Hitachi Microcomputer Support Software

SH Series C Compiler
User’s Manual

HITACHI

HS0700CL CU4SE
Rev. 4.0

4/9/97

Hitachi, Ltd.

o ¢
Hitachi ~2

semiconductor -

Notice

When using this document, keep the following in mind:

1

2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’s permission.

Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit according to this document.

Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the exampl es described herein.

No licenseis granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’ s products are not authorized for usein MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, usein life support systems. Buyers of
Hitachi’ s products are requested to notify the relevant Hitachi sales offices when planning to
use the productsin MEDICAL APPLICATIONS.

Preface

This manual explains the facilities and operating procedures for the SH series C compiler. Please
read this manual and the related manuals listed below before using the C compiler to fully
understand the system. The C compiler translates source programs written in C into relocatable
object programs or assembly source programs for Hitachi superH RISC engine family
microcomputers (SH1, SH2, SH3, and SH3E).

Features of this compiler system are as follows:

1
2.

4,

generates an object program that can be written to ROM to be installed in a user system.
supports an optimization option that increases execution speed of object programs or
minimizes program size.

supports a debugging-information output function for a C source level debugging or C source
analysis using a debugger .

selects an assembly source program or relocatable object program and outputsit.

This manual consists of four parts and appendixes. The information contained in each part is
summarized below.

1

PART | OVERVIEW AND OPERATIONS

The overview sections cover C compiler functions and devel oping procedures.

The operation sections cover how to invoke the compiler, how to specify optional functions,
and how to interprete listings created by the C compiler.

PART Il C PROGRAMMING

This part explains the limitations of the C compiler and the special factorsin object program
execution which should be considered when creating a program.

PART IIl SYSTEM INSTALLATION

This part explains the object program being written in ROM and memory allocation when
installing an object program generated by the C compiler on asystem. In addition,
specifications of the low-level interface routine must be made by the user when using C
language standard I/O library and memory management library.

PART IV ERROR MESSAGES

This part explains the error messages corresponding to compilation errors and the standard
library error messages corresponding to run time errors.

This manual describes the SH C compiler that operates on UNIX*?*, or MS-DOS* 2 that runs
(operates) on the IBM-PC*2 and PC compatibles. In this manual, compilers functioning on a
UNIX system are referred to as UNIX version and compilers functioning on an MS-DOS system
arereferred to as PC systems.

Notes on Symbols: The following symbols are used in this manual.

Symbols Used in This Manual

Symbol Explanation
<> Indicates an item to be specified.
[] Indicates an item that can be omitted.

Indicates that the preceding item can be repeated.

A Indicates one or more blanks.

(RET) Indicates the carriage return key (return key).

| Indicates that one of the items must be selected.

(CNTL) Indicates that the control key should be held down while
pressing the key that follows.

Notes: 1. UNIX isaregistered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

2. MS-DOS s an operating system administrated by Microsoft Corporation.
3. IBM PCisaregistered trademark of International Business Machines Corporation.

Related Manuals. Refer to the following manuals together with the SH Series C Compiler when
creating a program using the C compiler.

SH Series Cross Assembler User’s Manual

SH Series Simulator/Debugger User’s Manual
Integrated Manager User’s Manual

H Series Linkage Editor User’s Manual

H Series Librarian User’s Manual

E7000 SH7032, SH7034 Emulator User’s Manual
E7000 SH7604 Emulator User’s Manual

E7000 SH7708 Emulator User's Manual

Refer to the following manuals for details on the SH instruction execution:

SH7000 Series Programming Manual
SH7000/SH7600 Series Programming Manual
SH7700 Series Programming Manual

Contents

Part | OVERVIEW AND OPERATIONS.........cooreneesesesee et 1
[SECHON 1 OVEIVIEW. ...ttt 3 |
[Section 2 DeVElOPING PrOCEAUIES..................oooeeeeeeeeeecc e 5|

Section 3 C CompPiler EXECULIONooueiviiiieieieeesse s 7

3.1 How to INVOKethe C COMPIIET........ccueeeeeieeeeeeeie et ere e seeeneas 7

311 Compiling Programsccoceeirerisenesie s st sre e sse e sre e seesnas 7
3.1.2 Displaying Command Line Format and Compiler Options...........cccceceveererenienn 7
313 C COMPIEr OPLIONS....cviueieiertieriirieiesieiesieie et b et be e sbe e 8
314 Compiling Multiple C Programs..........cccoeereerennensinseseese e 8
[32 Naming FileS. ... 9
[B3.3 COMPIIEr OPUONS........ooveoeeeeeeceecoeeseeseeceeceeeseescereereseeseeseneenesneseeneenenesnseeneseeseeseseeneseeseens 10

3.4 OptioN COMDINALIONS...........ccuieiieteeieeeeeeieeeeeeeeesteeeesteeeesteeeeeteeeeereenseeseesseeeesseeneessessen 20

3.5 Correspondence to Standard LibrarieSc.ocveciieeecieeieiieceieececeec e 21

3.6 C COMPIES LiStNGS ...eiteitiieietisieitesiesiesi e tee et est e st e steseeseeseesseseeseeneeneeeeneesesnesnessessesneas 23

3.6.1 Structure of C CompPiler LIStNGScccoeerrierininieneniereee et 23
TS0 o U o 1 o 24
G S T © o] 1= B IR = 1 oo 26
3.6.4 SHEliStiCS INFOIMELION.......ccvieieieeiiee e 28
3.6.5 Command Line SPeCifiCationccoueoerirerieriiise et 29
[3.7 C Compiler Environment Variables................c.oowoveeeeveeoeeeeeeseseereeseeeeeesesesneseesnesnenees 30 |
[3.8 Implicit Declaration by OPtioN.............cceveveueeeeeeeeeeeeeeeeeeeee e e e e eeenans 31 |

Part I CPROGRAMMING ...t 33
[Section 1 Limits of the C COMPIIEN......ccccoococcervcciceiscccerscccceescceeec e 35 |
[Section 2 Executing 8 C Program...........ccouiii s 37
[21 Structure of ODJECt PrOgramS.........correreesssressseesssessaseesseeeseeesssees e ssseeaaes 38
[2.2 Tnternal Data REPrESENIAONo.oo.ovoeeeveeeesesescerceresresereeeeereseeseensnesneseeneenesnesneseneeneeen 41

221 SCAA-TYPE DA .. .ottt e e 42
222 CoMDINEO-TYPE DALccueieieeieieeieieeee ettt e 43
223 Bit FIEIOS it 45
224 Memory Allocation of Little Endian.........cccoeevveirenninsiineiseceseeseesecsie e 48
[2.3 Linkage with ASSEMbBIY Programs..............oovveveeveeeeeeeeereeeeeeeeeeseeseeeeseseeseeseeneseeseseeseeseeee 50 |
231 External ldentifier REFEIENCEc.oovvvvieiiirreeerereee e 50

2.3.2 FUNCioN Call INTEMTACE.......eeiiceie ettt sbe e 52

Section 3 Extended SPeCifiCations...........ccc.cveeeicieceieeceeeee e, 61

TN R 1010= o 1o e PP 61
00 St R B ==] o 1 o PSSR 61
312 EXPlANGLION. ...ctiiitieetereete ettt e 63
0 1 G T N[0T O 65
E I s e 66 |
321 INNSIC FUNCHIONS. ...c.citiiiiiieiiie et 66
A B L=< v ¢ | o 1 (o o SOOI 66
3.2.3 Intrinsic FUNCLiON SPECITICAiONS.......ccciiiuirieririeries e 66
I V[(=< PSRRI 71
325 EXBMPIE.. i bbbt 72
326 Dividing <machin@.h>......c.cveiiiiecicce e 73
R e 1 et e e —— 74 |
GG 5t R B == ¢ o 1 (o o USSR 74
I A do =g = o] OSSR 74
TR T V[0 (=< TSROSO 74
BT 1] o) (= PP 74
|3.4 Single-Precision Floating-Point Library............ccouoeeiieeiieciiirieiectiecieeeeeeeeeve e 75 |
Gt R ===] o 1 o IS 75
13 B Lo (== TP 75
3.5 Japanese Description in String Literals.........coooviiiiiiiiiiiiiiiiiin 77
3.6 TNINE FUNCHON......cuiii ettt ettt e st st et e seese et eee e eneeneeneenesreseean 78
3.6. 1 DESCIIPLION ..ttt sttt st et s b e sttt b et b e 78
G 7 = d o] == 4 o] o 1 78
13 G T T V[(== 78
364 EXBIMPIE....ciiieiieiee et ettt h e sre e 78
[3.7 Inline Expansion in ASSEMblY LaNQUAGOE..............c.cveeeeeereveereeeeeeseseseeseeseseeseeseeseeneseens 79 |
7.1 DESCIIPLION ..ttt sttt ettt b e s b e b e b e sb e sb e eb et b 79
372 EXPlANGLION....cuiiitiieierieie ettt e et be e 79
7.3 NOLES... e ettt renr e 79
I S G 1] o] 1 80
[3.8 Specifying Two-byte Address Variables...............c.ocuececeeeeeeeveeeeeseseseeseeseseeseeseenennn 81|
TS 50 R B ==] o 1 o o USSR 81
382 EXPlANGLION. ...eieitieeteiecie ettt bbb 81
182 TG T | [T RN 8l
[3.9 Specifying GBR Base Vari@bles...............oowveeeeeeeeereereeeeeeeeeseeeeeeeeeseeseeseseseeseseenesseseenes 82 |
TR 50 R === ¢ o 1 o IS 82
I I do =g = o] o OSSPSR 82
TS R B V[(== TP TRPRPTRI 82
[3.10 Register Save and RECOVEIY CONLIONc..veevveeeeeeeieeeeeeeeeeeeseeseeseeereeneenesseseeseeeneeeeeseen 83|
3101 DESCIIPLION...c.vueteiertieerterestee ettt ettt b ettt b et ne s 83
00 0 T2 d o == 4 o] o 1 83
130 0 T T (== PRSI 83

3.10.4 EXBMPIE....ieiieiieiieee ettt et ettt sb e e ere e 84

[3.11 Global Variable RegiSter AIIOCAHONccvveveeerereeereeeeeeeeteereeeeteteeeereeeteeeerenetereeneneeesen 84 |

00 I I R B == £ o 1 o ISR 84
00 I 2 o d o =g = o] o PSSR 84
135 G T N\ T (=== T TT T SR 85
114 EXBMPIE..netiitieeree ettt 85
Section 4 NOtes 0N Programiming...........ccccceecueeueensiseieiesisssss s 87
L R oo] Vo]\ (== PSPPI 87
4.1.1 float Type Parameter FUNCLIONcocoririiiiiienie e 87
412 Program Whose Evaluation Order isNot Regulated...........cccvevenennennenenienenn 87
4.1.3 Overflow Operation and Zero DiVISION........cccoeereireienieieneie e 88
4.1.4 Assignment to CONSt VariablES.......ccueveieiiiiese e 89
4.1.5 Precision of Mathematical Function Libraries.ccocovveiiniciiinncciicsn 89
[4.2 Noteson Programming DEVEIOPMENL.......................oreerereevevvvveeerseesseeeesssssssesssssseeeeseee 90 |
Part [l SYSTEM INSTALLATION.......ooiiiieee st 93
[Section 1 Overview of System Installation..............c.ccccooooeceooeeeceooeeeeseeersee 95 |
Section 2 Allocating MemOry ATEBS ... 97
2.1 StatiC ArEAAIIOCAION. ...ttt sr b saesne b e seesnens 97
211 DatatobeAllocated in SAtiC AT€a......ccceiieere e 97
212 Static Area Size CalCUlalioN.......ccccoveeeeeeeiriese e sese e sre e 97
213 ROM and RAM AIIOCEIIONccourvereirerrsreniesessereie st srere e 100
214 Initialized Data Area AllOCHONc.covrvireeiirerieiee et 100
215 Memory Area Allocation Example and Address Specification at Program
(101 o =SSN 100
[2.2 Dynamic Ar€AAIIOCAION.c.ooeveeeeeeeieeeeeeeeereseseeseeseeseeessseeseeseeesesessesseesessessneesasees 102 |
221 DYNAMIC ATEBS.....ceitiietirietereete sttt sttt sttt sttt sttt st et saebeseebesaenesaene 102
2.2.2 Dynamic AreaSize CalCUlationcccoovrivierisesieseseseseseeseeeeee e sresse e s 102
2.2.3 Rulesfor Allocating DYNamIiC AT€a........cccvvereeresieieiisesieseeseeee e eesese e eresse e 105
[Section 3 Setting the Execution ENVIronment............cooconicnsisssiccscissi s 107
[3.1 Vector Table SEtting (VEC TBL) ...v.ovooveoeeeeoeeeeoeeveseeeeereeneeseeseeseeseeeneenesesseeseeseesneeeeeeen 108
[32 Initialization (INIT) .o 109
EEEE = R e N 110
[Section 4 Setting the C Library Function Execution Environment 113
4.1 Vector Table Setting (VEC _TBL) ..ottt sae e s 115
42 Initidizing REGISIErS (L _INIT) oo 115
4.3 Initializing Sections (__INITSCT) ..voceiiiiiiiiccc 115
[4.4 Tnitidizing C Library FUNCONS (__INTTLIBY cvuvvvvvoveveeeseserseeseeseesesneseeneenesnesneneeneeen 116

4.4.1 Creating Initialization Routine (_INIT_IOLIB) for Standard I/0
Library FUNCHIONcccieeeeeeeee e s 117

4.4.2 Creating Initialization Routine (_ INIT_OTHERLIB) for Other

Library FUNCHION ..ottt s 119
[45 Closing Files((CLOSEALL) ..ot 120
[4.6 Creating Low-Level INterface ROULNES.............o.oovoowvvreeseeeereeseeseseeseeseeereseesesseeseeseeeeees 121
4.6.1 Concept Of /O OPEIatioNS......coeverererierieierieie ettt 122
4.6.2 Low-Levd Interface Routine SpecCifiCations..........ccvevereveereceresiecese s 123
Part IV ERROR MESSAGES.......... ettt s 131
[SECtON 1 EITOr MESSAYES ..o rrerrersresrsersrssnssersresessseesneseesseesesene 133 |
[Section 2 C Standard Library Error MESSAgES............cooevevesrrsessvesrsseeseesene 153 |
APPENDIX .ottt sttt et 157
Appendix A Language and Standard Library Function Specifications
Of the C COMPIES ... 159
A.1 Language Specifications of the C COMPIIEN........c..cuecueeeeerieeierieieieieeeieeeeeseeeteseeeveeneens 159
A.11 Compilation SPECITICAIONScccccveiieiecieiee e ene 159
A.1.2 Environmental SPECITiCAIONSccocevirererinine e 159
N e B [(< g L) = £SO ST 160
N O o (= SRR 161
T 0110 T TP P PSP 162
| A.1.6 Floating-Point NUMBEYS...........cooveueieeeiieeeieeeeieteieteeseeeeteeeeteeeetesesresessesesseseeseseen 163 |
A.L7 ArraySand POINIErS.....c.ccoveieiiieeci ettt et st et se e e e s saesnesresne s 164
AL REGISIEN ...cicicteiieteteee ettt ettt et ae e a et ne 164
A.1.9 Structure, Union, Enumeration, and Bit Field TYPeS.........ccoererririninicncncnin 165
ALLL0 QUAITIEN ...ttt bbb 165
N 0 I = =T 1 g 166
ALLL2 SEBIEIMENL.eiieeeeeeeeee ettt r e e e e e e et besbesaesneerenne e 166
N I G B = o 000 o O PPN 167
[A.2 CLibrary FUNCLION SPECITICALIONS..............ooeveeecereieeseereceeeeereseseesessessesssessessesseseeseesesse 168 |
A2L SIAEF.N oo 168
A22 BSSEITN oot 168
A 2.3 CEYPEN o bbb 168
D 03 1 o o 169
A25 SETMPN oo 169
A28 SIAION i et 170
N A 1 12 o 1 o SRR 171
F 2R S B = 1 1 10 X o T 172
A.29 Librariesthat are Not Supported by the SH C Compiler.........cccoovvvvrenrerineenne 173
[A.3 Floating-Point NUMDEr SPECITICALIONS...........ov.cvveeereereeeeeeesereeeeeeeseseeseeseseereeseeseesesseseenes 174 |
A.3.1 Internal Representation of Floating-Point NUMbBErsccccccveiececicinececei, 174

ALB.2 FlOBL...ecvieeeeeet e 176

A.3.3 doubleand 1oNg dOUDIE..........ccceeieiiiiiecec e e 177

A.3.4 Floating-point Operation SPeCIfiCalioNSc.cooerererierieriereeeeeree e 179
[Appendix B Parameter Allocation EXaMPpIe.............cccccrricrercessciveeccrescsienn 183 |
[Appendix C Usage of Registers and Stack Ar€a.............cooooooeoeeeeeeeeeeeereeevvvvrvvevveeee 187 |
Appendix D Creating Termination FUNCLIONS............cc.ooiivieciieicecsececeeiei 189
D.1 Creating Library onexit FUNCHON ..o 189
[D.2 Creating €Xit FUNCHIONoovoveeveeveevesvseseereeseeseeseeseeseeenesnesesseseeesessneeeseseeseeeseesneeeseeen 190
[D.3 Creating ADOIt ROULINE..........c.veeeeeecece s 192 |
[Appendix E Examples of Low-Level Interface ROULINE.............cccccccoccoccrrccicccs 193 |
[APPENIX F ASCI COUES........ooooceeeeesseeessees oo 199 |

Figures

Part |

Figure1.1
Figure1.2
Figure 1.3
Figure 1.4
Figure 1.5
Figure 1.6
Figure1.7
Figure 1.8

Part |1

Figure 2.1
Figure 2.2
Figure2.3
Figure2.4
Figure 2.5

Part 111

Figure 3.1
Figure 3.2
Figure3.3
Figure 3.4
Figure 3.5
Figure 3.6

Appendix
FigureA.1
Figure C.1

C COMPIIEr FUNCLIONS......ccuiiitiieete ettt 3
Relationship between the C Compiler and Other Software.........ccoeeeevvceeevriennnenns 5
Source Listing Output for show = noinclude, NOEXPanNSioN..........cceeveeeeereerereennn, 24
Source Listing Output for show = include, eXpansion...........cccoeeeeveeeeeieeesesesnennns 25
Object Listing Output for ShOW = SOUICe, ObJECL.........ccevvereereereeieireeeriere e 26
Object Listing Output for show = nosource, Object..........cooevererririnienneee, 27
S (1S (=3 1 o 7= o o 28
Command Line SPeCifiCationccveireiiieienec e 29
Allocation and Deallocation of a Stack Frame..........ccocevereneieneieseeerereeeen 52
Parameter Area AllOCALION..........coiieeeeeeee et 57
Example of Allocation to Parameter REgISIErS. ..o 59
Return Value Setting Area Used When Return Value Is Written to Memory........ 60
Stack Processing by an Interrupt FUNCHIONccovvviinere e 64
Section Size INFOrMELIONooeiieeeee e e 97
S (T AN (== W AN | Lo o= 1o o OSSR 101
Nested Function Calls and StaCk SIZE.......cceoveveeverisese e 104
Program Configuration (No C Library FunctionisUsed)........cccccoceevinienceninnnnnnns 107
Program Configuration When C Library Functionsare Used..........ccccceceevieinnnene 113
LTI Y oY - - ST 119
Structure for the Internal Representation of Floating-Point Numbers.................... 174
Usage of Registers and StaCk Ar€a.........ccecvvevevereinseseseseseeiesee e sese e 187

Tables

Part |

Tablel.1
Table 1.2
Table1.3
Table1.4
Table 1.5
Table 1.6
Table 1.7
Table 1.8

Part 11
Table2.1
Table2.2
Table 2.3
Table 2.4
Table2.5
Table 2.6
Table2.7
Table2.8
Table 2.9
Table2.10
Table2.11
Table2.12
Table2.13

Part 111
Table3.1
Table 3.2

Appendix
TableA.1
TableA.2
TableA.3
TableA.4
TableA.5
TableA.6
TableA.7
TableA.8
Table A.9
TableA.10
TableA.11
Table A.12

Standard File Extensions Used by the C Compilerccveeviiniininncnecnne, 9
C COMPIIEr OPLIONS......cuieeiirieirieerie et 10
Macro Names, Names, and Constants Specified by the Define Option................ 15
Option COMBINGLIONS........ccieieeicieeeeeee et sne s 20
Correspondence between Standard Libraries and Compile Options...........c.cc....... 22
Structure and Contents of C Compiler LiStingS........cocevereereererierieneneresesese e 23
EnVironment VariableS ..o e 30
IMPLICIT DECIAIALION ...ttt et 31
Limits of the C COMPIIEN ..o 35
Memory Area Types and CharaCteristiCs........coouuerererienerereeieeee s 39
Internal Representation of Scalar-Type Data.........ccocvevvereeenieienieieneresesesiesesee e 42
Internal Representation of Combined-Type Data.........cocoeirerenereneneneneseseseen 43
Bit Field Member SpeCifiCationS.........cccccveivievesene e 45
Rules on Changes in Registers After aFunction Callccccceeevveveivinccieieins 53
General Rules on Parameter Area AllOCAEION...........ccoveeiierineineres e 58
Return Value Type and Setting ATa........cccoeiieireiiniene e 60
INtErruUPt SPECITICALIONS.cviereieee e 62
INEANSIC FUNCLIONSviiieiie ettt sre e e e 67
Function List of Single-Precision Floating-Point Librarycccccceeveveeneesinnnnnnns 76
Default Settings of JApanese COE..........coevviieeirie i 77
TrOUDIESNOOLING et sb e s e Q0
Stack Size Calculation EXAMPIE.......ccoeireeneinenee s 104
Low-Level INterface ROULINES.........ccoveirireirree s 121
Compilation SPECITICALIONS........ccurereririereie et 159
Environmental SPeCifiCations...........courueireireirieiresee e 159
Identifier SPECITICALIONSccviriririeiree e 160
Character SPECIfiCaliONScccoveererere s se e e e s nne 161
INteger SPECITICAIONS.......ceiiiee et sren 162
Integer Types and Their Corresponding DataRange..........cccooeverirnnicncnicnien 162
Floating-Point Number SpecCifiCations...........cocveiieieiinere e 163
Limits on Floating-Point NUMDEIS ... 163
Array and Pointer SPeCifiCatioNS.........ccovrie v 164
RegiSter SPECITICAIONS......viiviieriereeieee e sre e e 164
Specifications for Structure, Union, Enumeration, and Bit Field Types................ 165

Qualifier SPECITICALIONSereeeeerererier et s 165

Table A.13
Table A.14
Table A.15
Table A.16
Table A.17
Table A.18
Table A.19
Table A.20
TableA.21
Table A.22
Table A.23
Table A.24
Table A.25
Table A.26
Table A.27

Declaration SPeCifiCationS.........cccecevereeiieieieeeee st e e snens 166
Statement SPECITiCALIONS. ..o 166
Preprocessor SPECIfiCatiONS.o.eceiereeeeirere ettt 167
Stddef.h SPECITICALIONS........c.ireeeireeiirieer e 168
aSSErt.n SPECITICALIONS......coviiieereeie e 168
Ctype.h SPECITICAIONSceeieececeee e 168
Set of Charactersthat REtUrNS TTUE........ccvveveiiireeieceesiee e 169
Math.h SPECITICALIONS.cueiiiieee e 169
SEtiMP.N SPECITICALIONSccveieii e 169
Sti0.h SPECITICALIONS.......ieeeeieceeee e 170
INfinity @and NOt 8 NUMDES ..o e 171
StriNg.h SPECITICALIONS........ccieeie e 171
€ITN0.N SPECITICALIONSc.eeuveeeccee e ene 172
Librariesthat are Not Supported by the SH C Compiler..........ccoeoeirnininincniens 173

Types of Values Represented by Floating-Point NUMbers..........ccocooeieiiinincnie 175

PART |
OVERVIEW AND OPERATIONS

Section 1l Overview

The SH series C compiler converts source programs written in C to SH series rel ocatable object
programs or assembly source programs.

The C compiler supports the SH1, SH2, SH3, and SH3E microcomputers (collectively referred to
as SH).

Figure 1.1 shows C compiler functions.

SH series SH relocatable
C compiler object program

C source /\
program N

SH assembly source
program

~_

Figure1.1 C Compiler Functions

A standard library file (a group of C language level functionsthat is used in C language program
as standard) is aso provided in addition to the C compiler.

HITACHI

Section 2 Developing Procedures

Figure 1.2 shows the relationship between the C compiler package and other software for program
development. The C compiler package includes the software enclosed by the dotted line.

C
source

file
creation

|
*2 | Software

User SH X — included in
. 1

include senes Standard 1 the package
. C compiler include 1
file) 1
file I
1
_________________________ 1
1
1
Userbl Assembly 8 :
assembly | | source 1
source program \
rogram !
1
1
1
1
Relo- '
. 1
SH series »| catable |
cross assembler object '
program !
1
1
1
Standard !
N 1
. libral 1
Routine H series ﬂlery !
created linkage editor :
by user a1

H series
object converter Load
module
S-type
load .
module SH series

simulator/debugger

Target system

Notes:

1. Assembly source programs are output depending on option specification.

2. The standard include file defines C library functions and their macro names in order to use C library functions.

3. Debug information can also be added depending on option specification.

4. A function group, consisting of C library functions and run time routines, is used as standard in the C program.
(Refer to section 2.1, Static Area Allocation, in part Ill, SYSTEM INSTALLATION.)

Figure1.2 Relationship between the C Compiler and Other Software

HITACHI

Section 3 C Compiler Execution

This section explains how to invoke the C compiler, specify C compiler options, and interpret C
compiler listings.

31 How to Invokethe C Compiler

The format for the command line used to invoke the C compiler is as follows.

shc[A<option>...][A<file name>[A<option>...]...]

The general operations of the C compiler are described below.

311 Compiling Programs

shcAtest.c (RET)

The C source program test.c is compiled.

312 Displaying Command Line Format and Compiler Options

shc (RET)

The command line format and the list of the compiler options are displayed on the screen.

HITACHI

313 C Compiler Options

Insert minus (-) before options (debug, listfile, and show). Slash (/) can aso be inserted in place
of minus (-) for PC. When multiple options are specified, separate them with a space (A). The
following shows the options for UNIX and PC. Also when multiple suboptions are specified,
separate them with acomma (,).

shcA- debugA-1i stfil eA- show=noobj ect, expansi onAt est. c (RET)

In PC, when multiple suboptions are specified, they can be enclosed in parentheses (()).

shcl/ debugdV |i stfil el show=(noobj ect, expansi on) At est . ¢c(RET)

314 Compiling Multiple C Programs
Severa C source programs can be compiled by a single command.

Example 1: Specifying multiple programs

shcAtest 1. cAtest 2. ¢ (RET)

Example 2: Specifying options for all C source programs

shcA-listfileAtestl. cAtest2.c (RET)

Thelistfile option isvalid for both testl.c and test2.c.

Example 3: Specifying options for particular C source programs

shcAtestl. cAtest2. cA-listfile (RET)

Thelistfile option isvalid for only test2.c. Options specified for particular C source programs
have priority over those specified for al C source programs.

HITACHI

3.2 Naming Files

A standard file extension is automatically added to the name of a compiled file when omitted. The
standard file extensions used by the C compiler and related software are shown intable 1.1. For
details on naming files, refer to the user's manual of the host computer because naming rules vary
according to each host computer.

