as that described in 4.2.5.  The
function implements a double precision IIR filter, but only processes a single sample at
a time.  This makes DIir1 particularly suitable for real time operation where the user
wishes to perform computation on a sample by sample bases.  The function is defined as
follows :-

int DIir1( output, input, coeff, no_sections, workspace)

Where

short *output pointer to output sample
short input input sample
long coeff[] array containing 32 bit coefficients
long no_sections number of second order sections
long *workspace pointer to start of filter workspace

The filter is used in exactly the same manner as DIir, and the reader should consult
section 4.2.5 for full details of the operation.

The method for specifying the filter coefficients is also exactly the same, i.e. they are all
32 bit and require the same methods of applying shifts as that described earlier.  If the
user wishes to use DIir with ‘no_samples’ set to one, this function should be used
instead.  DIir1 has been optimised for single sample computation and will provide an
increase in speed compared to DIir.

To modify the C code example given in the previous section such that DIir1 can be
used, the following change would be made.

/*** DIIR Filter The Signal ***/

for( n=0; n <= NSAM; n++)
{
 if(DIir1(output,signal, coeff, no_sections, work) == EDSP_BAD_ARG)
 printf("Filter Problem");
}

Hitachi Micro Systems Europe Ltd
49



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
As should be clear from the example code above DIir1 is the same as DIir only the user
does not have to specify the number of samples to be processed since it only processes
one at a time.

Before calling DIir1, it is essential that the filter workspace is initialised.

This is achieved in exactly the same manner as that for DIir, that is by calling InitDIir
and specifying the number of second order sections the filter contains, and also
providing a pointer to the assigned memory location.  The use of this initialisation
function can be seen in the software example in section  4.2.5.

The code above is intended only to indicate the operation of the function.  Imbedding
the function in a For loop will actually increase the run time compared to the use of DIir,
and so is not recommended.  However, for evaluation purposes, the user will find that
both DIir and DIir1 will return bit identical results.

Even though the filter only processes one sample at a time, it is necessary to store past
samples to feedback into the filter.  These samples are stored in the filter workspace,
and the very oldest samples are discarded as the number of single sample computations
increase.

As a final note in this section it should be pointed out to the user that using the double
precision routines will most probably not be necessary, and will impose a time
constraint.  In most applications, the accuracy of the IIR functions will be suitable, and
due to the simpler nature of the implementation, the IIR functions run an order of
magnitude faster on the SH1.  The use of the double precision filters should be
contained to areas where the user feels that single precision will adversely affect the
filter operation and lead to problems such as instability.  As an example of the speed
difference, on a 10MIPS SH-1, Iir1 takes 18.1uS/sample where as DIir1 takes
48.0uS/sample.

4.2.7 Lms
This is the final filter structure offered by DSPLib, and comes in two forms LMS and
LMS1.  This section describes the background behind the LMS filter, and also includes
an example of the routine performing a filter operation.

LMS stands for Least Mean Squares, which in turn describes the algorithm which is
used in this adaptive filter.  The LMS adaptive filter is based around an FIR filter, and it
is assumed that the reader is familiar with its’ basic operation.  If this is not the case, the
reader should consult section 4.1.1 of this document which explains the basic concepts
behind the FIR, as well as showing the transversal structure which is incorporated into
this adaptive algorithm.

The function Lms is defined as follows :-

int Lms( output, input, ref_output, no_samples, coeff, 
no_coeffs, res_shift,  conv_fact, workspace)
Hitachi Micro Systems Europe Ltd
50



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Where,

short output output samples y(n)
short input input samples x(n)
short ref_output desired output values d(n)
short no_samples number of samples to be filtered
short coeff[] filter coefficients h(n)
long no_coeffs number of coefficients
int res_shift right shift applied to output
short conv_fact convergence factor 2µ
short workspace pointer to filter workspace

The LMS routine provides a filter that will adapt to a reference signal given to it.  This
means that no filter design is necessary, the filter will adjust its own coefficients using
the LMS algorithm such that the reference signal provided to it is included from the
main filter signal.

As an example, if a filter is supplied with a reference sine wave of frequency Fs/4, and
an input signal containing a number of sine waves such as Fs/2,Fs/4,Fs/8 and Fs/16, the
output of the filter would be Fs/4.  Hence the filter has adapted its coefficients such that
the Fs/4 component of the signal is included.

The LMS filter is mathematically described as follows :-

FIR Filter :-

y n h k x n kn
k

K

( ) ( ) ( )= −









=

−

∑
0

1

LMS Adaptive Algorithm :-

h k h k e n x n kn n+ = + −1 2( ) ( ) ( ) ( )µ

Where h(k) are the filter coefficients which are adapted.  µ determines the convergence
rate, i.e. the rate at which the coefficients converge and provide the required output.
Clearly the faster the convergence rate, the less accurate the output.  It is up to the user
to arbitrarily test different values until a suitable response is achieved.
The same scaling conventions apply to this filter as with the Fir routine.  However, it is
not guaranteed that the adaptive algorithm will keep to the convention, and saturation
may occur.  If this is the case, it is most likely that the filter is having trouble adapting,
and the filter order should be increased to rectify this.

Diagram 4.7 shows a block diagram showing the implementation of the filter.
Hitachi Micro Systems Europe Ltd
51



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Z-1 Z-1 Z-1 Z-1 Z-1Z-1

Σ

x(n)

y(n)

N+1 Weights

Desired Output

_

Adaptive Algorithm

d(n)

e(n)=d(n)-y(n)

(Output)

(Input)

(Reference)

FIR Filter

Diagram 4.7 :- LMS Filter Block Diagram

With reference to the above diagram, the area within the grey block is the standard FIR
filter implemented in a transversal structure.  The output of the filter is subtracted from
the desired signal output (reference) which in turn generates an error signal e(n).  This
error signal is used by the adaptive algorithm to update the filter weights (coefficients)
in order to reduce the error signal, and thus eventually arrive at the desired filter
response.  Initially, when the filter hasn’t started to adapt, the filter coefficients are set to
an arbitrary value.  The value chosen should not make a difference to the final value
reached, however, it may have some affect on the rate at which it meets the ideal
weights.

Wopt

Wk

k

Optimal Weights

Desired Convergence

Actual Convergence

Diagram 4.8 :- Convergence Of Filter Weights

The above diagram illustrates the variations in the filter weights as the feedback adjusts
them accordingly.  Although the final weights are very close to the desired values, they
never actually settle there, but will instead fluctuate around the optimum value.
Hitachi Micro Systems Europe Ltd
52



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Example

Now that the basic theory has been covered, an example should help to reiterate any
problem areas.  The example takes an input signal which consists of five sine waves
added together, and adaptivly filters all but one of the components.  The reference input
is the frequency component that is left at the end.  The C code is given first, followed by
an in depth explanation of the process, including the analysis of various filter lengths.

#include <stdio.h>
#include <math.h>
#include <ensigdsp.h>

#define NSAM      128              /* number of samples */
#define TWOPI     6.283185307
#define no_stage  1
#define MAXSIZE   NSAM
#define NSAMS    (NSAM/2)
#define TWOMU    32767
#define ncoeff   8

/***************** Exercise To Implement An LMS Adaptive Filter
*******************/

void main(void)
{
       short   coeff[ncoeff], ref[NSAM], noise[NSAM], noisea[NSAM], 

fftout1[NSAM], sine1[NSAM], sine2[NSAM], sine3[NSAM], sine4[NSAM], 
sine5[NSAM], signal[NSAM], output1[NSAMS], filout[NSAM];

     int     n, k, loop, res_shift;
     long    sum, len;
     short   *work;

     len     =   NSAM;
     res_shift = 16;
     loop = 100;

/** Coefficients For Adaption **/

coeff[ncoeff]={1,1,1,1,1,1,1,1};

/*** Generate Sine Waves ***/

    printf("Generating Sine Wave");
      k = len / 8;
      for(n = 0; n < len; n++)
       {
       sine1[n] = floor(3162 * sin(TWOPI * k * n / len) + 0.5);
       }

       k = len / 16;
       for(n = 0; n < len; n++)
       {
       sine2[n] = floor(6553 * sin(TWOPI * k * n / len) + 0.5);
       }

       k = len / 4;
       for(n = 0; n < len; n++)
Hitachi Micro Systems Europe Ltd
53



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
       {
       sine3[n] = floor(3162 * sin(TWOPI * k * n / len) + 0.5);
       }

       k = len / 32;
       for(n = 0; n < len; n++)
       {
       sine4[n] = floor(3162 * sin(TWOPI * k * n / len) + 0.5);
       }

       k = len / 64;
       for(n = 0; n < len; n++)
       {
       sine5[n] = floor(3162 * sin(TWOPI * k * n / len) + 0.5);
      }

      printf("Done");

/*** Create Signal To Be Filtered By Adding Sine waves ***/

        for(n = 0; n < len; n++)
        {
       signal[n] = (sine1[n] + sine2[n] + sine3[n] + sine4[n] + 

sine5[n]);
        ref[n] = (sine3[n] );
        }

        if(InitLms(&work, ncoeff) != EDSP_OK)
        printf("Problem With InitFir");

/*** Perform Adaptive Filter Operation ***/
/*** Adapt coeffs 100 times ***/

for(n=0; n < loop; n++)
        {
        if(Lms(filout, signal, sine3, NSAM, coeff1, ncoeff, res_shift, 

TWOMU, work) == EDSP_BAD_ARG)
        printf("Problem With LMS Operation");

        }

        free(work);

}

The above code performs two tasks.  First of all the code generates the signals which are
to be filtered.  Clearly this is for test purposes only, and in a real system, the data would
come from a device such as an ADC.  The signal to be filtered consists of five sine
waves all added together.  The corresponding frequencies of these signals are Fs/4, Fs/8,
Fs/16, Fs/32 & Fs/64.  The sum of these waves forms the data set to be filtered,
consisting of  128 samples.  Next, the reference signal is generated, which is chosen to
be Fs/4.  This means that the coefficients should adapt and remove all bar the Fs/4
component from the signal.
Hitachi Micro Systems Europe Ltd
54



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters
Next step in the code is to initialise the filter workspace by calling the function InitLms.
This function is used in exactly the same manner as the previously described
initialisation routines.  So finally in the code, we arrive at the actual filter operation.
The function is called 100 times in order to demonstrate how well the coefficients adapt.
The calling of the function is fairly self explanatory, and should not cause any problems.
The function Lms modifies the filter coefficients stored in coeff[], and as a result they
should be stored in on chip RAM, thus allowing fast access.  If the coefficients are
stored off chip, it is a good idea to copy them into on chip RAM.  The spectrums of the
signals involved in the filter operation are displayed below.

Diagram 4.9 shows the five sine waves added together which forms the input to the
adaptive filter.  This signal was then adaptivly filtered as described above with eight
coefficients.  The value of 2µ was chosen to be 32767, and wasn’t changed during the
whole of the testing period.  The user may wish to start off with a similar value in order
to establish operation, then change accordingly in order to achieve faster convergence.

The result of filtering with eight coefficients or weights is displayed in figure 4.10.  As
can be seen, the unwanted elements of the signal have been attenuated, but not removed.
The reason for this is that the small filter order physically cannot apply the attenuation
required to remove the unwanted elements.

FFT Of Input Signal

-10

0

10

20

30

40

50

60

70

80

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 4.9 :- Spectrum Of Input Signal To Adaptive Filter
Hitachi Micro Systems Europe Ltd
55



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters

ut has
fore,

th is
 32,

gram
ity of
.

rror
arly

er.
FFT Of Signal Filtered By 8 Coefficients

-10

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 4.10 :- Spectrum Of Filtered Signal Using 8 Coefficients

As can be seen in Diagram 4.10, the filter has adapted to the reference signal, b
failed to filter the unwanted components, even after one hundred operations.  There
for the purposes of demonstration, the number of coefficients, i.e. the FIR filter leng
increased to thirty two.  This means that in the software example above, ncoeff =
and the array coeff consists of thirty two elements each containing one.

With the increased coefficients, the program was ran, and the results shown in Dia
4.11 below.  It is clear to see that the increase in coefficients increased the selectiv
the filter, and was more capable to reject the unwanted components from the signal

In a real application, it is good  practice to try different filter lengths on a trial and e
basis, thus enabling the user to arrive at the most efficient implementation.  Cle
large filters are bad news since they require more memory, and as a result run slow

FFT Of Result Of Filtering With Ref = Fs/4

-10

0

10

20

30

40

50

60

70

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64

Diagram 4.11 :- Result Of Adaptive Filtering With 32 Tap Filter
Hitachi Micro Systems Europe Ltd
56



DSPLib For SH                               Application Note (19-031/1.0)                                   Digital Filters

nents
igher

he
 the
4.1.1

ptive
real

nce
here

s been
e of
nce it

 by
Lms
 are

s this

peed
ot
As can be clearly seen above, with a filter length of 32, the unwanted signal compo
have been completely removed.  It is therefore unnecessary to use a filter of a h
order for this particular application.

4.2.8 Lms1
This function is the final one to be discussed from the filter section of DSPLib.  T
function is identical in every way to the function Lms, and the in depth discussion in
previous section is directly relevant here.  The reader should consult both section 
on FIR theory, and also section 4.2.7 detailing adaptive filters.

Lms1 provides an algorithm which implements the Least Mean Squares ada
algorithm on a single sample.  Hence the function finds particular application in 
time processing.

The function Lms1 is defined as follows :-

int Lms1( output, input, ref_output, coeff, no_coeffs, 
res_shift, conv_fact, workspace)

Where,

short *output output sample y(n)
short input input sample x(n)
short ref_output desired output value d(n)
short coeff[] filter coefficients h(n)
long no_coeffs number of coefficients
int res_shift right shift applied to output
short conv_fact convergence factor 2µ
short workspace pointer to filter workspace

By examining the filter definition it should be clear to the reader that the only differe
between the two functions is that no_samples has been omitted.  In applications w
Lms is used with no_samples set to one, Lms1 should be used instead.  Lms1 ha
optimised for single sample operation, and will provide time savings over the us
Lms.  If more than one sample at a time requires sampling, Lms should be used si
is quicker than using Lms1 in a for loop.

Before calling Lms1, the filter workspace should be initialised.  This is achieved
calling the function InitLms.  This is the same routine as that used to initialise the 
filter workspace.  The workspace is used by the filter to store past samples which
required for computation.  It is important that the user makes no attempt to acces
RAM at any time during filter execution in order to ensure filter accuracy and speed.

Because of the adaptive algorithm, Lms is a degree slower than Fir to operate.  It is
therefore a possibility that the Lms routine can be used to generate filter coefficients
during development, and once finished can be inserted into a fixed FIR in order to s
up implementation.  Clearly if constant adaptive filtering is required this method is n
suitable.
Hitachi Micro Systems Europe Ltd
57



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
5.0 Convolution and Correlation

Introduction

DSPLib offers five functions in this section, two related to correlation and three related
to convolution.

This text offers the reader a brief introduction to the theory behind convolution and
correlation, before describing each function individually.  The background theory is
intended only as an introduction, and a relevant DSP text should be consulted for any
additional information required.

The five functions offered by DSPLib are as follows :-

ConvComplete
ConvCyclic
ConvPartial
Correlate
CorrCyclic

The differences between each function are described in the routine descriptions section
of this report (5.2).

Applications of these functions include areas such as image processing where two
images are compared for similarity, and also range and distance finding in areas such as
sonar and radar.

5.1 Background Theory

5.1.1 Convolution

The simplest way to describe convolution is to state that convolution in the frequency
domain is equivalent to multiplication in the time domain.  The equation for convolution
is given below :-

y m w i x m i
i

W
res shift( ) ( ) ( ) . _= −









=

−
−∑

0

1

2

It should be noticed that this identical to the expression used to describe an FIR filter.
The operation of such a filter is that the input samples are convolved with the filter
coefficients and result in a filtered output.  The convcomplete function will return bit
identical results to fir, when used in this manner.

When not used for filtering, the convolution function convolves the two input data sets
and returns a solution in y(m).  The solution returned describes how an input signal
interacts with the system in order to generate a particular output.
Hitachi Micro Systems Europe Ltd

59



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
Relating correlation and convolution together is fairly simple.  The convolution of two
data sets is identical to the cross-correlation of one data set with the time reversal of the
second data set relative to that used in convolution.  Correlation is described below, and
is important in the understanding of convolution.