Tablel.1l Standard File ExtensionsUsed by the C Compiler

File Extension Description

c Source program file written in C
h Include file

lis, Ist Listing file*

obj Relocatable object program file
src Assembly source program file
lib Library file

abs Absolute load module file

rel Relocatable load module file
map Linkage map listing file

Note: The listing file extension is lis on UNIX systems and Ist on PC systems.

HITACHI

3.3

Compiler Options

Table 1.2 shows C compiler option formats, abbreviations, and defaults. Characters underlined
indicate the minimum valid abbreviation. Bold characters indicate default assumptions.

Table1l.2 C Compiler Options
Item Format Suboption Specification
CPU type cpu = shl | SH1 object is generated.
sh2 | SH2 object is generated.
sh3 | SHS3 object is generated.
sh3e SH3E object is generated.
Optimization optimize = 0 | Object without optimization
is output.
1 Object with optimization is
output.
Optimization speed Optimization in both speed
select and size.
nospeed Optimization in balance
between execution speed
and execution size is
selected.
size Optimization in program
size is selected.
Debugging debug Output
information nodebug No output
Listings and show = source | nosource | Source list yes/no
formats object | noobject | Object list yes/no
statistics | nostatistics | Statistics information
yes/no
include | noinclude | List after include expansion
yes/no
expansion | noexpansion | List after macro expansion
yes/no
width = <numeric value> | Maximum characters per
line:
0, 80to 132
length = <numeric value> Maximum lines per page:
0, 40 to 255
Default:
w =132,
| =66
10

HITACHI

Tablel.2 C Compiler Options(cont)

Item Format Suboption Specification
Listing file listfile [= <list file name>] Output
nolistfile No output
Obiject file objectfile = <object file name> Output
Object program code = machinecode | Program in machine
format language is output.
asmcode Assembly source program
is output.
Macro name define = <macro name> =<name> | <name> is defined as

<macro name>.

<macro name> = <constant> |

<constant> is defined as
<macro name>.

<macro name>

<macro name> is assumed
to be defined.

Include file include = <path name> Include file destination path
name is specified (multi-
specification is possible).

Section name section = program = <section name> | Program area section

name is specified.

const = <section name> |

Constant area section
name is specified.

data = <section name> |

Initialized data area section
name is specified.

bss =<section name>

Non-initialized data area
section name is specified.

Default: p=P,

c=C,

d=D, b=B
Help message help Output
Position pic = 0 | Position independent code
independent is not generated.
code 1 Position independent code

is generated.

Area of string string = const | String literal is output to
literal to be constant section (C).
output data String literal is output to

initialized data section (D).

HITACHI

11

Table1.2

C Compiler Options (cont)

Item Format Suboption Specification
Comment comment = nest | Permits comment (/* */)
nesting nesting.
nonest Does not permit comment
(/* */) nesting.
Japanese code euc Selects euc code.
select in string sjis Selects sjis code.
literals
Subcommand file subcommand = <file name> Includes command option
select from a file specified by
<file name>.
Division division = cpu | Uses cpu's division
operation instruction.
peripheral | Uses a divider (with
masking interruption).
nomask Uses a divider (without
masking interruption).
Memory bit order endian = big | Specifies maximum big
endian.
little Specifies little endian.
Inline expansion inline Specifies inline
specification expansion.
inline = <numeric value> Specifies the maximum
size of a function to
expand where the function
is called.
noinline
Default header preinclude = <file name> Includes contents of a
file specified file at the
beginning of compilation
units.
MACH and macsave = 0 | Does not guarantee
MACL registers contents of MACH and
MACL registers at function
call.
1 Guarantees contents of

MACH and MACL
registers at function call.

12

HITACHI

Tablel.2 C Compiler Options(cont)

Item Format Suboption

Specification

Information message
message output

Outputs information
message.

nomessage

Does not output
information message.

Label 16-byte alignl16
alignment

Labels placed immediately
after an unconditional
branch instruction other
than a subroutine call in a
program section must be
aligned in 16 bytes.

noalign16

Does not place labels
aligned in 16 bytes.

Double type to double = float
single precision

Treats double type (double
precision floating point
number) as float type
(single precision floating
point number) as object.

Japanese outcode =
character
conversion

@
s

Selects euc code.

sjis

Selects sjis code.

ABS16 abs16 = run |
declaration

Assumes all execution
routines to have been
declared with #pragma
abs16.

Generates all label
addresses in 16 bits.

Loop unroll loop

Optimizes loop unrolling.

>

oloop

Does not optimize loop
unrolling.

Inline expansion nestinline = <numeric value>

Specifies the number of
times to expand nested
inline functions.

EXTS and EXTU rinext
creation at data
return

Creates a sign-extension
or zero-extension
instruction for the upper
bytes when returning a
value to a program by the
return statement.

nortnext

Does not create a sign-
extension or zero-
extension instruction.

HITACHI

13

—cpu =shl|sh2|sh3]|sh3e
This option specifiesatarget CPU. A library to be linked differs according to a
CPU. For details, refer to section 3.5, Correspondence to Standard Librariesin
part I, OVERVIEW AND OPERATIONS.

—optimize=0|1
This option specifies compiler optimization.
optimize = 0 disables compiler optimization.

optimize = 1 enables compiler optimization.

—speed, —nhospeed

This option specifies speed optimization. When a speed option is specified,
program is executed faster but program size may increase. When nospeed is
specified but size option is not specified, optimization is performed in program
execution speed and program size.

—size
This option specifies optimization in object size.
—debug, —nodebug

This option specifies whether or not to output debugging information which is
necessary for C source level debugging.

—show = source | nosour ce | object | noobject | statistics | nostatistics | include | noinclude |
expansion | noexpansion | width = <numeric value> | length = <numeric value>

This option specifies the output format of alist file. Thisoption isvalid when a
listfile option is specified.
show = width=0 Oneline ends at a carriage code.
show =length=0 The maximum number of linesis not specified;
therefore, pagination is not performed.

istfile [=<listfile name>], —nalistfile
This option specifies whether alist file is output. When afile nameis not
specified, afile that has the same name as the source file with a standard
extension lig/lst is generated.

—objectfile = <objectfile name>
This option specifies an object file name to be output.

—code = machinecode | asmcode
This option specifies whether the compiler outputs an object file in a machine
language or an assembler sourcefile.

HITACHI

14

—define = <macro name> = <name> | <macro name> = <constant> | <macro name>
This option enables a macro definition at the beginning of a source program.
Table 1.3, describes macro names, names, and constants which can be specified using this option.

Table1.3 MacroNames, Names, and Constants Specified by the Define Option

Item Description

Macro name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Name A string literal beginning with a letter or an underscore followed by zero or
more letters, underscores, and numbers.

Constant Decimal constant: A string literal of one or more numbers (0 to 9),
or a string literal of one or more numbers
followed by a period (.) followed by zero or
more numbers.

Octal constant: A string literal that begins with a zero followed
by one or more numbers (0 to 7).

Hexadecimal constant: A string literal that begins with a zero followed
by an x, then followed by one or more numbers
or alphabetical letters (A to F).

—nclude = <path name>
This option specifies adirectory where an include fileis searched for. For
details on how to search, refer to Appendix A.1.13, Preproccessor.

—section = | program = <section name> | const = <section name> | data = <section hame> | bss =

< section name >
This option changes section names in object programs. Section names when this
option is omitted are program area section P, constant area section C, initialized
data area section D, and non-initialized data area section B.

—help
This option displays alist of compiler options. Once this option is specified, the
other option(s) will be disabled.

15
HITACHI

—pic=0]1

When pic = 1 is specified, a program section after linking can be allocated to any
address and executed. A data section can only be allocated to an address
specified at linking. When using this option as a position independent code, a
function address cannot be specified as an initial value. Notethat if cpu = SH1
is specified, pic= lisignored. A library to be linked varies according to the
cpu, pic, endian, or double option. For details, refer to section 3.5,
Correspondence to Standard Librariesin part I, OVERVIEW AND
OPERATIONS.

Example
extern int f ();
int (*fp)() = f; <— Cannot be specified

—=string = const | data

When string = const is specified, string literals are output to constant area section
(default is C). When string = datais specified, string literals are output to
initialized data area section (default is D).

—comment = nest | nonest

=gjis

16

This option specifies whether or not to permit comment /* */ nesting.

Example
/* coment
int a; [* nest1 [* nset 2 * *]

*/

When comment = nest is specified, an underlined section istreated as a nested
comment and the outermost comment is enforced.

When comment = nonest is specified, acomment istreated to end by nest2*/.
Therefore, a section after nest2*/ istreated as an error.

This option selects euc for the Japanese code for string literalsin C program.
When this option is omitted, euc or §jisis selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literalsin part |1, C Programming.

This option selects §jis for the Japanese code for string literalsin C program.
When this option is omitted, euc or §jisis selected according to the host
computer. For details, refer to section 3.5, Japanese Description in String
Literalsin part 11, C Programming.

HITACHI

—subcommand = <file name>

This option assumes contents of a specified file name as an option. This option
can be specified in acommand line more than once. In a subcommand file, an
parameters must be delimited by a space, a carriage return, or atab. Contentsin
a subcommand file will be expanded to an area specified by a subcommand in a
command line parameter. A subcommand option cannot be specified in a
subcommand file.

Example: The following examples are the same as shc —debug —cpu=sh2 test.c.

Command line
shc —sub=test.sub test.c

Contents of test.sub
—debug
—cpu=sh2

—division = cpu | peripheral | nomask
This option selects an execution routine for an integer division in a C source
program. This option can be combined with a suboption in the cpu option.
However, only the SH2 can execute an object program that specifies peripheral
or nonmask as suboption.

1. cpu: specifies an execution routine which usesthe DIV1
instruction

2. peripheral: specifiesan execution routine using a divider
(15 is set to interrupt mask level)

3. nomask: specifies an execution routine using a divider
(no change in interrupt mask level)

Note the following before specifying a peripheral or nomask option.

1. Zerodivision isnot checked or errno is not set.

2. If nomask is specified and an interrupt occurs during operation of a
divider and the divider is used in an interrupt routine, the correct
operation is not guaranteed.

3. Anoverflow interrupt is not supported.

4. Results after operation such as zero division or overflow depend on the
divider specifications. Some of them may be different from those when
acpu suboption is specified.

17
HITACHI

—endian = big | little

This option can be combined with a suboption in a cpu option. However, only
the SH3 or SH3E can execute an object program for little endian. Thelibrary to
be linked depends on endian, cpu, pic, and double options. For details, refer to
section 3.5, Correspondence to Standard Librariesin part I, OVERVIEW AND
OPERATIONS.

nline, <nline = <numeric value>, —noinline

This option specifies whether to expand a function automatically at the statement
where the function is called. The value specified in suboption <numeric value>
indicates the maximum number of nodes of afunction (the total number of
characters of operators and variables excluding the declaration field) to expand
where the function is called. The default of speed option specificationisinline =
20. The default when nospeed, size, or optimize = 0 option is specified noinline.

—preinclude = <file name>

—macsave=0]|1

This option includes file contents at the beginning of compilation units.

This option specifies whether contents of the MACH or MACL registers are
guaranteed before and after afunction call.

macsave = 0 does not guarantee the contents of the MACH or MACL registers
before and after afunction call. macsave = 1 guarantees the contents of MACH
and MACL registers before and after afunction call. A function that is compiled
using macsave = 1 cannot call afunction that is compiled using macsave = 0.
However, the oppositeis possible.

—message, nNomessage

This option specifies information message output. homessage option does not
output information message.

=align16, noalign16

—double = float

18

Thisoption aligns all 1abels placed immediately after an unconditional branch
instruction other than subroutine callsin a program section in 16 bytes.
noalignl16 option does not place labels aligned in 16 bytes.

This option treats double type declaration/cast (double precision floating point
number) as float type declaration/cast (single precision floating point number)
before generating object.

HITACHI

—outcode = euc | §is
This option selects euc for the Japanese character code when outcode = eucis
specified, and §is when outcode = §isis specified.

—abs16 = run | all
This option assumes all execution routines to have been declared with #pragma
abs16 when absl6 = run is specified, and generates all label addressesin 16 bits
when abs16 = all is specified.

—loop, —noloop
This option specifies whether to optimize loop unrolling.
The loop option performs loop unrolling. The noloop option does not perform
loop unrolling.

—nestinline = <numeric value>
This option specifies the number of timesto expand theinline function. Up to
16 times can be specified. When this option is not specified (default), theinline
function is expanded once (nestinline=1).

—rtnext, —nortnext
This option performs sign extension or zero extension after setting avaluein RO,
which isthe place to set the return value, in areturn statement of afunction that
returns a (unsigned) char type or (unsigned) short type (see section 2.2.3 in part
I1, C PROGRAMMING) to aprogram. This enables type conversion for areturn
value before the actual valueis returned to a program. If a prototype is declared
at the caller, this option is not required. The nortnext option does not perform
sign extension or zero extension.

19
HITACHI

34 Option Combinations

If apair of conflicting options or suboptions are specified for afile, only one of them is considered
valid. Table 1.4 shows such option combinations.

Table1.4 Option Combinations

Valid Option Invalid Option
nolist show
code = asmcode* debug*

show = object

help All other options
cpu =shl pic=1
optimize =0 loop

Note: When debug option is specified during assembly source output, a .LINE directive is
embedded in the output code. A .LINE directive gives C language source line information
to a debugger. After that, C language source lines are displayed for debugging. However,
C language level debugging is not performed for variable values.

20
HITACHI

35 Correspondenceto Standard Libraries

There are 22 types of standard library combinations. Link alibrary listed in table 1.5 according to
the combination of acpu, pic, endian, or double option.

shclib.lib (for SH1)

shenpic.lib (for SH2, not for position independent code)

shepic.lib (for SH2, for position independent code)

she3npb.lib (for SH3, not for position independent code, big endian)

shc3ph.lib (for SH3, for position independent code, big endian)

shc3npl.lib (for SH3, not for position independent code, little endian)

shc3pl.lib (for SH3, for position independent code, little endian)

shcenpb.lib (for SH3E, not for position independent code, big endian)

sheepb.lib (for SH3E, for position independent code, big endian)

shcenpl.lib (for SH3E, for position independent code, little endian)

shecepl.lib (for SH3E, for position independent code, little endian)

shclibf.lib (for SH1, double = float option specification)

shenpicf.lib (for SH2, not for position independent code, double = float option specification)
shepict.lib (for SH2, for position independent code, double = float option specification)
she3npbf.lib (for SH3, not for position independent code, big endian, double = float option
specification)

shc3pbf.lib (for SH3, for position independent code, big endian, double = float option
specification)

she3nplf.lib (for SH3, not for position independent code, little endian, double = float option
specification)

she3plf.lib (for SH3, for position independent code, little endian, double = float option
specification)

shcenpbf.lib (for SH3E, not for position independent code, big endian, double = float option
specification)

sheepbf.lib (for SH3E, for position independent code, big endian, double = float option
specification)

sheenplf.lib (for SH3E, not for position independent code, little endian, double = float option
specification)

sheeplf.lib (for SH3E, for position independent code, little endian, double = float option
specification)

21
HITACHI

Table1.5

Correspondence between Standard Librariesand Compile Options

double specification None

endian specification endian = big endian = little

pic specification pic=0 pic=1 pic=0 pic=1
cpu =shl shclib.lib — — —

cpu =sh2 shcnpic.lib shcpic.lib — —

cpu =sh3 shc3npb.lib shc3pb.lib shc3npl.lib shc3pl.lib
cpu = sh3e shcenpb.lib shcepb.lib shcenpl.lib shcepl.lib
double specification double =float

endian specification endian = big endian = little

pic specification pic=0 pic=1 pic =0 pic=1
cpu =shl shclibf.lib — — —

cpu =sh2 shcnpicf.lib shcpicf.lib — —

cpu =sh3 shc3npbf.lib shc3pbf.lib shc3nplf.lib shc3plf.lib
cpu =sh3e shcenpbf.lib shcepbf.lib shcenplf.lib shceplf.lib
22

HITACHI

3.6 C Compiler Listings

This section describes C compiler listings and their formats.

3.6.1 Structure of C Compiler Listings

Table 1.6 shows the structure and contents of C compiler listings.

Table1l.6 Structureand Contentsof C Compiler Listings

List Structure

Contents

Option Specification
Method**

Default

Source listing

Listing consists of
source programs

show=[no]source

No output

Source program listing after
include file and macro
expansion

(show=[nolinclude)*
(show=[no]expansion)

No output

Obiject listing

Machine language generated by
the C compiler and assembly
code

show=[no]object

Output

Statistics

Total number of errors, number

of source program lines, size of

each section (byte), and number
of symbols

show=[no]statistics

Output

Command line
specification

File names and options
specified in the command line

Output

Notes: 1. All options are valid when listfile is specified.
2. The option enclosed in parentheses is only valid when show = source is specified.

HITACHI

23

3.6.2 Source Listing

The source listing can be output in two ways. When show = noinclude, noexpansion is specified,
the unpreprocessed source program is output. When show = include, expansion is specified, the
preprocessed source program is output. Figures 1.3 and 1.4 show examples of these output
formats. Bold charactersin figure 1.4 show the differences.

KkkxkkkkkR* % GOURCE LI STI NG * %% %% %% %% % %%
FI LE NAME: nD260. c
Seq File Li ne [e R R e i i e e
1 n0260. ¢ 1 #i ncl ude "header. h"
4 n0260. ¢ 2
5 n0260. ¢ 3 int sun2(void)
6 nD260.c 4 { int j;
7 n0260. ¢ 5
8 n0260. ¢ 6 #i fdef SMALL
9 nD260.c 7 j =SML_I NT;
10 n0260. ¢ 8 #el se
11 n0260.c 9 j =LRG_I NT;
12 n0260. ¢ 10 #endi f
13 n0260. ¢ 11
14 n0260. ¢ 12 return j;/* continuel23456789012345678901234567
(€} @ €) +2345678901234567890 */
U]
15 n0260. ¢ 13 }

Figure1l3 Source Listing Output br show =noindude, noexpansion

24
HITACHI

Kk kkkkkkkx GOURCE LI STI NG * %% %% %% %% k%%
FI LE NAME: nD260. c
Seq File Line [N L e i L Rl - T
1 nD260.c 1 #i ncl ude "header. h"
2 header. h 1 #define SML_I NT 1
3 header. h 2 #define LRG_ I NT 100 (4)
4 n0260. ¢ 2
5 n0260. ¢ 3 int sun2(void)
6 nD260.c 4 { intj;
7 n0260. ¢ 5
8 n0260. ¢ 6 #i f def SMALL
9 nD260.c 7 X j =SML_I NT;
10 n0260. ¢ 8 (5 #else
11 nD260.c 9 E j =100;
12 n0D260.c 10 (6) #endif
13 n0260. ¢ 11
14 n0260.c 12 return j;/* continuel23456789012345678901234567
) %) ©) +2345678901234564890 */
™
15 n0260. ¢ 13 }
Figure1.4 SourceListing Output for show =include, expansion
Description:

(1) Listing line number

(2) Source program file name or include file name

(3) Line number in source program or include file

(4) Source program lines resulting from an include file expansion when show = includeis
specified.

(5) Source program lines that are not to be compiled due to conditional compile directives such as
#ifdef and #elif being marked with an X whenshow = expansion is specified.

(6) Source program lines containing a macro expansion #define directives being marked with an E
when show = expansion is specified.

(7) If asource program lineislonger than the maximum listing line, the continuation symbol () is
used to indicate that the source program line is extended over two or more listing lines.

25
HITACHI

3.6.3 Object Listing

The object listing can be output in two ways. When show = sour ce, object is specified, the source
program is output. When show = nosour ce, object is specified, the source program is not output.
Figures 1.5 and 1.6 show examples of these listings.

*kkkkkxkkxkxkx OBJECT LI STI NG ***** %k x %% %%

FI LE NAME: nD251.c

SCT OFFSET CODE C LABEL I NSTRUCTI ON_ OPERAND COMVENT
@ (@) ©) 4 5
nD251. ¢ 1 extern int multipli(int);
n0251. ¢ 2
nD251. ¢ 3 int multipli(int x)
P 00000000 _multipli: ;function: multipli

;frame size=16 (7)
;used runtine library nane:

; nul i ()]

00000000 4F22 STS. L PR, R15
00000002 7FF4 ADD #-12, R15
00000004 1F42 MOV. L R4, @8, R15)

nD251. ¢ 4 {

n0251. ¢ 5 int i;

nD251. ¢ 6 int j;

nD251. ¢ 7

nmo251. ¢ 8 j=1;
00000006 E201 MoV #1, R2
00000008 2F22 MOV. L R2, @15

nD251. ¢ 9 for(i=1;i<=x;i++){
0000000A E301 MoV #1, R3
0000000C 1F31 MOV. L R3, @4, R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

n0251. ¢ 10 j*=i;

00000012 50F1 MOV. L @4, R15), RO
00000014 61F2 MoV @Rr15, R1
00000016 D30A MOV. L L216+2, R3 ;o o_muli
00000018 430B JSR @3

Figure1.5 Object Listing Output for show = sour ce, object

26
HITACHI

kkkkkkkkxkkx OBJECT LI STI NG ***** %%k %k x*

FILE NAMVE: nD251.c

;File nD251.¢c ,Line 8

;File nD251.¢c ,Line 9
;File nD251. ¢ , Line 10

00000006 E201 MoV #1, R2
00000008 2F22 MOV. L R2, @15
;File nD251.¢c ,Line 9
0000000A E301 MoV #1, R3
0000000C 1F31 MOV. L R3, @4, R15)
0000000E A009 BRA L213
00000010 0009 NOP
00000012 L214:

00000012 50F1 MOV. L @4, R15), RO
00000014 61F2 MOV. L @r15, R1
00000016 D30A MOV. L L216+2, R3
00000018 430B JSR [@328]

SCT OFFSET CODE C LABEL I NSTRUCTI ON_OPERAND COWVENT
(€ @] (©) 4 ®
P File nD251.c .Line 3 ; bl ock
00000000 _multipli: (6) ;function: multipli
;franme size=16 (7)
;used runtine library nane:
; mul i (8)
00000000 4F22 STS. L PR, @15
00000002 7FF4 ADD #-12, R15
00000004 1F42 MOV. L R4, @ 8, R15)
;File nD251. ¢ ,Line 4 ; bl ock

; expressi on st atenent

;for

; bl ock
; expressi on statenent

Figure1.6 Object Listing Output for show = nosour ce, object

Description:

(1) Section attribute (P, C, D, and B) of each section

(2) Offset address relative to the beginning of each section
(3) Contents of the offset address of each section

(4) Assembly code corresponding to machine language

(5) Comments corresponding to the program (only output when not optimized; however, labels are

always output)

(6) Line information of the program (only output when not optimized)

(7) Stack frame size in bytes (always output)
(8) Routine name that is being executed

HITACHI

27

3.6.4 Statistics | nformation

Figure 1.7 shows an example of statistics information.

*xxxxxxx STATI ST CS | NFORMATI ON %%k

*xkkkxx%x%% CRROR | NFORMATI ON ** % * % % % %% (1)

NUMBER OF ERRORS:
NUMBER OF WARNI NGS:
NUMBER OF | NFORVATI ONS:

***xxx%% SOURCE LINE | NFORVATI ON *** %%+ % @
COWPI LED SOURCE LI NE: 13

*xxxxxxx SECTI ON SI ZE | NFORMATI ON **** %%+ % ®
PROGRAM SECTI ON(P) ; 0x000044 Byt e('s)
CONSTANT ~ SECTION(Q) : 0x000000 Byt e(’s)
DATA SECTI ON(D) ; 0x000000 Byt e('s)

BSS SECTI ON(B) ; 0x000000 Byt e('s)
TOTAL PROGRAM S| ZE: 0x000044 Byt e('s)

EREE R E R E R RS LABEL |NFm’\/AT| O\l * ok ok ok ok ok ok ok k% (4)

NUMBER OF EXTERNAL REFERENCE SYMBOLS: 1
NUMBER OF EXTERNAL DEFI NI TION SYMBOLS: 1
NUMBER OF | NTERNAL/ EXTERNAL SYMBOLS: 6

Figure 1.7 StatisticsInformation

28
HITACHI

Description:

(1) Total number of messages by the level

(2) Number of compiled lines from the sourcefile

(3) Size of each section and total size of sections

(4) Number of external reference symbols, number of external definition symbols, and total
number of internal and external |abels

Note: NUMBER OF INFORMATIONS in messages by the level ((1) above) is not output when
message option is not specified. Section size information (3) and label information (4) are
not output if an error-level error or afatal-level error has occurred or when option
noobject is specified. In addition, section size information (3) is output (indicated as“1”)
or not output (indicated as“0") according to its specification when option code = asmcode
is specified.

365 Command Line Specification

The file names and options specified on the command line when the compiler isinvoked are
displayed. Figure 1.8 shows an example of command line specification information.

% OOMMAND PARAMETER *

-listfile test.c

Figure1.8 Command Line Specification

29
HITACHI

3.7 C Compiler Environment Variables
Environment variables to be used by the compiler arelisted in table 1.7.

Tablel.7 Environment Variables

Environment
Variable Explanation in Use

SHC_LIB Specifies a directory at which compiler load module and system
include file exists.

SHC_INC Specifies a directory at which a system include file exists. More than
one directory can be specified by dividing directories using commas. A
system include file is searched for at a directory specified using an
include option specified directory, SHC_INC-specified directory, and
system directory (SHC_LIB) in this order.

SHC_TMP Specifies a directory where the compiler generates a temporary file.
This environment variable is required for a PC. For UNIX, a directory
indicated in TMPDIR is specified when this environment variable is
specified. If SHC_TMP or TMPDIR is not specified, a temporary file is
generated in /usr/tmp.

SHCPU Specifies CPU type by compiler —cpu option using environment

variables. The following is specified:

SHCPU=SH1 (same as —cpu=shl)

SHCPU=SH2 (same as —cpu=sh2)

SHCPU=SHDSP (same as —cpu=sh2)

SHCPU=SH3 (same as —cpu=sh3)

SHCPU=SH3E (same as —cpu=sh3e)
An error will occur if anything other than the above is specified.
Specifying lower case characters will also generate an error.
When the specification of CPU by SHCPU environment variable and
—cpu option differs, a warning message is displayed. —cpu option has
priority to SHCPU specification.

30
HITACHI

3.8 Implicit Declaration by Option

Using —cpu, —pic, —endian, or —double option resultsin an implicit #define declaration. See the

following.

Table1.8 Implicit Declaration

Option Implicit Declaration

—cpu = shl #define _SH1 (including default)
—cpu = sh2 #define _SH2

—cpu =sh3 #define _SH3

—cpu =sh3e #define _SH3E

—pic #define _PIC

—endian = big #define _BIG (including default)
—endian = little #define _LIT

—double = float #define _FLT

The following shows an specification example.

Example:
#ifdef BIG
#ifdef _SHL
#endi f
#endi f
#i fdef _SH2
#endi f
#ifdef _SH3
#ifdef BIG
#endi f
#ifdef LIT
#endi f
#endi f

Vaidwhen —cpu = sh1l —endian = big option is specified
(Also valid when no option is specified for —cpu or —endian)

Vaidwhen —cpu = sh2 option is specified

Valid when —cpu = sh3 —endian = big option is specificed

Vdidwhen —cpu = sh3 —endian = little option is specified

Rules: 1. If nooptionis specified (default), #define _SH1 or #define_BIG is set.
2. Theimplicit #define declaration is specified as#undef in the source file.