5.1.2 Correlation

Correlation essentially highlights similarities in data sets, and as a result finds
applications in areas such as robotic vision and range finders.  The equation for
correlation is given below :-

y m w i x i m
i

W
res shift( ) ( ) ( ) . _= +









=

−
−∑

0

1

2

The two data sets w(i) and x(i) are correlated, and the output y(m) will increase in
amplitude when the two inputs exhibit similarities.  Hence, in range finder applications,
the transmitted pulse is correlated with the received pulse.  A peak will occur when the
transmitted data is received, and thus enables the distance to be computed.
Alternatively, the output can decrease in amplitude, indicating a negative correlation, i.e.
similar signals that are out of phase.

Correlation can be used to examine the properties of a given data set.  If a set of data is
correlated against its self, the process is referred to as cross correlation.  This method
can be used to remove noise from a periodic signal, and is shown by way of an example
later in this text.

The library offers a number of different variations of the above two functions.
Essentially, the same task is performed, and its only the range over which the
computation is computed that differs.  The actual differences are described below in the
routine descriptions section (5.2), and also includes a number of examples written in C.

The theory behind convolution and correlation is beyond the scope of this text.  The
descriptions and examples that follow should provide the reader with an outline of the
subject, and should help to allow the user to access the functions operation without
having to become involved with complex general mathematical descriptions often found
in text books.  It should also help to highlight typical application areas, thus presenting
ideas for its use.

Although the example programs are shown written in C, it is recommended that the
optimised source code be used for the actual DSPLib function calls.  The use of C
compiled code for DSP functions is not suitable, and will introduce a large time
overhead.  All the optimised DSPLib functions are included in the file ensigma.lib.  This
file should be included in the link command file, when linking the programs together.
Hitachi Micro Systems Europe Ltd

60



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
5.2 Routine Descriptions

5.2.1 ConvComplete

This function offers complete convolution between two data sets.  The function is
essentially the same as Fir, and will return identical results given the same data.  The
function is defined as follows :-

int ConvComplete(output, iw, ix, iw_size, ix_size, 
res_shift)

where,

short output[] output data (size W+X-1)
short iw[] input w
short ix[] input x
long iw_size size of w (size W)
long ix_size size of x (size X)
int res_shift right shift applied to output

This function completely convolves the input data sets, and inserts zeros at the start and
end of the two arrays to enable this to take place.

The function is mathematically described as follows :-

y m w i x m i
i

W
res shift( ) ( ) ( ) . _= −









=

−
−∑

0

1

2 0 1≤ < + −m W X

In order to ensure correct operation, a number of argument checks are performed, and
are as follows :-

iw_size < 1
ix_size < 1
res_shift < 0
res_shift > 27

The flag EDSP_BAD_ARG is returned, and the function aborted if a bad argument is
detected.

As is the case with most of the DSPLib examples, optimum performance will be
obtained if the program and data are located in on chip memory.  Clearly the ability to
achieve this depends upon the Microcontroller used, and program size.  It is
recommended that at the very least one of the input arrays be located in on chip RAM,
which will help to avoid bus conflicts.
Hitachi Micro Systems Europe Ltd

61



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
By way of an example of complete convolution, if the data set ‘1234’ is to be
completely convolved with the set ‘5678’, the following shifts would be performed :-

    00001234000 ⇐ Held static
    00000005678 ⇐ 1st convolution
    00000056780 ⇐ 2nd convolution
    00000567800 ⇐ 3rd convolution
    00005678000 ⇐ 4th convolution
    00056780000 ⇐ 5th convolution

                00567800000 ⇐ 6th convolution
    05678000000 ⇐ 7th convolution

Note how the insertion of zeros enable the two data sets to be completely convolved.
One data set is shifted relative to the other, and the convolution is taken.

This example also indicates how the size of the output array is larger than the input
arrays.  In the case of ConvComplete, the output array size should be W+X-1.  It is
essential that this is ensured since failure to do so will result in the corruption of the
stack.

5.2.2 ConvCyclic
ConvCyclic offers a function which cyclically convolves two data sets and returns the
result in a third array.  The function is defined as follows :-

int ConvCyclic( output, iw, ix, size, res_shift)

Where,

short output[] output data
short iw[] input w
short ix[] input x
long size size of both input arrays (N)
int res_shift right shift applied to output

Because the two input arrays are cyclically convolved, they must be the same size.  It is
up to the user to zero pad the smaller of the two arrays if their sizes are different.  Cyclic
convolution is mathematically described as follows :-

y m w i x m i NN
i

N
res shift( ) ( ) ( ) . _= − +









=

−
−∑

0

1

2 0 ≤ <m N

In order to ensure correct operation, a number of argument checks are performed, and
are as follows :-

size < 1
res_shift < 0
res_shift > 27
Hitachi Micro Systems Europe Ltd

62



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
If any of the above are true, the function aborts and returns the flag EDSP_BAD_ARG.

As is the case with most of the DSPLib examples, optimum performance will be
obtained if the program and data are located in on chip memory.  Clearly the ability to
achieve this depends upon the Microcontroller used, and program size.  It is
recommended that at the very least one of the input arrays be located in on chip RAM,
which will help to avoid bus conflicts.

Clearly the three convolution functions offered by DSPLib perform the same
mathematical operation between two sets of data.  The way in which they differ is in the
manipulation of arrays, and in the results that are included in the output.  In the previous
example, the two arrays were completely convolved, and zero padded to ensue that all
results were obtained.  Cyclic convolution is different to that, and is now shown in an
example.

Assume that the two arrays ‘1234’ and ‘5678’ are two be cyclically convolved.  As
before, one of the arrays is held static, and the other shifted around it.  After each shift,
the two arrays are convolved.  This is performed until every element is convolved with
every other element. E.g.

1234 ⇐ Held Static
5678 ⇐ 1st convolution
8567 ⇐ 2nd convolution
7856 ⇐ 3rd convolution
6785 ⇐ 4th convolution

Hence it should become clear that the output array is the same size as the input arrays.
In the above example, 5678 was rotated four times in order to perform cyclic
convolution.  This is shown in the diagram below, where the outer circle is rotated.

1

2

3

4

5

6

7

8

Rotate Outer Circle

Diagram 5.1 :- Cyclic Rotation
Hitachi Micro Systems Europe Ltd

63



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
5.2.3 ConvPartial

ConvPartial offers partial convolution between two data sets.  The function is essentially
the same as ConvComplete, but will not include results that are obtained outside the
data sets.  The function is defined as follows :-

int ConvPartial( output, iw, ix, iw_size, ix_size, 
res_shift)

Where,

short output[] output data (size X-W+1)
short iw[] input w
short ix[] input x
long iw_size size of w (size W)
long ix_size size of x (size X)
int res_shift right shift applied to output

The input arrays can be different sizes, however, the solution does not include elements
derived from outside the array boundaries.

The function is mathematically described as follows :-

y m w i x m W i
i

W
res shift( ) ( ) ( ) . _= + − −









=

−
−∑ 1 2

0

1

0 ≤ ≤ −m X W

In order to ensure correct operation, a number of argument checks are performed, and
are as follows :-

iw_size < 1
ix_size < 1
ix_size < iw_size
res_shift < 0
res_shift > 27

If any of the above cases are true, the function will abort and return the flag
EDSP_BAD_ARG.

As is the case with most of the DSPLib examples, optimum performance will be
obtained if the program and data are located in on chip memory.  Clearly the ability to
achieve this depends upon the Microcontroller used, and program size.  It is
recommended that at the very least one of the input arrays be located in on chip RAM,
which will help to avoid bus conflicts.

When using the function it is important to pay attention to the array sizes in order to
avoid stack corruption.
Hitachi Micro Systems Europe Ltd

64



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
The inputs can be different sizes, but input w must be larger than input x.  The size of
the output array is clearly essential, and is defined as X-W+1.
By way of an example, the partial convolution method is now explained.  Following on
from previous examples in this section, we will convolve two data sets, one containing
1234 and the other 56789.  Clearly, one array must be larger than the other in order to
satisfy the argument checking described earlier.

1234 ⇐ Held static
xxx5678
xx56789
x56789
56789 ⇐ 1st convolution

          56789 ⇐ 2nd convolution
        56789x
      56789xx
    56789xxx

As can be seen, the larger array is shifted across the smaller one.  There are only two
instances when the convolutional result is made up from results obtained within both
arrays.  The x’s represent areas where results would be calculated from outside array
boundaries, such as in ConvComplete, but in this case are rejected.  Hence, in the above
example, the output array would contain two elements, which holds true to the equation
X-W+1 = 5-4+1 = 2.

5.2.4 Correlate

Correlate offers complete correlation between two arrays, and deposits the solution in a
third array.  Convolution is the same as correlation, only one of the input arrays is in
reverse order, i.e. time reversed.  The function is described as follows :-

int Correlate(output,iw,ix,iw_size,ix_size,no_corr, 
res_shift)

Where,

short output[] output data (size X-W+1)
short iw[] input w
short ix[] input x
long iw_size size of w (size W)
long ix_size size of x (size X)
long no_corr number of correlations M to compute
int res_shift right shift applied to output

The user can control the number of correlations made.  Correlation outside the array can
be performed, and zeros will automatically be inserted as required by the function.
Hitachi Micro Systems Europe Ltd

65



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
The function is mathematically described as follows :-

y m w i x i m
i

W
res shift( ) ( ) ( ) . _= +









=

−
−∑

0

1

2 0 ≤ <m M

In order to ensure correct function operation, a number of argument checks are
performed.  The criteria for a bad argument is as follows :-

iw_size < 1
ix_size < 1
no_corr < 1
ix_size < iw_size
res_shift < 0
res_shift > 27

If one of the above is true, the function will abort and return the flag EDSP_BAD_ARG.

As is the case with most of the DSPLib examples, optimum performance will be
obtained if the program and data are located in on chip memory.  Clearly the ability to
achieve this depends upon the Microcontroller used, and program size.  It is
recommended that at the very least one of the input arrays be located in on chip RAM,
which will help to avoid bus conflicts.

The actual operation of Correlate is shown in an example at the end of this section (5.3).
However, in order to clarify the operation of shifting arrays relative to each other during
correlation calculation an example follows.

Assume that the data set 1234 is to be correlated with 56789.  Clearly, by looking at the
argument checking, the second array must be larger than the first.

The process starts with both arrays in line, and then shifts one relative to the other the
user specified number of times.

1234 ⇐ Held static
56789 ⇐ 1st Correlation

          56789 ⇐ 2nd Correlation
        567890 ⇐ 3rd Correlation
      5678900 ⇐ 4th Correlation
    56789000 ⇐ 5th Correlation

Clearly the definition of the size of the output array requires care.  The array will contain
one value for each correlation performed, and therefore should be no_corr elements
long.  Special care should be exercised here since failure to allocate sufficient elements
in the output array will result in corruption of the stack due to the nature of the C
programming language.
Hitachi Micro Systems Europe Ltd

66



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
5.2.5 CorrCyclic

CorrCyclic offers the same functionality as Correlate, only the input arrays are shifted in
a cyclic manner relative to each other.  The function is defined as follows :-

int CorrCyclic( output, iw, ix, size, res_shift)

Where,

short output[] output data
short iw[] input w
short ix[] input x
long size size of input arrays N
int res_shift right shift applied to output

The function requires two input arrays of the same size.  The two inputs are cyclically
correlated and the solution returned in a third array called output.  In certain
circumstances, the result can be false, in which case Correlate must be used.  It is
important that the user has a good understanding of the correlation process before using
this function.  CorrCyclic can be mathematically described as follows :-

y m w i x i mN
i

N
res shift( ) ( ) ( ) . _= +









=

−
−∑

0

1

2 0 ≤ <m N

In order to ensure that the function operates correctly, a number of argument checks are
performed.  The argument checking criteria is as follows :-

size < 1
res_shift < 0
res_shift > 27

If any of the above are true, the function will abort and return the flag
EDSP_BAD_ARG.  For the purpose of development, it is important to test for this flag.
However, once a working system is achieved, the argument checking can be removed in
order to speed up execution time.

As is the case with most of the DSPLib examples, optimum performance will be
obtained if the program and data are located in on chip memory.  Clearly the ability to
achieve this depends upon the Microcontroller used, and program size.  It is
recommended that at the very least one of the input arrays be located in on chip RAM,
which will help to avoid bus conflicts.

Since the two data sets are cyclically correlated, the output array should be the same size
as the two input arrays.  In the example below, the shifts involved in correlating two
four element arrays are shown, and it is also shown that the output solution contains four
elements.
Hitachi Micro Systems Europe Ltd

67



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
The data set ‘1234’ is to be cyclically correlated with the data set ‘5678’.  The shifts
involved in this process are as follows :-

1234 ⇐ Held static
5678 ⇐ 1st correlation
8567 ⇐ 2nd correlation
7856 ⇐ 3rd correlation
6785 ⇐ 4th correlation

The example above should show that the array containing the results is the same size as
the input arrays, in this case four elements.  It is essential that the user defines an array
of suitable size to contain the correlation solutions.  Failure to do this will result in the
corruption of the stack.

5.3 Correlation Example

By way of an example, this section shows how the correlation function can be used to
analyse the random properties of the noise generated by GenGWnoise.  Sample C code
is given, as well as plots of output data.

Correlation can be used to determine how random a series of white noise samples are.
This test uses the DSPLib function GenGWnoise which is explained in the
miscellaneous section of this document.  The function generates a series of white noise
samples which are claimed to be random.

The randomness of the white noise samples can be ascertained by performing auto
correlation on the array.  This means that the same set of samples are loaded into both
input arrays in the Correlate function.  The function then performs correlation, and
returns a solution in a third array.  The plot of this solution can be seen in diagram 5.2
below.

The correlation process will highlight likeness between the input arrays.  In our case, if
the data is truly random, the level of correlation will be very low.  The reason for this is
that with random noise, each sample is has an equal probability of being positive or
negative.  Most samples will therefore cancel each other out, and will thus return a low
correlation.  The one exception to this is the first correlation, i.e. the first element of the
output array.  At this instance, each element of the input array is being correlated to
itself since no shifting has yet taken place.  This means therefore that a very high level
of correlation will take place, and a large value returned to the first element.  Once the
data is shifted by one place, the level of correlation will become very low.  This can be
seen in Diagram 5.2 over the page, and serves to prove the random properties of the
data.

The white noise was generated by GenGWnoise, and is discussed in the next chapter.
Hitachi Micro Systems Europe Ltd

68



DSPLib For SH                               Application Note (19-031/1.0)            Convolution & Correlation
Autocorrelation Of Gaussian White Noise

-5000

0

5000

10000

15000

20000

25000

30000

1 16 31 46 61 76 91 106 121 136 151 166 181 196

Series1

Diagram 5.2

The above plot confirms the random properties of the white noise generated by
GenGWnoise.  It is clear to see the large amount of correlation when the input arrays
were aligned.  Once the data was shifted, the correlation remained low indicating the
lack of periodicity in the white noise.

C Code Implimentation

#include <stdio.h>
#include <math.h>
#include <ensigma.h>
#define NSAM 128

void main(void)
{

/*** Define Local Variables ***/

short noisea[NSAM], noiseb[NSAM], result[NSAM];
int res_shift, a;
float varience;
varience = 32767;
res_shift = 15;

/*** Generate White Noise ***/

if(GenGWnoise(noisea, NSAM, varience) != EDSP_OK)
printf(“Cannot Generate Noise”);

/*** Copy Arrays For Auto Correlation ***/

for(a = 0; a < NSAM; a++)
noiseb[a] = noisea[a];

/*** Perform Auto Correlation ***/

if(Correlate(result, noisea, noiseb, NSAM, NSAM, NSAM, res_shift)!= 
EDSP_OK)
printf(“Problem With Correlate”);

}

Hitachi Micro Systems Europe Ltd

69



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
 6.0 Miscellaneous Functions

Introduction

This section offers the user a number of useful functions which may be used to ‘glue’
certain DSP functions together.  All the functions are unrelated, and perform small tasks
which the user would be expected to require when implementing a number of DSP
operations on an SH Microcontroller.

Because of the diverse nature of the functions, software examples have not been
provided.  It is however hoped that all the functions are reasonably self explanatory, and
should cause no problems.

6.1.1 GenGWnoise

This function offers a method of generating true Guassian white noise, of a length
specified by the user.  The noise generated has zero mean, and a user specified variance.
The method of generation is described in detail in the related Ensigma text, but
essentially uses the rand operator in C, and arranges pairs of samples to a certain
criteria.

The function is defined as follows :-

int GenGWnoise( output, no_samples, variance)

Where,

short output[] array containing white noise samples
long no_samples number of output samples required
float variance user defined variance of noise distribution σ 2

In order for the function to operate correctly, the user must define no_samples to be one
or greater, and also set the variance to a value greater than 0.0.  Failure to ensure this
will result in the function aborting and returning the flag EDSP_BAD_ARG.