HITACHI

31

PART |1
C PROGRAMMING

Section 1 Limitsof the C Compiler

Table 2.1 shows the limits on source programs that can be handled by the C compiler. Source
programs must fall within these limits. To edit and compile efficiently, it is recommended to split
the source program into smaller programs (approximately two ksteps) and compile them

separately.

Table2.1 Limitsof the C Compiler

Classification Item Limit
Invoking the C Number of source programs that can be compiled at one None**
compiler time
Total number of macro names that can be specified None
using the define option
Length of file name (characters) 128
Source programs Length of one line (characters) 4096
Number of source program lines in one file 65535
Number of source program lines that can be compiled None
Preprocessing Nesting levels of files in an #include directive 30

Total number of macro names that can be specified in a None
#define directive

Number of parameters that can be specified using a 63
macro definition or a macro call operation
Number of expansions of a macro name 32
Nesting levels of #if, #ifdef, #ifndef, #else, or #elif 32
directives
Total number of operators and operands that can be 512
specified in an #if or #elif directive

Declarations Number of function definitions 512
Number of internal labels** 32767
Number of symbol table entries*® 24576
Total number of pointers, arrays, and functions that 16

qualify the basic type

Array dimensions 6

35
HITACHI

Table2.1 Limitsof the C Compiler (cont)
Classification Item Limit
Statements Nesting levels of compound statements 32
Nesting levels of statement in a combination of repeat 32
(while, do, and for) and select (if and switch)
statements
Number of goto labels that can be specified in one 511
function
Number of switch statements 256
Nesting levels of switch statements 16
Number of case labels 511
Nesting levels of for statements 16
Expressions Number of parameters that can be specified using a 63
function definition or a function call operation
Total number of operators and operands that can be About 500
specified in one expression
Standard library Number of files that can be opened at once in open 20

function

Notes: 1. For PC, the number of command line that can be compiled at one time is limited to 127

characters.

2. Aninternal label is internally generated by the C compiler to indicate a static variable
address, case label address, goto label address, or a branch destination address
generated by if, switch, while, for, and do statements.

3. The number of symbol table entries is determined by adding the following numbers:
Number of external identifiers
Number of internal identifiers for each function
Number of string literals
Number of initial values for structures and arrays in compound statements
Number of compound statements
Number of case labels
Number of goto labels

36

HITACHI

Section 2 Executing a C Program

This section covers object programs which are generated by the C compiler. In particular, this
section explains the items necessary for the linkage of the C program with an assembly program,
or when incorporating a program into an SH system.

2.1 Structure of Object Programs: This section discusses the characteristics of memory areas
used for C programs and standard library functions.

2.2 Internal Data Representation: This section explains the internal representation of data used
by aC program. Thisinformation is required when datais shared among C programs, hardware,
and assembly programs.

2.3 Linkage with Assembly Programs. This section explains the rules for variables and function
names that can be mutually referenced by multiple object programs. This section also discusses
how to use registers, and how to transfer parameters and return values when a C program calls a
function. Thisinformation is required for C program functions calling assembly program routines
or vice versa

Refer to respective hardware manuals for details on SH hardware.

37
HITACHI

21 Structure of Object Programs

This section discusses the characteristics of memory areas used by a C program or standard library
function in terms of the following items.

1. Section

Composed of memory areas which are alocated statically by the C compiler. Each section has
aname and type. A section name can be changed by the compiler option section.

2. Write Operation

Indicates whether write operations are enabled or disabled at program execution.
3. Initial Value

Shows whether there is an initial value when program execution starts.
4. Alignment

Restricts addresses to which datais allocated.

Table 2.2 shows the types and characteristics of those memory aress.

38
HITACHI

Table2.2

Memory Area Types and Characteristics

Memory

Area Section Section Write Initial

Name Name™ Type Operation Value Alignment Contents

Program P code Disabled Yes 4 bytes™ Stores machine

area codes.

Constant C data Disabled Yes 4 bytes Stores const

area data.

Initialized D data Enabled Yes 4 bytes Stores initial

data area value.

Non- B data Enabled No 4 bytes Stores data

initialized whose initial

data area values are not
specified.

Stack area @ — — Enabled No 4 bytes Required for
program
execution.
Refer to section
2.2 Dynamic
Area Allocation,
in part 111,
SYSTEM
INSTALLATION.

Heap area — — Enabled No — Used by a
library function
(malloc,
realloc, or
calloc). Refer to
section 2.2
Dynamic Area
Allocation, in
part Ill SYSTEM
INSTALLATION.

Notes: 1. Section name shown is the default generated by the C compiler when a specific name
is not specified by the compiler —section option.

2. Becomes 16 bytes when —align16 option is specified.

HITACHI

39

Example:

This program example shows the relationship between a C program and the sections

generated by the C compiler.

. Program area main(){...}
int a=1;
char b;
. Constant area C
const int c¢c=0;
mai n(){ .
Initialized data area a
; Non-initialized data area b
file.c
C program Areato be generated by the compiler and
datato be stored in it.
40

HITACHI

2.2 Internal Data Representation

This section explains the internal representation of C language datatypes. Theinternal data
representation is determined according to the following four items:

1

Size

Shows the memory size necessary to store the data.

Alignment

Restricts the addresses to which datais allocated. There are three types of alignment; 1-byte
alignment in which data can be allocated to any address, 2-byte alignment in which datais
allocated to an even byte address, and 4-byte alignment in which datais allocated to an address
indivisible by four.

Datarange

Shows the range of scalar-type data.

Data all ocation example

Shows how the elements of combined-type data are allocated.

41
HITACHI

221 Scalar-Type Data
Table 2.3 shows the internal representation of scalar-type datausedin C.

Table2.3 Internal Representation of Scalar-Type Data

Data Range
Size Alignment Minimum Maximum

Data Type (bytes) (bytes) Sign Value Value

char (signed 1 1 Used -27 (-128) 2" —1(127)

char)

unsigned char 1 1 Unused 0 2% — 1 (255)

short 2 2 Used —2" (-32768) 2" —1(32767)

unsigned short 2 2 Unused 0 2 — 1 (65535)

int 4 4 Used —2% (-2147483648) 2 -1
(2147483647)

unsigned int 4 4 Unused 0 22 -1
(4294967295)

long 4 4 Used 2% (—2147483648) 2% -1
(2147483647)

unsigned long 4 4 Unused 0 22 -1
(4294967295)

enum 4 4 Used —2% (-2147483648) 2 -1
(2147483647)

float 4 4 Used — + o0

double 8" 4 Used — + o

long double

Pointer 4 4 Unused 0 2% -1
(4294967295)

Note: The size of double type is 4 bytes if -double=float option is specified.

42
HITACHI

222 Combined-Type Data

This part explains the internal representation of array, structure, and union datatypes. Table 2.4
shows the internal data representation of combined-type data.

Table2.4 Internal Representation of Combined-Type Data
Data Type Alignment (bytes) Size (bytes) Data Allocation Example
Array Maximum array Number of array elements int a[10];
element alignment X element size Alignment: 4 bytes
Size: 40 bytes
Structure** Maximum structure Total size of members** struct {
member alignment int a, b;
}
Alignment: 4 bytes
Size: 8 bytes
Union Maximum union Maximum size of uni on {
member alignment member* int a,b;
}

Alignment: 4 bytes
Size: 4 bytes

HITACHI

43

In the following notes, arectangle indicates four bytes.

Note 1:
When allocating a member of a structure type, an empty areamay be created between a
member and the previous member to adjust the alignment of a data type of the member.

struct {
char a;
int b;}z;

z.b

When a structure has afour-byte alignment, and the last member ends at the first, second or
third byte, the remaining bytes are included in a structure type area.

struct {
int a;
char b;}x;
X.a

Note 2:
When a union has a four-byte alignment, and the maximum value of the member sizeisnot a
multiple of four, the remaining bytes up to amultiple of four are included in the union type
area.

uni on {
int a;
char b [7];}w

w.b[O]w.b[1]w.b[2]w.b[3]

w.b[4]w.b[5]w.b[6]

44
HITACHI

223 Bit Fields
A bit field isamember of astructure. This part explains how bit fields are allocated.
Bit field members: Table 2.5 shows the specifications of bit field members.

Table25 Bit Field Member Specifications

Item Specifications

Type specifier allowed for bit fields char, unsigned char, short, unsigned short, int,
unsigned int, long, and unsigned long

How to treat a sign when data is A bit field with no sign (unsigned is specified for

extended to the declared type** type): Zero extension*’

A bit field with a sign (unsigned is not specified for
type): Sign extension**

Notes: 1. To use a member of a bit field, data in the bit field is extended to the declared type.

One-bit field data with a sign is interpreted as the sign, and can only indicate 0 and —1.

To indicate 0 and 1, bit field data must be declared with unsigned.
2. Zero extension: Zeros are written to the high-order bits to extend data.

3. Sign extension: The most significant bit of a bit field is used as a sign and the sign is
written to all higher-order bits to extend data.

HITACHI

45

Bit field allocation: Bit field members are allocated according to the following five rules:

1

46

Bit field members are placed in an area beginning from the left, that is, the most significant bit.

Example:

31 0
struct bi{ = [xaixb: |
int a:2; Yy
int b:3;
X

Consecutive bit field members having type specifier of the same size are placed in the same
areaas much as possible.

Example: - o
struct bl{ =3 y.ai y.bi I
| ong a: 2; Yy
unsi gned int b:3;
by;

Bit field members having type specifier with different sizes are allocated to the following
areas.

Example: 31 0
struct bi{ [za ! |
int a:b; Y
= 5
char b: 4; :
}Z; | zb \ |

If the number of remaining bitsin the areais less than the next bit field size, though type
specifier indicate the same size, the remaining areais not used and the next bit field is
allocated to the next area.

Example: 31 24 16
struct b2{ = va /i vb /I
char a:5; 5 4
char b: 4;
by

HITACHI

5. If abit field member with a bit field size of 0 is declared, the next member is allocated to the

next area

Example:

struct b2{ N ;24, X
char a:5; = ua—//\ij/l
char :0; 5 3
char c: 3;

w,

a7
HITACHI

224 Memory Allocation of Little Endian
Memory is alocated to a data array using alittle endian as follows.

One-bytedata (char and unsigned char type): The order of bitsin one-byte datafor abig
endian and alittle endian is the same.

Two-byte data (short and unsigned short type): The upper byte and the lower byte will be
reversed in two-byte data for a big endian and alittle endian.

Example: When a two-byte data 0x1234 is alocated in an address 0x100:

big endian: address 0x100: 0x12
address 0x101: 0x34

little endian: address 0x100: 0x34
address 0x101: 0x12

Four-byte data (int, unsigned int, long, unsigned long, and float type): The upper byte and the

lower byte will be reversed in four-byte data for abig endian and alittle endian.

Example: When afour-byte data 0x12345678 is alocated in an address 0x100:

big endian: address 0x100: 0x12

Eight-byte data (double type): The order of eight-byte datawill be reversed for abig endian and

alittle endian.

address 0x101: 0x34
address 0x102: 0x56
address 0x103: 0x78

little endian: address 0x100: 0x78

address 0x101: 0x56
address 0x102: 0x34
address 0x103: 0x12

Example: When afour-byte data 0x123456789abcdef is allocated in an address 0x100:

big endian: address 0x100: 0x01

48

address 0x101: 0x23
address 0x102: 0x45
address 0x103: 0x67
address 0x104: 0x89
address 0x105: Oxab
address 0x106: Oxcd
address 0x107: Oxef

HITACHI

little endian: address 0x100: Oxef

address 0x101: Oxcd
address 0x102: Oxab
address 0x103: 0x89
address 0x104: 0x67
address 0x105:; 0x45
address 0x106:; 0x23
address 0x107: 0x01

Combined-Type Data: Members of combined-type datawill be allocated in the same way as that
of abig endian. However, the order of byte data of each member will be reversed according to the

rule of datasize.
Example: When the following function exists in address 0x100:

struct {
short a;
int b;
}z= {0x1234, 0x56789abc};

big endian: address 0x100: 0x12 little endian: address 0x100:
address 0x101: 0x34 address 0x101.:
address 0x102: empty area address 0x102:
address 0x103: empty area address 0x103:
address 0x104: 0x56 address 0x104:
address 0x105:; 0x78 address 0x105:
address 0x106: 0x9a address 0x106:
address 0x107: Oxbc address 0x107:

0x34
0x12
empty area
empty area
Oxbc
0x%a
0x78
0x56

Bit field: Bit fieldswill be allocated in the same way as a big endian. However, the order of byte

datain each areawill be reversed according to the rule of data size.

Example: When the following function exists in address 0x100:

struct {
| ong a: 16;
unsi gned int b:15;
short c:5
ty={1 1, 1}
big endian: address 0x100: 0x00 little endian: address 0x100:
address 0x101: 0x01 address 0x101:
address 0x102: 0x00 address 0x102;
address 0x103: 0x02 address 0x103:
address 0x104: 0x08 address 0x104:
address 0x105: 0x00 address 0x105:
address 0x106: empty area address 0x106:
address 0x107: empty area address 0x107:

HITACHI

0x02
0x00
0x01
0x00
0x00
0x08
empty area
empty area

49

2.3 Linkage with Assembly Programs

The C compiler supportsintrinsic functions such as access to the SH microcomputer registers as.
Refer to section 3.2, Intrinsic Functions, in part 11, C PROGRAMMING, for details on intrinsic
functions. However, processes that cannot be written in C, such as the multiply and accumulate
operation using the MAC instruction, should be written in assembly language and afterwards
linked to the C program.

This section explains two key items which must be considered when linking a C program to an
assembly program:

* Externa identifier reference
¢ Function cal interface

231 External Identifier Reference

Functions and variable names declared as external identifiersin a C program can be referenced or
modified by both assembly programs and C programs. The following are regarded as external
identifiers by the C compiler:

e A global variable which has a storage class other than static
e A variable name declared in afunction with storage class extern
¢ A function name whose storage class is other than static

When variable names which are defined as external identifiersin C programs, are used in
assembly programs, an underscore character (_) must be added at the beginning of the variable
name (up to 250 characters without the leading underscore).

50
HITACHI

Example 1. Anexternal identifier defined in an assembly program is referenced by a C program

¢ |nanassembly program, symbol names beginning with an underscore character () are
declared as external identifiers by an .EXPORT directive.

¢ InaC program, symbol names (with no underscore character () at the head) are declared as
external identifiers.

Assembly program (definition) C program (reference)

.EXPORT _a, _b extern int a,b;
. SECTI ON D, DATA, ALl G\N=4
a. .DATA.L 1

_b: .DATA L 1 f()
. END {
a+=b;
}

Example 2: Anexternal identifier defined in a C program is referenced by an assembly program

¢ InaC program, symbol names (with no underscore character () at the head) are defined as
external identifiers.

e Inan assembly program, external references to symbol names beginning with an underscore
character () are declared by an .IMPORT directive.

C program (definition) Assembly program (reference)
int a; AMPORT _a
. SECTI ON P, CODE, ALI G\=2
MOV. L A a, Rl
MOV. L @r1, RO
ADD #1, RO
RTS
MOV. L RO, @rl
. ALI GN 4
A a .DATAL _a
. END

51
HITACHI

2.3.2 Function Call Interface

When either a C program or an assembly program calls the other, the assembly programs must be
created using rulesinvolving the following:

Stack pointer

Allocating and deallocating stack frames

Registers

Setting and referencing parameters and return values

A w NP

Stack Pointer: Valid data must not be stored in a stack area with an address lower than the stack
pointer (in the direction of address H’ 0), since the data may be destroyed by an interrupt process.

Allocating and Deallocating Stack Frames: In afunction cal (right after the JSR or the BSR
instruction has been executed), the stack pointer indicates the lowest address of the stack used by
the calling function. Allocating and setting data at addresses greater than this one must be done by
the calling function.

After the called function deallocates the area it has set with data, control returnsto the calling
function usually with the RTS instruction. The calling function then deall ocates the area having a
higher address (the return value address and the parameter areq).

After function call and after
control returns from a function

* Lower address

: Area allocated by the called function

sp —» (during function call)

Return value address : Area deallocated by the called function
(after control returns from a function)

|:| : Area deallocated by the calling function

Parameter area

4 Upper address

Figure2.1 Allocation and Deallocation of a Stack Frame

52
HITACHI

Registers. Some registers change after afunction call, while some do not. Table 2.6 shows how
registers change according to the rules.

Table2.6

Item

Registers Used in a Function

Ruleson Changesin Registers After a Function Call

Notes on Programming

Registers whose
contents may change

ROto R7, FROto FR11*,
FPUL*, and FPSCR*

If registers used in a function
contain valid data when a
program calls the function, the
program must push the data onto
the stack or register before
calling the function. The data in
registers used in called function
can be used freely without being
saved.

Registers whose
contents may not
change

R8 to R15, MACH, MACL, PR,
and FR12 to FR15*

The data in registers used in
functions is pushed onto the
stack or register before calling
the function, and popped from
the stack or register only after
control returns from the function.
Note that data in the MACH and
MACL registers are not
guaranteed if the option
macsave=0 is specified.

Note: Indicates a register for SH3E floating point.

HITACHI

53

The following examples show the rules on register changes.

54

A subroutine in an assembly program is called by a C program

Assembly program (called program)

. EXPORT _sub

. SECTI ON P, CODE, ALI G\=4
_sub: MOV. L R14, @ R15

MOV. L R13, @ R15

ADD #- 8, R15

ADD #8, R15

MOV. L @R15+, R13

RTS

MOV. L @r15+, R14

. END

C program (calling program)

Data in those registers needed by the called
function is pushed onto the stack.

Function processing

(Since data in registers RO to R7 is pushed onto
L a stack by the calling C program, the assembly

program can use them freely without

having to save them first.)

J) Register data is popped from the stack.

f()
{

}

sub();

extern void sub();

HITACHI

¢ A functioninaC programis called by an assembly program
C program (called program)

voi d sub()
{

Assembly program (calling program)

_INPORT _sub The called function name pr'efixgd with () is
. SECTI ON P, CODE, ALI G\N=2 } declared by the .IMPORT directive.

Store the PR register (return address storage
register) when calling the function.

,\S/-[;\S/' IE ;1R @ ?1;15 } If registers RO to R7 contain valid data,
I\/D\/. RS' gz’) the data is pushed onto the stack or stored
NOV. L A sub, RO in unused registers.

JSR @ro Calls function sub.

NOP

LDS. L @R15+, PR
The PR register is restored.

A sub: .DATA. L _sub Address data of function sub.
. END

55
HITACHI

Setting and Referencing Parameters and Return Values. This section explains how to set and
reference parameters and return values. The ways of setting and referencing parameters and return
values for each function depend on whether or not the type of the parameter or the return value is
declared explicitly. A prototype function declaration is used to declare parameters and returns
values explicitly.

This section first explains the general rules concerning parameters and return values, and then how
the parameter areais allocated, and how areas are established for return values.

e General rules concerning parameters and return values
0 Passing parameters

A function is called only after parameters have been copied to a parameter areain registers
or on the stack. Since the calling function does not reference the parameter area after
control returnsto it, the calling function is not affected even if the called function modifies
the parameters.

0 Ruleson type conversion

Type conversion may be performed automatically when parameters are passed or areturn
valueisreturned. The following explains the rules on type conversion.

Type conversion of parameters whose types are declared:

Parameters whose types are declared by prototype declaration are converted to the
declared types.

Type conversion of parameters whose types are not declared:

Parameters whose types are not declared by prototype declaration are converted
according to the following rules.

char, unsigned char, short, andunsigned short type parameters are converted to int
type parameters.

float type parameters are converted to doubletype parameters.
Types other than the above cannot be converted to another type.
Return value type conversion:

A return value is converted to the data type returned by the function.

56
HITACHI

Example:

(1) long f();
long f()
{ float x;
return x; <«—— Thereturnvaueisconverted to long by a
prototype declaration.

}
(2) wvoidp (int,...);
()
{ char c;
P(1.0, c);
} c is converted to int because atypeis not

declared for the parameter.
1.0is converted to int because the type of
the parameter isint.

¢ Parameter area allocation

Parameters are allocated to registers, or when thisisimpossible, to a stack parameter area.
Figure 2.2 shows the parameter area alocation. Table 2.7 lists rules on general parameter area
allocation.

Stack

Lower
address
SP -
Parameter storage registers
Return value address 9 9
R4 FR4
R5 FR5
Parameter
area R6 FR6
R7 FR7
FR8
FR9
7
,j Parameter area FR10
FR11

(When CPU is SH3E)

Figure2.2 Parameter Area Allocation

57
HITACHI

Table2.7 General Ruleson Parameter Area Allocation

Parameters Allocated to Registers

Parameter Parameters
Storage Registers Target Type Allocated to a Stack
R4 to R7 char, unsigned char, short, (1) Parameters whose types are other

unsigned short, int, unsigned

int, long, unsigned long, float . .
(when CPU is not SH3E), and (2) Parameters of a function which has

than target types for register passing

pointer been declared by a prototype
declaration to have variable-number
parameters™
FR4 to FR11" float (when CPU is SH3E) (3) Other parameters are already

allocated to R4 to R7.

Notes: 1. Indicates a register for SH3E floating point.

2. If a function has been declared to have variable-number parameters by a prototype
declaration, parameters which do not have a corresponding type in the declaration and
the immediately preceding parameter are allocated to a stack.

Example:
int f2(int,int,int,int,...);

f2(a,b,c, X,y, z2); «——X,Y, and z are allocated to a stack.

58
HITACHI

e Parameter allocation
O Allocation to parameter storage registers

Following the order of their declaration in the source program, parameters are allocated to
the parameter storage registers starting with the smallest numbered register. Figure 2.3
shows an example of parameter allocation to registers.

f(char a,int b)
{

31 87 0

R4 Not guaranteed a

R5 b

Figure2.3 Exampleof Allocation to Parameter Registers

O Allocation to a stack parameter area

Parameters are allocated to the stack parameter area starting from lower addresses, in the
order that they are specified in the source program.

Note: Regardless of the alignment determined by the structure type or union type, parameters are
allocated using 4-byte alignment. Also, the area size for each parameter must be a
multiple of four bytes. Thisis because the SH stack pointer isincremented or
decremented in 4-byte units.

Refer to appendix B, Parameter Allocation Example, for examples of parameter alocation.

e Return value writing area

Thereturn value is written to either aregister or memory depending onitstype. Refer to table
2.8 for the relationship between the return value type and area.

When afunction return value is to be written to memory, the return value is written to the area
indicated by the return value address. The caller must allocate the return value setting areain
addition to the parameter area, and must set the address of the former in the return value
address area before calling the function (see figure 2.4). The return value is not written if its
typeisvoid.

59
HITACHI

Table2.8 Return Value Typeand Setting Area

Return Value Type

Return Value Area

char, unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, float, and pointer

RO: 32 bits

(The contents of the upper three bytes of
char, or unsigned char and the

contents of the upper two bytes of short
or unsigned short are not guaranteed.)

However, when the —rtnext option is
specified, sign extension is performed
for char or short type, and zero
extension is performed for unsigned
char or unsigned short type.

FRO: 32 bits

(When cpu is SH3E, and the return
value is float type.)

double, long double, structure, union

Return value setting area (memory)

Stack

SP
Return value

/1\ Lower address

address area

Parameter
area

\l/ Upper address

Return value
setting area
(allocated by the
calling side)

Figure2.4 Return Value Setting Area Used When Return Value IsWritten to Memory

60
HITACHI

Section 3 Extended Specifications

This section describes C compiler extended specifications:

interrupt functions

intrinsic functions

section change function
single-precision floating-point library
Japanese description in string literals
inline function

inline expansion in assembly language
specifying two-byte address variable
specifying GBR base variable
register save and recovery control
global variable register allocation

31 Interrupt Functions
A preprocessor directive (#pragma) specifies an external (hardware) interrupt function. The

following section describes how to create an interrupt function. Since the interrupt operation of
SH3 and SH3E differ from that of the SH1 and SH2, interrupt handlers are necessary.

311 Description

#pragma i nterrupt (function name [(interrupt specifications)]
[, function name [(interrupt specifications)]])

HITACHI

61

Table 2.9 lists interrupt specifications.

Table2.9 Interrupt Specifications

Item Form Options Specifications
Stack switching sp= <variable> | The address of a new stack is specified with a
specification &<variable> variable or a constant.
| <constant> <variable>: Variable value
&<variable>: Variable (pointer type) address
<constant>: Constant value
Trap-instruction tn= <constant> Termination is specified by the TRAPA instruction

return
specification

<constant>: Constant value
(trap vector number)

62

HITACHI

312 Explanation

#pragmainterrupt declares an interrupt function. An interrupt function will preserve register
values before and after processing (all registers used by the function are pushed onto and popped
from the stack when entering and exiting the function). The RTE instruction directs the function
to return. However, if the trap-instruction return is specified, the TRAPA instruction is executed
at the end of the function. Aninterrupt function with no specificationsis processed in the usual
procedure. The stack switching specification and the trap-instruction return specification can be
specified together.

Example:
extern int STK 100];

int *ptr = STK + 100;
#pragna interrupt (f(sp=ptr, tn=10))

@ (b)
Explanation:
(a) Stack switching specification: ptr is set as the stack pointer used by interrupt
function f.

(b) Trap-instruction return specification: After the interrupt function has
completed its processing, TRAPA #H'10 is executed. The SP at the beginning
of trap exception processing is shown in figure 2.5. After the previous PC and
SR (status register) are popped from the stack by the RTE instruction in the
trap routine, control is returned from the interrupt function.

63
HITACHI

Lower address ¢

ptr —B=

Upper address ¢

Lower address
Sp

Immediately after interrupt During interrupt function

processing
STK[0] STKI0]
STK[99 STK[99
[99] g [99]
Previous PC Previous PC
Previous SR Previous SR

Upper address ¢

Just after the interrupt function
has completed processing
(Immediately before the TRAPA
instruction is issued)

sp —

Previous PC

Previous SR

64

Figure2.5 Stack Processing by an Interrupt Function

HITACHI

3.1.3 Notes

1. Only glaobal functions can be specified for an interrupt function definition and the storage class
specifier must be extern. Even if storage class staticis specified, the storage classis handled
as extern.

The function must return void data. Thereturn statement cannot have areturn value. |If
attempted, an error is output.

Example:
#pragma i nterrupt (f 1(sp=100), f 2)
Void FL(){. ..} rrrrrrr @
int f20){...} (b)

Description: (a) isdeclared correctly.
(b) returns data that is not void, thus (b) is declared incorrectly. An error
is output.

2. A function declared as an interrupt function cannot be called within the program. If attempted,
an error isoutput. However, if the function is called within a program which does not declare
it to be an interrupt function, an error is not output but correct program execution will not be
guaranteed.

Example (An interrupt function is declared):
#pragma i nterrupt (f1)
void f1(void){...}
int f200{ f10);} @

Description: Function f1 cannot be called in the program because it is declared as an
interrupt function. An error is output at (a).

Example (An interrupt function is not declared):
int f1();

int f20){ f1();} (b)
Description: Because function f1 is not declared as an interrupt function, an object for extern

int f1(); isgenerated. If function f1 is declared as an interrupt function in
another file, correct program execution cannot be guaranteed.

65
HITACHI

3.2 Intrinsic Functions

The C compiler provides the intrinsic functions for the SH microcomputer, which (functions) are
described below.

321 Intrinsic Functions
The following functions can be specified by intrinsic functions.

e Setting and referencing the status register

e Setting and referencing the vector base register

¢ 1/O functions using the global base register

e System instructions which do not compete with register sourcesin C

322 Description

<machine.h>, <umachine.h>, or <smachine.h> must be specified when using intrinsic functions.

323 Intrinsic Function Specifications

Table 2.10 listsintrinsic functions.

66
HITACHI

Table2.10

Intrinsic Functions

No Item Function Specification Description
1 Status Setting the status void set_cr(int cr) Sets cr (32 bits) in the
register register status register
(SR)
2 Referencing to the int get_cr(void) Refers to the status
status register register
3 Setting the interrupt ~ voi d set _i mask(int mask) Sets mask (4 bits) in
mask the interrupt mask (4
bits)
4 Referencing to the i nt get_i mask(voi d) Refers to the interrupt
interrupt mask mask (4 bits)
5 Vector Setting the vector voi d set_vbr(voi d **base) Sets **base (32 hits)
base base register in VBR
6 register Referencing to the voi d **get _vbr (voi d) Refers to VBR
(VBR) vector base register
7 Global Setting GBR voi d set_gbr(void *base) Sets *base (32 bits) in
base GBR
8 Eggésé‘;r Referencing to GBR voi d *get _gbr (voi d) Refers to GBR
9 Referencing to unsi gned char Refers to byte data (8
GBR- based byte gbr_read_byte(int offset) bits) at the address
indicated by adding
GBR and the offset
specified
10 Referencing to unsi gned short Refers to word data
GBR- based word gbr_read_word(int offset) (16 bits) at the
address indicated by
adding GBR and the
offset specified
11 Referencing to unsi gned | ong Refers to long word

GBR- based long
word

gbr_read_l ong(int offset)

data (32 bits) at the
address indicated by
adding GBR and the
offset specified

HITACHI

67

Function

Intrinsic Functions (cont)

Specification

Description

Setting GBR-based
byte

void gbr_wite_byte
(int offset,
unsi gned char dat a)

Sets data (8 bits) at
the address indicated
by adding GBR and
the offset specified

Setting GBR-based
word

void gbr_wite_word
(int offset,
unsi gned short dat a)

Sets data (16 bits) at
the address indicated
by adding GBR and
the offset specified

Setting GBR-based
long word

voi d gbr_write_| ong
(int offset,
unsi gned | ong dat a)

Sets data (32 bits) at
the address indicated
by adding GBR and
the offset specified

AND of GBR base

void gbr_and_byte
(int offset,
unsi gned char mask)

ANDs mask with the
byte data at the
address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address

OR of GBR base

void gbr_or_byte
(int offset,
unsi gned char nask)

ORs mask with the
byte data at the
address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address

XOR of GBR base

void gbr_xor_byte
(int offset,
unsi gned char mask)

XORs mask with the
byte data at the
address indicated by
adding GBR and the
offset specified, and
then stores the result
at the same address

Table 2.10

No Iltem

12 Global
base
register
(GBR)
(cont)

13

14

15

16

17

68

HITACHI

Table2.10

Intrinsic Functions (cont)

Note: The instruction is
prefetched only when the
compiler option cpu =sh3 s
specified.

No Item Function Specification Description
18 Global TEST of GBR base int gbr_tst_byte ANDs mask with the
base (int offset, byte data at the
register unsi gned char nask) address indicated by
(GBR) adding GBR and the
(cont) offset specified, and
checks if the byte
data at the offset from
GBR is 0 or not, and
sets the result in the T
bit
19 Special SLEEP instruction voi d sl eep(voi d) Expands the SLEEP
instruc- instruction
tions
20 TAS instruction int tas(char *addr) Expands TAS.B
@addr
21 TRAPA instruction int trapa(int trap_no) Expands TRAPA
#trap_no
22 Special OS system call int trapa_svc(Enables executing HI-
instruc- int trap_no, int code, SH7 (Hitachi
tions typel paral, type2 para2, Industrial Realtime
(cont) type3 para3, type4d parad) Operating System
trap-no: Trap number SH7000 Series) and
code: Function code other OS system
para 1 to 4:Parameter (0 to 4 calls. When
variables) trapa_svc is
type 1 to 4: Parameter type: executed, code is
general integer or pointer type specified in RO, and
para 1 to para4 in R4
to R7, respectively.
Then, TRAPA
#trap_no is executed.
23 PREF instruction void prefetch (void *p) If the instruction is

prefetched, an area
indicated by the
pointer (16-byte data
from (int)p&OxfffffffO)
is written to the cache
memory. This does
not affect any
programming logical
operation.

HITACHI

69

Table2.10 Intrinsic Functions (cont)
No Item Function Specification Description
24 Mutiply and MAC.W int macw(A multiply and
accumulate instruction short *ptrl, short *ptr2, accumulate operation
operation unsi gned int count) intrinsic function
multiplies and
int macw (accumulates contents
short *ptrl, short *ptr2, of two data tables.
unsi gned int count, Example:
unsi gned int nask) short thl1[]=
ptrl: Start address of data to {al, a2, a3, a4};
be multipled or short thl2[]=
accumulated {b1, b2, b3, b4};
ptr2: Same as above In this case,
count: Number of times the macw(tbl1, tbl2, 3)
operation is performed calculates al*bl
mask: Address mask that +a2*b2+a3*b3. Using
correspond to the ring a ring buffer
buffer
25 MAC.L int macl (function, tbl2 can_be
instruction int *ptrl, int *ptr2, calculated recursively.
unsi gned int count) The number of
calculation times is 2".
int macl | (Example: o
int *ptrl, int*ptr2, When the data size is
unsi gned int count, two bytes an_d the ring
unsi gned int nask) buffer mask is four
The parameter specification is the ~ PYtes (Oxfffffftb or up
same as those of No. 24. to 0x4), macwl(tbl1,
Note: macl and macll can be used P12, 4. Oxfffffffb) is
only when the compiler option calculated as
cpu =sh2, sh3, orsh3eis al*bl+az*b2+a3*bl+
specified. ad*b2.
70

HITACHI

324 Notes

1. The offsets (excluding No. 15 to 18) and masks (excluding No.3) shown in table 2.10, Intrinsic
Functions, must be constants.

2. The specification range for offsetsis +255 bytes when the access size is shown as a byte, +510
bytes when the access size is shown as aword, and +1020 bytes when the access size is shown
asalong word.

3. Maskswhich can be specified for performing logical operations (AND, OR, XOR, or TEST)
on alocation relative to GBR (global base register) must be within the range of 0 to +255.

4. AsGBRisacontrol register whose contents are not preserved by al functionsin this C
compiler, take care when changing GBR settings.

5. The multiply and accumul ate operation’sinstrinsic function does not check for parameters.
Therefore, keep the following in mind:

a. Tablesindicated by ptrl and ptr2 must be aligned to sizesin 2 bytes and 4 bytes,
respectively.

b. Tablesindicated by ptr2 in macwl and macwll must be aligned to the size of the ring buffer
mask x 2.

71
HITACHI

3.25

#i ncl
#def i
#def i
#def i
#def i
#def i
#def i

Example

ude <machi ne. h>

ne

ne

ne

ne

ne

ne

struct{

char

char

char

short

i nt

i nt

}tabl

e;

CDATAL1 0O
CDATA2 1
CDATA3 2
SDATAL 4
| DATAL 8
| DATA2 12

cdat al;
cdat a2;
cdat a3;
sdat al;
i dat al;
i dat a2;

void f();

void f()

{

set_gbr(&table);

gbr_write_byte(CDATA2,

gbr_write_l ong(

| DATAZ2,

/* offset
/* of fset
/* offset
/* of fset
/* offset

/* of fset

10);
100) ;

i f(gbr_read_byte(CDATA2) != 10)
gbr_and_byt e(CDATA2, 10);

gbr_or_byte(CDATA2, O0xOF);

sl eep();

72

12

/*
/*
/*
/*

/*
/*
/*
/*
/*
/*

*/
*/
*/
*/
*/
*/

Set the start address of table to
GBR.

Set 10 to table.cdata2.

Set 100 to table.idata2.

Refer to table.cdata2.

AND 10 and table.cdata2, and set
it in table.cdata2.

OR OxOF and tabl e.cdata2, and set
it in table.cdata2.

Expand to the sleep instruction

HITACHI

*/
*/
*/
*/

*/
*/
*/
*/
*/
*/

Effective Use of Intrinsic Functions:
1. Allocate frequently accessed object to memory and set the start address of the object to GBR.

2. Instep 1., byte data frequently used in logical operations should be declared within 128 bytes
of the start address of the structure. Asaresult, the following instructions can be reduced: start
address load instruction necessary for structure accessing and load/store instructions necessary
for performing logical operation.

3.26 Dividing <machine.h>
<machine.h> is divided as follows to correspond to the SH3 execution mode:

1. <machine.h>: Overal intrinsic functions
2. <smachine.h>: Intrinsic functions that can be used in the privilege mode
3. <umachine.h>; Intrinsic functions except <smachine.h>:

73
HITACHI

3.3 Section Change Function

A section name to be output in a C program by the compiler can be changed using #pragma
section. By using this section change function, you do not need to divide filesin units of functions
or variables to allocate addresses, which was required previously. The following explains more
details on this function.

331 Description

#pragma section name | value
<source program>
#pragma section

332 Explanation

Specify a section name using #pragma section name or #pragma section value. A section after a
declaration in a source program will be P section name + name (numeric value), D section name +
name (numeric value), C section name + name (humeric value) and, B section name + name
(numeric value). A default section name becomes valid after #pragma section is declared.

3.3.3 Notes

1. #pragma section must be specified outside the function declaration.
2. A maximum of 64 section names can be declared in onefile.

334 Example

#pragna section abc

int a; /* ais allocated to section Babc. */
extern const int c=1; /* cis allocated to section Cabc. */
f() { /* f is allocated to section Pabc. */
a=c;
}
#pragna section /* bis allocated to section B. */
int b; /* gis allocated to section P. */
a() {
b=c;
}

In the above example, when the compile option section = P = PROG is specified, f and g are
allocated to section PROGabc and PROG, respectively.

74
HITACHI

34 Single-Precision Floating-Point Library
A single-precision floating-point library (mathf.h) can be used in addition to an ANSI standard

floating-point library (math.h). The single-precision floating-point library consists of functions
listed in table 2.11.

341 Description

A suffix f is added to a double-precision ANSI standard library function nameto be asingle-
precision floating point library function name. If a parameter or return type is double or pointer to
adouble-type, it will be float or pointer to float, respectively. Other specifications are the same
asthose of the ANSI standard C library.

34.2 Notes

Before using this library, be sure to declare #include<mathf.h> and #include<math.h>.

75
HITACHI

Table2.11

Function Name

Function List of Single-Precision Floating-Point Library

Description

float acosf (float x)

Anti cosine: acos x

float asinf (float x)

Anti sine: asin x

float atanf (float x)

Anti tangent: atan x

float atan2f (float y, float x)

Anti tangent of a result given by division: atan (x / y)

float cosf (float x)

Cosine: cos x

float sinf (float x)

Sine: sin x

float tanf (float x)

Tangent: tan x

float coshf (float x)

Hyperbolic cosine: cosh x

float sinhf (float x)

Hyperbolic sine: sinh x

float tanhf (float x)

Hyperbolic tangent: tanh x

float expf (float x)

Exponential function: e

float frexpf (float X, int *p)

Divided into 0.5 and 1.0, and the square of two and multiplication:
suppose result=frexp (x, p), x=2*p x result (0.5 < result < 1.0)

float Idexpf (float x, int i)

Square of two and multiplication: x X 2'

float logf (float x)

Natural logarithm: log x

float log10f (float x)

Common logarithm that has 10 as a base: log o«

float modff (float x, float *p)

Suppose result = modff (x, y),
x is divided into integer *p and floating point result

float powf (float x, float y)

Square: X’

float sqrtf (float x)

Positive square root: Vx

float ceilf (float x)

Result given by rounding up numbers after a decimal point of x

float fabsf (float x)

Absolute value: | x |

float floorf (float x)

Result given by rounding down numbers after a decimal point of x

float fmodf (float x, float y)

Reminder after division
Suppose result = fmodf (x, y) and g quotient,
X =(q xy + result

76

HITACHI

35 Japanese Description in String Literals

Japanese can be included in string literals. Select a character code of euc or §isoption. When
this option is omitted, the default setting is specified as table 2.12.

Table2.12 Default Settings of Japanese Code

Host Computer Default Settings
SPARC EUC

HP9000 / 7000 Shift JIS

IBM-PC Shift JIS

Note: The character code in the object program will be the same as that in the source program.
Character constants cannot be specified in Japanese.

HITACHI

77

3.6 Inline Function

A function name to expand at compilation is specified.

36.1 Description

#pragmainline (function name, ...)

3.6.2 Explanation

A function specified by #pragma inline or a function with specifier inline will be expanded where
the function is called. However, afunction will not be expanded where the function iscalled in
the following cases:

« afunction definition exists before the #pragma inline specification
e afunction has aflexible parameter

e aparameter addressis referenced in afunction

e an address of afunction to be expanded is used to call afunction

3.6.3 Notes

1. Specify #pragmainline before defining afunction.

2. When a source program file includes an inline function description, be sure to specify static
before the function declaration because an external definition is generated for afunction
specified by #pragmainline. If static is specified, an external definition will not be created.

364 Example

Source Program Inline expansion Image
#pragne inline(func) int x;
int func (int a, int b) mai n()
{ {
return (atb)/2; int func_result;
} {
int x; int a_1l =10, b_1 = 20;
mai n() func_result = (a_1+b_1)/2;
{ }
x = func(10, 20); x = func_result;
} }

78
HITACHI

3.7 Inline Expansion in Assembly L anguage

A function that is written in an assembly language is expanded where the functionis called in a
C sourcefile.

371 Description

#pragmainline_asm (function name|(size=numeric value)], ...)

3.7.2 Explanation

Parameters of afunction that is written in an assembly language are referenced from an inline_asm
function because they are stacked or stored in registers in the same way as general function calls.
A return value of afunction that is written in an assembly should be set in RO.

The specification (size=numeric value) specifies the size of the assembler inline function.

373 Notes

1. Specify #pragmainline_asm before defining a function.

2. When a source program file includes an inline function description, be sure to specify static
before the function declaration because an external definition is generated for afunction
specified by #pragmainline_asm. If static is specified, an externa definition will not be
created.

3. Besureto uselocal labelsin afunction written in an assembly language.

4. When using registers R8 to R15 in afunction written in an assembly language, the contents of
these registers must be saved and recovered at the start and end of the function.

5. Do not use RTS at the end of afunction written in an assembly language.

6. When using this function, be sure to compile programs using the object type specification
option code=asmcode.

7. When specifying a number by (size=numeric value), specify a number larger than the actua
object size. If avalue smaller than the actual object sizeis specified, correct operation will not
be guaranteed. If afloating point or a numeric value below 0 is specified, an error will occur.

79
HITACHI

374 Example
Source Program Output Result (partial)
#pragma i nline_asn(rot1)
int rotl (int a) _main ;function nain
{ ;frame size = 4
ROTL R4 MOV. L Rl4, @R15
MV R4, RO MOV. L L220+2, R14; _x
} MOV. L L220+6, R3 ; H 55555555
int x; MOV. L R3, @4
mai n() MOV R3, R4
{ BRA L219
X = 0x55555555; NCP
X =rotl(x); L220:
} .RES. W 1
.DATA L X
.DATA L H 55555555
L219:
ROTL R4
MV R4, RO
CALLGN 4
MOV. L RO, @14
RTS
MOV. L @15+, R4
.SECTION B, DATA ALIG\4
X ;static: x
.RES. L 1
. END

80

HITACHI

3.8 Specifying Two-byte Address Variables

A variable can be allocated to a two-byte address area (H’ 0000000 to H’ 0007FFF and H’ FFF8000
to H' FFFFFFF).

381 Description

#pragma abs16 (identifier, ...)

382 Explanation

A variable specified using an identifier or an address of afunction is treated as
two-byte data. Then, program size can be reduced.

3.83 Notes

1. Directive #pragma absl6 cannot be used to specify an automatic object.

2. Variables declared in directive #pragma absl6 must be allocated in addresses H’ 0000000 to
H'’ 0007FFF or H’' FFF8000 to H' FFFFFFF.

81
HITACHI

3.9 Specifying GBR Base Variables

A variable is accessed using a GBR register with an offset value.

391 Description

#pragma gbr_base (variable name, ...)
#pragma gbr_basel (variable name, ...)

392 Explanation

Variables specified by #pragma gbr_base and #pragma gbr_basel are allocated to sections $GO
and $G1, respectively. Thedirective #pragmagbr_base is used when the variable islocated in an
offset of 0 to 127 bytes from the address specified by the GBR register. The directive #pragma
gbr_basel is used when the variable is located in an offset of 128 or more bytes from the address
specified in the GBR register, that is, when avariable isin arange that cannot be accessed by
#pragma gbr_base. An offset value is 255 bytes at maximum for achar or unsigned char type,
510 bytes at maximum for a short or unsigned short, and 1020 bytes at maximum for an int,
unsigned, long, unsigned long, float, or double type. Based on the above specification, the
compiler generates an object program in a GBR relative addressing mode that is optimized
according to variable reference and settings. The compiler also generates an optimized bit
instruction in the GBR indirect addressing to char or unsigned type datain the $GO section.

3.9.3 Notes

1. If thetotal program size after linking with section $GO0 exceeds 128 bytes, the correct operation
will not be guaranteed. In addition, if there is data that has an offset value that exceeds those
specified above for #pragma gbr_basel in section $G1, correct operation will not be
guaranteed.

2. Section $G1 must be allocated immediately after 128 bytes of section $G0 when linking.

3. When using this function, be sure to set the start address of section $G0 in the GBR register at
the beginning of program execution.

82
HITACHI

3.10 Register Save and Recovery Control

Register contents of afunction can be saved or recovered.

3.10.1 Description

#pragma noregsave (function name, ...)
#pragma noregalloc (function name, ...)
#pragma regsave (function name, ...)

3.10.2 Explanation

1

Functions specified by #pragma noregsave do not save or allow the recovery of the contents of
registers to guarantee their values (see table 2.6) at the beginning or end of a function.
Functions specified by #pragma noregalloc do not save or allow the recovery of the contents of
registers to guarantee their values at the beginning or end of afunction, but do generate an
object before or after the function call. Registers R8 to R14 are not allocated to the object.
Functions specified by #pragma regsave do not save or allow the recovery of the contents of
registers to guarantee their values at the beginning or end of afunction, but do generate an
object before or after the function call. Registers R8 to R14 are not allocated to the object.
#pragma regsave and #pragma noregalloc can specify the same function at the sametime. In
this case, the contents of registers R8 to R14 that guarantee their values are saved and
recovered at the beginning or end of afunction, and generate an object before or after the
function call. Registers R8 to R14 are not allocated to the object.

Functions specified by #pragma noregsave can be used in the following conditions:

a. A functionisfirst activated and is not called from any other function.

b. A functioniscalled from afunction that is specified by #pragma regsave.

c. A functioniscalled from afunction that is specified by #pragma regsave via #pragma
noregalloc.

3.10.3 Notes

If afunction that is specified by #pragmanoregsaveis called in away other than explained above,
the obtained data is not guaranteed.

83
HITACHI

3.104 Example

#pragma nor egsave (f)
#pragnma noregal | oc (g)
#pragna regsave (h)
h ()
{

g()

f(); /* function call immediately after function call (f) #pragma noregsave */
} /* fromfunction (h) #pragma regsave */

g ()

f(); /* function call (f) #pragna noregsave from function (h) #pragna */
/* regsave through function (g) #pragma noregall oc */

311 Global Variable Register Allocation

Registers are allocated to global variables.
3111 Description
#pragma global_register (<variable name>=<register name>, ...)

3.11.2 Explanation

This function allocates the register specified in <register name> to the global variable specified in
<variable name>.

84
HITACHI

3.11.3 Notes

1. Thisfunction isused for asimple or pointer type variable in the global variable. Do not
specify adoubletype variable unless —double=float option is specified.

2. Only useregisters R8 to R14 and FR12 to FR15 (FR12 to FR15: when using SH3E).
3. Theinitia value cannot be set. In addition, the address cannot be referenced.
4. The specified variable cannot be referenced from the linked side.

3114 Example
#pragnma gl obal _regi st er (x=RL3, y=R14)

i nt X;

char *y;

funcl()
{

X++;

func2()

*y:O;

func(int a)
{
X = g
funcl();
func2();

HITACHI

Section 4 Notes on Programming

This section contains notes on coding programs for the C compiler and troubleshooting when
compiling or debugging programs.

4.1 Coding Notes

411 float Type Parameter Function

Functions must declare prototypes or treat float type as doubletype when receiving and passing
float type parameters. Data cannot be preserved (guaranteed) when afloat type parameter
function without a prototype declaration receives and passes data.

Example:
void f (float); ---------mcommmnnn- (1)
9 ()
{
float a;
f (a);
)
voi d
f (float x)
(
}

Function f has afloat type parameter. Therefore, a prototype must be declared as shown in (1)
above.

4.1.2 Program Whose Evaluation Order is Not Regulated

The effect of the execution is not guaranteed in a program whose execution results differ
depending on the evaluation order.

HITACHI

87

Example:

ali]=a[++i]; The value of i on the left side differs depending on whether the right
side of the assignment expression is evaluated first.

sub(++i, i); The value of i for the second parameter differs depending on whether
the first function parameter is evaluated first.

4.1.3 Overflow Operation and Zero Division

At runtimeif overflow operation or zero division is performed, error messages will not be output.
However, if an overflow operation or zero division isincluded in the operations for one or more
constants, error messages will be output at compilation.

Example:
mai n()
{
int ia;
int ib;
float fa;
float fb;
i b=32767;
f b=3. 4e+38f ;
/* Conpilation error nmessages are output when an overfl ow operation */
/* and zero division are included in operations for one or nore */
/* constants. */
i a=99999999999; /* (W Detect integer constant overfl ow. */
fa=3. 5e+40f; /* (W Detect floating pointing constant */
/* overfl ow. */
i a=1/0; /* (E) Detect division by zero. */
fa=1.0/0.0; /* (W Detect division by floating point zero. */
/* No error nessage on overflow at execution is output. */
i b=i b+32767; /* lgnore integer constant overflow */
fb=fb+3. 4e+38f; /* Ignore floating point constant overflow. */
}
88

HITACHI

414 Assignment to const Variables

Even if avariable is declared with const type, if assignment is done to a variable other than const

converted from const type or if a program compiled separately uses a parameter of a different

type, the C compiler cannot detect the error

Example:

1. const char *p;

strcat(p, "abc")

2. filel
const int i;

—h
N

ile

externint i;

i =10;

/*
/*
/*
/*

/*
/*
/*

Because the first parameter p in library */
function strcat is a pointer for char, */
the area indicated by the paraneter p */
may change. */
Infile 2, paraneter i is not declared as */
const, therefore assignnent to it in */
file 2 is not an error. */

415 Precision of Mathematical Function Libraries

For function acos (x) and asin (x), an error isxl. Therefore, precautions must be taken. Note the

error range below.

Absolute error for acos (1.0 —€)

Absolute error for asin (1.0 —¢)

double precision 27 (e = 27¥)
single precision 27 (€ =27)

double precision 27 (e = 27%)
single precision 27 (¢ =27)

HITACHI

89

4.2

Notes on Program Development

Table 2.13 shows troubleshootings for devel oping programs from compilation through debugging.

Table2.13 Troubleshooting
Trouble Check Points Solution References
When linking, error ~ The section name which is output by ~ Specify the Section 2.1, Structure
314, cannot found the C compiler must be specified in correct of Object Programs
section, is output capitals in start option of linkage section in part 11,
editor. name. C PROGRAMMING
When linking, error If identifiers are mutually referenced Refer to Section 2.3.1,
105, undefined by a C program and an assembly parameters External Identifier
external symbol, is program, an underscore must be with the Reference, in part 11,
output attached to the symbol in the correct C PROGRAMMING
assembly program. parameters.
Check if the C program uses a Specify a Standard library
library function. standard specification: Section
library as 3.5, Correspondence
the input to Standard Libraries,
library at in part I, OVERVIEW
linkage. AND OPERATIONS
An undefined reference symbol Routine: Section 2.1
identifier must not start with a part lll, SYSTEM
_ _(Arun time routine in a standard INSTALLATION
library must be used.)
Check if a standard /O library Create low Section 4.6, Creating
function is used in the C program. level Low-Level Interface
interface Routines, in part I,

routines for
linking.

SYSTEM
INSTALLATION

Debugging at the C
source level cannot
be performed

debug option must be specified at
both compilation and linkage.

Specify
debug
option at
both
compilation

and linkage.

A linkage editor of Ver.5.0 or higher
must be used.

Use a
linkage
editor of.
Ver.5.0 or
higher.

Section 3.3, Compiler
Options, in part I,
OVERVIEW AND
OPERATIONS

90

HITACHI

Table2.13

Troubleshooting (cont)

Trouble Check Points Solution References
When linking, error ~ Check if an offset value of a variable Delete Section 3.9,
No. 108 relocation specified using a GBR base is within #pragma Specifying GBR Base
size overflow is the range. gbr_base/ Variables, in part Il,
output gbr_basel C PROGRAMMING
declaration
for data
beyond the
range.
When linking, error Check if a variable or function Change the
No. 104 duplicate whose name is the same as that of name of the
symbol is output other variables or functions exists in variable or
more than one file. function, or
specify
static.
Check if a variable or function is Specify Section 3.6.3, Notes
externally defined in a header file to static. and 3.7.3, Notes, in

be included in more than one file
(the above is the same in the case
of a function specified (#pragma
inline/ inline_asm).

part Il,
C PROGRAMMING

HITACHI

91

PART I11
SYSTEM INSTALLATION

Section 1 Overview of System Installation

Part |11 describes how to install object programs generated by the C compiler on an SH system.
Before installation, memory allocation and execution environment for the object program must be
specified.

Memory Allocation: Allocate astack area, aheap area, and each section of a C-compiler-
generated object program in ROM or RAM on a SH system.

Execution Environment Setting for a C-Compiler-Generated Object Program: Set the
execution environment by register initialization, memory areainitialization, and C program
initiation. Write these processing functions in assembly language.

If C library functions such as the 1/0 function are used, library must be initialized when setting the
execution environment specification.

Section 2 describes how to alocate C programs in memory area and how to specify linkage
editor's commands that actually allocate a program in memory area, using examples.

Section 3 describes items to be specified in execution environment setting and execution
environment specification programs.

Section 4 describes how to create C library function initialization and low-level routines.

Note: If I/O function (stdio.h) and memory allocation function (stdlib.h) are used, the user must
create low-level 1/0 routines and memory allocation routines appropriate to the user
system.

95
HITACHI

Section 2 Allocating Memory Areas

Toinstall an object program generated by the C compiler on a system, determine the size of each
memory area, and allocate the areas appropriately to the memory addresses.