The equations to determine the white noise samples are as follows :-

o r x x1 1 2= −σ ln( ) /

o r x x2 2 2= −σ ln( ) /

The variables r1 and r2 represent two numbers generated by the random number
generator rand, between -1 and 1.  These two random numbers are then squared and
added together.  If the sum is less than one, then they will be used in the above
equations.  If the sum is greater than one, another pair of random numbers will be
generated, and tested in the same manner.  This process continues until the user
specified number of noise samples have been generated.
Hitachi Micro Systems Europe Ltd

71



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
 Samples are generated in pairs by the equations shown above.  If an odd number of
samples are required, the second of the two solutions is discarded.  It should also be
noted that this function isn’t suitable for real time operation due to the floating point
arithmetic employed.

6.1.2 MatrixMult

MatrixMult offers an optimised method of performing matrix multiplication.  Two
matrices are multiplied together and the result deposited in a third.  The output matrix
should not be ‘in-place’, i.e. should not conflict with either of the input matrices.

The function is defined as follows :-

int MatrixMult(op_matrix, ip_matrix1, ip_matrix2,
no_rows1, no_cols1, no_cols2, res_shift)

Where,

void *op_matrix pointer to first element of output matrix
void *ip_matrix1 pointer to first element of input matrix1
void *ip_matrix2 pointer to first element of input matrix2
long no_rows1 row dimension of matrix1 (m)
long no_cols1 column dimension of matrix1 &

row dimension of matrix2 (n)
long no_cols2 column dimension of matrix2 (p)
int res_shift right shift applied to each output

The function will fail if any of the dimensions m,n or p are less than one.  Also the
stated shift applied to the output matrix elements must be greater than zero, and less
than twenty eight.  If the function fails the flag EDSP_BAD_ARG is returned.

Care must be exercised when specifying array size to contain the array solution.  It
should be noted that void pointers are used to point to the first element of the matrices.
When multiplying two matrices, it is essential that they are conformable.  That is the
column of the first matrix must be the same size as the row of the second.  The
dimension of the resulting matrix will be m x p.

Matrices are stored in the standard C manner, in one array.  The elements are ordered as
follows :-

a a a

a a a

a a a

0 1 2

3 4 5

6 7 8

















would be represented by the array :-

{ }a a a a a a a a a0 1 2 3 4 5 6 7 8, , , , , , , ,
Hitachi Micro Systems Europe Ltd

72



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
In order to ensure maximum efficiency, the user should ensure that matrix1 is located in
on chip RAM.  Clearly the ability to do this depends upon the SH device being used, as
well as other memory allocation considerations.  Clearly the function will operate
correctly with both matrices located off chip, but bus conflicts may arise which will
slow down the execution time.

6.1.3 VectorMult

This function offers an optimised routine for multiplying two vectors together.  The
result of the multiplication is stored in a third array of the same size as the inputs.  The
output array should be located in a different memory location to both of the inputs, i.e. it
should not be in-place.  A typical application of this function is to apply a window to a
set of data.

The function is defined as follows :-

int VectorMult(output,ip1,ip2,no_elements,res_shift)

Where,

short output[] array containing output
short ip1[] input array 1
short ip2[] input array 2
long no_elements number of elements in each array
int res_shift right shift applied to each output

The function will abort if the user specifies the number of elements to be less than one.
It will also abort if the right hand shift applied is less than zero or greater than sixteen.
If the function aborts, the flag EDSP_BAD_ARG will be returned.

It is important that the two input  arrays used with this function are the same size, and
that the no_elements argument is set to this size, or less.  Clearly, if the user doesn’t
want to multiply all the array elements together, the no_elements argument is set to a
value less than the input array size.

Vector mult can be represented by the following C code.  Clearly, if the user wishes to
use this type of process, VectorMult should be used since it offers an optimised version
compared to that generated by most C compilers.  This will be of particular importance
in real time applications where execution time is of great importance.

short output[NSAM], ip1[NSAM], ip2[NSAM];
long NSAM = 128;
int res_shift = 0, a;

for(a=0; a < NSAM; a++)
output[a] = (ip1[a] * ip2[a]);

As can be seen, the function performs element wise multiplication.  I.e. it multiplies the
first element of ip1 by the first element of ip2 and so on.
Hitachi Micro Systems Europe Ltd

73



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
If the user requires the calculation of the dot product of two arrays (every element
multiplied by every element), the matrix mult should be used with n set to one.  For
more details on MatrixMult the reader should consult section 6.1.2.

6.1.4 MsPower

MsPower offers a function which will simply calculate the mean square power of an
input array presented to it.  The result is returned as a long (32-bits) in a single element
pointed to by a pointer defined by the user.

The function is defined as follows :-

int MsPower( output, input, no_elements)

Where,

long *output result
short input[] input array
long no_elements number of elements contained in input array

The function performs simple argument checking, and will return EDSP_BAD_ARG if
no_elements is less than one.

The function is mathematically described as follows :-

Mean Square Power =
=

−

∑1 2

0

1

N
x i

i

N

( )

As can be seen the function simply returns the mean of the sum of the squares of the
elements in the input array.  The result of the division is rounded to the nearest integral
value.  There is a risk of overflow if the number of elements specified is more than 232-
1.

6.1.5 Mean

This function follows directly from that described above.  The function calculates the
mean of a set of data presented to it in an array.  The single element solution is a short
and is pointed to by a pointer defined by the user.

The function is defined as follows :-

int Mean( mean, input, no_elements)

Where,

short *mean mean of input data x
short input[] input array x
long no_elements number of elements N in x to process
Hitachi Micro Systems Europe Ltd

74



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
The function performs basic argument checking, and will return the flag
EDSP_BAD_ARG if the number of elements N specified is less than one.

The function is mathematically described as follows :-

x
N

x i
i

N

=
=

−

∑1

0

1

( )

The result of the division is rounded to the nearest integral.  If the user specifies a
number of elements that is larger than 216-1 then the possibility of overflow exists.

6.1.6 Variance

This function offers the user a routine to calculate the variance of a set of input data.
The user presents the function with an array containing the data to be analysed, and the
function will then return both the mean of that data and also the variance.

The function is defined as follows :-

int Variance( variance, mean, input, no_elements)

Where,

long *variance variance of the input array σ 2

short *mean mean of the input array x
short input[] input data x
long no_elements number of elements N in input array

Basic argument checking is performed, and the function will abort and return the flag
EDSP_BAD_ARG if the number of elements specified is less than one.

Mathematically, the function performs two tasks.  Firstly it calculates the mean of the
data, and makes this solution available to the user.  Secondly, the variance is calculated
using the solution to mean calculated previous.  The equations for mean and variance
are as follows :-

mean x
N

x i
i

N

= =
=

−

∑1

0

1

( )

var ( ( ) )ience
N

x i x
i

N

= = −
=

−

∑σ 2 2

0

11

In each case, the results of the divisions are rounded to the nearest integral value.  The
result of mean is returned as a short which is 16-bit.  Variance solution is returned as a
long 32-bit value.  There is a possibility of mean overflowing if the number of elements
is greater than 216-1.  The variance calculation is not checked for overflow.
Hitachi Micro Systems Europe Ltd

75



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
6.1.7 MaxI

This function will locate the maximum value in an array presented to it, and will then
return a pointer to that value.  It does not return the value itself.  Maxl is defined as
follows :-

int Maxl( max_ptr, input, no_elements)

Where,

short **max_ptr address of pointer to max element
short input[] input array to be searched
long no_elements number of elements in input to be searched

The function will abort and return the flag EDSP_BAD_ARG if the user specifies less
than one element in the input array.  The address of the element with the maximum
value is returned in max_ptr.  If two elements or more have the same maximum value,
the address of the element nearest to the start of the array will be returned.

6.1.8 MinI

Minl compliments the above function in that it returns the address of the lowest element
in the input array presented to the function.  The actual minimum value is not returned,
but instead a pointer to it.  The function is defined as follows :-

int Minl( min_ptr, input, no_elements)

Where,

short **min_ptr address of pointer to min value
short input[] input array to be searched
long no_elements number of elements to be processed

The function will return the flag EDSP_BAD_ARG if the user specifies a number of
elements that is less than one.

As with the above function Maxl, if there are two or more min elements the function
will return a pointer to the element that is closest to the start of the array.

Timings for these functions are impossible to quote since the total execution time
depends upon the number of elements in the array being searched.  One method of
further improving the execution speed is to remove the argument checking, as long as
the number of elements in the input array is greater than one, this will not cause and
problem, nor compromise the reliability of the function.
Hitachi Micro Systems Europe Ltd

76



DSPLib For SH                               Application Note (19-031/1.0)                Miscellaneous Functions
It should be noted that removal of argument checking is only recommended on simple
functions such as this one.  For more complicated functions, the argument checking will
provide an effective tool for debugging processes.

6.1.9 Peakl

This final function is simply a variation on Maxl.  The difference with this function is
that it will return the address of the maximum absolute value in the input array.  I.e. it
looks for the largest value irrespective of sign.  As an example in an array of two
elements {30,-50} Peakl would return a pointer to the -50 element.

The function is defined as follows :-

int Peakl( peak_ptr, input, no_elements)

Where,

short **peak_ptr address of pointer to the peak element
short input[] input array to be searched
long no_elements number of elements in input to be processed

The function performs basic argument checking and will return the flag
EDSP_BAD_ARG if the user specifies the number of elements to be less than one.  The
process can be speeded up by removing the argument checking, but the reader should
first read the note at the base of the previous page.

As with the previous two functions, if there are two elements or more that have the same
absolute peak value, the function will return the address of the element that is closest to
the start of the array.
Hitachi Micro Systems Europe Ltd

77



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
7.0 DSPLib Implementation

Introduction

This final section of the application notes sets out to give a typical example of how a
working system based around the SH1 processor can be implemented.  By the very
nature of DSP, it is very unlikely that this example will exactly suit the needs of the
reader due to the great diversity of digital signal processing.  However, the aim of this
section is to give the reader some ideas about hardware set-up, as well as programming
around the functions offered by DSPLib.  Furthermore, it is hopped that consultation of
this section will speed up the design process, and help to avert possible time consuming
problems.

Implementation can be split into two distinct areas, hardware and software.  The
hardware design considerations are considered first, followed by some typical software
examples to tie in.  Clearly, any software examples given will be fairly hardware
dependant, but should help the reader to understand the process of interfacing DSPLib
with the real world.

7.1 Hardware

The hardware implementation of a DSP process is greatly dependant upon the process it
is intended for.  Having said that, every DSP system can be broken down and shown to
contain at least two if not all of these three distinct sections :-

Analogue To Digital Conversion

Digital Processing

Digital To Analogue Conversion

A system containing two of the above sections is the compact disc player for example.
The data is already in digital format, and so requires no analogue to digital conversion.
Conversely, a mobile telephone contains all three, with analogue data coming from the
microphone, and also being sent to the speaker.

The hardware example given in the following text contains all three sections, and is
capable of performing digital processing on real analogue signals, and returning the
solutions as real analogue signals.

It is important for the reader to remember that the data conversion processes are not
simply digital to analogue or analogue to digital converters, but instead require the
careful consideration of the use of sampling rates, and also filtering.  In the data
conversion process, the use of anti-aliasing and anti-imaging filters are required.  Since
it is the purpose of this document to show how the Hitachi SH-1 processor can be
interfaced, notes on filter design are not included.
Hitachi Micro Systems Europe Ltd 79



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
The filters used in a typical application take the form of a low pass network with a
Butterworth response.  The filter order chosen depends upon the acceptable level of
aliasing/imaging but would typically be around 6th order implementations.

7.1.1 Analogue to Digital Conversion

This process consists of three distinct blocks, and is shown below.  The real world
analogue signal is firstly bandlimited by the anti-aliasing filter.  The purpose of this
filter is to prevent signals that are near or above the Nyquist frequency (twice the
sampling frequency) passing into the sampling device.  As discussed above, the filter
would normally take the form of a low pass network with Butterworth response.

The band limited signal is passed into the analogue to digital converter.  In the case of
this example, the on chip ADC has been used, which produces a ten bit representation of
the analogue data.  The ADC is controlled by a sample rate generator.  The sample rate
dictates the ADC conversion process, and should be chosen to be at least twice the
highest frequency component present in the input.

In this particular example, the bandwidth of the input signal is 3.4Khz, and the sampling
rate was chosen to be 8Khz.  This system should in part help to mimic telephone based
systems which have similar specs.

There are many methods open to the user for sample rate generation.  In order to gain
maximum efficiency, it is suggested that the sample rate be synchronised to the CPU
clock.  For the purposes of this example, the CPU clock has been divided by external
hardware dividers, eventually arriving at a frequency of 7.8Khz, which is an acceptable
rate for the sampling of the given signal bandwidth.

   Anti-Aliasing
Filter (6th Order)

Sample Rate
 Generator

Analogue To Digital
         Converter

Analogue
Input

CPU
Clock

Band Limited
Analogue Signal

Fs

10-bit
Data Out

Diagram 7.1 :- Analogue Interface

As mentioned earlier, the Hitachi SH-1 processor contains an on chip ADC.  This device
gives ten bit resolution, and helps to simplify the implementation of a real time system.
Clearly if the user requires a higher resolution, an external ADC should be used.  The
device could be memory mapped, and accessed in the same manner as RAM.  Notes on
using the internal ADC are included in the software section of this document.  For
further information on the SH-1 peripherals, the reader should consult the
SH7032/SH7034 hardware manual.
Hitachi Micro Systems Europe Ltd 80



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
Once the data is converted into digital form, it is suitable to present to the DSPLib
routines.  The actual interface software used to load data in, and also write data out at a
rate of 8Khz is described in the software section.

7.1.2 Digital To Analogue Conversion

Once the digital processing is complete, it is necessary to convert the descrete time
domain samples returned by DSPLib into a continuous analogue waveform.  This
process involves two stages, and is rather obviously the reverse to the analogue
conversion process described above.

Because the SH-1 series of microcontrollers don’t have on chip DACs, the user must
interface a device to it.  The actual specific details of how this can be achieved are
included in the circuit description section of this report.

Keeping to a more general form, the best location for a DAC on the SH series of devices
is on the data bus.  By locating the DAC on the memory map, the device can be
accessed exactly like a piece of RAM.  The access time to the DAC can be controlled by
the insertion of wait states, and these are discussed fully in the software description
section at the end of this report.

The use of serial data is very popular in many DSP systems today.  The SH-1 has two
bi-directional serial ports which could be used to interface to serial DACs as well as
ADCs.  It should however be noted that the respective converters would most probably
not interface directly to the serial port, and would infact require some ‘glue’ logic.  The
main reason for this is that the serial protocol used by the SH series would probably not
be suitable for the converter being connected.  The use of some ‘glue’ logic would
enable the associated start and stop bits to be removed/modified inorder to satisfy the
chosen serial device.

When converting data from digital to analogue, it is essential that the resulting
waveform is filtered in order to remove most imaging frequencies.  The imaging
frequencies are generated as a result of the steps that are produced by the DAC.  These
steps are referred to as quantisation, and reflect the accuracy of the converter.  As the
converter can only output one of say 1024 levels (10-bit), the waveform is stepped in
between.  The sharp edges of the steps create many harmonics which roll off with a
sinex/x function in the frequency domain.

The purpose of the anti-imaging filter is to allow frequencies only in the bandwidth of
interest to be passed, thus stripping the signal of the unwanted quantisation steps.  It is
specific to the user to specify the response of the filter.  The filter is normally low pass,
and exhibits Butterworth characteristics.  In the case of the example system described in
this section, a 6th order filter was chosen, with a 3dB bandwidth of 3.4Khz.

For both the ADC and DAC process, use was made of a virtual ground.  The purpose of
this process is to make the signal presented to the ADC purely positive.  The DC offset
introduced was then removed by software.
Hitachi Micro Systems Europe Ltd 81



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
Once the DSP operation is complete, the DC offset is re-introduced, and the purely
positive output signal then sent to the DAC.  The output of the DAC is de-coupled in
order to remove the signals DC content.  By using this method, a single quadrant
converter can be used at both ends, thus helping to keep system cost to a minimum at
the expense of only a few clock cycles.

7.1.3 Circuit Description

The reader should consult the enclosed schematic of the example system hardware when
reading the following description, which can be found at the end of this section.

The input signal is applied on the ADC_In line on the left of the schematic.  This signal
has been band limited to 0 - 3.4Khz in order to prevent aliasing occurring.