Some memory areas, such as the area used to store machine code and the area used to store data
declared using external definitions or static data members, are alocated statically. Other memory
areas, such as the stack area, are allocated dynamically.

This section describes how the size of each areais determined and how to allocate an areain
memory.

21 Static Area Allocation

2.11 Datato be Allocated in Static Area

Allocate sections of object programs such as program area, constant area, initialized data area, and
non-initialized data area to the static area.

2.1.2 Static Area Size Calculation

Calculate the static area size by adding the size of C-compiler-generated object program and that
of library functions used by the C program. After object program linkage, determine the static
area size from each section size including library size output on alinkage map listing. Before
object program linkage, the approximate size of the static area can be determined from the section
sizeinformation on a compile listing. Figure 3.1 shows an example of section size information.

* % % % % % x SECTION SIZE | NFCRVATI QN * * % * * * *

PROGRAM SECTI ON(P) : 0x00004A Byt e(s)
CONSTANT ~ SECTION(Q) : 0x000018 Byt e(s)
DATA SECTION(D) : 0x000004 Byt e(s)
BSS SECTI ON(B) : 0x000004 Byt e(s)

TOTAL PROGRAM Sl ZE: 0x00006A Byt e(s)

Figure3.1 Section SizeInformation

97
HITACHI

If the standard library is not used, calculate the static area size by adding the memory area size
used by sections shown in section size information. However, if the standard library is used, add
the memory area used by the library functions to the memory area size of each section. The
standard library includes C library functions based on the C language specifications and arithmetic
routines required for C program execution. Accordingly, link the standard library to the C source
program even if library functions are not used in the C source program.

The C compiler provides the standard library including C library functions (based on the C
language specifications), and arithmetic routines (runtime routines required for C program
execution). The size required for run time routines must also be added to the memory areasizein
the same way as C library functions.

The run time routine used by the C programs are output as external reference symbolsin the
assembly programs generated by the C compiler (option code = asmcode). The user can seethe
run time routine names used in the C programs through the external reference symbols.

The following shows the example of C program and assembly program listings.

C program

f(int a, int b)
{
al/=b;
return a;

98
HITACHI

Assembly program output by the C compiler

. | MPORT _ _divls ; An external reference definition for the run time routine
. EXPORT _f
. SECTION P, CODE, ALI G\=4
_f: ;function: f
;frame size=4
yused runtine library nane:
;_ _divls
STS. L PR, @R15
MoV R5, RO
MOV. L L218, R3 ;_ _divls
JSR @r3
MoV R4, R1
LDS. L @R15+, PR
RTS
NOP
L218:
. DATA. L _ _divls
. END

In the above example, _ _divlsisarun time routine used in the C program.

HITACHI

99

2.1.3 ROM and RAM Allocation

When allocating a program to memory, allocate static areas to either ROM and RAM as shown
below.

Program area (section P): ROM

Constant area (section C): ROM

Non-initialized data area (section B): RAM

Initialized data area (section D): ROM and RAM (for details, refer to the following section)

214 Initialized Data Area Allocation

The initialized data area contains datawith initial value. Since the C language specifications allow
the user to modify initialized datain programs, the initialized data area must be allocated to ROM
when linking and is copied to RAM before program execution. Therefore, theinitialized data area
must be allocated in both ROM and RAM.

However, if the initialized data area contains only static variables that are not modified during
program execution, the initialized data needs to be allocated only to the ROM area. In this case,
the data does not need to be allocated to the RAM area.

215 Memory Area Allocation Example and Address Specification at Program Linkage

Each program section must be addressed by the option or subcommand of the linkage editor when
the absolute load module is created, as described below.

Figure 3.2 shows an example of allocating static areas.

100
HITACHI

0x0000000
Interrupt vector

0x0000400 Program area
P
Constant area
(©
Initialized data area
(D)
0x9000000 — P,C,D,B: Default section name
Initialized data area generated by the
(R) C compiler
Non-initialized . i
data area R: Section name specified
(B) RAM by the linkage editqr
ROM support function

ROM

OxFFFF800

Dynamic area

OXFFFFFFF

Figure3.2 Static Area Allocation

Specify the following subcommands when allocating the static area as shown in figure 3.2.

ROA(D,R) eeemmeeeeoaan @)

STARTAP, C, D(400), R, B(9000000) - ------- 2
Description:

(1) Define section R having the same size as section D, in the output load module. To reference
the symbol allocated to section D, reallocate to the address of section R and reference to the
symbol in section R. Sections D and R are allocated to initialized data section in ROM and
RAM, respectively.

(2) Allocate sections P, C, and D to internal ROM starting from address 0x400 and all ocate
sections R and B to RAM starting from address 0x9000000.

101
HITACHI

2.2 Dynamic Area Allocation

221 Dynamic Areas

Two types of dynamic areas for C program are used:

1. Stack area
2. Heap area (used by the memory allocation library functions)

222 Dynamic Area Size Calculation

Stack Area: The stack areaused in C programsis allocated each time afunctionis called and is
deallocated each time afunction is returned. Thetotal stack areasizeis calculated based on the
stack size used by each function and the nesting of function calls.

Stack Area Used by Each Function: The object list (frame size) output by the C compiler
determines the stack size used by each function. The following example shows the object list,
stack allocation, and stack size calculation method.

Example: The following shows the object list and stack size calculation in a C program.

extern int h(char, int *, double);
int h(char a, register int *b, double c)

{
char *d;
d= &a;
h(*d, b, c);
{
register int i;
i=*d;
return i;
}
}

102
HITACHI

khkkkkkkhkkkhkkk*k ®ECT Ll STI'\G************

FILE NAME n0251.c

SCT OFFSET CODE C LABEL | NSTRUCTI ON CPERAND COMMENT
P
00000000 _h: ; function: h
. frame size=20
00000000 2FE6 MOV.L R4, @RL5
00000002 4F22 STS.L PR @R15
Lower T
address

R15(SP) —> 0

Area used F
within a rame
function size

20
Upper l Stack
address

The size of the stack area used by a function is equal to frame size. Therefore, in the above
example, the stack size used by the function h is 20 byteswhich is shown asframesize=20in
COMMENT in OBJECT LISTING.

For details on the size of parameters to be pushed onto the stack, refer to the description of
parameter and return value setting and referencing in section 2.3.2, Setting and Referencing
Parameters and Return Values, Function Call Interface, in Part 11, C Programming.

103
HITACHI

Stack size calculation: The following example shows a stack size calculation depending on the
function call nesting.

Example: Figure 3.3 illustrates the function call nestings and stack size.

main ()

Function Name Stack Size (Bytes)

main 24
f()

f 32
\ g 24
g()

Figure3.3 Nested Function Callsand Stack Size

If function g is called viafunction f, the stack area size is calculated according to the formula
listed in table 3.1.

Table3.1 Stack Size Calculation Example

Call Route Sum of Stack Size (Bytes)
main (24) - f(32) - g (24) 80
main (24) - g (24) 48

As can be seen from table 3.1, the maximum size of stack area required for the longest function
calling route should be determined (80 bytes in this example) and this size of memory should be
alocated in RAM.

When using standard library functions, the stack area sizes for library functions must also be
accounted for. Refer to the Standard Library Memory Stack Size Listing, included with the
C compiler package.

Note: If recursive calls are used in the C source program, first determine the stack area required
for arecursive cal, and then multiply the size with the maximum number of recursive
calls.

104
HITACHI

Heap Area: Thetota heap arearequired is equal to the sum of the areas to be allocated by
memory management library functions (calloc, malloc, or realloc) in the C program. An
additional 4 bytes must be summed for one call because a 4-byte management areais used every
time a memory management library function allocates an area.

An 1/O library function uses memory management library functions for internal processing. The
size of the area allocated in an input/output is determined by the following formula: 516 bytes x
(maximum number of simultaneously open files)

Note: Areas released by the free function, which is amemory management library function, can
bereused. However, since these areas are often fragmented (separated from one another),
arequest to alocate a new area may be rejected even if the net size of the free areasis
sufficient. To prevent this, take note of the following:

1. If possible, allocate the largest areafirst after program execution is started.
2. If possible, make the data area size to be reused constant.

223 Rulesfor Allocating Dynamic Area

The dynamic areais alocated to RAM. The stack areais determined by specifying the highest
address of the stack to the vector table, and refer to it as SP (stack pointer). Since the interrupt
operation of the SH3 and SH3E differ from that of the SH1 and SH2, interrupt handlers are
necessary. The heap areais determined by the initial specification in the low-level interface
routine (sbrk). For details on stack and heap areas, refer to section 3.1, Vector Table Setting
(VEC_TBL), and section 4.6, Creating Low-Level Interface Routinein part 111, System
Installation, respectively.

105
HITACHI

Section 3 Setting the Execution Environment

This section describes the environment required for C program execution. A C program
environment specification program must be created according to the user system specifications
because the C program execution environment differs depending on the user system. Inthis
section, basic C program execution specification, where no C library function is used, is described
asan example. Refer to section 4, Setting the C Library Function Execution Environment in part
111, System Installation, for details on using C library functions when using C library functions,
low-level 1/0 interface routine, or memory allocation routine.

Figure 3.4 shows an example of program configuration.

4 I
Power-on reset
. . - J
|:| : Required routine
E_-_-___-E : Required table ¢ (_1)
_NIT : VEC_TBL 5
/ ® \
__INITSCT User program

Figure3.4 Program Configuration (No C Library Function is Used)
Each routine is described below.

Vector table setting (VEC_TBL) (shown as (1) in figure 3.4): Setsthe vector table so asto
initiate register initialization program __INIT and set the stack pointer (SP) by power-on reset.
Since the interrupt operation of the SH3 and SH3E differ from those of the SH1 and SH2, interrupt
handlers are necessary.

Initialization (__INIT) (shown as(2) in figure 3.4): Initializes registers and sequentially calls
initialization routines.

Section initialization (__INITSCT) (shown as (3) in figure 3.4): Clearsthe non-initialized data
areawith zeros and copies the initialized data areain ROM to RAM.

The following describes how each process is implemented (in the order as described above).

107
HITACHI

31 Vector Table Setting (VEC_TBL)

To call register initialization routine _ _INIT at power-on reset, specify the start address of
function __INIT at address 0 in the vector table. Also to specify the SP, specify the highest
address of the stack to address H'4. Since the interrupt operation of the SH3 and SH3E differ from
those of the SH1 and SH2, interrupt handlers are necessary. When the user system executes
interrupt handling, interrupt vector settings are also performed inthe VEC_TBL routine. The
coding example of VEC_TBL is shown below.

Example:

. SECTI ON VECT, DATA, LOCATE=H 0000
; Assigns section VECT to address H O by the SECTION directive.

. | MPORT __INT
. | MPORT _IRQ
. DATA. L _ _INT ; Assigns the start address of _ _INIT to addresses H Ox0O to H 0x3.
. DATA. L (a) ; Assigns the SP to addresses H 0x4 to H 0x7.
; (a): The highest address of the stack
. ORG H 00000100
. DATA L _IRQO ; Assigns the start address of IRQ to addresses H 0x100 to H 0x103
. END
108

HITACHI

3.2 Initialization (__INIT)

__INIT initializes registers, calls initialization routine sequentially, and then calls the main

function. The coding example of this routine is shown below.

Example:

extern void _INTSCT (void);
extern void nain (void);

void _INT()
{
_INTSCT();
mai n() ;
for(5 ;)
}

/* Calls section initialization routine
/* _INTSCT.

/[* Calls main routine _main.

/* Branches to endl ess |oop after executing main
/* function and waits for reset.

HITACHI

*/
*/

*/

*/
*/

109

3.3 Section I nitialization (__INITSCT)

To set the C program execution environment, clear the non-initialized data area with zeros and
copy theinitialized data areain ROM to RAM. To executethe __INITSCT function, the

following addresses must be known.

e Start address (1) of initialized data areain ROM.
e Start address (2) and end address (3) of initialized data areain RAM
e Start address (4) and end address (5) of non-initialized data areain ROM

Address 0

1) —=

2 —
3) —
(4 —

(®) —

Interrupt vector

Program area

(P)

Constant area

©

Initialized data area

(©)

ROM

Initialized data area

(R)

Non-initialized
data area

(B)

Dynamic area

RAM

110

HITACHI

To obtain the above addresses, create the following assembly programs and link them together.

. SECTI ON D, DATA ALI G\=4
. SECTI ON R DATA, ALI G\=4
. SECTI ON B, DATA, ALI G\=4
. SECTI ON C DATA ALI G\=4

_ DR .DATA L (STARTCF D

start address of section D @
_ D BN .DATA L (STARTCF R

start address of section R)
_ _DEND .DATA L (STARTCF R + (SIZECF R

end address of section R 3
B BN .DATA L (STARTCF B)

start address of section B 4
_ _BEND .DATA L (STARTCF B) + (S| ZECF B)

end address of section B ©)]

.EXPORT _ D RM
.EXPCRT _ _D BQN
.EXPORT _ D END
.EXPCRT _ _B BN
.EXPORT _ B END
.END

Notes: 1. Section names B and D must be the non-initialized data area and initialized data area
section names specified with the compiler option section. B and D indicate the default
section names.

2. Section name R must be the section name in RAM area specified with the ROM option
at linkage. R indicates the default section name.

If the above preparation is completed, section initialization routine can be written in C as shown
below.

111
HITACHI

Example:

Section initialization routine

externint * DROM * BBA\, * BEND, * DBG\ * DEND,

extern void _INTSCT()

{
int *p, *q ;
/* Non-initialized data area is initialized to zeros */
for (p = _BB&N; p<_BEND,; pt+t)
*p:O;
/* Initialized data is copied fromROMto RAM */
for (p = _DBGN, g=_DRWM; p< _DEND; p++, Qg++)
*p:*q;
}

Note: The declaration of p and g must be a char* type when the section size is not a multiple of
four bytes.

112
HITACHI

Section 4 Setting the C Library Function Execution
Environment

To use C library functions, they must beinitialized to set the C program execution environment.
To use I/O (stdio.h) and memory allocation (stdlib.h) functions, or to use the C library function to
terminate program processing, low-level 1/0 and memory allocation routines must be created for
each system.

This section describes how to set the C program execution environment when C library functions
areused. Figure3.5 shows the program configuration when C library functions are used.

[Power-on reset j

.......................

_NIT : VEC_TBL :
_ _INITSCT _ _INITLIB User program _ _CLOSEALL

i @ Table always required
Standard library

: Routine always required

is used

% : Routine required when library

: Supplied by the C compiler Low-level
interface 7

Figure3.5 Program Configuration When C Library Functionsare Used

113
HITACHI

TouseaC library function exit, onexit, or abort, which performs program termination
processing, the C library function that corresponds to the user system must be created beforehand.
For details on a program example, refer to Appendix D, Creating Termination Functions. If you
use a C library function assert macro, you must create an abort function first.

Each routineis required to execute library functions as follows.

Vector Table Setting (VEC_TBL): Setsthe vector table to initiate register initialization program
(__INIT) and set the stack pointer (SP) at power-on reset. Since the interrupt of the SH3 and
SH3E differ from the SH1 and SH2, interrupt handlers are necessary.

Initializing Registers (_ _INIT): Initializes registers and sequentially calls the initialization
routines.

Initializing Sections (__INITSCT): Clears non-initialized data area with zeros and copies the
initialized data areain ROM to RAM.

Initializing C Library Functions (__INITLIB): Initializes C library functions required to be
initialized and prepares standard /O functions.

Closing Files(__CLOSEALL): Closesall fileswith open status.

Low-L evel Interface Routine: Interfaces library functions and user system when standard 1/0
and memory management library functions are used.

Creation of the above routines is described below.

114
HITACHI

4.1 Vector Table Setting (VEC_TBL)

Same aswhen no C library function isused. For details, refer to section 3, Setting the Execution

Environment, in part 111, System Installation.

4.2 Initializing Registers(_ _INIT)

Initializes registers and sequentially callstheinitialization routine __INITLIB and file closing
routine_ _CLOSEALL. Thecoding exampleof __INIT isshown below. Sincethe interrupt
operation of the SH3 and SH3E differ from those of the SH1 and SH2, interrupt handlers are

necessary.
Example:

extern void _I N TSCT(void);
extern void _INTLIB(void);
extern void nain(void);
extern void _CLCSEALL(voi d);

void _IN T(voi d)

{
_INITSCT() ; /* Calls section initialization routine _ _INITSCT.
_INITLIB(); /* Calls library initialization routine _ _INITLIB.
mai n() ; /* Calls C program main function _main.
_CLCSEALL(); /* Calls file close routine _ _CLOSEALL.
for(; ;) /* Branches to endl ess |oop after executing main

/* function and waits for reset.
}

4.3 Initializing Sections (__INITSCT)

Same as when the C library functions are not used. For details, refer to section 3, Setting the

Execution Environment in part 111, System Installation.

HITACHI

*/
*/
*/
*/

*/
*/

115

4.4 Initializing C Library Functions(__INITLIB)

Some C library functions must be initialized before being used. The following description
assumes the case when the initialization is performed in __INITLIB in the program initiation
routine.

To perform initialization, the following must be considered.

1. errnoindicating the library error status must be initialized for al library functions.

2. When using each function of <stdio.h> and assert macro, standard 1/O library function must
beinitialized. The low-level interface routine must be initialized according to the user low-
level initialization routine specification if required.

3. When using therand and strtok functions, library functions other than the standard 1/0O must
beinitialized.

Library function initialization program example is shown below.

Example:
#i ncl ude <errno. h>
extern void INT LONEVEL(voi d) ;

extern void _INT_IQIB(void) ;
extern void _INT_OTHERLI B(voi d) ;

void _I N TLI B(voi d) [* Del etes an underline fromsynbol name */
/* used in the assenbly routine */
{
er r no=0; [* Initializes library functions conmonly */
_INT_LONEVEL() ; /* Calls lowlevel interface */
/[* initialization routine */
JINT_IQLB() ; /* Calls standard 1/Oinitialization */
/* routine */
_INTOHERLIB() ; /* Calls initialization routine other */
/* than that for standard 1/0O */
}
116

HITACHI

The following shows examples of initialization routine (_ INIT_IOLIB) for standard /O library
function and initialization routine (_INIT_OTHERLIB) for other standard library function.
Initialization routine (_INIT_LOWLEVEL) for low-level interface routine must be created
according to the user low-level interface routine's specifications.

44.1 Creating Initialization Routine (_INIT_IOLIB) for Standard 1/O Library Function

Theinitialization routine for standard /O library function initializes FI L E-type data used to
reference files and open the standard I/O files. Theinitialization must be performed before
opening the standard /O files (figure 3.6).

The following shows an example of _INIT_IOLIB.

117
HITACHI

Example:
#i ncl ude <stdio. h>
void _INIT_I OLI B(voi d)
{
FILE *fp ;
/*Initializes FILE-type data*/

for (fp=_iob; fp<_iob+_NFILE fp++){

fp -> _bufptr=NULL ; /*Cl ears buffer pointer */
fp -> _bufcnt=0 ; /*Cl ears buffer counter */
fp -> _buflen=0 ; /*Clears buffer length */
fp -> _bufbase=NULL ; /*Cl ears base pointer */
fp -> _ioflagl=0 ; /*Clears 1/0Oflag */

fp -> _ioflag2=0 ;
fp -> _iofd=0 ;

}
/*Opens standard 1/Ofile */
*1
if (freopen("stdin" , "r", stdin)==NULL) /*Opens standard input file */
stdin->_iofl agl=0xff ; /*Di sables file access*2 */
stdin->_ioflagl | = _lI QUNBUF ; /*No data buffering*3 */
*1
if (freopen("stdout" , "w', stdout)==NULL)/*Opens standard output file*/
stdout-> _ioflagl=0xff ;
stdout->_ioflagl | = _I OQUNBUF ;
*1

if (freopen("stderr", "w', stderr)==NULL) /*Opens standard error file */
stderr-> _ioflagl=0xff ;
stderr->_ioflagl | = _I OQUNBUF ;
}

Notes: 1. Standard I/O file names are specified. These names are used by the low-level interface
routine open.

2. If file could not be opened, the file access disable flag is set.

3. For equipment that can be used in interactive mode such as a console, the buffering
disableflag is set.

118
HITACHI

/*Declares FILE-type data in the C |anguage*/

#define _NFILE 20
struct _iobuf{

unsi gned char *_bufptr; /*Buf fer pointer */
| ong _bufcnt; /*Buf fer counter */
unsi gned char *_bufbase; /*Buffer base pointer */
| ong _buflen; /*Buffer length */
char _ioflagl; /*I/Oflag */
char _ioflag2; /*I/Oflag */
char _iofd; /*1/0Oflag */
}_iob[_NFILE;

Figure3.6 FILE-TypeData

4.4.2 Creating Initialization Routine (_ INIT_OTHERLIB) for Other Library Function

The following shows an example of initial setting program of C library function (rand function
and strtok function) that is necessary for initial setting beside the standard 1/0.

#i ncl ude <stddef. h>

extern char *_slptr;
extern void srand(unsigned int) ;

voi d _I N T_OTHERLI B(voi d)

{
srand(1) ; /*Sets initial value when rand function is used */
_S1ptr=NULL ; /*Initializes the pointer used in the strtok */
/* function */

}

119
HITACHI

45 Closing Files(__CLOSEALL)

When a program ends normally, all open files must be closed. Usually, the data destined for afile
is stored in amemory buffer. When the buffer becomes full, data is output to an external storage
device. Therefore, if the files are not closed, data remaining in buffersis not output to external
storage devices and will be lost.

When an program isinstalled in a device and executed, the program will not end unless it finishes
its operation. However, if the main function is terminated by a program error, all open files must
be closed.

The following shows an exampleof __CLOSEALL.
Example:

#i ncl ude <stdio. h>

void _CLCBEALL(voi d) /* Del etes an underscore character */
/* fromsynbol name in assenbly routine */
{
int i;
for (i=0; i< NFILE i++)
/*Checks that file is open*/
if(_iob[i]._ioflagl & (_I OREAD _I ONR TE| _I CRW)
/*Q oses open fil es*/
fclose(&iob[i]) ;
}
120

HITACHI

4.6 Creating Low-L evel I nterface Routines

Low-level interface routines must be supplied for C programs that use the standard input/output or
memory management library functions. Table 3.2 shows the low-level interface routines used by
standard library functions.

Table3.2 Low-Level Interface Routines

Name Explanation

open Open a file

close Close afile

read Reads data from a file

write Writes data to a file

Iseek Sets the file read/write position for data
shrk Allocates a memory area

Refer to the attached Standard Library Memory Stack Size Listing for details on low-level
interface routines required for each C library function.

Initialization of low-level interface routines must be performed when the program is started. For
more information, see the explanation concerning the _INIT_LOWLEVEL function in section
4.4, Initidizing C Library Functions (__INITLIB).

Therest of this section explains the basic concept of low-level input and output, and gives the
specifications for each interface routine. Refer to appendix E, Examples of Low-Level Interface
Routines, for details on the low-level interface routines that run on the SH-series simulator
debugger.

121
HITACHI

4.6.1 Concept of 1/0O Operations

Standard input/output library functions manage files using the FIL E-type data. Low-level
interface routines manage files using file numbers (positive integers) which correspond directly to
actual files.

The open routine returns a file number for a given file name. The open routine must determine the
following, so that other functions can access information about a file using the file number:

« Filedevicetype (console, printer, disk, etc.)
(For a special device such as aconsole or printer file, the user chooses a specific file name that
can be recognized uniquely by the open routine.)

¢ Information such as the size and start address of the buffer used for thefile

e For adisk file, the offset (in bytes) from the beginning of the file to the next read/write
position.

Theinput and output is determined by the read and write routine, respectively, or the start
position for read/write operations is determined by the Iseek routine according to the information
determined by the open routine.

If buffers are used, the close routine outputs the contents to their corresponding files. This allows
the areas of memory allocated by the open routine to be reused.

122
HITACHI

4.6.2 Low-L evel Interface Routine Specifications

This section explains the specifications for creating low-level interface routines, gives examples of
actual interfaces and explains their operations, and notes on implementation.

Theinterface for each routine is shown using the format below.
Create each interface routine by assuming that the prototype declaration is made.
Example:

(Routine name)

Purpose (Purpose of the routine)
Interface (Shows the interface as a C function declaration)
Parameters No. Name Type Meaning
1 (Parameter name) (Parameter (Meaning of the parameter)
type)
Return value Type (Type of return value)
Normal (Return value for normal termination)
Abnormal (Return value for abnormal termination)

123
HITACHI

open routine

Purpose Opens afile
Interface int open (char *nane,
int node);
Parameters No. Name Type Meaning
1 nare Pointer to String literal indicating a file name
char
2 mode int Processing specification
Return value Type int
Normal File number of the file opened
Abnormal -1

Explanation: The open routine opens the file specified by the first parameter (file name) and
returns afile number. The open routine must determine the file device type (console, printer, disk,
etc.) and assign thisinformation to the file number. Thefile typeis referenced using thefile
number each time a read/write operation is performed.

The second parameter (mode) gives processing specifications for the file. The effect of each bit of
this parameter is explained as follows:

124
HITACHI

543 210

[y Lo lolelols]

31

o —
—_—

mode |

O_RDONLY
L O_WRONLY
O_RDWR
O_CREATE
O_TRUNC
O_APPEND

Description:
(1) O_RDONLY (bit 0)
If thishit is 1, the file becomes read only.
(2) O_WRONLY (bit 1)
If thisbit is 1, the file becomes write only.
(3) O_RDWR (hit 2)
If thisbit is 1, the file becomes read/write.
(4) O_CREATE (bit 3)
If thisbit is 1 and the file indicated by the file name does not exist, a new fileis created.
(5) O_TRUNC (bit 4)
If thisbit is 1 and the file indicated by the file name exists, the file contents are discarded and
thefile sizeis set to zero.
(6) O_APPEND (hit 5)
If thisbit is 1, the read/write position is set to the end of thefile. If thisbit is O, the read/write
position is set to the beginning of thefile.

An error is assumed if the file processing specifications contradict with the actual characteristics
of thefile.

The open routine returns a file number (positive integer) which can be used by the read, write,
Iseek, and close routines, provided the file opens normally. The relationship between file numbers
and actual files must be managed by the low-level interface routines. The open routine returns a
value of —1if thefile failsto open properly.

125
HITACHI

close routine

Purpose Closes afile
Interface int close(int fileno);
Parameters No. Name Type Meaning
1 fileno int File number of the file to be closed
Return value Type int
Normal 0
Abnormal -1

Explanation: The file number, determined by the open routine, is given as the parameter.
Release the area of memory allocated by the open routine for file management information, so that
it can be reused. If buffers are used, the contents are output to their corresponding files. Zerois
returned if the file closes normally. Otherwise, —1 isreturned.

126
HITACHI

read routine

Purpose Reads data from afile
Interface int read (int fileno,
char *buf,
unsi gned int count);
Parameters No. Name Type Meaning
1 fileno int File number of the file to be read
2 buf Pointer to Area to be used to store the read data
char
3 count unsigned Byte length of data to be read
int
Return value Type int
Normal Byte length of the data actually read
Abnormal -1

Explanation: Theread routine loads data from the file indicated by the first parameter (fileno)
into the area indicated by the second parameter (buf). The amount of datato be read isindicated
by the third parameter (count). If an end of file is encountered during aread, less than the
specified number of bytes areread. The file read/write position is updated using the byte length of
the data actually read. If dataisread normally, the routine returns the number of bytes of the data
read. Otherwise, the read routine returns a value of —1.

HITACHI

127

write routine

Purpose Writes data to afile
Interface int wite (int fileno,
char *buf,

unsi gned int count);

Parameters No. Name Type Meaning
1 fileno int File number
2 buf Pointer to char Area storing data to be written
in the file
3 count unsigned int Byte length of the data to be
written
Return value Type int
Normal Byte length of the data actually written
Abnormal -1

Explanation: Thewrite routine outputs data, whose byte length is indicated by the third
parameter (count), from the areaindicated by the second parameter (buf) into the file indicated by
the first parameter (fileno). If the device (such as adisk) where afileis stored becomes full, data
less than the specified byte length is written to thefile. If zero is returned as the byte length of
data actually written several times, the routine assumes that the device is full and sends areturn
value of —1. The file read/write position is updated using the byte length of data actually written.
If the routine ends normally, it returns the byte length of data actually written. Otherwise, the
routine returns avalue of —1.

128
HITACHI

|seek routine

Purpose Determines the next read/write position in a file
Interface long | seek (int fileno,
| ong of f set,
i nt base);
Parameters No. Name Type Meaning
1 fileno int File number of the target file
2 of f set long Offset in bytes from specified point in
the file
3 base int Base used for offset (bytes)
Return value Type long
Normal The offset (bytes) from the beginning of the file for the next

read/write position

Abnormal -1

Explanation: Thelseek routine determines the next read/write position as an offset in bytes. The
next read/write position is determined according to the third parameter (base) as follows:

1. Base=0

The second parameter gives the new offset relative to the beginning of thefile.

2. Base=1

The second parameter is added to the current position to give the new offset.

3. Base=2

The second parameter is added to the file size to give the new offset.

An error occursif thefileis on an interactive device (such as a console or printer), the new offset
value is negative, or the new offset value exceeds thefile sizein the case of 1 or 2, above.

If Iseek correctly determines a new file position, the new offset value is returned. Thisvalue
indicates the new read/write position relative to the beginning of the file. Otherwise, the |seek
routine returns a value of —1.

129
HITACHI

sbrk routine

Purpose Allocates a memory area
Interface char *sbrk (
unsi gned | ong si ze);

Parameters No. Name Type Meaning

1 si ze unsigned long Size of the area to be

allocated (in bytes)

Return value Type Pointer to char

Normal Start address of the allocated area

Abnormal (char*) -1

Explanation: The size of the areato be alocated is given as a parameter. Create the sbrk routine
so that consecutive calls allocate consecutive areas beginning with the lowest available address.
An error will occur if there isinsufficient memory. If the routine ends normally, it returns the start
address of the allocated area. Otherwise, the routine returns (char *) — 1.

130

HITACHI

PART IV
ERROR MESSAGES

Section 1 Error Messages

This section gives lists of error messagesin order of error number. A list of error messages are
provided for each level of errors (I = Information error, W=Warning error, E = Error, F = Fatal
error, or (-) = Internal error) in the format below.

Error number (Error Level: I, W, E, F, or (-)) Error Message Explanation

133
HITACHI

0001 (1) Character combination /* in comment
String literal /* existsin comment.

0002 (1) Nodeclarator
A declaration without a declarator exists.

0003 (1) Unreachable statement
A statement that will not be executed exists.

0004 (1) Constant ascondition
A constant expression is specified as condition for if or switch statement.

0005 (I) Precision lost
Precision may be lost when assigning with type conversion aright hand side value to the left hand
sidevaue.

0006 (I) Conversion in argument
A function parameter expression is converted into a parameter type specified in the prototype
declaration.

0008 (1) Conversioninreturn
A return statement expression is converted into a value type that should be returned from a
function.

0010 (I) Elimination of needless expression
A needless expression exists.

0011 (1) Used before set symbol: “variable name”
A variableis used before setting its value.

0015 (1) Noreturnvalue
A return statement is not returning avalue in a function that should return atype other than the
void type, or areturn statement does not exist.

0100 (1) Function " function name" not optimized
A function which istoo large cannot be optimized.

0200 (W) No prototype function
There is no prototype declaration.

1000 (W) lllegal pointer assignment
A pointer is assigned to a pointer with a different data type.

1001 (W) lllegal comparison in " operator"
The operands of the binary operator == or != are a pointer and an integer other than 0.

134
HITACHI

1002 (W) lllegal pointer for " operator™"
The operands of the binary operator ==, !=, >, <, >=, or <= are pointers assigned to different types.

1005 (W) Undefined escape sequence
An undefined escape sequence (a character following abackslash) is used in a character constant
or string literal.

1007 (W) Long character constant
A character constant consists of two or more characters.

1008 (W) Identifier too long
An identifier's length exceeds 250 characters.

1010 (W) Character constant too long
A character constant consists of four or more characters.

1012 (W) Floating point constant over flow
The value of afloating-point constant exceeds the limit. Assumes the internally represented value
corresponding to +oo or -co depending on the sign of the result.

1013 (W) Integer constant overflow
The value of unsigned long integer constant exceeds the limit. Assumes avalue ignoring the
overflown upper bits.

1014 (W) Escape sequence over flow
The value of an escape sequence indicating a bit pattern in a character constant or string literal
exceeds 255. The low order byteisvalid.

1015 (W) Floating point constant under flow
The absolute value of afloating-point constant is less than the lower limit. Assumes 0.0 asthe
value of the constant.

1016 (W) Argument mismatch

The data type assigned to a pointer specified asaformal parameter in a prototype declaration
differs from the data type assigned to a pointer used as the corresponding actual parameter in a
function call. Usestheinternal representation of the pointer used for the function call actua
parameter.

1017 (W) Return type mismatch

The function return type and the type in areturn statement are pointers but the data types assigned
to these pointers are different. Usestheinternal representation of the pointer specified in the
return statement expression.

1019 (W) lllegal constant expression
The operands of the relational operator <, >, <=, or >= in a constant expression are pointers to
different datatypes. Assumes 0 astheresult value.

HITACHI

135

1020 (W) lllegal constant expression of " -"
The operands of the binary operator - in a constant expression are pointers to different data types.
Assumes 0 as the result value.

1021 (W) Register saving pragma conflictsin interrupt function " function name"
Invalid #pragmathat controls saving or recovery of register contents corresponding to an interrupt
function indicated by afunction name. #pragmaisignored.

1022 (W) First operand of operator isnot lvalue
The first operand operator cannot be the Ivalue.

1023 (W) Can not convert Japanese code “ code” to output type
A Japanese code “code” cannot be converted to the specified output code.

1200 (W) Division by floating point zero
Division by the floating-point number 0.0 is carried out in a constant expression. Assumesthe
internal representation value corresponding to +co or -co depending on the sign of the operands.

1201 (W) Ineffective floating point operation

Invalid floating-point operations such as co-co or 0.0/0.0 are carried out in a constant expression.
Assumes the internal representation value corresponding to a not a number indicating the result of
an ineffective operation.

1300 (W) Command parameter specified twice
The same SH C compiler option is specified more than once. Uses the last specified compiler
option.

1400 (W) Function " function name" in #pragma inlineis not expanded
A function specified using #pragma inline could not be expanded where the function is callled.
Compiling processing continues.

2000 (E) lllegal preprocessor keyword
Anillegal keyword is used in a preprocessor directive.

2001 (E) lllegal preprocessor syntax
Thereisan error in preprocessor directive or in a macro call specification.

2002 (E) Missing" "
A comma (,) is not used to delimit two arguments in a#define directive.

2003 (E) Missing")"
A right parenthesis ()) does not follow anamein a defined expression. The defined expression
determines whether the name is defined by a #define directive.

2004 (E) Missing">"
A right angle bracket (>) does not follow afile name in an #include directive.

136
HITACHI

2005 (E) Cannot open includefile" file name"
The file name specified by an #include directive cannot be opened.

2006 (E) Multiple #defin€e's
The same macro name is redefined by #define directives.

2008 (E) Processor directive #elif mismatches
Thereis no #if, #ifdef, #ifndef, or #elif directive corresponding to an #elif directive.

2009 (E) Processor directive #else mismatches
Thereis no #if, #ifdef, or #ifndef directive corresponding to an #else directive.

2010 (E) Macro parameters mismatch
The number of macro call arguments and the number of macro definition arguments are not equal .

2011 (E) Linetoolong
After macro expansion, a source program line exceeds the compiler limit.

2012 (E) Keyword asamacro name
A preprocessor keyword is used as a macro name in a#define or #undef directive.

2013 (E) Processor directive #endif mismatches
Thereis no #if, #ifdef, or #ifndef directive corresponding to an #endif directive.

2014 (E) Missing #endif
There is no #endif directive corresponding to an #if, #ifdef, or #ifndef directive, and the end of file
is detected.

2016 (E) Preprocessor constant expression too complex
The total number of operators and operands in a constant expression specified by an #if or #elif
directive exceeds the limit.

2017 (E) Missing”
A closing double quotation mark (") does not follow a file name in an #include directive.

2018 (E) lllegal #line
The line count specified by a#line directive exceeds the limit.

2019 (E) Filenametoo long
The length of afile name exceeds 128 characters.

2020 (E) System identifier " name" redefined
The name of the defined symbol isthe same as that of the run time routine.

2100 (E) Multiple storage classes
Two or more storage class specifiers are used in a declaration.

137
HITACHI

2101 (E) Addressof register
An unary-operator & isused for avariable that has aregister storage class.

2102 (E) lllegal type combination
A combination of type specifiersisillegal.

2103 (E) Bad sdlf reference structure
A struct or union member has the same data type as its parent.

2104 (E) lllegal bit field width
A constant expression indicating the width of a bit field is not an integer or it is negative.

2105 (E) Incompletetag used in declaration

An incomplete tag name declared with a struct or union, or an undeclared tag nameisused in a
typedef declaration or in the declaration of adata type not assigned to a pointer or to afunction
return value.

2106 (E) Externvariableinitialized
A compound statement specifies aninitial value for an extern storage class variable.

2107 (E) Array of function
An array with afunction typeis specified.

2108 (E) Function returning array
A function with an array return value typeis specified.

2109 (E) lllegal function declaration
A storage class other than extern is specified in the declaration of afunction variable used in a
compound statement.

2110 (E) lllegal storage class
The storage classin an external definition is specified as auto or register.

2111 (E) Function as a member
A member of astruct or union is declared as afunction.

2112 (E) lllegal bit field
A type other than an integer type is specified for a bit field.

2113 (E) Bit field too wide
The width of abit field is greater than the size (8, 16, or 32 bits) indicated by its type specifier.

2114 (E) Multiple variable declarations
A variable name is declared more than once in the same scope.

138
HITACHI

2115 (E) Multipletag declarations
A struct, union, or enum tag name is declared more than once in the same scope.

2117 (E) Empty source program
There are no external definitions in the source program.

2118 (E) Prototype mismatch “function name’
A function type differs from the one specified in the declaration.

2119 (E) Not a parameter name “ parameter name”
An identifier not in the function parameter list is declared as a parameter.

2120 (E) lllegal parameter storage class
A storage class other than register is specified in afunction parameter declaration.

2121 (E) lllegal tag name
The combination of a struct, union, or enum with tag name differs from the declared combination.

2122 (E) Bit field width O
The width of abit field specifying a member nameis 0.

2123 (E) Undefined tag name
An undefined tag name is specified in an enum declaration.

2124 (E) lllegal enum value
A non-integral constant expression is specified as a value for an enum member.

2125 (E) Function returning function
A function with afunction type return value is specified.

2126 (E) lllegal array size
The value specifying the number of array elementsis out of range of 1 to 2147483647.

2127 (E) Missing array size
The number of elementsin an array is not specified where it is required.

2128 (E) lllegal pointer declaration for " *"
A type specifier other than const or volatile is specified following an asterisk (*), which indicates
apointer declaration.

2129 (E) lllegal initializer type
Theinitial value specified for avariable is not atype that can be assigned to another variable.

2130 (E) Initializer should be constant
A value other than a constant expression is specified as either the initial value of a struct, union, or
array variable or astheinitial value of a static variable.

139
HITACHI

2131 (E) Notypenor storage class
Storage class or type specifiersis not given in an external data definition.

2132 (E) No parameter name
A parameter is declared even though the function parameter list is empty.

2133 (E) Multiple parameter declarations
Either a parameter name is declared in a macro function definition parameter list more than once
or aparameter is declared inside and outside the function declarator.

2134 (E) Initializer for parameter
Aninitial valueis specified in the declaration of a parameter.

2135 (E) Multipleinitialization
A variableisinitialized more than once.

2136 (E) Typemismatch
An extern or static storage class variable or function is declared more than once with different data

types.

2137 (E) Null declaration for parameter
An identifier is not specified in the function parameter declaration.

2138 (E) Too many initializers

The number of initial values specified for a struct, union, or array is greater than the number of
struct members or array elements. This error also occurs if two or moreinitial values are specified
when the first members of aunion are scalar.

2139 (E) No parameter type
A typeisnot specified in afunction parameter declaration.

2140 (E) lllegal bit field
A bit field isused in aunion.

2141 (E) Struct hasno member name
The member name of a struct is not specified.

2142 (E) lllegal void type

void isused illegally. void can only be used in the following cases:

1. To specify atype assigned to a pointer

2. To specify afunction return value type

3. Toexplicitly specify that a function whose prototype is declared does not have a parameter

140
HITACHI

2143 (E) lllegal static function
There is afunction declaration with a static storage class function that has no definition in the
source program.

2144 (E) Type mismatch
Variables or functions with the same name which have an extern storage class are assigned to
different data types.

2145 (E) Const/volatile specified for imcomplete type
An incomplete type is specified as a const or volatile type.

2200 (E) Index not integer
An array index expression type is not an integer.

2201 (E) Cannot convert parameter “n”
The n-th parameter of afunction call cannot be converted to the type of parameter specified in the
prototype declaration.

2202 (E) Number of parameters mismatch
The number of parameters for afunction call is not equal to the number of parameters specified in
the prototype declaration.

2203 (E) lllegal member referencefor ".
The expression to the left-hand side of the (.) operator is not a struct or union.

2204 (E) lllegal member referencefor "->"
The expression to the left of the -> operator is not a pointer to a struct or union.

2205 (E) Undefined member name
An undeclared member name is used to reference a struct or union.

2206 (E) Modifiable Ivaluerequired for " operator"
The operand for aprefix or suffix operator ++ or -- has aleft value that cannot be assigned (a left
value whose type is not array or const).

2207 (E) Scalar required for " !"
The unary operator ! is used on an expression that is not scalar.

2208 (E) Pointer required for "*"
The unary operator * is used on an expression that is not pointer or on an expression of a pointer
for void.

2209 (E) Arithmetic typerequired for " operator"
The unary operator + or - is used on a non-arithmetic expression.

141
HITACHI

2210 (E) Integer required for " ~"
The unary operator ~ is used on anon-integral expression.

2211 (E) Illegal sizeof
A sizeof operator isused for a bit field member, function, void, or array with an undefined size.

2212 (E) Illegal cast
Either array, struct, or union is specified in a cast operator, or the operand of a cast operator is
void, struct, or union and cannot be converted.

2213 (E) Arithmetic typerequired for " operator"
The binary operator *, /, *=, or /= isused in an expression that is not an arithmetic expression.

2214 (E) Integer required for " operator™
The binary operator <<, >>, &, |, *, %, <<=, >>=, &=, |=, "=, or %=isused in an expression that
isnot an integer expression.

2215 (E) lllegal typefor " +"
The combination of operand types used with the binary operator + is not allowed.

2216 (E) lllegal typefor parameter
Type void is specified for afunction call parameter type.

2217 (E) lllegal typefor "-"
The combination of operand types used with the binary operator - is not allowed.

2218 (E) Scalar required
The first operand of the conditional operator ?: is not ascalar.

2219 (E) Typenot compatible with " ?:"
The types of the second and third operands of the conditional operator ?: do not match with each
other.

2220 (E) Modifiable lvaluerequired for " operator"
An expression whose left value cannot be assigned (a left value whose type is not array or const) is
used as an operand of an assignment operator =, *=, /=, %=, +=, -=, <<=, >>=, &=, "=, or | =.

2221 (E) lllegal typefor " operator”
The operand of the suffix operator ++ or -- isa pointer assigned to function type, void type, or to a
data type other than scalar type.

2222 (E) Typenot compatible for " ="
The operand types for the assignment operator = do not match.

2223 (E) Incompletetag used in expression
An incomplete tag name is used for a struct or union in an expression.

142
HITACHI

2224 (E) lllegal typefor assign
The operand types of the assignment operator += or -= areillegal.

2225 (E) Undeclared name*“ name”
An undeclared name is used in an expression.

2226 (E) Scalar required for " operator™"
The binary operator & & or || isused in anon-scalar expression.

2227 (E) lllegal typefor equality
The combination of operand types for the equality operator == or != is not allowed.

2228 (E) lllegal typefor comparison
The combination of operand types for the relational operator >, <, >=, or <= isnot allowed.

2230 (E) lllegal function call
An expression which is not afunction type or a pointer assigned to afunction typeisused for a
function call.

2231 (E) Addressof bit field
The unary operator & is used on abit field.

2232 (E) lllegal typefor " operator”
The operand of the prefix operator ++ or -- is a pointer assigned to a function type, void type, or to
adata type other than scalar type.

2233 (E) lllegal array reference
An expression used as an array is an array or a pointer assigned to a data type other than afunction
or void.

2234 (E) lllegal typedef namereference
A typedef nameisused as avariable in an expression.

2235 (E) lllegal cast
An attempt is made to cast a pointer with a floating-point type.

2236 (E) lllegal cast in constant
In aconstant expression, an attempt is made to cast a pointer with a char or short type.

2237 (E) lllegal constant expression
In a constant expression, a pointer constant is cast with an integer and the result is manipul ated.

2238 (E) Lvalueor function typerequired for "&"
The unary operator & isnot used on the Ivalue or is used in an expression other than function type.

143
HITACHI

2300 (E) Casenot in switch
A case label is specified outside a switch statement.

2301 (E) Default not in switch
A default label is specified outside a switch statement.

2302 (E) Multiplelabels
A label name is defined more than once in a function.

2303 (E) lllegal continue
A continue statement is specified outside awhile, for, or do statement.

2304 (E) lllegal break
A break statement is specified outside awhile, for, do, or switch statement.

2305 (E) Void function returnsvalue
A return statement specifies areturn value for afunction with avoid return type.

2306 (E) Caselabel not constant
A case label expression isnot an integer constant expression.

2307 (E) Multiple caselabels
Two or more case | abels with the same value are used for one switch statement.

2308 (E) Multiple default labels
Two or more default labels are specified for one switch statement.

2309 (E) Nolabel for goto
Thereis no label corresponding to the destination specified by a goto statement.

2310 (E) Scalar required
The control expression (that determines statement execution) for awhile, for, or do statement is
not a scalar.

2311 (E) Integer required
The control expression (that determines statement execution) for a switch statement is not an
integer.

2312 (E) Missing (
The control expression (that determines statement execution) does not follow aleft parenthesis ((
) for an if, while, for, do, or switch statement.

2313 (E) Missing;
A do statement is ended without a semicolon ().

144
HITACHI

2314 (E) Scalar required
A control expression (that determines statement execution) for an if statement is not a scalar.

2316 (E) lllegal typefor return value
An expression in areturn statement cannot be converted to the type of value expected to be
returned by the function.

2400 (E) lllegal character " character"
Anillegal character is detected.

2401 (E) Incomplete character constant
An end of lineindicator is detected in the middle of a character constant.

2402 (E) Incompletestring
An end of lineindicator is detected in the middle of a string literal.

2403 (E) EOF in comment
An end of fileindicator is detected in the middle of a comment.

2404 (E) lllegal character code™ character code"
Anillegal character code is detected.

2405 (E) Null character constant
There are no charactersin a character constant (i.e., no characters are specified between two
guotation marks).

2406 (E) Out of float
The number of significant digits in afloating-point constant exceeds 17.

2407 (E) Incomplete logical line
A backslash (\) or a backslash followed by an end of lineindicator (\ (RET)) is specified asthe
last character in a non-empty sourcefile.

2408 (E) Comment nest too deep
The nesting level of the comment exceeds the limit of 255 level.

2500 (E) lllegal token “phrase”
Anillegal token sequenceis used.

2501 (E) Division by zero
An integer is divided by zero in a constant expression.

2600 (E) String literal(s)
An error message specified by string literal #error is output to thelist file if nolist option is not
specified.

145
HITACHI

2650 (E) Invalid pointer reference
The specified address does not match the boundary alignment value.

2700 (E) Function " function name" in #pragma interrupt already declared
A function specified in an interrupt function declaration #pragma interrupt has been declared as a
normal function.

2701 (E) Multipleinterrupt for one function
An interrupt function declaration #pragma interrupt has been declared more than once for the same
function.

2702 (E) Multiple #pragma interrupt options
The same type of interrupt is declared more than once.

2703 (E) lllegal #pragmainterrupt declaration
An interrupt function declaration #pragmainterrupt is specified incorrectly.

2704 (E) lllegal referenceto interrupt function
The interrupt function is referenced incorrectly.

2705 (E) lllegal parameter in interrupt function
Argument types to be used for an interrupt function do not match.

2706 (E) Missing parameter declaration in interrupt function
Thereis no declaration for avariable to be used for an optional specification of an interrupt
function.

2707 (E) Parameter out of rangein interrupt function
The parameter value tn of an interrupt function exceeds the limit of 256.

2709 (E) lllegal section name declaration
The #pragma section specification isillegal.

2710 (E) Section nametoo long
The specified section name exceeds the limit of 31 characters.

2711 (E) Section nametable overflow
The number of section specified in one file exceeds the limit of 64.

2712 (E) GBR based displacement overflow
The variable declared in #pragmagbr_base overflows.

2713 (E) lllegal #pragma interrupt function type
The function type specified #pragmainterrupt in illegal.

146
HITACHI

2800 (E) lllegal parameter number in in-linefunction
Parameters to be used for an intrinsic function do not match.

2801 (E) lllegal parameter typein in-line function
There are different parameter typesin an intrinsic function.

2802 (E) Parameter out of rangein in-linefunction
A parameter exceeds the range that can be specified by an intrinsic function.

2803 (E) Invalid offset valuein in-line function
An argument for an intrinsic function is specified incorrectly.

2804 (E) lllegal in-line function
Anintrinsic function that cannot be used by the specified cpu option exists.

2805 (E) Function " function name" in #pragma inline/inline_asm alr eady declared
The function indicated by a function name exists before the #pragma specification.

2806 (E) Multiple #pragma for onefunction
Two or more #pragma directives are specified for one function incorrectly.

2807 (E) lllegal #pragmainline/inline_asm declaration
The #pragmainline or #pragmainline_asm is specified illegaly.

2808 (E) lllegal option for #pragmainline_asm
The -code=machinecode option is specified in addition to the #pragmainline_asm specification
declaration.

2809 (E) lllegal option for #pragma inline/inline_asm function type
An identifier type that specifies #pragmainline or #pragmainline_asmiisillegal.

2810 (E) Global variable“variable name’ in #pragma gbr_base/gbr _basel already
declared
A variable definition indicated by variable name exists before #pragma specification.

2811 (E) Multiple#pragma for one global variable
Two or more #pragma directives are specified for one variable incorrectly.

2812 (E) lllegal #pragma gbr_base/gbr_basel declaration
The #pragma gbr_base or #pragma gbr_basel specification isillegal declaration.

2813 (E) lllegal #pragma gbr_base/gbr_basel global variable type
An identifier type that specifies #pragma gbr_bsee or #pragmagbr_basel isillegal.

147
HITACHI

2814 (E) Function “function name” in #pragma nor egsave/nor ealloc/r egsave alr eady
declared
The function indicated by a function name exists before the #pragma specification declaration.

2815 (E) lllegal #pragma noregsave/nor egal loc/r egsave declar ation
The #pragma noregsave, or #pragma noregalloc, or #pragma regsave specification isillegal.

2816 (E) lllegal #pragma noregsave/nor egalloc/r egsave function type
An identifier type that specifies #pragma noregsave, #pragma noregalloc, or #pragmaregsaveis
illegal.

2817 (E) Symbol "identifier" in #pragma absl6 already declared
A name indicated by an identifier exists before the #pragma specification declaration.

2818 (E) Multiple #pragma for one symboal
More than one #pragmaisincorrectly specified for one identifier.

2819 (E) lllegal #pragma absl6 declaration
The #pragma abs16 specification isillegal declaration.

2820 (E) lllegal #pragma absl6 symbol type
An identifier type that specifies #pragmaabsl6isillegal.

2821 (E) Global variable“variable name’ in #pragma global_register already declared
The variable that specifies #pragma global_register has already been specified.

2822 (E) lllegal register “register” in #pragma global_register
The register that specified #pragma global_register isillegal.

2823 (E) lllegal #pragma global_register declaration
The specification method of #pragma global_register isillegal.

2824 (E) lllegal #pragma global_register type
A variable that cannot specify #pragma global_register exists.

3000 (F) Statement nest too deep
The nesting level of an if, while, for, do, and switch statements exceeds the limit. The maximum
number is 32 levels.

3001 (F) Block nest too deep
The nesting level of compound statements exceeds the limit. The maximum number is 32 levels.

3002 (F) #if nest too deep
The conditional compilation (#if, #ifdef, #ifndef, #elif, and #else) nesting level exceeds the limit.
The maximum number is 32 levels.

148
HITACHI

3006 (F) Too many parameters
The number of parametersin either afunction declaration or afunction call exceeds the limit. The
maximum number is 63.

3007 (F) Too many macro parameters
The number of parametersin amacro definition or amacro call exceeds the limit. The maximum
number is 63.

3008 (F)Linetoolong
After amacro expansion, the length of aline exceedsthe limit. The maximum number is 4096
characters.

3009 (F) Stringliteral too long

The length of string literal exceeds 512 characters. The length of string literal equalsto the
number of bytes when linking string literals specified continuously. The length of the string literal
is not the length in the source program but the number of bytes included in the string literal data.
Escape sequence is counted as one character.

3010 (F) Processor directive#include nest too deep
The nesting level of the #include directive exceeds the limit. The maximum level is 30.

3011 (F) Macro expansion nest too deep
The nesting level of macro expansion performed by a#define directive exceeds the limit.
The maximum level is 32.

3012 (F) Too many function definitions
The number of function definitions exceeds the limit. The maximum number is 512.

3013 (F) Too many switches
The number of switch statements exceeds the limit. The maximum number is 256.

3014 (F) For nest too deep
The nesting level of afor statement exceeds the limit. The maximum level is 16.

3015 (F) Symbol table overflow
The number of symbols to be generated by the SH C compiler exceeds the limit. The maximum
number is 24576.

3016 (F) Internal label overflow
The number of internal 1abelsto be generated by the SH C compiler exceeds the limit. The
maximum number is 32767.

3017 (F) Too many caselabels
The number of case labelsin one switch statement exceeds the limit. The maximum number is
511.

149
HITACHI

3018 (F) Too many goto labels
The number of goto labels defined in one function exceeds the limit. The maximum number is
511.

3019 (F) Cannot open sourcefile" file name"
A source file cannot be opened.

3020 (F) Sourcefileinput error " file name"
A source or include file cannot be read.

3021 (F) Memory overflow
The SH C compiler cannot allocate sufficient memory to compile the program.