Once applied, the signal is de-coupled by C1 which has the effect of removing any DC
component present in the signal.  Next the input is passed through a unity gain buffer.
This stage is included to isolate the filter stage from the ADC process.  It is important to
ensure that the final stage of the anti-aliasing filter is not loaded in any way, which
could in turn cause the filter response to be altered.  By using a buffer, the final stage of
the filter will ‘see’ a high impedance, thus removing any risk of loading.  The output of
the buffer is fed back to the inverting input, which forces the amplifier to act as a
voltage follower.  Once buffered, the signal is once again decoupled by C2, which
removes any DC introduced by the amplifier.

The next stage concerns the introduction of a 2.5 volt DC offset or ‘virtual ground’.  The
purpose of this process is to ensure that the signal applied to the ADC is purely positive.
Up to this point, the input signal has been around five volts peak to peak, centred around
zero.  Now, a DC offset is added to the signal, which centres the signal around 2.5 volts,
shifting the whole signal positive.  This will now ensure that the whole signal is
sampled with no loss of information.  After sampling, the DC offset is removed using
software techniques.  This process is described in the software section of this document.

The DC offset is generated by a dedicated virtual ground generator device U8.  There
are a number of these devices on the market, and any three pin type should be suitable.
It is important to remember that the reference should be as noise free as possible, as
noise here is introduced into the signal.  The use of a bandgap type generator should
ensure low noise operation.  It is important that a zener device is not used as these are
very noisy and will degrade the systems signal to noise ratio.

Prior to application to the ADC, the signal is passed through an over voltage protection
circuit provided by D1 and D2.  If the input is between 0 and 5 volts, the diodes have no
effect on the signal.  However, if the voltage should rise above the supply rail, the diode
will have the effect of clamping the signal to the supply.  This is also true if the signal
should fall lower than zero, diode D1 will clamp the input to ground.  This arrangement
is included to offer some protection over the SH-1 on chip ADC.
Hitachi Micro Systems Europe Ltd 82



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
After the input protection, the signal is in suitable form to be applied to the SH-1 ADC.
This ADC has eight multiplexed inputs, and in the case of this example, input AN0 has
been chosen.  For more information on the SH-1 hardware configuration, including the
ADC, the reader should consult the SH7032/SH7034 Hardware Manual.

The SH-1 ADC can be configured such that it is triggered externally, as is the case in
this example.  The trigger is applied to the ADTRG line located on pin 63.  The trigger
is a square wave with 50% duty cycle, and conversion starts on each falling edge.  The
trigger signal is derived from the 16Mhz CPU clock which is available from the CK line
on pin 71.  This output is derived from the system crystal, and has been cleaned up and
passed through a duty cycle correction circuit.

The 16Mhz signal is repeatedly divided by three four bit ripple counters U4, U5 and U6.
The end effect is 16Mhz / 2048 = 7.8Khz.  The resultant signal from U6 is used to start
the ADC.  An alternative method for sample rate generation is to program the SH-1
timing pattern generator.  Details on this subject may be found in the SH-1 Hardware
Manual.

The final section of hardware to explain is the digital to analogue conversion.  This is
achieved by way of a memory mapped 12-bit device U2.  Although a twelve bit device
has been chosen for this example, the output resolution is only really 10-bit due to the
10-bit ADC used.  If the reader wanted a 16-bit system, the method of connection is
identical, only the device would use the first sixteen data lines on the bus instead of the
first twelve in this case.

Because the device is memory mapped, a small amount of address decoding logic is
required.  The SH-1 has most of the address decoding provided on chip, and the memory
map for the device can be seen in its associated hardware manual.  In the case of this
example, the DAC is located in area 6 which starts at address E000000 and ends at
EFFFFFF.  When an address within that area is accessed, the line CS6 falls low.  In the
case of a write operation, which is what happens with the DAC, the WR pin falls low as
well.  U3 controls the chip select on the DAC, by ensuring that the CS pin on the DAC
falls low when both the CS6 line and the WR line are low.  By the nature of the real
time operation of the system, the CS pin on the DAC should fall low at the same rate as
the ADTRG pin, in this case 7.8Khz.  The width of the write cycle can be controlled by
the SH-1 wait state controller.  Correct programming of this is important to ensure that
the write cycle is long enough to be seen by the DAC.  In the case of the AD668 device
shown, a write cycle of length 125nS was used, which equates to two CPU clock cycles.

The DAC used in this example is an Analog Devices AD668.  This device is suited to
direct connection to CPU buses due to its data latch arrangement.  It is important that
the power supply arrangements are noted, a split rail supply of 16 volts is required.  For
more details on this device, the appropriate data sheet should be consulted.
Hitachi Micro Systems Europe Ltd 83



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
The output of the DAC is 0 - 5volts and will contain a large amount of quantisation
noise.  The removal of the DC offset can be achieved by de-coupling the signal, before
passing it to a suitable Butterworth low pass filter arrangement.

7.2 Software

This section describes the relatively straight forward software routines required to pass
real time data through the system outlined in the earlier hardware description.

The routines are specific to the hardware configuration detailed, but are written such
that modification for any application should be quite simple.

The main program is written in ANSI C, and in turn calls a number of functions.  For
optimum performance, these functions have been written in assembler.  The assembler
format shown in the examples below is SH series, and will work with the relevant
Hitachi tools.  It should be noted that the code will not assemble with the GNU tools
that are available for the SH series.  In order to achieve this, the format of the code will
have to be changed as appropriate.

7.2.1 Main()

This is the main program which as described calls the other routines in turn.  The code
can be seen below.

#include <stdio.h>
#include <math.h>
#include "coeff.dat"
#include <ensigdsp.h>

#define NSAM    1
#define no_sections 1

void system(void);
void dac(short*);
void adc(short*);
void detect(short*);

void main(void)
{

short *pointer;
short sample;  /*  Data From ADC */
short output;  /* Data For DAC */
short *result; /* Start DSP operation Flag */
short *work;
int end = 0;

pointer = &sample;
result = &output;

system(); /* Initialise System (Wait State = 1)*/
Hitachi Micro Systems Europe Ltd 84



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
/** Filter workspace **/

if(InitIir(&work, no_sections) != EDSP_OK)
printf("Problems .....");

/** Set Up ADC And DMAC **/

adc(pointer);

/** Real Time Loop **/

do
{

detect(pointer);    /**  Wait For End Of DMA     **/

Iir1(result,sample,coeff,no_sections,work)

dac(result);  /*Output Data To Memory Mapped DAC */

}
while(end == 0);

}

Following the above C code, the operation is as follows :-

The code implements an IIR filter using the function Iir1 from DSPLib.  The first part of
the code is the include statements, and as well as the expected header files, the ensidsp.h
is included.  This header file contains all the function definitions for DSPLib, as well as
some frequently used constants.  At this point, the coefficients for the IIR filter are
included as well in the file coeff.dat.

After some function prototypes and constant declarations, the code starts proper.  The
first function call is to system().  This function is not part of DSPLib, but is instead a
small section of code which sets up the hardware on the SH-1.  This function is
described in detail in section 7.2.2.

Following on from system(), the IIR filter workspace is initialised.  This function is
described in section 4.2.3.  In order for this function to operate correctly, it is essential
that the memory sections are defined properly in the linker command file.  For further
information on the Hitachi linker, the reader should consult the H series linkage editor
users manual.

Next in the code, the on-chip ADC is initialised.  This function adc() is described in
section 7.2.3, and requires a pointer which is used to point to the sampled value.  The
function makes use of the DMA (Direct Memory Access) controller.  When the ADC
has completed its conversion, the result is moved into a memory location pointed to by
the pointer provided by the user in one clock cycle.

Now we enter the real time loop.  Until now, the code has been set-up, and only
executed once.  Inside this loop, the processor performs sample by sample computation.
The first function we meet is called detect().  This function forces the processor to wait
for the end of the DMA operation before continuing the operation.
Hitachi Micro Systems Europe Ltd 85



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
This ensures that the DSP operation is only performed on a new sample.  The function is
described in section 7.2.4.

Once the end of the DMA operation has been detected, the DMA controller is reset, and
the DSP operation can take place on the single sample received.  In order to achieve real
time operation, it is essential that the DSP task ends before a new sample arrives.

When the DSP task is complete, the function dac() is used to output the result to the
memory mapped DAC described in the hardware section of this document.  The
function dac() is described in detail in section 7.2.5.

7.2.2 system()

The H series assembler for this function is as follows :-

_system:

;Initalise Wait States For DAC
;Set Up Pin Function Controller

MOV.L   PACR1,R3
MOV.L   SETUP,R2  ;Enable ADTRG Pin
RTS
MOV.W   R2,@R3

MOV.L   WCR3,R3
MOV.L   WAIT,R2  ;One Wait State
RTS
MOV.W   R2,@R3

    .ALIGN 4

WCR3   .data.l     H'05FFFFA6
PACR1  .data.l     H'05FFFFC8
SETUP  .data.l     H'0000330A
WAIT   .data.l     H'00008800

.END

This function performs two tasks.  The first task is to set up the pin function controller
on the SH-1 such that the ADTRG pin is selected.  This will allow the on chip ADC to
be externally triggered via that pin.  This process is achieved by setting up the PACR1
register.

Finally, the function sets up the wait state controller such that the write cycle to the
external DAC is of a sufficient period.  In this particular example, the write cycle is two
CPU clock cycles long.  The register WCR3 was used to control this task.  Details on
both the registers mentioned here can be found in the SH-1 hardware manual.
Hitachi Micro Systems Europe Ltd 86



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
7.2.3 adc(short*)

The SH assembler listing for this function is as follows :-

_adc:

;Set Up DMAC

MOV.L   SAR0,R1
MOV.L   ADDRA,R2
MOV.L   R2,@R1
MOV.L   DAR0,R1
MOV     R4,R2
MOV.L   R2,@R1
MOV.L   TCR0,R1
MOV     #H'01,R2
MOV.W   R2,@R1
MOV.L   CHCR0,R1
MOV.L   DATA,R2
MOV.w   R2,@R1

;Start DMAC

MOV.L   DMAOR,R1
MOV     #H'01,R2
MOV.W   R2,@R1

;Set Up ADC

MOV.L   ADCSR,R1
MOV     #H'048,R2
MOV.B   R2,@R1
MOV.L   ADCR,R1
MOV     #H'0FF,R2
RTS
MOV.B   R2,@R1

;Register Vectors

      .ALIGN 4
DATA  .data.l   H'0000D09
ADDRA .data.l   H'05FFFEE0
ADCSR .data.l   H'05FFFEE8
ADCR  .data.l   H'05FFFEE9
SAR0  .data.l   H'05FFFF40
DAR0  .data.l   H'05FFFF44
TCR0  .data.l   H'05FFFF4A
CHCR0 .data.l   H'05FFFF4E
DMAOR .data.l   H'05FFFF48

.END

This function performs several tasks.  When calling the function, the user provides a
pointer to a variable.  This pointer is used by the function to set up the DMA controller
such that the ADC value is transferred to it in one clock cycle.  The setting of the DMA
is quite intricate.
Hitachi Micro Systems Europe Ltd 87



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
It is therefore recommended that the reader consult the SH-1 hardware manual DMA
section.  The registers seen above can be followed, and set up to suit a particular
application.

When the DMA set up is complete, the DMA controller is started.  This now means that
when the ADC generates an interrupt at the end of a conversion, the DMA will transfer
the data to the destination address in one clock cycle.

The final part of this code sets up the internal ADC.  The options chosen include an
external trigger option and also an interrupt generation which in turn starts the DMA
controller.  From now onwards in this code, the ADC will always start converting when
the external trigger pin falls low.  After each DMA operation, some registers need
resetting.  This task is performed by the detect() function described in the next section.

7.2.4 detect(short*)

The detect routine forces the process to wait until the input data is valid, i.e. a new
sample.  The assembly listing of this function is as follows :-

_detect:
   CLRT
   MOV.L   CHCR0,R1

LOOP:   MOV.W   @R1,R2
   EXTU.W  R2,R0
   TST     #H'02,R0

;Test bit goes to one if AND is zero
   BT      LOOP

;Convert Sampled Data pointed to by R4
MOV.W   @R4,R1
EXTU.W  R1,R2
SHLR    R2
SHLR    R2
SHLR    R2
SHLR    R2
ADD     #H'03,R2
MOV.L   DATA,R1
SUB     R1,R2
MOV.W   R2,@R4

;Start DMA And ADC Again

;Reset TCR0 & CHCR0 & DMAOR

MOV.L   CHCR0,R1
MOV.L   DATA1,R2
MOV.W   R2,@R1
MOV.L   TCR0,R1
MOV     #H'01,R2
MOV.W   R2,@R1
MOV.L   DMAOR,R1
MOV     #H'01,R2
MOV.W   R2,@R1
Hitachi Micro Systems Europe Ltd 88



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
;Reset ADCSR

MOV.L   ADCSR,R1
MOV     #H'048,R2
RTS
MOV.B   R2,@R1

.ALIGN 4

DAC     .data.l H'0E000000
TCR0    .data.l H'05FFFF4A
CHCR0   .data.l H'05FFFF4E
DMAOR   .data.l H'05FFFF48
DATA1   .data.l H'00000D09
ADCSR   .data.l H'05FFFEE8
DATA    .data.l H'000008A3

.END

The first part of this code consists of a loop which tests for the end of a DMAC
operation.  The program will stay in that loop until the DMA has finished, then come
out and execute the remaining code.  The end of a DMA means that a new sample is
ready for processing.  By making the CPU wait for a new sample, the risk of processing
the same sample twice is removed.

Next, the new sample is converted into the correct form ready for presentation to the
DSP task.  The sample from the on chip ADC sits in the upper 10 bits of a sixteen bit
word.  The ten bits are therefore shifted right by four places and the two least significant
bits set to one.  The result of this process is that the data is now in 12 bit form suitable
for the DAC.  Next, the DC offset introduced by the hardware is removed by a single
cycle subtraction.  If the chosen DSP task is operating correctly, it should return a 12 bit
solution which can have an offset applied to it, and then sent to the DAC.  That process
is described in section 7.2.5.

Once the data is in suitable form, the DMA controller is reset and started again.  The
transfer count register is reset, and the controller is started again.  This means that a
DMA operation can take place during the DSP task, and the new sample is ready for
processing immediately.

Finally, the ADC is started again by writing to the ADCSR register.  For full details on
the setting and controlling of SH-1 peripherals, the SH-1 hardware manual should be
consulted.

7.2.5 dac(short*)

This final routine simply takes the solution returned by the DSP process, and writes it to
the memory mapped DAC.  The SH assembly listing for this function is as    follows :-
Hitachi Micro Systems Europe Ltd 89



DSPLib For SH                               Application Note (19-031/1.0)                 DSPLib Implimentation
_dac:
;Output Value To DAC

MOV.L   DAC,R3
MOV.W   @R4,R2
MOV.L   OFFSET,R1
ADD     R1,R2
RTS
MOV.W   R2,@R3

.ALIGN 4

DAC     .data.l H'0E000000
OFFSET  .data.l H'00000800

.END

As can be seen, the DAC is located at address E000000.  This location is in area 6, and
ties in with the hardware description earlier.  The value returned by the DSP process has
a DC offset added to it.  The offset is hex 800, which corresponds to half of the twelve
bit output.  Therefore, with this offset, the maximum output swing is achievable.  Half
of full scale corresponds to 2.5volts, which as the hardware section will confirm, is the
same as the offset applied to the input.

Once the offset is applied the value is written to the DAC as if it were a piece of
memory.  The write process has already been set-up in the system() function described
in 7.2.2.  When the value has been written, the program counter returns to detect() and
waits until a valid sample is in memory, and then the process starts again.

7.3 Timing

When writing code for a real time process it is essential that the operation stays within
the allotted time space.  For the system described in this section, the processing time can
be calculated as follows.

CPU = 16MHz
Sample Rate = 7.8 KHz

Between each sample there is 128uS.  This time corresponds to 2048 CPU clock cycles.
From this total, the IO operations steal cycles as does the conversion of data.

For optimal execution speed DO NOT compile the ANSI C functions included in
DSPLib.  These are included for reference only, and will not lead to an efficient
implementation of a given DSP task.  The reader should use the optimised source code
in the optsrc directory in DSPLib, or alternatively simply use the ensigma.lib during the
link operation, which is in turn built from the optimised code.
Hitachi Micro Systems Europe Ltd 90



DSPLib For SH                               Application Note (19-031/1.0)                                  Appendix One

Hitachi Micro Systems Europe Ltd 92

Appendix One

Ensigma Software Guide For DSPLib



DSPLib for SH
User Guide

E. Andrews

Sept 15, 1995

Copyright c
 Ensigma Ltd 1995

Copyright c
 Hitachi Micro Systems Europe Ltd 1995



Page 2 of 87

Disclaimer

When using this document, keep the following in mind,

1. This document may, wholly or partially, be subject to change without

notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate,

in any form, the whole or part of this document without Hitachi's

permission.

3. Hitachi will not be held responsible for any damage to the user that

may result from accidents or any other reasons during the operation of
the user's unit according to this document.

4. Circuitry and other examples described herein are meant only to in-
dicate the characteristics and performance of Hitachi's semiconductor
products. Hitachi assumes no responsibility for any intellectual prop-
erty claims or other problems that may result from applications based
on the examples therein.

5. No license is granted by implication or otherwise under any patents or
other rights of any third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi's products are not authorised for
use in MEDICAL APPLICATIONS without the written consent of the
appropriate o�cer of Hitachi's sales company. Such use includes, but is

not limited to, use in life support systems. Buyers of Hitachi's products
are requested to notify the relevant sales o�ce when planning to use
the products in MEDICAL APPLICATIONS.



Page 3 of 87

Contents

1 Introduction 6

2 Installation 8

3 Data Formats 10

4 ANSI C Library 11

5 E�ciency 12

6 Test and Example Programs 13

7 Fast Fourier Transforms 15

FftComplex : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

FftReal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

I�tComplex : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

I�tReal : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

FftInComplex : : : : : : : : : : : : : : : : : : : : : : : : : : 25

FftInReal : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

I�tInComplex : : : : : : : : : : : : : : : : : : : : : : : : : : 28

I�tInReal : : : : : : : : : : : : : : : : : : : : : : : : : : : : 29

LogMagnitude : : : : : : : : : : : : : : : : : : : : : : : : : : 31

InitFft : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

FreeFft : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

8 Windowing 34

GenBlackman : : : : : : : : : : : : : : : : : : : : : : : : : : 35

GenHamming : : : : : : : : : : : : : : : : : : : : : : : : : : 36

GenHanning : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

GenTriangle : : : : : : : : : : : : : : : : : : : : : : : : : : : 38



Page 4 of 87

9 Filters 39

Fir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

Fir1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 44

Iir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 46

Iir1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 48

DIir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 50

DIir1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 52

Lms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 54

Lms1 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 57

InitFir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

InitIir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

InitDIir : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

InitLms : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 63

10 Convolution and Correlation 64

ConvComplete : : : : : : : : : : : : : : : : : : : : : : : : : : 66

ConvCyclic : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

ConvPartial : : : : : : : : : : : : : : : : : : : : : : : : : : : 69

Correlate : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 71

CorrCyclic : : : : : : : : : : : : : : : : : : : : : : : : : : : : 73

11 Miscellaneous 74

GenGWnoise : : : : : : : : : : : : : : : : : : : : : : : : : : 75

MatrixMult : : : : : : : : : : : : : : : : : : : : : : : : : : : 77

VectorMult : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

MsPower : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

Mean : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 81

Variance : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 82

MaxI : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 83

MinI : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

PeakI : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85



Page 5 of 87

A Contents of Distribution Disk 86

References 87



Page 6 of 87

1 Introduction

This document describesDSPLib-SH, a library of signal processing routines

developed for use with Hitachi's SH RISC processors.

Two versions of the library are provided. In the �rst version all of the time-

critical routines are C-callable, but have been written in SH assembler to

minimise execution time whilst maintaining accuracy.

The second version of the library contains no assembly code. All routines are

written in portable ANSI-C and aim to give results that are bit identical to

the optimised assembly library. These libraries allow a development method-

ology beginning with simulation and program development on a workstation
using the ANSI-C library. Development will then transfer to the target hard-
ware, using the optimised version of the library, where hardware dependencies

and real-time issues can be resolved.

This methodology enables designers to gain the bene�ts of using e�cient
hand-coded software for the time-critical sections of their programs, whilst
retaining the bene�ts of developing software written in `C'.

Five groups of routines are included in DSPLib-SH|

� Fast Fourier Transforms

� Windowing Functions

� Filters

� Convolution and Correlation

� Miscellaneous

The routines are all re-entrant. That is, they do not use any local static
variables. This enables them to be used in a multi-tasking environment, or

to be called from interrupt routines without a�ecting their use in the main
program.

Timings are given for the most time-critical routines. The timings are for a

10 MIPS SH-1, with all internal program and data accesses taking a single



Page 7 of 87
processor cycle over the 32 bit memory bus. Timings for other clock speeds

can be derived by scaling those given here.

The routines provided in this library have been optimised for the SH-1 pro-

cessor. SH-2 and SH-3 processors will also bene�t from DSPLib-SH, but

there will be some di�erences in execution times compared to the SH-1.



Page 8 of 87

2 Installation

DSPLib-SH is shipped on a single 31
2
" MS-DOS disk, the contents of which

are listed in Appendix A. It comprises a C header �le, ensigma.h, the library

routines themselves and examples of the library's use. The optimised library

is in the library directory, in the pre-assembled object library ensigma.lib.

The source for the optimised and ansi-C libraries are supplied in the optsrc

and ansisrc Examples showing the use of each routine are provided in the

examples directory on the disk.

The header �le and libraries should be installed in a directory visible to

the C compiler and linker respectively. It is recommended that the same

directories as the compiler support �les is used. Assuming that this directory
is C:nshcnshc2.0 and the 
oppy disk drive is A:, the installation procedure
on an MSDOS PC is as follows|

1. Make a backup of the distribution disk.

2. Copy DSPLib-SH onto the system disk. Put the distribution disk
into drive A: and enter the following:

XCOPY A:\* C:nshcnshc2.0 /S

3. Installation is now complete.

Should it be necessary to rebuild the optimised library from source|

1. Change to the optsrc directory.

2. Edit make.bat and lbr.sub to check that the con�guration matches
your system.

3. Type make.
4. ensigma.lib has now been rebuilt.

For the C version of the library, the build process is both operating system
and compiler dependent. For a Unix operating system, the procedure is as

follows|



Page 9 of 87

1. Copy DSPLib-SH onto the system disk.

2. Change to the ansisrc directory.
3. Edit makefile to correspond to your system.

4. Type make.

5. ensigmaC.a has now been built.



Page 10 of 87

3 Data Formats

The majority of calculations performed inDSPLib-SH use �xed point arith-

metic. Both integer and fractional number representations are used; these

formats are discussed below.

Integer arithmetic represents numbers with the decimal point �xed at the

right of the LSB (least signi�cant bit). A signed 16 bit integer variable can

represent values in the range [-215:215{1]. When two signed 16 bit integers

are multiplied, the signed 31 bit product is aligned at the LSB. If the result

is stored in a 16 bit integer numerical over
ow may occur.

Fractional arithmetic is also useful, especially in DSP applications. Here
the decimal point is �xed immediately to the right of the most signi�cant
bit (MSB) for signed numbers (or immediately to the left of the MSB for

unsigned numbers). Signed 16 bit fractions can represent values in the range
[-1:1-2�15]. When two signed 16 bit fractions are multiplied the signed 31
bit product is aligned at the MSB. If the result is stored as a 16 bit fraction
numerical under
ow may occur.

DSPLib-SH makes extensive use of both integer and fractional arithmetic.
To maximise the 
exibility of the library many of the routines allow the align-
ment of each output to be speci�ed. For example, calling Fir with res shift = 0
corresponds to LSB aligned (integer) �lter coe�cients. When res shift = 15
the processing corresponds to MSB aligned (fractional) �lter coe�cients.

For most possible values of res shift, there is a possibility of numerical over-

ow. Except where stated otherwise, DSPLib-SH detects this condition
and saturates the value to the appropriate full-scale value. This minimises
the error introduced, at the expense of a small increase in processing time

when over
ow occurs.
Implementation

The C short and int types provide �xed point arithmetic. On the SH, signed

16 bit integers correspond to short and signed 32 bit integers correspond to

long or int.



Page 11 of 87

4 ANSI C Library

An ANSI-C version of DSPLib-SH is provided in A:ndsplibshnansisrc.

This version is supplied to ease application development, allowing the early

stages to be performed without the constraints imposed by particular hard-

ware.

The C library and optimised SH-1 library give bit identical results for most

valid inputs, for all routines except the FFT and double precision �lter rou-

tines, where errors in the least signi�cant bits may occur.

The exception to this rule occurs when the 42 bit accumulator (MACH/MACL)

over
ows. In this case the assembler library on an SH-1, the assembler li-
brary on an SH-2 and the C library on a host can all give di�erent results.
However, this can only happen with input vectors containing more than 1023

samples, so it is extremely unlikely in any practical use of DSPLib-SH.

Compiler Restrictions

The C library must be build with an ANSI C compiler, with the restriction

that variables of type double allow the exact representation of 42 bit integers,
and the pointer representation must require four or fewer bytes.

In practise all Unix and MSDOS ANSI C compilers are suitable as they use
8 bytes to hold double variables, typically allowing the exact representation
of integers of up to 53 bits.



Page 12 of 87

5 E�ciency

The routines provided by DSPLib-SH have been hand optimised for maxi-

mum speed on SH-1 processors. In many cases the library routines approach

the theoretical optimum performance of the architecture, with minimum in-

struction counts and minimal pipeline con
icts.

As SH is a RISC architecture, it is relatively straightforward to maximise the

e�ciency of the library based on the following two features: The assembly

routines provided by DSPLib-SH have been written so that most program

fetches do not cause processor stalls, as long as the program memory supports

32 bit reads; furthermore, most of the processing in DSPLib-SH operates

on 16 bit data.

Therefore, when de�ning the memory map of a target system, the following

two recommendations should be obeyed whenever possible:

� the program code segment should be located in memory that supports
single cycle 32 bit reads, and

� the data segment should be located in memory that supports single

cycle 16 (or 32) bit reads and writes.

If there is su�cient internal 32 bit memory, this would be a suitable location

for the library code and data. If other memory must be used the recom-
mendations above should be followed whenever possible | because di�erent
devices in the SH family contain di�erent types of memory and support
di�erent caching schemes, it is not possible to provide completely general

advice.



Page 13 of 87

6 Test and Example Programs

Test programs for all library routines are provided in the examples directory

on the distribution disk. These carefully test each library routine in turn.

Among other things they test for correct argument checking and perform

a number of bit-exact tests comparing the results with precalculated data.

These tests also illustrate the use of the library routines.

The test functions are supplied in the subdirectory test. Test data is in the

testdat subdirectory. The main test �les are|

testfft.c FFT test functions.

testwin.c Window test functions.

testfilt.c Filter test functions.
testconv.c Convolution and correlation test functions.
testmisc.c Miscellaneous test functions.

These are built using the make utility. Typing make all builds testfft.abs

and testfft.mot etc. Alternatively individual test functions may be made
by typing eg. make testconv.abs.

In addition to the individual test �les and function library, the following �les
are provided|

testhead.h Prototypes for test functions.
link.cmd Linker subcommand �le based on the SH7030 memorymap.

c0.src C startup �le.
make.bat MSDOS build commands.
makefile (Unix) make�le.
A simple demonstration program that illustrates the use of common library

functions is provided in the directory demo. This illustrates the use of �t,
window, �lter and miscellaneous functions.

The demonstration program is built using the following �les:



Page 14 of 87

demo.c The demonstration program.

demoio.c Data input/output functions. These functions simulate the

data interfaces that would be present in a complete system.
demoio.h Function prototypes for demoio.c.

link.cmd Linker subcommand �le based on the SH7030 memorymap.

c0.src C startup �le.

make.bat MSDOS build commands.

makefile (Unix) make�le.



Page 15 of 87

7 Fast Fourier Transforms

Contents|

FftComplex Compute not-in-place, complex FFT.

FftReal Compute not-in-place, real FFT.

I�tComplex Compute not-in-place, complex inverse FFT.

I�tReal Compute not-in-place, real inverse FFT.

FftInComplex Compute in-place, complex FFT.

FftInReal Compute in-place, real FFT.

I�tInComplex Compute in-place, complex inverse FFT.

I�tInReal Compute in-place, real inverse FFT.
LogMagnitude Convert complex FFT output to log magnitude format.
InitFft Generate FFT lookup tables.
FreeFft Release FFT lookup table memory.

These functions calculate the classical forward and inverse Fourier trans-
forms, with a user de�ned scaling. The forward transform is de�ned by

yn = 2�s
NX
n=0

e�2j�n=N :xn

where s (shift) is the number of stages where an additional halving is per-

formed (see the Scaling section below) and N is the number of complex

points.

The inverse transform is de�ned by

yn = 2�s
NX
n=0

e2j�n=N :xn



Page 16 of 87

Routine Timings

The execution time in milliseconds of the FFT routines on a 10 MIPS SH-1

are|

Not in placey In place

FFT Inverse FFT FFT Inverse FFT

Size Cmplx Real Cmplx Real Cmplx Real Cmplx Real

128 1.94 1.06 2.19 1.20 1.94 1.06 2.20 1.19

256 4.43 2.37 4.94 2.66 4.46 2.37 4.97 2.64
512 9.98 5.29 11.00 5.88 10.03 5.32 11.06 5.86

1024 22.23 11.70 24.28 12.88 22.39 11.75 24.44 12.83

Complex Array Format

Time and frequency series of complex samples are used as inputs and outputs
to the Fourier transform routines. The complex array format used in all these
routines is alternating real-imaginary i.e. a sequence of N complex numbers
c is stored in an array x|

x[2n] = Refc(n)g; x[2n+ 1] = Imfc(n)g 0 � n < N

There is one exception to this format, when the frequency representation of

a real signal of N samples is stored in a complex array of N coe�cients. In
this case element x[0] contains the real component of the DC component of
the signal and x[1] contains the real component of the Fs=2 frequency (both
DC and Fs=2 components are real, their imaginary components are zero).

Scaling
In an FFT the signal power doubles at each natural radix-2 stage; the peak

signal amplitude can also double. This doubling can cause arithmetic over-

ow when transforming a high power signal, but can be prevented by a di-

vision by two at each radix-2 stage. However, excessive halving of the signal
will add unnecessary quantisation noise.



Page 17 of 87

The optimum balance between over
ow and quantisation noise is highly de-

pendent on the characteristics of the input signal. A high power pure tone,

for example, will require the maximum scaling to avoid over
ow, whereas an

impulsive signal will require very little.

The safest approach is to halve the signal amplitude at every radix-2 stage.

As long as each complex input samples is scaled to have power less than 230

this approach guarantees that over
ow will not occur. At the other extreme,

a forward FFT of a low amplitude signal with a 
at spectrum could be

performed with no halving without over
ow occurring.

A middle path is to halve the input signal on alternate stages. DSPLib-SH

allows this approach, and also allows �ner control of scaling, with halving

selectable individually for each radix-2 stage. Careful selection of this scaling
allows the combined e�ects of saturation and quantisation to be minimised.

It should be emphasised that the conservative approach of checking the input
sample power and halving at each stage should always be used unless you

are con�dent of the properties of the input signal.

To specify the required approach each FFT function has a scale parameter.

scale is interpreted least signi�cant bit �rst, with one bit corresponding to
each radix-2 stage. A division by two is performed at all stages for which the
corresponding scale bit has been set.

For example,

� scale = 0XFFFFFFFF (or size-1) speci�es halving on every stage, giving a

�nal output with 1/size2 times the power of the input, with a guarantee
that no over
ow has occurred if the initial complex samples all have
power less than 230.

� scale = 0X55555555 speci�es halving on alternate stages, giving a �nal
output with the same power as the input (if there are an even number
of stages).
� scale = 0 speci�es no halving, giving a �nal output with scale times

the power of the input,

EFFTALLSCALE, EFFTMIDSCALE and EFFTNOSCALE, de�ned in ensigma.h, can

be used to provide these constants.



Page 18 of 87
Test Functions

The test �le testfft.c is supplied for the routines in this section. The

functions TestFft and TestI�t test the FFT and IFFT transforms respectively.



Page 19 of 87

FftComplex

De�nition :

int FftComplex( output, input, size, scale )

Arguments :

short output[ ] complex output data.

short input[ ] complex input data.

long size size of FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 4.

size not a power of 2.
size > 32768.

Description :

This routine calculates a complex Fast Fourier Transform. The calcu-
lation is not-in-place, so the input and output arrays must not overlap
(see FftInComplex for an in-place version of this routine).

Notes :

� The ordering of real and imaginary components in a complex array
is described on page 16.

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be

< 230 unless the properties of the input signal are well understood.

� Only the bottom log2(size) bits of scale are used; the MSB's are
ignored.

� To minimise bus con
icts output should be located in on-chip

memory.



Page 20 of 87

FftReal

De�nition :

int FftReal( output, input, size, scale )

Arguments :

short output[ ] positive frequency complex output data.

short input[ ] real input data

long size size of FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 8.

size not a power of 2.

size > 32768.

Description :

This routine calculates a real Fast Fourier Transform by performing a
complex FFT of half the size and then transforming the data.