3022 (F) Switch nest too deep
The nesting level of aswitch statement exceeds the limit. The maximum level is 16.

3023 (F) Type nest too deep
The number of types (pointer, array, and function) that qualify the basic type exceeds 16.

3024 (F) Array dimension too deep
An array has more than six dimensions.

3025 (F) Sourcefile not found
A source file nameis not specified in the command line.

3026 (F) Expression too complex
An expression istoo complex.

3027 (F) Sourcefiletoo complex
The nesting level of statementsin the program istoo deep or an expression is too complex.

3028 (F) Sourceline number overflow
The last source line number exceeds the limit. The maximum number is 65535.

3030 (F) Too many compound statements
The number of compound-statements exceeds the limit.

3031 (F) Datasize overflow
The size of an array or a structure exceeds the limit of 2147483647 bytes.

3033 (F) Symbol table overflow
The number of symbols used for debugging information exceeds 32767.

3100 (F) Misaligned pointer access

There has been an attempt to refer or specify using a pointer that has an invalid alignment.

150
HITACHI

3201 (F) Object size overflow
The object file size exceeds the limit of 4 Gbytes.

3202 (F) Toomany sourcelinesfor debug
There are too many source line to output debugging information.

3203 (F) Assembly sourcelinetoolong
The assembly source line is too long to output.

3204 (F) lllegal stack access

The size of a stack to be used in afunction (including alocal variable area, register save area, and
parameter push areato call other functions) or a parameter areato call the function exceeds

2 Gbytes.

3300 (F) Cannot open internal file

An error occurred due to one of the following causes:

(1) Anintermediate file internally generated by the SH C compiler cannot be opened.

(2) A file that has the same file name as the intermediate file already exists.

(3) The number of charactersin apath name for alist file specification exceeds the limit of 128
characters.

(4) A file which the SH C compiler usesinternally cannot be opened.

3301 (F) Cannot closeinternal file
An intermediate file internally generated by the SH C compiler cannot be closed. Make sure the
SH C compiler isinstalled correctly.

3302 (F) Cannot input internal file
An intermediate file internally generated by the SH C compiler cannot be read. Make sure the SH
C compiler isinstalled correctly.

3303 (F) Cannot output internal file
An intermediate file internally generated by the SH C compiler cannot be written.

3304 (F) Cannot deleteinternal file
An intermediate file internally generated by the SH C compiler cannot be deleted.

3305 (F) Invalid command parameter " option name"
Aninvalid compiler option is specified.

3306 (F) Interrupt in compilation
An interrupt generated by a (CNTL) C command (from a standard input terminal) is detected
during compilation.

3307 (F) Compiler version mismatch
File versions specified in the SH C compiler do not match the other file versions.

151
HITACHI

3320 (F) Command parameter buffer overflow
The command line specification exceeds 256 characters.

3321 (F) Illegal environment variable

An error occurred due to one of the following causes:

1. SHC LIB wasnot specified.

2. A file name was specified incorrectly when SHC LB was specified or the number of
charactersin a path name exceeds the limit of 118 characters.

3. Other than SH1, SH2, SHDSP, SH3, or SH3E is set for the environment variable SHCPU.

4000 — 4999 (—) Internal error
Aninternal error occurs during compilation. Report the error occurrence to your local Hitachi
deder.

152
HITACHI

Section 2 C Standard Library Error Messages

For some library functions, if an error is generated during the library function execution, an error

number is set in the macro errno defined in the header file <errno.h> contained in the standard
library. Error messages are defined in the error numbers so that error messages can be output.
The following shows an example of an error message output program.

Example:

#i ncl ude
#i ncl ude
#i ncl ude

mai n()

{
FI LE *fp;

fp=fopen(“file”, “wW);

f p=NULL;

<stdio. h>
<string. h>
<stdlib. h>

fcl ose(fp);

printf(“%\n”,

}

Description:

strerror(errno));

/* error occurred

[* print error nessage

1. Sincethefile pointer of NULL is passed to the fclose function as an actual parameter, an error

will occur. Inthis case, an error number corresponding to errnois set.

2. Thestrerror function returns a pointer of the string literal of the corresponding error message

when the error number is passed as an actual parameter. An error message is output by
specifying the output of the string literal of the printf function.

HITACHI

153

Table4.1 List of Standard Library Error Messages
Functions to
Error No. Error Message/Explanation Set Error Numbers
1100 Data out of range atan, cos, sin, tan, cosh, sinh, tanh,
(ERANGE) An overflow occured. exp, fabs, frexp, Idexp, modf, ceil,
floor, strtol, atoi, fscanf, scanf,
sscanf, atol
1101 Data out of domain acos, asin, atan2, log, log10, sqrt,
(EDOM) Results for mathematical fmod, pow
parameters are not defined.
1102 D vision by zero divbs, divws, divls, divbu, divwu, diviu
(EDIV) Division by zero was performed.
1104 Too long string strtol, strtod, atof, atoi, atol
(ESTRN) The length of string literal exceeds
512 characters.
1106 Invalid file pointer fclose, fflush, freopen, setbuf,
(PTRERR) NULL pointer constant is specified setvbuf, fprintf, fscanf, printf,
as the file pointer value scanf, sprintf, sscanf, vfprintf, vprintf,
vsprintf, fgetc, fgets, fputc, fputs,
ungetc, fread, fwrite, fseek, ftell,
rewind, perror
1200 Invalid radix strtol, atol, atoi
(ECBASE) An invalid radix was specified.
1202 Nurber too | ong strtod, fscanf, scanf, sscanf, atof
(ETLN) The specified number exceeds 17
digits.
1204 Exponent too |arge strtod, fscanf, scanf, sscanf, atof
(EEXP) The specified exponent exceeds 3
digits.
1206 Nor mal i zed exponent too |arge strtod, fscanf, sscanf, atof
(EEXPN) The exponent exceeds three digits
when the string literal is normalized
to the IEEE standard decimal
format.
1210 Overfl ow out of float strtod, fscanf, scanf, sscanf, atof
(EFLOATO) A float-type decimal value is out of
range (overflow).
1220 Under fl ow out of fl oat strtod, fscanf, scanf, sscanf, atof
(EFLOATU) A float-type decimal value is out of
range (underflow).
154

HITACHI

Table4.1 List of Standard Library Error Messages (cont)
Functions to
Error No. Error Message/Explanation Set Error Numbers
1250 Overfl ow out of double strtod, fscanf, scanf, sscanf, atof
(EDBLO) A double-type decimal value is out
of range (overflow).
1260 Underfl ow out of double strtod, fscanf, scanf, sscanf, atof
(EDBLU) A double-type decimal value is out
of range (underflow).
1270 Qverflow out of |ong doubl e fscanf, scanf, fscanf
(ELDBLO) A long double-type decimal value is
out of range (overflow).
1280 Under f| ow out of |ong doubl e fscanf, scanf, sscanf
(ELDBLU) A long double-type decimal value is
out of range (underflow).
1300 File not open fclose, fflush, setbuf, setvbuf, fprintf,
(NOTOPN) The file is not open. fscanf, printf, scanf, sprintf, sscanf,
vfprintf, vprintf, vsprintf, fgetc, fgets,
fputc, fputs, gets, puts, ungetc, fread,
fwrite, fseek, ftell, rewind, perror,
freopen
1302 Bad fil e nunber fprintf, fscanf, printf, scanf, sprintf,
(EBADF) An output function was issued for sscanf, vfprintf, vprintf, vsprintf, fgetc,
an input file, input file was issued for fgets, fputc, fputs, gets, puts, ungetc,
an output function. perror, fread, fwrite
1304 Error in fornat fprintf, fscanf, printf, scanf, sprintf,
(ECSPEC) An erroneous format was specified sscanf, vfprintf, vprintf, vsprintf,

for an input/output function using
format.

perror

HITACHI

155

APPENDI X

Appendix A Language and Standard Library Function
Specifications of the C Compiler

A.l L anguage Specifications of the C Compiler

A.1.1 Compilation Specifications
TableA.1 Compilation Specifications

Item C Compiler Specification

Error information when an error is detected Refer to part IV, Error Messages

A.1.2 Environmental Specifications

TableA.2 Environmental Specifications

Item C Compiler Specification
Actual argument for the main function Not specified
Interactive 1/0 device configuration Not specified

159
HITACHI

A.1l3 ldentifiers

Table A.3 Identifier Specifications

Item C Compiler Specification

Number of valid characters of internal identifiers not The first 250 characters are valid for an
used for external linkage internal or external identifier.

Number of valid characters of external identifiers
used for external linkage

Lowercase and uppercase character distinction in Lowercase characters are distinguished
external identifiers used for external linkage from uppercase characters.

Note: Two different identifiers with the same first 250 characters are considered to be identical
even if the 251st or later characters are different.

Example:
1. longabcde ... ab; (the 250th character is aand the 251st character isb)
2. longabcde ... ac; (the 250th character is aand the 251st character is c)
Identifiersl. and 2. are indistinguishable because the first 250 characters are the same.

160
HITACHI

A.l4 Characters

TableA.4 Character Specifications

Item

C Compiler Specification

Elements of source character set and execution
environment character set

ASCII character set

Kanji used in host environment can be
used for source program comment.

Shift state used for encoding multiple-byte characters

Shift state is not supported

The number of bits used to indicate a character set
during program execution

Eight bits are used for each character.

Correspondence between source character set used
in character constant or character string and
execution environment character set

ASCI!I is used for both.

Value of character constant including characters and
escape sequence that are not specified in the C
language

Characters and escape sequence other
than that specified by the C language are
not supported.

Character constant of two or more characters or wide
character constant including multiple-byte characters
of two or more characters

The upper one character of the character
constant is valid. Wide character constant
is not valid. If a character constant of
more than one character is specified, a
warning error message is output.

locale specifications used to convert multiple-byte
character to wide character

locale is not supported

Simple char having normal the value range same as
signed char or unsigned char.

The same range as the signed char.

HITACHI

161

A.l15 Integer

Table A5 Integer Specifications

Item

C Compiler Specification

Integer-type data representation and value

Table A.6 shows data representation and
value. (A negative value is shown in two's
complement.)

Effect when an integer is too large to be converted
into a signed integer-type value or into a value which
cannot be expressed using signed char type (when
the resulting value cannot be represented with the
resulting converted type)

The lower one or two bytes of the integer
is used as the conversion result.

The result of bitwise operations on signed integers

signed value

Sign of the remainder for integer division

Same as the sign of the dividend.

Effect of a right shift operation on the sign bit of
signed integer-type data

The sign bit is unchanged by the shift
operation.

Table A.6 Integer Typesand Their Corresponding Data Range

Type Range of Values Data Size
char (signed char) —128to 127 1 byte
unsigned char 0to 255 1 byte
short —32768 to 32767 2 bytes
unsigned short 0 to 65535 2 bytes
int —2147483648 to 2147483647 4 bytes
unsigned int 0 to 4294967295 4 bytes
long —2147483648 to 2147483647 4 bytes
unsigned long 0 to 4294967295 4 bytes

Note: Type specification in parenthesis () can be omitted. The order of type specification is

arbitrary.

162

HITACHI

A.1.6 Floating-Point Numbers

TableA.7 Floating-Point Number Specifications

Item C Compiler Specification

Data that can be represented as floating-point type The float, double, and long double are
and value provided as floating-point types.

See section A.3, Floating-Point Number
Specifications, for details on floating-point
numbers (internal representation,

Rounding down direction when converting an
integer number to a floating-point number that
cannot represent the integer's original value
correctly

conversion specifications, and operation
specifications). Table A.8 shows the limits
on representing floating-point numbers.

Rounding down or rounding method when
converting a floating-point number to a lower-
precision number

Table A.8 Limitson Floating-Point Numbers

Limit
Item Decimal™ Hexadecimal
Maximum value of float type 3.4028235677973364e+38f TE7Effff
(3.4028234663852886e+38f)
Positive minimum value of 7.0064923216240862e—-46f 00000001
float type (1.4012984643248171e—-45f)
Maximum value of double™ 1.7976931348623158e+308 Tfefffffffffffff
or long double type (1.7976931348623157e+308)
Positive minimum value of 4.,9406564584124655e-324 0000000000000001

double®or long double type (4.9406564584124654e—324)

Notes: 1. Limits on decimal is non-zero minimum value or maximum value not infinitive value.
Values within () indicate theoretical values.
2. double type will have the same value as float type when —double=float
option is specified.

163
HITACHI

A.17 Arraysand Pointers

TableA.9 Array and Pointer Specifications

Item

C Compiler Specification

Integer type required for holding array's maximum
size (size_t)

unsigned long

Conversion from pointer-type data to integer-type
data (Pointer-type data size = Integer-type data size)

The lower byte of pointer-type data is used.

Conversion from pointer-type data to integer-type
data (Pointer-type data size < Integer-type data size)

Extended with signs

Conversion from integer-type data to pointer-type
data (Integer-type data size = Pointer-type data size)

The lower byte of integer-type data is used.

Conversion from integer-type data to pointer-type
data (Integer-type data size < Pointer-type data size)

Extended with signs

Integer type required for holding pointer difference
between members in the same array (ptrdiff_t)

int

A.1l8 Register

Table A.10 Register Specifications

Item

C Compiler Specification

The maximum number of register variables that can
be allocated to registers

7

Type of register variables that can be allocated to
registers

char, unsigned char, short, unsigned
short, int, unsigned int, long, unsigned
long, float, and pointers

164

HITACHI

A.19 Structure, Union, Enumeration, and Bit Field Types

Table A.11 Specificationsfor Structure, Union, Enumeration, and Bit Field Types

Item

C Compiler Specification

Effect of referencing a union-type member using
another member whose data type is different

Reference is possible but the referred value
is not guaranteed.

Structure member alignment

The maximum data size among structure
members is a boundary alignment number.
Refer to table A.6 Integer Types and Their
Corresponding Data Range. **

Sign of an int bit field

Assumed to be signed int

Allocation order of bit fields in int area

Beginning from the high order bit to low
order bit. *?

Result when a bit field has been allocated in an int
area and the next bit field to be allocated is larger
than the remaining int

The next bit field is allocated to the next int
area.*

Type specifier allowed for bit field

char, unsigned char, short, unsigned
short, int, unsigned int, long, and
unsigned long

Integer describing enumeration

int

Notes: 1. See section 2.2.2 Combined-Type Data, in part II C Programming, for details on

structure member allocation.

2. See section 2.2.3, Bit Fields, in part Il C Programming, for details on bit field allocation.

A.1.10 Qualifier

Table A.12 Qualifier Specifications

Item

C Compiler Specification

volatile data access type

Not specified

165

HITACHI

A.1.11 Declarations

Table A.13 Declaration Specifications

Item C Compiler Specification

Types that can qualify the basic types Up to 16 types can be specified.
(pointer, array, and function)

1. Example of counting the number of typesthat qualify the basic types

Examples:
a intg
aisint (basic type) and the number of declarators that qualify the basic typeis zero.
b. char *f();

f isafunction type that returns pointer to char (basic type). The number of declarators that
qualify the basic type is two.

A.112 Statement

Table A.14 Statement Specifications

Iltem C Compiler Specification

The number of case label that can be declared in a Up to 511 labels can be specified.
switch statement

166
HITACHI

A.1.13 Preprocessor

Table A.15 Preprocessor Specifications

Item

C Compiler Specification

Correspondence between single character constant
in a constant expression and execution environment
character set in the conditional compilation

Character strings in the preprocessor
statement match the execution environment
character set

Reading an include file

The file within < > is read from a directory
specified by the include option. When more
than one directory is specified, a file is
searched for in the specified order. If a
specified file is not found at a specified
directory, the search continues at a
directory specified by environment variable
SHC_INC and a system directory
(SHC_LIB) in this order.

Supporting an include file whose name is enclosed
in a pair of double quotation marks

The C compiler supports include files
whose names are delimited by double
guotation marks. The C compiler reads
these include files from the current
directory. If the include files are not in the
current directory, the C compiler reads them
from the directory specified in advance.

Blank character in the character string of an actual
parameter for a #define statement after expansion

Strings of blanks are expanded as one
blank character.

#pragma directive operation

#pragma interrupt, #pragma section,
#pragma inline, #pragma inline_asm,
#pragma abs16, #pragma gbr_base,
#pragma gbr_basel, #pragma noregsave,
#pragma noregalloc, #pragma regsave, and
#pragma global_register are supported.**

Valueof _ DATE__, TIME_ _

Data depending on the host machine timer
when the compilation starts.

Note:
specifications.

See section 3, Extended Specification, in part Il C Programming, for details on #pragma

167

HITACHI

A.2 C Library Function Specifications

This section explains the specifications for C library functions that are not declared in C language
specification.

A.21 stddef.h

Table A.16 stddef.h Specifications

Iltem C Compiler Specification

Value of macro NULL The value is O for a pointer type to a void
type

Contents of ptrdiff_t int type

A.22 assert.h

Table A.17 assert.h Specifications

Item C Compiler Specification

Information output and terminal operation of assert See 1. for the format of output information.

function The program outputs information and then
calls the abort function to stop the
operation.

1. Thefollowing message is output when the value of the expression is O for assert (expression):
Assertion Fail ed: A<expression>AFi | eA<file name>, Li neA<line number>

A.23 ctypeh

Table A.18 ctype.h Specifications

Item C Compiler Specification

The character set for which the isalnum, isalpha, Character set that can be expressed in

iscntrl, islower, isprint, and isupper functions unsigned char type. Table A.19 shows the

check character set that results in a true return
value.

168

HITACHI

Table A.19 Set of Charactersthat Returns True

Function Name

Characters That Become True

isalnum '0'to'9','A'to"' Z','a'to"' z'
isalpha 'A'to'Z','a'to 'z’

iscntrl '¥X00' to "¥X1f, ¥XTTf
islower '‘a'to 'z’

isprint "¥X20' to "¥X7E'

isupper 'A'to'Z'

A.24 math.h

Table A.20 math.h Specifications

Item

C Compiler Specification

Value returned by a mathematical function if an For details on format for not a number,

input parameter is out of the range

refer to A.3, Floating-Point Number
Specifications
Returns a not a number.

Is errno set to the value of macro ERANGE if an No, it is not.
underflow error occurs in a mathematical function?

Does a range error occur if the 2nd actual parameter Returns a not a number and a range error

in the fmod function is 0

occurs.

Note: math.h defines macro names ENUM and ERANGE that indicates a standard library error

number.

A25 sjmp.h

TableA.21 setjmp.h Specifications

Item

C Compiler Specification

What programs can a setjmp function be called in ? The following statements can call a setjmp

function if specified with setjmp() or
ver=setjmp() format:

1. Asingle statement or an if, while, do,
or for statement that specifies
condition

2. switch or return statement

169
HITACHI

A.26 sdioh

Table A.22 stdio.h Specifications

Item

C Compiler Specification

Is a carriage return character indicating the last line

of input data required?

Is a blank character immediately before the carriage

return character read?

Number of NULL characters added to data written to

binary file

Initial value of file position specifier in addition mode

Is a file data lost following text file output?

File buffering specifications

Does a file with file length 0 exist?

File name configuration rule

Can the same files be opened simultaneously?

Not specified. Depends on the low-level
interface routine specifications.

Output data representation of the %p format
conversion in the fprintf function

Hexadecimal representation

Output data representation of the %p format
conversion in the fscanf function, the meaning of
(-) in the fscanf function

Hexadecimal representation

If () is not placed at the beginning or end
of a fscanf character string or does not
follow (") in a fscanf character string,
indicates the range between the previous
and following characters.

Value of errno specified by fgetpos and ftell
functions

The fgetpos function is not supported.

The ftell function does not specify the errno
value. The errno value is determined
depending on the low-level interface
routine.

Output format of messages generated by the perror

function

See 1. below for the output message
format.

calloc, malloc, or realloc function operation when

the sizeis 0

0 byte area is allocated.

1. Messages generated by a perror function follow this format:
<character string> : <error message corresponding to the error number indicated by errno>
2. Table A.23 shows the format used to indicate infinity and not a number for floating-point

numbers when using the printf or fprintf function.

170

HITACHI

Table A.23 Infinity and Not a number

Value C Compiler Specification

Positive infinity ottt

Negative infinity _

Not a number Kk okkk

A.27 sring.h

Table A.24 string.h Specifications

Item

C Compiler Specification

Return value from an memcmp, strcmp, or
strncmp function.

Value is treated as a signed value.

Error message returned by the strerror function

Refer to section 2, C Standard Library, in
part IV Error Messages.

171

HITACHI

A.2.8 errno.h

Table A.25 errno.h Specifications

Item C Compiler Specification

errno An error number is specified when an error occurs in an int
type variable or a library function.

ERANGE Refer to section 2, C Standard Library Error Messages, in part
IV Error Messages.

EDOM

EDIV

ESTRN

PTRERR

ECBASE

ETLN

EEXP

EEXPN

EFLOATO

EFLOATU

EDBLO

EDBLU

ELDBLO

ELDBLU

NOTOPN

EBADF

ECSPEC

172
HITACHI

A.29 Librariesthat are Not Supported by the SH C Compiler

Table A.26 shows alist of libraries that are not supported by the SH C compiler but are defined in
the H series C language manual specification. Header files are not supported for signal.h and

time.h.

Table A.26 Librariesthat are Not Supported by the SH C Compiler

Header File Library

signal.h signal, raise

stdio.h remove, rename, tmpfile, tmpnam

stdlib.h getenv, system

time.h clock, difftime, time, asctime, ctime, gmtime,

localtime

HITACHI

173

A.3 Floating-Point Number Specifications

A.31 Internal Representation of Floating-Point Numbers

Theinternal representation of floating-point numbers follows the IEEE standard format. This
section explains the outline of the internal representation of | EEE-type floating-point numbers.

Internal Representation Format: float is represented in |EEE single precision (32 bits), double
and long double are represented in | EEE double precision (64 hits).

Internal Representation Structure: Figure A.1 shows the structure of float, double and long
doubleininternal representation.

float

31 30 23 22 0
Sigr_l Exponent Mantissa

(1 bit) (8 bits) (23 bits)

double’? and long double

63 62 52 51 0
Sign Exponent Mantissa
(1 bit) (11 bits) (52 bits)

Note: When —double = float option is specified, double type and float type have the same internal
representation.

Figure A.1 Structurefor thelnternal Representation of Floating-Point Numbers
The elements of the structure have the following meanings.

1. Sign
Thisindicates the sign of afloating-point number. Positive and negative are represented by 0
and 1, respectively.

2. Exponent
This indicates the exponent of a floating-point number as a power of two.

3. Mantissa

This determines the significant digits of a floating-point number.

174
HITACHI

Types of Values: Floating-point numbers can represent infinity in addition to real numbers. The
rest of this section explains the types of values that can be represented by floating-point numbers.

1

Normalized Number
The exponent is not 0 or the maximum. A normalized number represents areal number.
Denormalized Number

The exponent is 0 and the mantissais not 0. A denormalized number is areal humber whose
absolute valueis very small.

Zero

The exponent and mantissa are both 0. Zero represents the value 0.0.
Infinity

The exponent is the maximum and mantissais 0.

Not a Number

The exponent is the maximum and the mantissaisnot 0. Thisis used to represent an operation
result that is undefined (such as 0.0/0.0, oo/co, 00 — c0),

Note: A denormalized number represents a floating-point number whose absolute value is so

small that it cannot be represented as a normalized number. Denormalized numbers have
less significant digits than normalized numbers. The significant digits of aresult are not
guaranteed if either the operation result or an intermediate result is a denormalized
number.

Table A.27 Typesof Values Represented by Floating-Point Numbers

Exponent
Mantissa 0 Other than 0 or Maximum Maximum
0 0 Normalized number Infinity
Other than 0 Denormalized number Not a number

175
HITACHI

A.3.2 float

float isinternally represented as 1 sign bit, 8 exponent bits, and 23 mantissa bits.

Normalized Number: Thesign bit is either O (positive) or 1 (negative). The exponentisa
number from 1 to 254 (28 —2). From the value 1 to 254, 127 is subtracted and the result is used as
the actual exponent. The range of actual exponentsis—126to 127. The mantissaisavaluefrom0
to 22 — 1. The actual mantissais assumed that the highest order bit (2%) is 1 and adecimal point
followsit.

Value represented by a normalized number is shown in the following expression:
(-1)<SIgn> x p<exponent>-127 » (14 <mantissa> x 27%)

Example:

31 30 23 22 0
11/10000000/11000000000000000000000|

Sign: -

Exponent: 10000000, - 127=1 ((, indicates binary data throughout this manual.)
Mantissae 1.11, =175

Value: -1.75x 2t =-35

Denormalized Number: The sign bit is either O (positive) or 1 (negative). The exponent is 0
which makes the actual exponent equal to —126. The mantissaisavaluefrom1to2®—1. The
actual mantissais assumed that a highest order bit (2%) is 0 and adecimal point followsiit.

Vaue represented by a denormalized number is shown in the following expression:
(-1)<SIgN> x 2<exponent>-i2 x (<mantissa> x 2°%)

Example:

31 30 2322 0
[000000000[11000000000000000000000|

Sign: +

Exponent: Oy —126 =-126
Mantissa: 0.11,=0.75
Value: 0.75x 2%

176
HITACHI

Zero: Thesign bitis either O (positive) or 1 (negative) and indicates +0.0 and —0.0, respectively.
The exponent and mantissaare 0. Both +0.0 and —0.0 represent 0.0. See appendix A.3.4,
Floating-Point Operation Specifications, for differencesin each operation depending on the sign.

Infinity: Thesign bit iseither O (positive) or 1 (negative) and indicates +co and —oo, respectively.
The exponent is 255 (28 —1). The mantissaisO.

Not a Number: The exponent is 255 (28 — 1) and the mantissais not equal to 0.

Note: When the CPU is SH3E, the not a number for the most significant bit of the mantissa
which is0iscalled gNaN, and the not a number for the most significant bit of the
mantissawhichis1iscalled sNaN. Other mantissafield values and sign parts are not
specified.

A.3.3 doubleand long double

A double or long doubleis represented as 1 sign bit, 11 exponent bits, and 52 mantissa bits.

Normalized Number: The sign bit is either O (positive) or 1 (negative). The exponentisa
number from 1 to 2046 (2** — 2). From the value 1 to 2046, 1023 is subtracted and the result is
used as the actual exponent. The range of actual exponentsis—1022 to 1023. The mantissaisa
value from 0to 2°2 — 1. The actual mantissais assumed that the highest order bit (2°%) is1and a
decimal point followsiit.

Vaue represented by anormalized number is shown in the following expression:

(-1)<SIgN> x 2<EXpONeNt> 102 x (1 +<mantissa> x 2%

Example:

63 52 51 0
|O|01111111111|1l1000OO000OOOOO000OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

Sign: +

Exponent: 1111111111, -1023=1
Mantissa: 1111, = 1875

Value: 1.875x 2° =1.875

177
HITACHI

Denormalized Number: The sign bit is either O (positive) or 1 (negative). The exponent is0
which makes the actual exponent equal to —1022. The mantissavalueisfrom 1to 2% —-1. The
actual mantissais assumed that the highest order bit (2%?) is 0 and adecimal point followsiit.