On returning, output contains positive frequencies only. The negative
frequencies are simply the complex conjugate of the positive frequen-
cies. Since the frequency values at both 0 and Fs=2 are real, the Fs=2

output is placed in the second element of output i.e. where the imagi-
nary component of zero frequency would have been stored.

The calculation is not-in-place, so the input and output arrays must
not overlap (see FftInReal for an in-place version of this routine).

Notes :
� The ordering of real and imaginary components in a complex array
is described on page 16.

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.



Page 21 of 87

� scale should be 0xffffffff and the peak signal power should be

< 230 unless the properties of the input signal are well understood.
� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts output should be located in on-chip

memory.



Page 22 of 87

I�tComplex

De�nition :

int I�tComplex( output, input, size, scale )

Arguments :

short output[ ] complex output data.

short input[ ] complex input data.

long size size of inverse FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 4.

size not a power of 2.
size > 32768.

Description :

This routine calculates an inverse Fast Fourier Transform. The calcu-
lation is not-in-place, so the input and output arrays must not overlap
(see I�tInComplex for an in-place version of this routine).

Notes :

� The ordering of real and imaginary components in a complex array
is described on page 16.

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be
30
< 2 unless the properties of the input signal are well understood.

� Only the bottom log2(size) bits of scale are used; the MSB's are
ignored.

� To minimise bus con
icts output should be located in on-chip

memory.



Page 23 of 87

I�tReal

De�nition :

int I�tReal( output, input, size, scale )

Arguments :

short output[ ] real output data.

short input[ ] positive frequency complex input data.

long size size of inverse FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.

EDSP BAD ARG size < 8.
size not a power of 2.
size > 32768.

Description :

This routine calculates an inverse Fast Fourier Transform by transform-
ing the data and performing a complex FFT of half the size.

input should contain the complex frequency data for the positive fre-
quencies only. The routine assumes that the negative frequencies are
simply the complex conjugate of the positive frequencies. Since the
frequency values at both 0 and Fs=2 can only be real, the Fs=2 value

should be placed in the second element of input where the imaginary
component of 0 would have been stored. When I�tReal returns output
contains a series of real data samples.

The calculation is not-in-place, so the input and output arrays must
not overlap (see I�tInReal for an in-place version of this routine).

Notes :

� The ordering of real and imaginary components in a complex array

is described on page 16.



Page 24 of 87

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be
< 230 unless the properties of the input signal are well understood.

� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts input and output should both be located

in on-chip memory.



Page 25 of 87

FftInComplex

De�nition :

int FftInComplex( data, size, scale )

Arguments :

short data[ ] complex data.

long size size of FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 4.

size not a power of 2.
size > 32768.

Description :

This routine calculates an in-place complex Fast Fourier Transform.

Notes :

� The ordering of real and imaginary components in a complex array
is described on page 16.

� Before calling this routine the bit reversal and twiddle tables
should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be

< 230 unless the properties of the input signal are well understood.
� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts data should be located in on-chip mem-
ory.



Page 26 of 87

FftInReal

De�nition :

int FftInReal( data, size, scale )

Arguments :

short data[ ] real data on input, complex positive

frequency data on output.

long size size of FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 8.

size not a power of 2.
size > 32768.

Description :

This routine calculates an in-place real Fast Fourier Transform by per-
forming a complex FFT of half the size and then transforming the

data.

On returning, data contains the complex transform data for the posi-

tive frequencies only. The negative frequencies are simply the complex
conjugate of the positive frequencies. Since the frequency values at
both 0 and Fs=2 are real, the Fs=2 output is placed in the second el-
ement of data i.e. where the imaginary component of 0 would have
been stored. Although this slightly complicates the output format, it

enables the FFT to be carried out in place.
Notes :

� The ordering of real and imaginary components in a complex array

is described on page 16.



Page 27 of 87

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be

< 230 unless the properties of the input signal are well understood.
� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts data should be located in on-chip mem-

ory.



Page 28 of 87

I�tInComplex

De�nition :

int I�tInComplex( data, size, scale )

Arguments :

short data[ ] complex data.

long size size of inverse FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 4.

size not a power of 2.
size > 32768.

Description :

This routine calculates an in-place complex inverse Fast Fourier Trans-
form.

Notes :

� The ordering of real and imaginary components in a complex array
is described on page 16.

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be
30
< 2 unless the properties of the input signal are well understood.

� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts data should be located in on-chip mem-
ory.



Page 29 of 87

I�tInReal

De�nition :

int I�tInReal( data, size, scale )

Arguments :

short data[ ] complex positive frequency data on in-

put, real data on output.

long size size of inverse FFT.

long scale scaling speci�cation.

Returns : int

EDSP OK success.
EDSP BAD ARG size < 8.

size not a power of 2.
size > 32768.

Description :

This routine calculates an in-place real inverse Fast Fourier Transform
by transforming the data and performing a complex FFT of half the

size.

data should contain the complex frequency data for the positive fre-

quencies only. The routine assumes that the negative frequencies are
simply the complex conjugate of the positive frequencies. Since the
frequency values at both 0 and Fs=2 can only be real, the Fs=2 value
should be placed in the second element of data where the imaginary
component of 0 would have been stored. When I�tInReal returns data

contains a series of real samples.
Notes :

� The ordering of real and imaginary components in a complex array

is described on page 16.



Page 30 of 87

� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� scale should be 0xffffffff and the peak signal power should be

< 230 unless the properties of the input signal are well understood.
� Only the bottom log2(size) bits of scale are used; the MSB's are

ignored.

� To minimise bus con
icts data should be located in on-chip mem-

ory.



Page 31 of 87

LogMagnitude

De�nition :

int LogMagnitude( output, input, no elements, fscale )

Arguments :

short output[ ] real output y.

short input[ ] complex input x

long no elements number of log magnitude outputs N

required.

float fscale output scaling factor

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

jfscalej � 215=(10 log10 2
31).

Description :

This routine calculates the log magnitude of the complex input data in
decibels, and writes the scaled result into the output array|

y(n) = 10fscale log10(x(2n)
2 + x(2n+ 1)2) 0 � n < N

Notes :

� The ordering of real and imaginary components in a complex array
is described on page 16.
� Before calling this routine the bit reversal and twiddle tables

should be initialised by calling InitFft.

� output can be speci�ed to be the same as input. In this case, the

output overwrites the �rst half of the input array.



Page 32 of 87

InitFft

De�nition :

int InitFft( max size )

Arguments :

long max size Maximum size of FFT that will be

required.

Returns : int

EDSP OK success.

EDSP BAD ARG max size < 1.
max size not a power of 2.
max size > 32768.

Description :

This routine generates the sine/cosine and bit reversal tables used by
the FFT functions. This function need only be called once, before the
�rst FFT is called. The lookup tables are stored in memory allocated
by malloc.

Notes :
� The lookup tables are generated for the speci�ed transform size.

Smaller transforms will be performed using the same lookup ta-
bles.

� The addresses of the lookup tables are stored in internal variables;
they should not be accessed by user code.



Page 33 of 87

FreeFft

De�nition :

void FreeFft( void )

Arguments : none

Returns : void
Description :

This routine returns the memory used for FFT lookup tables to the
heap via free. No further FFT functions can be called before a subse-
quent InitFft.



Page 34 of 87

8 Windowing

Contents|

GenBlackman Generate a Blackman window.

GenHamming Generate a Hamming window.

GenHanning Generate a Hanning window.

GenTriangle Generate a Triangle window.

Test Functions
The test �le testwin.c is supplied for the routines in this section. The
function Tstwin compares the window functions against precalculated data to

ensure accuracy. Note that the windows produced on di�erent architectures
may di�er in the least signi�cant bit.



Page 35 of 87

GenBlackman

De�nition :

int GenBlackman( output, win size )

Arguments :

short output[ ] array to contain window w(n).

long win size window size N required.

Returns : int

EDSP OK success.

EDSP BAD ARG win size � 1.

Description :

This routine generates a Blackman window in output. VectorMult can
be used to apply the window to a data array.

The function used is|

w(n) = (215�1)
�
0:42� 0:5 cos

�
2�n

N

�
+ 0:08 cos

�
4�n

N

��
0 � n < N



Page 36 of 87

GenHamming

De�nition :

int GenHamming( output, win size )

Arguments :

short output[ ] array to contain window w(n).

long win size window size N required.

Returns : int

EDSP OK success.

EDSP BAD ARG win size � 1.

Description :

This routine generates a Hamming window in output. VectorMult can

be used to apply the window to a data array.
The function used is|

w(n) = (215 � 1)
�
0:54 � 0:46 cos

�
2�n

N

��
0 � n < N



Page 37 of 87

GenHanning

De�nition :

int GenHanning( output, win size )

Arguments :

short output[ ] array to contain window w(n).

long win size window size N required.

Returns : int

EDSP OK success.

EDSP BAD ARG win size � 1.

Description :

This routine generates a Hanning window in array output. The routine
VectorMult can be used to apply the window to a data array.

The function used is|

w(n) =
(215 � 1)

2

�
1 � cos

�
2�n

N

��
0 � n < N



Page 38 of 87

GenTriangle

De�nition :

int GenTriangle( output, win size )

Arguments :

short output[ ] array to contain window w(n).

long win size window size N required.

Returns : int

EDSP OK success.

EDSP BAD ARG win size � 1.

Description :

This routine generates a Triangular window in output. VectorMult can
be used to apply the window to a data array.

The function used is|

w(n) = (215 � 1)
�
1�

����2n�N + 1

N + 1

����
�

0 � n < N



Page 39 of 87

9 Filters

Contents|

Fir Implement a �nite impulse response �lter.

Fir1 Implement a �nite impulse response �lter for a single input

sample.

Iir Implement an in�nite impulse response �lter.

Iir1 Implement an in�nite impulse response �lter for a single

input sample.

DIir Implement a double precision in�nite impulse response

�lter.
DIir1 Implement a double precision in�nite impulse response �lter

for a single input sample.
Lms Implement a real adaptive FIR �lter.
Lms1 Implement a real adaptive FIR �lter for a single input

sample.
InitFir Initialise FIR �lter.
InitDIir Initialise double precision IIR �lter.
InitIir Initialise IIR �lter.
InitLms Initialise LMS �lter.

Routine Timings

The execution time in microseconds of the �lter routines on a 10 MIPS SH-1
are given below. The times for the single sample versions are per routine
call. The times for the multiple sample versions are on a per sample basis,
computed by dividing the time to process a 100 sample frame by 100. Note
that the times vary for di�erent result shift values.
No. of Function
coe�s Fir Lms Fir1 Lms1

5 8.6 24.9 17.2 34.7
10 10.3 40.6 18.9 50.4

100 46.1 328.4 54.7 338.2



Page 40 of 87

No. of Function

biquads Iir DIir Iir1 DIir1

1 10.5 40.1 18.1 48.0

2 19.7 77.6 28.8 86.4
20 185.5 752.8 221.4 784.3

Coe�cient Scaling

All digital signal processing is likely to introduce noise into the signal due

to saturation or quantisation. The scaling of coe�cients must be chosen

carefully to balance the e�ects of saturation and quantisation.

If the coe�cients are too large saturation may occur; if they are too low

excessive quantisation noise may be introduced.

For FIR (�nite impulse response) �lters on the SH-1 no saturation will occur
if X

jcoe�sj < 226 and res shift = 26

However, for many input signals this scaling is overly pessimistic; smaller
result shifts (or larger coe�cient values) could be used with a low likelihood
of saturation, but with signi�cantly reduced quantisation noise.

IIR (in�nite impulse response) �lters have a recursive structure, which means
that the scaling approach described above is inappropriate.

LMS (least mean squares) adaptive �lters obey the same conventions as FIR

�lters. However, the coe�cients may be pushed into saturation as the coef-
�cients are adapted.

Workspace

Digital �lters have state that must be preserved from the processing of one

sample to the next. This �lter state, or workspace, must be stored in memory
that can be accessed with minimumoverhead. Moreover, the �lter state must

be initialised before the �rst sample can be processed.

The structure of the workspace memory is liable to change in the future,

so user programs should not attempt to read or modify this memory | it

should only be accessed by the library functions.



Page 41 of 87

Test Functions

The �lter functions are tested for bit exactness by the �le testfilt.c. The

FIR, IIR and DIIR �lters are tested by �ltering a number of sinusoids through
a low-pass �lter with a cut-o� at exactly one-quarter the sample rate. The

LMS �lter is tested by passing coloured (FIR �ltered) noise through it and

requiring it to adapt to a set of precalculated �lter coe�cients.

The test functions are Tst�r, Tst�r1, Tstiir, Tstiir1, Tstdiir, Tstdiir1, Tstlms

and Tstlms1.



Page 42 of 87

Fir

De�nition :

int Fir( output, input, no samples, coe�, no coe�s, res shift,

workspace )

Arguments :

short output[ ] output samples y.

short input[ ] input samples x.

long no samples number of samples N to be �ltered.

short coe�[ ] array of �lter coe�cients h.

long no coe�s number of coe�cients K (length of
�lter).

int res shift right shift applied to each output.
short *workspace variable containing pointer to �lter

memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no samples < 1.

no coe�s � 2.
res shift < 0.
res shift > 27.

Description :

This routine implements a �nite impulse response (FIR) �lter. It uses

workspace to record the most recent input samples. The result of
�ltering the data in input is written to output|

y(n) =

"
K�1X

h(k)x(n� k)

#
:2�res shift
k=0

The sum is accumulated in 42 bits. Each 16 bit output is extracted from

bit positions [res shift+15:res shift] of the accumulator. This extraction
rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.



Page 43 of 87

Notes :

� Filtering is likely to introduce noise due to saturation or quantisa-

tion. If the coe�cients are too large saturation may occur; if they

are too low excessive quantisation noise may be introduced. The

scaling of coe�cients must be carefully considered to balance the

e�ects of quantisation and saturation.

One scheme that avoids saturation is to scale the coe�cients so

that
P
abs(coe�s) < 226 and res shift = 26. For many input

signals smaller result shifts could be used with a low likelihood of

saturation, but with signi�cantly reduced quantisation noise.

� Before calling this routine for a new �lter, initialise the �lter
workspace by calling InitFir.

� Execution is fastest when res shift is set to 17 or 18.

� output may be the same as input in which case input is overwrit-
ten.



Page 44 of 87

Fir1

De�nition :

int Fir1( output, input, coe�, no coe�s, res shift, workspace )

Arguments :

short *output output sample y(n).

short input input sample x(n).

short coe�[ ] array of �lter coe�cients h.

long no coe�s number of coe�cients K (length of

�lter).
int res shift right shift applied to each output.

short *workspace variable containing pointer to �lter
memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no coe� � 2.

res shift < 0.
res shift > 27.

Description :

This routine implements a �nite impulse response (FIR) �lter for one
sample only. It uses workspace to record the most recent input samples.

The result of �ltering the data in input is written to output|

y(n) =

"
K�1X
k=0

h(k)x(n� k)

#
:2�res shift
The sum is accumulated in 42 bits. Each 16 bit output is extracted from

bit positions [res shift+15:res shift] of the accumulator. This extraction

rounds the surplus LSB's and checks the surplus MSB's for over
ow,
saturating if necessary.

Notes :



Page 45 of 87

� Filtering is likely to introduce noise due to saturation or quanti-

sation. If the coe�cients are too large saturation may occur; if

they are too low excessive quantisation noise may be introduced.

the scaling of coe�cients must be carefully considered to balance

the e�ects of quantisation and saturation.

One scheme that avoids saturation is to scale the coe�cients so

that
P
abs(coe�s) < 226 and res shift = 26. For many input

signals smaller result shifts could be used with a low likelihood of
saturation, but with signi�cantly reduced quantisation noise.

� Before calling this routine for a new �lter, initialise the �lter

workspace by calling InitFir.

� Execution is fastest when res shift is set to 17 or 18.



Page 46 of 87

Iir

De�nition :

int Iir( output, input, no samples, coe�, no sections, workspace )

Arguments :

short output[ ] output samples yK�1.

short input[ ] input samples x0.

long no samples number of samples N to be �ltered.

short coe�[ ] �lter coe�cients.

long no sections number of second order �lter sections
K.

short *workspace variable containing pointer to �lter
memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no samples < 1.

no sections < 1.
a0k < 0.
a0k > 16.

Description :

This routine implements an in�nite impulse response (IIR) �lter.

The �lter is implemented as a cascade of K second order �lters called
biquads, with an additional scaling performed on the biquad output.
This implementation uses the Direct Form II representation, where the

a coe�cients are speci�ed in fractional (Q15) format and the output of

each biquad is given by

dk(n) =
h
a1kdk(n� 1) + a2kdk(n� 2) + 215x(n)

i
:2�15

yk(n) = [b0kdk(n) + b1kdk(n� 1) + b2kdk(n� 2)] :2�a0k



Page 47 of 87

The input xk(n) to the k
th section is the output yk�1(n) of the previous

section. The input to the �rst (k = 0) section is taken from input. The

output from the last (k = K � 1) section is written to output.

Each biquad is calculated in 32 bits using saturating arithmetic. Fol-

lowing the multiply by 215 or 2�a0k , 16 LSB's are extracted from the

accumulator. This extraction rounds the surplus LSB's and checks the

surplus MSB's for over
ow, saturating if necessary.

The �lter coe�cients should be speci�ed in coe� in the order|

a00; a10; a20; b00; b10; b20; a01; a11; a21; b01:::b2K�1

Notes :

� Before calling this routine for a new �lter, initialise the �lter by

calling InitIir.

� a0k describes a shift rather than a multiply. The equivalent mul-

tiply would be by 2�a0k . If a0k < 0 or a0k > 16 the output of the

biquad is unde�ned.

� output may be the same as input in which case input is overwrit-
ten.

� To minimise bus con
icts workspace should be located in on-chip
memory.



Page 48 of 87

Iir1

De�nition :

int Iir1( output, input, coe�, no sections, workspace )

Arguments :

short *output output sample yK�1(n).

short input input sample x0(n).

short coe�[ ] �lter coe�cients.

long no sections number of second order �lter sections

K.

short *workspace variable containing pointer to �lter

memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no sections < 1.

a0k < 0.
a0k > 16.

Description :

This routine implements an in�nite impulse response (IIR) �lter for
one sample only.

The �lter is implemented as a cascade of K second order �lters called
biquads, with an additional scaling performed on the biquad output.
This implementation uses the Direct Form II representation, where the
a coe�cients are speci�ed in fractional (Q15) format and the output of
each biquad is given by

dk(n) =
h
a1kdk(n� 1) + a2kdk(n� 2) + 215x(n)

i
:2�15
yk(n) = [b0kdk(n) + b1kdk(n� 1) + b2kdk(n� 2)] :2�a0k

The input xk(n) to the kth section is the output yk�1(n) of the previous

section. The input to the �rst (k = 0) section is taken from input. The
output from the last (k = K � 1) section is written to output. coe�

should contain coe�cients in the order|



Page 49 of 87

a00; a10; a20; b00; b10; b20; a01; a11; a21; b01:::b2K�1

Each biquad is calculated in 32 bits using saturating arithmetic. Fol-

lowing the multiply by 215 or 2�a0k , 16 LSB's are extracted from the

accumulator. This extraction rounds the surplus LSB's and checks the

surplus MSB's for over
ow, saturating if necessary.

Notes :

� Before calling this routine for a new �lter, initialise the �lter by

calling InitIir.
� a0k describes a shift rather than a multiply. The equivalent mul-
tiply would be by 2�a0k . If a0k < 0 or a0k > 16 the output of the

biquad is unde�ned.

� To minimise bus con
icts workspace should be located in on-chip
memory.



Page 50 of 87

DIir

De�nition :

int DIir( output, input, no samples, coe�, no sections, workspace )

Arguments :

short output[ ] output samples yK�1.

short input[ ] input samples x.

long no samples number of samples N to be �ltered.

long coe�[ ] �lter coe�cients.

long no sections number of second order �lter sections
K.

long *workspace variable containing pointer to �lter
memory.

Returns : int

EDSP OK success.

EDSP BAD ARG no samples < 1.
no sections < 1.
a0k < 0.
a0k > 32 for k < K � 1.
a0k > 48 for k = K � 1.

Description :

This routine implements an in�nite impulse response (IIR) �lter with
double precision coe�cients and delay node storage.

The �lter is implemented as a cascade of K second order �lters called
biquads, with an additional scaling performed on the biquad output.

This implementation uses the Direct Form II representation, where the

a coe�cients are speci�ed in fractional (Q31) format and the output of
each biquad is given by

dk(n) =
h
a1kdk(n� 1) + a2kdk(n� 2) + 231x(n)

i
:2�31

yk(n) = [b0kdk(n) + b1kdk(n� 1) + b2kdk(n� 2)] :2�a0k



Page 51 of 87

The input xk(n) to the kth section is the output yk�1(n) of the previous

section. The input to the �rst (k = 0) section is taken from input after

a multiply by 216. The output from the last (k = K � 1) section is

written to output. coe� should contain coe�cients in the order|

a00; a10; a20; b00; b10; b20; a01; a11; a21; b01:::b2K�1

DIir di�ers from Iir in that the �lter coe�cients are speci�ed as 32

rather than 16 bit values. Consequently 64 bit accumulators is used,

with intermediate biquad outputs stored as 32 bit quantities following

the shifts by 31 or a0k. This extraction rounds the surplus LSB's and
checks the surplus MSB's for over
ow, saturating if necessary.In the
�nal stage only 16 bits are retained following the shift by a0K�1; again
surplus LSB's are rounded and surplus MSB's are saturated.

Notes :

� Before calling this routine for a new �lter, initialise the �lter by
calling InitDIir.

� a0k describes a shift rather than a multiply. The equivalent mul-
tiply would be by 2�a0k . If a0k < 0 or a0k > 32 (or a0K�1 > 48)
the output of the biquad is unde�ned.

� The most common use of DIir speci�es the coe�cients in Q31
format. In this case a0k should be set to 31 for k < K � 1 and to
47 for k = K � 1.

� The least signi�cant bit of each 32 bit coe�cient and delay node
value is ignored.

� When possible Iir should be used in preference to DIir as it runs
an order of magnitude faster on the SH-1.

� output may be the same as input in which case input is overwrit-

ten.

� To minimise bus con
icts workspace should be located in on-chip
memory.



Page 52 of 87

DIir1

De�nition :

int DIir1( output, input, coe�, no sections, workspace )

Arguments :

short *output output sample yK�1(n).

short input input sample x0(n).

long coe�[ ] �lter coe�cients.

long no sections number of second order �lter sections

K.

long *workspace variable containing pointer to �lter
memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no sections < 1.

a0k < 0.
a0k > 32 for k < K � 1.

a0k > 48 for k = K � 1.

Description :

This routine implements a double precision in�nite impulse response
(IIR) �lter for one sample only.

The �lter is implemented as a cascade of K second order �lters called
biquads, with an additional scaling performed on the biquad output.

This implementation uses the Direct Form II representation, where the
a coe�cients are speci�ed in fractional (Q31) format and the output of
each biquad is given byh i
dk(n) = a1kdk(n� 1) + a2kdk(n� 2) + 231x(n) :2�31

yk(n) = [b0kdk(n) + b1kdk(n� 1) + b2kdk(n� 2)] :2�a0k

The input xk(n) to the kth section is the output yk�1(n) of the previous

section. The input to the �rst (k = 0) section is taken from input after



Page 53 of 87

a multiply by 216. The output from the last (k = K � 1) section is

written to output. coe� should contain coe�cients in the order|

a00; a10; a20; b00; b10; b20; a01; a11; a21; b01:::b2K�1

As with DIir the �lter coe�cients and delay node values are stored as 32

rather than 16 bit values. Consequently 64 bit accumulators are used,

with intermediate biquad outputs stored as 32 bit quantities following

the shift by 31 or a0k. This extraction rounds the surplus LSB's and

checks the surplus MSB's for over
ow, saturating if necessary.In the
�nal stage only 16 bits are retained following the shift by a0K�1; again

surplus LSB's are rounded and surplus MSB's are discarded.

Notes :

� Before calling this routine for a new �lter, initialise the �lter by
calling InitDIir.

� a0k describes a shift rather than a multiply. The equivalent mul-
tiply would be by 2�a0k . If a0k < 0 or a0k > 32 (or a0K�1 > 48)
the output of the biquad is unde�ned.

� The most common use of DIir speci�es the coe�cients in Q31
format. In this case a0k should be set to 31 for k < K � 1 and to

47 for k = K � 1.

� The least signi�cant bit of each 32 bit coe�cient and delay node

value is ignored.

� When possible Iir should be used in preference to DIir as it runs
an order of magnitude faster on the SH-1.

� To minimise bus con
icts workspace should be located in on-chip

memory.



Page 54 of 87

Lms

De�nition :

int Lms( output, input, ref, no samples, coe�, no coe�s, res shift,

conv fact, workspace )

Arguments :

short output[ ] output samples y.

short input[ ] input samples x.

short ref output[ ] desired output value d.

long no samples number of samples N to be �ltered.
short coe�[ ] adaptive �lter coe�cients h.
long no coe�s number of coe�cients K.
int res shift right shift applied to each output.
short conv fact convergence factor 2�.

short *workspace variable containing pointer to �lter
memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no samples < 1.

no coe�s � 2.
res shift < 0.
res shift > 27.

Description :

This routine implements a real adaptive FIR �lter using the least mean
square algorithm.

The FIR �lter is de�ned as|
y(n) =

"
K�1X
k=0

hn(k)x(n� k)

#
:2�res shift

The sum is accumulated in 42 bits. Each 16 bit output is extracted from

bit positions [res shift+15:res shift] of the accumulator. This extraction



Page 55 of 87

rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.

The Widrow-Ho� algorithm is used to update the �lter coe�cients|

hn+1(k) = hn(k) + 2�e(n)x(n � k)

where the addition is saturating and e(n) is the (saturated) error be-

tween the desired signal and the actual �lter output|

e(n) = d(n) � y(n)

The calculation of 2�e(n)x(n � k) requires two 16�16 multiplies. In
both multiplies bits [31:16] of the product are retained, rounded and
saturated if necessary.

Notes :

� Any digital signal processing can introduce noise due to saturation

or quantisation e�ects. If the coe�cients are too large saturation
may occur; if they are too low excessive quantisation noise may
be introduced. The scaling of coe�cients must be carefully con-
sidered to balance the e�ects of quantisation and saturation.

One scheme that avoids saturation is to scale the coe�cients so
that

P
abs(coe�s) < 226 and res shift = 26. For many input

signals smaller result shifts could be used with a low likelihood of
saturation, but with signi�cantly reduced quantisation noise.

However, it is not possible to guarantee that the coe�cients gen-
erated by an LMS �lter will conform to the scaling convention
described above.

� conv fact should normally be positive; it should never be 0x8000.
� Before calling this routine for a new �lter, initialise the �lter

workspace by calling InitLms.

� Execution is fastest when res shift is set to 17 or 18.

� output may be the same as input or ref output in which case input
or ref output is overwritten.



Page 56 of 87

� If no adaption is required 2� may be set to zero. Alternatively Fir

or Fir1may be used with the same �lter coe�cients and workspace.



Page 57 of 87

Lms1

De�nition :

int Lms1( output, input, ref output, coe�, no coe�s, res shift,

conv fact,

workspace )

Arguments :

short *output output sample y(n).

short input input sample x(n).

short ref desired output value d(n).
short coe�[ ] adaptive �lter coe�cients h.
long no coe�s number of coe�cients K.

int res shift right shift applied to each output.
short conv fact convergence factor 2�.
short *workspace variable containing pointer to �lter

memory.

Returns : int

EDSP OK success.
EDSP BAD ARG no coe�s � 2.

res shift < 0.
res shift > 27.

Description :

This routine implements a real adaptive FIR �lter using the least mean
square algorithm, for a single input sample.

The FIR �lter is de�ned as|
y(n) =

"
K�1X
k=0

hn(k)x(n� k)

#
:2�res shift

The sum is accumulated in 42 bits. Each 16 bit output is extracted from

bit positions [res shift+15:res shift] of the accumulator. This extraction



Page 58 of 87

rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.

The Widrow-Ho� algorithm is used to update the �lter coe�cients|

hn+1(k) = hn(k) + 2�e(n)x(n � k)

where the addition is saturating and e(n) is the (saturated) error be-

tween the desired signal and the actual �lter output|

e(n) = d(n) � y(n)

The calculation of 2�e(n)x(n � k) requires two 16�16 multiplies. In
both multiplies bits [31:16] of the product are retained, rounded and
saturated if necessary.

Notes :

� Any digital signal processing can introduce noise due to saturation

or quantisation e�ects. If the coe�cients are too large saturation
may occur; if they are too low excessive quantisation noise may
be introduced. The scaling of coe�cients must be carefully con-
sidered to balance the e�ects of quantisation and saturation.

One scheme that avoids saturation is to scale the coe�cients so
that

P
abs(coe�s) < 226 and res shift = 26. For many input

signals smaller result shifts could be used with a low likelihood of
saturation, but with signi�cantly reduced quantisation noise.

However, it is not possible to guarantee that the coe�cients gen-
erated by an LMS �lter will conform to the scaling convention
described above.

� conv fact should normally be positive; it should never be 0x8000.
� Before calling this routine for a new �lter, initialise the �lter

workspace by calling InitLms.

� Execution is fastest when res shift is set to 17 or 18.

� output may be the same as input or ref output in which case the
input or ref output is overwritten.



Page 59 of 87

� If no adaption is required 2� may be set to zero. Alternatively Fir

or Fir1may be used with the same �lter coe�cients and workspace.



Page 60 of 87

InitFir

De�nition :

int InitFir( workspace, no coe�s )

Arguments :

short **workspace address of variable containing pointer

to bu�er reserved for �lter memory.

long no coe�s number of coe�cients K.

Returns : int

EDSP OK success.
EDSP NO HEAP insu�cient space available from malloc.
EDSP BAD ARG no coe�s � 2.

Description :

This routine allocates, via malloc, the memory required for subsequent
calls to Fir and Fir1. The history of previous input samples is initialised
to zero.
Notes :

� The workspace bu�er allocated by InitFir should only be manipu-
lated by Fir, Fir1, Lms and Lms1.



Page 61 of 87

InitIir

De�nition :

int InitIir( workspace, no sections )

Arguments :

short **workspace address of variable containing pointer

to bu�er reserved for �lter memory.

long no sections number of second order �lter sections

K.

Returns : int

EDSP OK success.
EDSP NO HEAP insu�cient space available from malloc.
EDSP BAD ARG no sections < 1.

Description :

This routine allocates, via malloc, the memory required for subsequent
calls to Iir and Iir1. All delay node values are initialised to zero.
Notes :

� The workspace bu�er allocated by InitIir should only be manipu-
lated by Iir and Iir1.



Page 62 of 87

InitDIir

De�nition :

int InitDIir( workspace, no sections )

Arguments :

long **workspace address of variable containing pointer

to bu�er reserved for �lter memory.

long no sections number of second order �lter sections

K.

Returns : int

EDSP OK success.
EDSP NO HEAP insu�cient space available from malloc.
EDSP BAD ARG no sections < 1.

Description :

This routine allocates, via malloc, the memory required for subsequent
calls to DIir and DIir1. All delay node values are initialised to zero.
Notes :

� The workspace bu�er allocated by InitDIir should only be manip-
ulated by DIir and DIir1.



Page 63 of 87

InitLms

De�nition :

int InitLms( workspace, no coe�s )

Arguments :

short **workspace address of variable containing pointer

to bu�er reserved for �lter memory.

long no coe�s number of coe�cients K.

Returns : int

EDSP OK success.
EDSP NO HEAP insu�cient space available from malloc.
EDSP BAD ARG no coe�s � 2.

Description :

This routine allocates, via malloc, the memory required for subsequent
calls to Lms and Lms1.The history of previous input samples is ini-
tialised to zero.
Notes :

� The workspace bu�er allocated by InitLms should only be manip-
ulated by Fir, Fir1, Lms and Lms1.



Page 64 of 87

10 Convolution and Correlation

Contents|

ConvComplete Calculate the complete convolution of two arrays.

ConvCyclic Calculate the cyclic convolution of two arrays.

ConvPartial Calculate the partial convolution of two arrays.

Correlate Calculate the correlation between two arrays.

CorrCyclic Calculate the cyclic correlation between two arrays.

Routine Timings

The execution time in microseconds of the �lter routines on a 10 MIPS SH-1

are given below for ConvPartial, ConvCyclic, CorrCyclic and Correlate (with
no correlations past the end of the longer input). The times are given per
output sample, computed by dividing the time to produce K output samples
by K. Note that iw is always the smaller input array.

Size of Routine
iw K ConvPartial ConvCyclic CorrCyclic Correlate

5 5 9.7 9.7 9.0 8.1
10 10 10.6 11.2 10.2 9.0

100 100 54.6 55.4 47.7 46.4

Where correlations or convolutions past the ends of arrays take place, as
happens in ConvComplete and sometimes in Correlate, the output samples

are produced with less computation. The most extreme case of this is when
the two input arrays are the same size n, and the computations continue until
the arrays overlap by only one sample. In this case ConvComplete produces

2n � 1 samples, and Correlate produces n samples, with all but one of those
samples formed from computation past array ends.



Page 65 of 87

For this extreme case, the timings in microseconds per output sample, again

computed by dividing the time to produce K output samples by K, are|

Size of Routine

iw K ConvComplete Correlate

5 9/5 6.5 8.4

10 19/10 7.1 8.2
100 199/100 29.0 26.1
Test Functions

The Convolution/Correlation functions are tested for bit exactness by the �le

testconv.c which calls the functions Tconvcmp, Tconvcyc, Tconvpar, Tcorr
and Tcorrcyc.



Page 66 of 87

ConvComplete

De�nition :

int ConvComplete( output, iw, ix, iw size, ix size, res shift )

Arguments :

short output[ ] output y.

short iw[ ] input w.

short ix[ ] input x.

long iw size size of iw W .

long ix size size of ix X.
int res shift right shift applied to each output.

Returns : int

EDSP OK success.
EDSP BAD ARG iw size < 1.

ix size < 1.
res shift < 0.
res shift > 27.

Description :

This routine completely convolves the two input arrays and puts the
result in the output array|

y(m) =

"
W�1X
i=0

w(i)x(m� i)

#
:2�res shift 0 � m < W +X � 1

The routine uses zeros in place of elements before the start and after

the end of the two arrays.

The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction

rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.



Page 67 of 87
Notes :

� The output array size must be at least W +X � 1.

� To minimise bus con
icts iw should be located in on-chip memory.



Page 68 of 87

ConvCyclic

De�nition :

int ConvCyclic( output, iw, ix, size, res shift )

Arguments :

short output[ ] output y.

short iw[ ] input w.

short ix[ ] input x.

long size size of arrays N .

int res shift right shift applied to each output.

Returns : int

EDSP OK success.

EDSP BAD ARG size < 1.
res shift < 0.
res shift > 27.

Description :

This routine cyclically convolves the two input arrays and puts the
result in the output array|

y(m) =

"
N�1X
i=0

w(i)x(jm� i+N jN )

#
:2�res shift 0 � m < N

where

jijn = residue of i modulo n.

The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction
rounds the surplus LSB's and checks the surplus MSB's for over
ow,
saturating if necessary.

Notes :

� To minimise bus con
icts iw should be located in on-chip memory.



Page 69 of 87

ConvPartial

De�nition :

int ConvPartial( output, iw, ix, iw size, ix size, res shift )

Arguments :

short output[ ] output y.

short iw[ ] smaller input w.

short ix[ ] larger input x.

long iw size size of iw W .

long ix size size of ix X.

int res shift right shift applied to each output.

Returns : int

EDSP OK success.
EDSP BAD ARG iw size < 1.

ix size < 1.
ix size < iw size.

res shift < 0.
res shift > 27.

Description :

This routine convolves the two input arrays but does not include out-
puts derived from elements outside the array boundaries|

y(m) =

"
W�1X
i=0

w(i)x(m+W � 1 � i)

#
:2�res shift 0 � m � X �W
The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction

rounds the surplus LSB's and checks the surplus MSB's for over
ow,
saturating if necessary.

Notes :



Page 70 of 87
� The output array size must be at least X �W + 1.

� x must be the larger array, i.e. X �W .

� To minimise bus con
icts iw should be located in on-chip memory.



Page 71 of 87

Correlate

De�nition :

int Correlate( output, iw, ix, iw size, ix size, no corr, res shift )

Arguments :

short output[ ] output y.

short iw[ ] smaller input w.

short ix[ ] larger input x.

long iw size size of iw W .

long ix size size of ix X.
long no corr number of correlations M to compute.
int res shift right shift applied to each output.

Returns : int

EDSP OK success.

EDSP BAD ARG iw size < 1.
ix size < 1.
no corr < 1.
ix size < iw size.
res shift < 0.

res shift > 27.

Description :

This routine correlates the two input arrays and puts the result in the
output array|

y(m) =

"
W�1X
i=0

w(i)x(i+m)

#
:2�res shift 0 � m < M
Correlation past the end of the x array is permissible, i.e. X < W +M .
In this case the routine uses zeros in place of the extra array elements.

The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction



Page 72 of 87

rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.

Notes :
� res shift = 0 corresponds to a normal integer calculation.

res shift = 15 corresponds to a fractional calculation.

� x must be the larger array, i.e. X � W , if the arrays are not the

same size.

� To minimise bus con
icts iw should be located in on-chip memory.



Page 73 of 87

CorrCyclic

De�nition :

int CorrCyclic( output, iw, ix, size, res shift )

Arguments :

short output[ ] output y.

short iw[ ] input w.

short ix[ ] input x.

long size size of arrays N .

int res shift right shift applied to each output.

Returns : int

EDSP OK success.

EDSP BAD ARG size < 1.
res shift < 0.
res shift > 27.

Description :

This routine cyclically correlates the two input arrays and puts the
result in the output array|

y(m) =

"
N�1X
i=0

w(i)x(ji+mjN)

#
:2�res shift 0 � m < N

where

jijN = residue of i modulo N .

The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction
rounds the surplus LSB's and checks the surplus MSB's for over
ow,
saturating if necessary.

Notes :

� To minimise bus con
icts iw should be located in on-chip memory.



Page 74 of 87

11 Miscellaneous

Contents|

GenGWnoise Generate Gaussian white noise.

MatrixMult Multiply two matrices.

VectorMult Multiply two vectors.

MsPower Calculate mean square power.

Mean Calculate mean.

Variance Calculate mean and variance.

MaxI Find maximum of integer array.

MinI Find minimum of integer array.
PeakI Find maximum absolute value of integer array.

Test Functions

The Miscellaneous functions are tested for bit exactness by the �le testmisc.c.
The Gaussian white noise generator is tested by measuring the distribution
and spectrum of the samples. The `whiteness' of the spectrum and a Chi-
squared test are checked against performance targets. The remaining func-
tions are compared against precalculated data.

The functions Tgwn, Tmatrixm, Tvectm, Tmean, Tvar, Tmspower and Textr

perform the testing.



Page 75 of 87

GenGWnoise

De�nition :

int GenGWnoise( output, no samples, variance )

Arguments :

short output[ ] output white noise samples.

long no samples number of samples required.

float variance variance of noise distribution �2.

Returns : int

EDSP OK success.
EDSP BAD ARG no samples < 1.

variance � 0.0.

Description :

This routine generates Gaussian white noise with zero mean and user-

speci�ed variance. Samples are produced in pairs using the modi�ed
Box-Muller method described in [1]. To produce a pair of output sam-
ples, the standard random number generator provided by rand is used
to generate pairs of random numbers r1; r2 between -1 and 1, until a
pair is found whose sum of squares x is less than 1. The pair of output
samples o1; o2 are then calculated

o1 = �r1

q
�2ln(x)=x

o2 = �r2

q
�2ln(x)=x

Notes :
� If an odd number of samples is requested, the second sample of

the last pair is discarded.

� The random number generator seed can be initialised to any inte-

ger between 1 and 231 � 1 using srand.



Page 76 of 87

� This routine is not strictly re-entrant since any calls to rand in an

interrupt routine or between calls to this routine will a�ect the
sequence of random numbers used. However, such calls will not

a�ect the random properties of the white noise generated.

� Floating point arithmetic is used in this function, so its use should

be restricted to test programs rather than application programs

whenever possible.



Page 77 of 87

MatrixMult

De�nition :

int MatrixMult( op matrix, ip matrix1, ip matrix2,

no rows1, no cols1, no cols2, res shift )

Arguments :

void *op matrix pointer to �rst element of output.

void *ip matrix1 pointer to �rst element of input 1.

void *ip matrix2 pointer to �rst element of input 2.

long m row dimension of matrix1.

long n column dimension of matrix1, row di-
mension of matrix2.

long p column dimension of matrix2.
int res shift right shift applied to each output.

Returns : int

EDSP OK success.
EDSP BAD ARG m, n or p < 1.

res shift < 0.

res shift > 27.

Description :

This routine multiplies the two matrices ip matrix1 and ip matrix2 and
stores the result in op matrix. ip matrix1 is m�n, ip matrix2 is n�p

and op matrix is m� p.

The sum is accumulated in 42 bits. Each 16 bit output is extracted from
bit positions [res shift+15:res shift] of the accumulator. This extraction

rounds the surplus LSB's and checks the surplus MSB's for over
ow,

saturating if necessary.
Each matrix is stored in the normal `C' manner (row major order)|0
B@

a0 a1 a2 a3
a4 a5 a6 a7
a8 a9 a10 a11

1
CA



Page 78 of 87

Notes :

� To minimise bus con
icts ip matrix1 should be located in on-chip
memory.

� The function prototype speci�es the array parameters as void *

to allow arbitrary array sizes to be speci�ed. These parameters

should point to short data.



Page 79 of 87

VectorMult

De�nition :

int VectorMult( output, ip1, ip2, no elements, res shift )

Arguments :

short output[ ] output.

short ip1[ ] input.

short ip2[ ] input.

long no elements number of elements to evaluate.

int res shift right shift applied to each output.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

res shift < 0.

res shift > 16.

Description :

This routine multiplies pairs of elements from ip1 and ip2 and stores

the results in output.

Notes :
� Each 16 bit output is extracted from bit positions [res shift+15:res shift]
of the product. This extraction rounds the surplus LSB's and
checks the surplus MSB's for over
ow, saturating if necessary.

� This routine performs elementwise multiplications. To calculate a
dot product use MatrixMult with n set to 1.



Page 80 of 87

MsPower

De�nition :

int MsPower( output, input, no elements )

Arguments :

long *output result.

short input[ ] input.

long no elements number of elements N to evaluate.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine calculates the Mean Square Power of the input data|

Mean Square Power =
1

N

N�1X
i=0

x(i)2
Notes :

� The division result is rounded to the nearest integral value.

� The sum is accumulated in 64 bits. If no elements is more than

232-1 over
ow may occur.



Page 81 of 87

Mean

De�nition :

int Mean( mean, input, no elements )

Arguments :

short *mean mean of data in input x.

short input[ ] input x.

long no elements number of elements N to process.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine calculates the mean of input|

x =
1

N

N�1X
i=0

x(i)
Notes :

� The division result is rounded to the nearest integral value.

� The sum is accumulated in 32 bits. If no elements is more than

216-1 over
ow may occur.



Page 82 of 87

Variance

De�nition :

int Variance( variance, mean, input, no elements )

Arguments :

long *variance The variance of input �2.

short *mean mean of data x.

short input[ ] input x.

long no elements number of elements N to process.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine �rst calculates the mean of input|

x =
1

N

N�1X
i=0

x(i)

It then computes the variance|

�2 =
1

N

N�1X
i=0

(x(i)� x)2

Notes :
� The division results are rounded to the nearest integral values.

� x is accumulated in 32 bits and is not checked for over
ow. If

no elements is more than 216-1 over
ow may occur.

� �2 is accumulated in 64 bits and is not checked for over
ow.



Page 83 of 87

MaxI

De�nition :

int MaxI( max ptr, input, no elements )

Arguments :

short **max ptr address of pointer to the maximum

element.

short input[ ] input.

long no elements number of elements to process.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine searches input to �nd the element with the maximum
value, and returns its address in max ptr.
Notes :

� If several elements have the same maximum value the one nearest
the start of input is returned



Page 84 of 87

MinI

De�nition :

int MinI( min ptr, input, no elements )

Arguments :

short **min ptr address of pointer to the minimum

element.

short input[ ] input.

long no elements number of elements to process.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine searches input to �nd the element with the minimum
value, and returns its address in min ptr.
Notes :

� If several elements have the same minimum value the one nearest
the start of input is returned



Page 85 of 87

PeakI

De�nition :

int PeakI( peak ptr, input, no elements )

Arguments :

short **peak ptr address of pointer to the peak element.

short input[ ] input.

long no elements number of elements to process.

Returns : int

EDSP OK success.
EDSP BAD ARG no elements < 1.

Description :

This routine searches input to �nd the element with the maximum
absolute value, and returns its address in peak ptr.
Notes :

� If several elements have the same peak value the one nearest the
start of input is returned



Page 86 of 87

A Contents of Distribution Disk

The distribution disk has six main directories, include, lib, ansisrc, optsrc,

demo and test with the contents listed below.
The lib directory contains the �le|

ensigma.lib

The include directory contains the �le|

ensigdsp.h

The optsrc directory contains the �les|

black.c fftinc.asm iir1.asm logmag.c peak.asm

convcomp.asm fftinr.asm initdiir.c make.bat shift.asm

convcycl.asm fftr.asm initfft.c makefile triangle.c

convpart.asm fir.asm initfir.c matrix.asm variance.asm

corrcycl.asm fir1.asm initiir.c max.asm vectmult.asm

correlat.asm gengwn.c initlms.c mean.asm

diir.asm hamming.c lbr.sub min.asm

diir1.asm hanning.c lms.asm mspower.asm

fftc.asm iir.asm lms1.asm mult.asm

The ansisrc directory contains the �les|

black.c diir1.c fir1.c ifftreal.c initlms.c mean.c

convcomp.c fftcom.c gengwn.c iir.c lms.c min.c

convcycl.c fftcore.c hamming.c iir1.c lms1.c mspower.c

convpart.c fftincom.c hanning.c initdiir.c logmag.c peak.c

corrcycl.c fftireal.c ifftcom.c initfft.c makefile triangle.c

correlat.c fftreal.c iffticom.c initfir.c matrix.c variance.c

diir.c fir.c ifftirel.c initiir.c max.c vectmult.c

The demo directory contains the �les|

c0.src demo.c demoio.c demoio.h link.cmd make.bat makefile

The test directory contains the �les|

c0.src tconvpar.c testfilt.c tgwn.c tstdiir1.c tstlms1.c

link.cmd tcorr.c testhead.h tifft.c tstfir.c tstwin.c

make.bat tcorrcyc.c testmisc.c tmatrixm.c tstfir1.c tvar.c

makefile testconv.c testwin.c tmean.c tstiir.c tvectm.c

tconvcmp.c testdat textr.c tmspower.c tstiir1.c
tconvcyc.c testfft.c tfft.c tstdiir.c tstlms.c

It also contains the testdat directory, which contains the �les|

filtdat.txt tconvpar.txt tmatrixm.txt tstfir.txt tvar.txt

miscdat.txt tcorr.txt tmean.txt tstiir.txt tvectm.txt

tconvcmp.txt tcorrcyc.txt tmspower.txt tstlms.txt

tconvcyc.txt textr.txt tstdiir.txt tstwin.txt



Page 87 of 87
References

[1] W. H. Press, B. P. Flannery, S. A. Teukolsky and W. T. Vetterling.

Numerical Recipes in C. Cambridge University Press 1988.


	Preface
	Table of Contents
	1.0  Overview
	1.1  General Description
	1.2  Function Timings

	2.0  Fast Fourier Transforms (FFT)
	2.1  FFT Background Theory
	2.2  Routine Descriptions

	3.0  Window Functions
	3.1  Function Descriptions
	3.2  Using Window Functions
	3.3  FFT Application Of Window Functions

	4.0  Filters
	4.1  Filter Background Theory
	4.2  Routine Descriptions

	5.0  Convolution and Correlation
	5.1  Background Theory
	5.2  Routine Descriptions
	5.3  Correlation Example

	6.0  Miscellaneous Functions
	7.0  DSPLib Implementation
	7.1  Hardware
	7.2  Software

	Appendix One Ensigma Software Guide For DSPLib
	Disclaimer
	Contents
	1  Introduction
	2  Installation
	3  Data Formats
	4  ANSI C Library
	5  Efficiency
	6  Test and Example Programs
	7  Fast Fourier Transforms
	FftComplex
	FftReal
	IfftComplex
	IfftReal
	FftInComplex
	FftInReal
	IfftInComplex
	IfftInReal
	LogMagnitude
	InitFft
	FreeFft

	8  Windowing
	GenBlackman
	GenHamming
	GenHanning
	GenTriangle

	9  Filters
	Fir
	Fir1
	Iir
	Iir1
	DIir
	DIir1
	Lms
	Lms1
	InitFir
	InitIir
	InitDIir
	InitLms

	10  Convolution and Correlation
	ConvComplete
	ConvCyclic
	ConvPartial
	Correlate
	CorrCyclic

	11  Miscellaneous
	GenGWnoise
	MatrixMult
	VectorMult
	MsPower
	Mean
	Variance
	MaxI
	MinI
	PeakI

	A  Contents of Distribution Disk
	References