Value represented by a denormalized number is shown in the following expression:
(-1)<SgN> x p<exponent>-102 » (<mantissa> x 2%)

Example:

63 52 51 0
|0|00000000000|111000000OO000

Sign: -

Exponent: Oy —1022=-1022
Mantissaz 0.111,, =0.875
Value: 0.875 x 2'%2=1.875

Zero: Thesign bitis either O (positive) or 1 (negative) and indicates +0.0 and —0.0, respectively.
The exponent and mantissaare 0. Both +0.0 and —0.0 represent 0.0. See appendix A.3.4,
Floating-Point Operation Specifications, for differencesin each operation depending on the sign.

Infinity: The sign bit is either O (positive) or 1 (negative) and indicate +oo and —o respectively.
The exponent is 2047 (2" — 1). The mantissaisO.

Not a Number: The exponent is 2047 (2! — 1) and the mantissais not equal to 0.

Note: When the CPU is SH3E, the not a number for the most significant bit of the mantissa
which is0iscalled gNaN, and the not a number for the most significant bit of the
mantissawhichis 1 iscaled sNaN. Other mantissa field values and sign parts are not
specified.

178
HITACHI

A.34 Floating-point Operation Specifications

This section explains the floating-point arithmetic used in C language functions. It also gives the
specifications for converting between the decimal representation and the internal representation of
floating-point numbers generated during C compiler or standard library function processing.

Arithmetic Operation Specifications:

1. Result Rounding
If the precise result of afloating-point operation exceeds the significant digits of the internally
represented mantissa, the result is rounded as follows:
a. Theresult isrounded to the nearest internally representable floating-point number.
b. If theresult isdirectly between the two nearest internally representabl e floating-point
numbers, the result is rounded so that the lowest bit of the mantissa becomes 0.
¢. When the CPU is SH3E, the number of digits that exceed the significant digit are rounded
down.
2. Overflow/Underflow and Invalid Operation Handling
Invalid operations, overflows and underflows resulting from numeric operations are handled as
follows:
a. For an overflow, positive or negative infinity is used depending on the sign of the result.
b. For an underflow, positive or negative zero is used depending on the sign of the resullt.
c. Aninvalid operation is assumed when: i. infinity is added to infinity and each infinity has
adifferent sign, ii. infinity is subtracted from infinity and each infinity has the same sign,
iii. zeroismultiplied by infinity, iv. zero isdivided by zero, or v. infinity is divided by
infinity. In each case, the result is not a number.
d. Dataaccuracy cannot be guaranteed if the data overflows when converting floating-point
datato integer data.

Note: Operations are performed with constant expressions at compile time. If an overflow,
underflow, or invalid operation is detected during these operations, awarning-level error
ocCurs.

3. Special Vaue Operations

More about specia value (zero, infinity, and not a number) operations:
a. If positive zero and negative zero are added, the result is positive zero.

b. If zerois subtracted from zero and both zeros have the same sign, the result is positive
Z€ero.

c. The operation result is always a not a number if one or both operands are not a numbers.
d. Positive zero is equal to a negative zero for comparison operations.

If one or both operands are not a numbers in a comparison or equivalence operation, the
result of '=isawaystrue and all other results are false.

179
HITACHI

Conversion between Decimal Representation and I nternal Representation: This section
explains the conversion between floating-point constants in a source program and floating-point
constants in internal representation. The conversion between decimal representation and internal
representation of ASCII character string floating-point numbers by library functionsis also
explained.

1. To convert afloating-point number from decimal representation to internal representation, the
floating-point number in decimal representation is first converted to a floating-point number in
normalized decimal representation. A floating-point number in normalized decimal
representation isin the format +M x 10N, The followi ng ranges of M and N are used:

a. For normalized float

0sM<10°-1

0<N<99
b. For normalized double and long double

OsM<10" -1

0<N<999
An overflow or underflow occursiif afloating-point number in decimal representation cannot
be normalized. If afloating-point number in normalized decimal representation contains too
many significant digits, as aresult of the conversion, the lower digits are discarded. Inthe
above cases, awarning-level error occurs at compilation and the variable errnois set equal to
the corresponding error number at run time.
To convert afloating-point number from decimal representation to normalized decimal
representation, the length of the original ASCII character string must be less than or equal to
511 characters. Otherwise, an error occurs at compile time and the variable errno is set equal
to the corresponding error number at run time.
To convert a floating-point number from internal representation to decimal representation, the
floating-point number isfirst converted from internal representation to normalized decimal
representation. The result isthen converted to an ASCII character string according to a
specified format.

180
HITACHI

2. Conversion between Normalized Decimal Representation and Internal Representation
If the exponent of a floating-point number to be converted between decimal representation and
internal representation istoo large or too small, a precise result cannot be obtained. This
section explains the range of exponents for precise conversion and the error that results from
exceeding the range.
a. Range of Exponents for Precise Conversion
Rounding as explained in the description, Result Rounding, in appendix A.3 4, Floating-
point Operation Specifications, is performed precisely for floating-point numbers whose
exponents are in the following ranges:
For float : 0<M<10°-1, 0sN<13
For double and long double: 0<M<10" -1, 0sN<27
An overflow or underflow will not occur if the exponent is within the proper ranges.
b. Conversion and Rounding Error
The difference between, a. the error occurring when the exponent outside the proper range
is converted, and b. the error occurring when the value is precisely rounded, does not
exceed the result of multiplying the least significant digit by 0.47. If an exponent outside
the proper range is converted, an overflow or underflow may occur. In such acase, a
warning-level error occurs at compilation and the variable errno is set to the corresponding
error number at run time.

181
HITACHI

Appendix B Parameter Allocation Example

Example 1. Register parameters are allocated to registers R4 to R7 depending on the order of
declaration.

int f(char,short,int,float); R4 No sign extension !
: R5 | No sign extension 2
f(1,2,3,4.0); &
R6 3
R7 4.0

Example 2: Parameters which could not be allocated to registers R4 to R7 are allocated to the

stack area as shown below. If achar (unsigned) or short (unsigned) type parameter is allocated
to aparameter area on astack, it is extended to a 4-byte area.

int f(int,short,long,float,char); R4 1

f (1; 2,3,4.0,5); R5 | No sign extension 2
R6
R7 4.0

* Lower address

Parameter area |

No sign extension 5 |
(stack) 9

+ Upper address

183
HITACHI

Example 3: Parameters having atype that cannot be allocated to registers from R4 to R7 are
allocated to the stack area.

struct s{int x,y;}a; R4 1
int f(int,struct s,int);
: R5 3
f(1 4 3);
* Lower address
Parameter area ax
(stack) .
ay

* Upper address

Example 4: If afunction whose number of parameters changes is specified by prototype
declaration, parameters which do not have a corresponding type in the declaration and the
immediately preceding parameters are allocated to a stack.

int f(double,int,int,...) R4 2 |

f(1.0,2,3,4);
* Lower address

Parameter area 1.0

(stack)

* Upper address

184
HITACHI

Example5: If avalue returned by afunction exceeds four bytes, or isastructure type, areturn
value is specified just before parameter area. If structure sizeis not a multiple of four, an unused

areais generated.

Return value address

struct s{char x,y,z;}a;
doubl e f(struct s); Parameter area

: (stack) a.x
f(a);

o [

Unused
area

* Lower address

Return value
setting area

* Upper address

Example 6: When the CPU is SH3E, float type parameters are allocated to FPU registers.

int f(char,float,short,float,double); R4
: R5
R6
R7

£(1,2.0,3,4.0,5.0);

Parameter area
(stack)

HITACHI

No sign extension | 1 FR4

No sign extensionl 3 FRS

FR6

FR7

FR8
FR9
FR10
FR11

2.0

4.0

* Lower address

5 |

* Upper address

185

Appendix C Usage of Registers and Stack Area

This section describes how to use registers and stack area by the C compiler. The user does not
have to take care how to use this area, because registers and stack area used by afunction are
operated by the C compiler. Figure C.1 shows the usage of registers and stack area.

(Only for SH3E)

FRO RO

FR1 R1

FR2 R2

T Lower address

FR3 R3 Stack area

FR4 R4

FR5 R5 7,

FR6 R6

Area used by .

FR7 R7 the function Frame size

FR8 R8

FR9 R9
FR10 R10 Stack frame
FR11 R11 Return value address 4 bytes
FR12 R12
FR13 R13

Parameter area
FR14 R14
FR15 R15(SP)
) Stack area i
FRO-FR15 : For variable or temporary ~ R0-R14 : For variable or temporary Upper address
data storage data storage
FR4-FR11 : For parameter storage R4-R7 : For parameter storage
(indicated by [71) (indicated by [7])
FigureC.1 Usage of Registersand Stack Area
187

HITACHI

Appendix D Creating Termination Functions

D.1 Creating Library onexit Function

This section describes how to create library onexit function that defines termination routines. The
onexit function defines a function address, which is passed as a parameter, in the termination
routinetable. If the number of defined functions exceeds the limit value (assumed to be 32 in the
following example), or if the same function is defined twice or more, NULL is returned.
Otherwise, value other than NULL isreturned. An example of onexit routine is shown below.

Example:

#i ncl ude <stdlib. h>

typedef void *onexit_t;

int _onexit_count=0;
onexit_t (*_onexit_buf[32])(void);

extern onexit_t onexit(onexit_t (*)(void));

onexit_t onexit(f)
onexit_t (*f)(void);

{
int i;
for(i=0; i<_onexit_count ; i++)
if(_onexit_buf[i]==f) /* Checks if the sane function */
return NULL; /* has been defined */
if(_onexit_count==32) /* Checks if the No. of */
/* defined functions exceed */
/* limt */
return NULL;
el se{
_onexit_buf[_onexit_count]=f; |/ *Defines the function address*/
_onexit_count ++;
return & onexit_buf[_onexit_count -1];
}
}

189
HITACHI

D.2 Creating exit Function

This section describes how to create exit function that terminates program execution. Note that
the exit function must be created according to the user system specifications referring to the
following example, because how to terminate a program differs depending on the user system.

The exit function terminates C program execution based on the termination code returned as a
parameter and then returns to the environment at program initiation. Returning to the environment

at program initiation is achieved by the following two steps:
1. Setsatermination codein an externa variable

2. Returnsto the environment that is saved by the setjmp function immediately before calling the

main function
An example of the exit function is shown below.

#i ncl ude <setj np. h>
#i ncl ude <stddef. h>

typedef void *onexit_t;
extern int _onexit_count;

extern onexit_t (*_onexit_buf[32])(void);

extern jnp_buf _init_env ;
extern int _exit_code

extern void _CLOSEALL();
extern void exit(int);

voi d exit(code)

int code ;
{
_exit_code=code ; /*Sets return code to _exit_code */
for(int i=_onexit_count-1; i>0; i--)
(*_onexit_buf[i])(); / *Sequenci al | y executes functions
defined by onexit*/
_CLOSEALL(); /*Closes all files opened*/
longjnp(_init_inv, 1) ; /*Returns to the environnent saved
by the setjnp*/
}
190

HITACHI

Note: To return to the environment before program execution, create the callmain function and
call the callmain function instead of calling the main function from the init routine as
shown below.

#i ncl ude <setjnp. h>
jmp_buf _init_env
int _exit_code

void cal | main()

{

/* Saves current environment by setjnmp function and calls the */
/* main function */

/* Terminates C programif a termnation code is returned fromthe */
/* exit function */

if(!setjnmp(_init_env))
_exit_code = nain()

}

191
HITACHI

D.3 Creating Abort Routine

To terminate the routine abnormally, the program must be terminated by an abort routine prepared
according to the user system specifications. The following shows an example of abort routine in
which an error message is output to the standard output device, closes al files, enters endless loop,
and waits for reset.

Example:
#i ncl ude <stdio. h>

extern void abort();
extern void _CLOSEALL();

voi d abort ()

printf("programis abort !!\n"); /*Qutputs nessage */
_CLOSEALL(); /*Qoses all files */
whil e(1); /*Enters endless loop */
}
192

HITACHI

Appendix E Examples of Low-Level Interface Routine

IAEEEEAEEE R EE AR EEEEEEEEEEEEEREEEEEEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEE Ry

/* | owsrc. c: */
/*_ - _*/
/* SH-seri es sinulator debugger interface routine */
/* - Only standard I/Ofiles (stdin, stdout, stderr) are supported */

/***/

#i ncl ude <string. h>

/* file nunber */

#define STDIN O /* Standard input (console) */
#define STDOUT 1 /* Standard output (console) */
#defi ne STDERR 2 /* Standard error output (console) */
#define FLM N O /* Mnimumfile nunmber */
#define FLMAX 3 /* Maxi mum nunber of files */

I* file flag */

#define O_RDONLY 0x0001 /* Read only */
#define O WRONLY 0x0002 /* Wite only */
#define O RDWR 0x0004 /* Both read and wite */

/* special character code */

#defi ne CR 0x0d /* Carriage return */
#defi ne LF Ox0a /* Line feed */

/* size of area managed by sbrk */

#def i ne HEAPSI ZE 1024

IAEEEEAEEE R EE R EEEEE R EEEEE R EREEEEEEEEEEEEERREEEEEEEEEE R EEEE R Ry

/* Declaration of reference function */
/* Reference of assenbly programin which the sinmulator debugger input or */
/* output characters to the console */
/***/
extern void charput(char); /* One character input */
extern char charget (void); /* One character output */

IEEEEEAEEE R EE AR EEEEE R EEEEE R EEEEEEEEEEEEEEEREE R R EEEE R Ry

/* Definition of static variable: */

/* Definition of static variables used in |owlevel interface routines */
/***/

char fl mod[FLMAX] ; /* Open file node specification area */

static union {
long dumy ; /* Dummy for 4-byte boundary */
char heap[HEAPSI ZE] ; /* Declaration of the area nmanaged */
/* by sbrk */

} heap_area ;

static char *brk=(char *)&heap_area;/* End address of area assigned by */
/* sbrk */

193
HITACHI

/**/

/* open:file open
/* Return value: File nunber (Pass)
/* -1 (Failure)
/~k************************
int open(char *nane, /* File nane

i nt node) /* File node
{

el se
return -1, /* Error
/~k**********************
/* close:File close
/* Return val ue: 0 (Pass)
/* -1 (Failure)
/~k**********************
int close(int fileno) /* File nunber
if(fileno<FLM N || FLMAX<fil eno) /* File nunber range check
return -1,
flmod[fil eno] =0; /* File node reset
return O;
}
194

/* Check npde according to file nane and return file nunbers

i f(strcnp(nane, "stdin")==0){ /* Standard input file
i f((nde&0O RDONLY) ==0)
return -1,

f 1 mod[STDI N] =node;
return STDIN;
}

el se if(strcnmp(nane, "stdout")==0){ /* Standard output file
i f ((mde&O WRONLY) ==0)
return -1,
f I nod[STDOUT] =node;
return STDOUT;
}

else if(strcnmp(nane, "stderr")==0){ /* Standard error file
i f((nde&0O WRONLY) ==0)
return -1,
f | mod[STDERR] =node;
return STDERR,

HITACHI

*/
*/
*/
*/
*/
*/

*/

*/

*/

*/

*/

*/
*/
*/
*/
*/
*/

*/

/**/

/* read: Data read */
/* Ret urn val ue: Nunber of read characters (Pass) */
/= -1 (Failure) */
/**/
int read(int fileno, /* File nunber */

char *buf, /* Destination buffer address */

unsigned int count) /* Nunber of read characters */
{

unsigned int i;
/ *Check npode according to file nane and store each character in buffer */

i f(flmod[fileno] & RDONLY] | 1 mod[fil eno] &0 RDVR) {

for(i=count; i>0; i--){
*buf =charget () ;
i f (*buf ==CR) /*Line feed character replacenment*/
*buf =LF;
buf ++;
}
return count;
}
el se
return -1,
}
/**/
/* wite:Data wite */
/* Return val ue: Nunber of wite characters (Pass) */
/= -1 (Failure) */
/**/
int wite(int fileno, /* File nunber */
char *buf, /* Destination buffer address */
unsigned int count) /* Nunber of wite characters */
{
unsigned int i;
char c;
/* Check node according to file name and output each character */
if(flmod[fileno]l] & WRONLY || flrod[fil eno] &0 RDWR) {
for(i=count; i>0; i--){
c=*buf ++,
charput (c);
}
return count;
}
el se
return -1,
}

195
HITACHI

/**/

/* | seek:Definition of file read/wite position */
/* Return value: O fset fromthe top of file read/wite position(Pass)*/
/* -1 (Failure) */
/* (I seek is not supported in the consol e input/output) */
/**/
long | seek(int fileno, /* File nunber */
| ong of fset, /* Read/wite position */
int base) /* Oigin of offset */
{
return -1;
}
/~k***********************/
/* sbrk: Data wite */
/* Return val ue: Start address of the assigned area (Pass) */
/* -1 (Failure) */
/~k***********************/
char *sbrk(unsigned | ong size) /* Assigned area size */
{
char *p ;
i f(brk+si ze>heap_ar ea. heap+HEAPSI ZE) /* Enpty area size */
return (char *)-1 ;
p=brk ; /* Area assignnent */
brk += size ; /* End address update */
return p ;
}
196

HITACHI

_char put

_charget

A_DATA
A _PARM
A_FNO
F_putc:
F_getc:
N IO

low vl .src

SH SERI ES SI MULATOR DEBUGGER | NTERFACE ROUTI NE |
| nput / out put one character-

. EXPORT
. EXPORT
. EQU

. SECTI ON

_charput: One character output

rroworrrowor

RTS

_charget: One c

rrmworrrrr

wrrr

_char put
_charget

A PARM R1
A DATA, RO
RO, @4, R1)
A FNO RO
@0, RO

RO, @1, Rl
F getc, RO
NI1O R2
ar2

A PARAM R1
@4,Rl), RO
@ro,

4

DATA

PARM

FI LENO

H 01280000
H 01270000
SIM 10O

haracter input

; Speci fi es TRAP_ADDRESS

; Speci fies data
; Speci fies paraneter bl ock address

; Specifies data buffer start address
; Specifies file nunber

; Speci fies function code

; Speci fies paraneter block address
; Specifies data buffer start address

; Specifies file nunber

; Speci fies function code

; Ref erences data

;Data buffer start address
; Paranet er bl ock address
;File nunber area address
; fputc function nunber
;fgetc function nunber

; Trap address

HITACHI

197

PARM
FI LENG:
DATA:

198

bu;fér-déf;n;t{oh

. SECTI ON
.RES. L
.RES. B
.RES. B
. END

B
1
1
1

DATA, ALl G\=4
; Paraneter bl
; File nunber
; Data assign

HITACHI

ock area
area
area

Appendix F ASCII Codes

PARITY BIT bg

b7 v v v — — — —

be v — — v v — —

bs v — v — v — v —
ba | b3 | b2 | b1 MSB 0 1 2 3 4 5 6 7

LSB
v v v v 0 NUL DCo SP 0 @ P ' p
vi]iv]v]|= 1 SOM X-ON ! 1 A Q a q
v v — |V 2 EOA TAPE " 2 B R b r
v V| — | — 3 EOM X-OFF # 3 C S c S
V| — |V v 4 EOT TAPE $ 4 D T d t
V| — |V |—= 5 WRU ERROR % 5 E U e u
V|i—| =1V 6 RU SYNC & 6 F \Y% f \%
V| —|—]|— 7 BELL LEM ' 7 G W g w
— | v v v 8 FEo CAN (8 H X h X
— V|V |= 9 TAB S1) 9 [Y [y
— | V| =V A LF EOF * : J Zz j z
B B VT ESC + : K [k {
— =]V |V c FF Sa < L \ I |
— =] v |= D CR Ss - = M] m }
— | ==V E SO Se > N N n ~
— == — F S1 S7 / ? (o] - o} RUB
ouT
Notes: V : Yes
— ' No
199

HITACHI

I ndex

A

abort routing (termination FOULINE)ccccveirieeeereieee e see st estesae e e e ee e e re e eresresresresretesee e 192
= o LGl (o) 1]) SRR URRTRN 13,19
abs16 (Pragma SPECITICALION).......ceueiuerierierteetese ettt a et besb e b bbb e e b et e e et e e ne e eae 81
BlIGNLE (OPLION) .ttt b bbb bt bbb 13,18
N T 0= | S 38,41, 43
= LI S0 o] oo g) 13,19
F Y F oo i aTo Y = 10 A A == TSR 97
Array and Pointer SPECITiCaLIONS.couiiuieeieieerere et r s 164
F N = Y 1 LT U U TSP P U RTUPTUPRPTN 43
N O 1 o1 [SRS 199
ASMCOAE (SUBOPLION) ...vereeieeiireeiete et bbbttt 11,14
assert.h (standard NEAEr fIl€)ccvvuieeeec e 168
B

LTl (S V] oTo o110) AN SRS 12,18
Lo o = oo 1= o R 48, 49
2 = o TP TS 45, 165
01 (U1 7o o1 o] 1) 1SS 11,15
C

C library fUNCLion SPECITICAIIONScooiririie ettt s sb e seenean 168
C standard [ibrary €rror MESSATE.civeuerieuiriet ettt b et sttt sttt 153
C compiler environmMEeNt VariahlES........coieiiiinieieeee e 30
(O wa a0l oT1 = == ot o] o 1 7
(O wa 401 011 = B TE 1110 SRS 23
C COMPITEN OPLIONS ...ttt sttt ettt b e b b se et be e e b e b e e e e eseese e st sbesbesaesee et 8, 10
CharaCter SPECITICAIIONS. ..ottt b e sae bbb et e b e e e eneas 161
close routine (low-level interface roULINE)coovvevirenie e 121, 126, 194
Locelo [(o] 1 To]) NSO 11,14
(@00 1 0T 0] (-7 S 87
Command [iNE SPECITICAIONccueiieieiieieeeeee et re et sre e e enee e 29
(oo g1 07 01 (o] 11T]} OSSPSR 12,16
Compilation SPECITICALIONScouiieereerieieee ettt ettt sbesbe bbb e e e e e e 159
(00 TP U PP UORURPUPRRURRRTPN 89
CONSE (SUDOPLION) ...ttt ettt st st bbb bbbttt 11, 15, 16
LG0T = L == USRS 39
Correspondence to Standard [HBrariES..........coveveeieeicie i 21
(o o1 (o] 1o o) USSP 10, 13

HITACHI

(ot o T (S0 oo o)1 0]) USSP 12, 17

Creating library oneXit FUNCHIONooiiiiiiee e s 189
ctype.h (standard Neader filE)ci i e 168
D

0Tz 1= (S T 0T o o o) S 11, 15, 16
(01 10 o [(o] o110) T 10, 14
Debugging iINFOMMELTONiiuiie et ettt sb bt bbb e et e b e e e e eneas 14
Declaration SPECITICALIONS..........civiriiieriereeeeere ettt e e e e e e ae st saesbesaesaesbesbeseen 166
(0= 1IN (o] 1 o) ISP PPP 11,14
DenOrMaliZEA NUIMDETccueiiie e ese ettt ee e ae e e e e e e e seeseesessesnesnensenensenns 178
LYo = ST SSTT 17
(o TRV T (o o1 Lo) IS TSP 12, 17
OUDBIE ... bbb et E e 42
(o [o10 o £ (o] 011 T'e]) EPU USSR 13,18
DYNAIMIC @IEAL. ...ttt ettt ettt bttt b bbb st bbb b e b et b e e bbbt b et st e et 102
DyNamiC ar€a @llOCAIONc.coueiriiiriereeie sttt ettt st st s b e s se e 102
E

< 0o =Tl (o] o 1 To] o) AU SRRSO 12,18
< 0100 OO PR PO 42
L 00T = 4o o RN 165
ENVIrONMENt VaITADIES.......ocveceereeee ettt sse e s et st se e senaenaeneenens 30
Environmental SPECITICALIONScccvveieiisere et s e e resresnesre e 159
< 1 0 TP 116, 172
errno.h (standard NEAOEr fIl€)oi i e e 172
L (] SO OO TP 133
ETON IMESSAGES ...ttt sttt e e e e s e e e e et et s e st e r e b e snesneerenreneens 133
L2 0o (o110l) OSSOSO PP 12,16, 77
L8 Toa 50 0o o1 o s) I 13,18
EVAIUBLION OFOEY ...ttt b ettt 87
Examples of [ow-level iNterface FOULINEccoerirerinere et 193
EXECULING @ C PrOOIAIM ...ttt ettt sttt st st sae et e e e se e e e e e e et esesaeeseebeebesbesbesbesbeseeasenseneenean 37
exit function (termination FUNCLION) ..o 190
EXPENSION (SUDOPLION) ...ttt ettt e e a et 10, 14
00 L= 0 S 177,178,181
EXtended SPECITICAIONS.cceie ettt sttt sr et re e eeneas 61
EXEINal TAENETIEN ...t 50
External identifier FEfEreNCe.........ooi i e e 50
F

FBLAL ...t R Rt rene s 133
FHIE EXEENSION. ...ttt b ettt b et 9
202

HITACHI

LTS = SO TSP PTT PPN 58, 60
Loz QST ole] 11T o o) RS RRRN 13,18
Floating-point NUMDEr SPECITICALTIONS.......ccivireeiereeie et 163, 174
= 00T T 103
FUNCLION Call INTEITACE.......ovceeirer e 52
G
gbr_base (pragma SPECITICALION)ceuiiiiiriire et e et 82
gbr_basel (pragma SPECITICALION)ceiverirreiriereete sttt b e bbb e b snene e 82
Global base register (CBR) ..ottt 66, 68, 71
Global base register (GBR) base Variabl€.........coevveeeeeececise e 61, 82
H
HEAD @A ... eeveeee ettt bbb bbbt 39, 95, 102, 105
REID (OPLION) ..t bbbt 11,15
HOW t0 iNVOKE the C COMPITEN.......cuiiiiicie e e e 7
I
ldentifier SPECITICAIIONS........ieieee et b e e b e b e e 160
TEEE ..ottt b bk £ bbb R £ ARkt A b bRt £ A b b e e e b bt e et ne e 174
INCIUAE (OPLION) ...ttt b bbbt ne e nnens 11,15
INCIUAE (SUBOPLTION) ...ttt bbbttt sttt 10, 14
INCTUOE I ..ot r e 9
INFINIEY 1ot 171, 175, 177,178
INItialiZed AAAAIEAccveeereeereeeere et 39, 100, 110
Initializing C liDrary fUNCHIONSco.oiiiiee et e 116
INIINE (OPLION) ...ttt et et b et b et bbbt b et b e e b e b e 12,18
iNline (Pragma SPECITICALTION)cereevirieie it sttt 78
INHNE FUNCLION ...t 78
inline_asm (pPragma SPECITICALION)ccvecueeeeeieiee et st r e 79
Inline expansion in assembly [aNQUAGE..........c.coiiriii i e 79
10U PRTURRUORRUROI 42,48
INtEYEr SPECITICALIONS.veueeteeeteeet ettt b e bt n e 162
Integer types and their corresponding data range.........c.eeveereerieieneererese e 162
Internal data rePreSENTALiONcceoveeeeeeeieese e e e sre b e aesrestesteseeeeneeneeneenens 41
INEEMNAL TAIDEL ...t 35, 36
1 010= 007 TSP 133
INtErNal FEPIrESENTALION. ... ittt s b e b e b b e 41, 43,174
interrupt (Pragma SPECITICAIION)c.ereeuireeeiriee sttt 61
INEEITUPL FUNCLIONS ...ttt bbb 61
INENSIC FUNCLIONS.......ecveiees et 66
12 1T o] o = = 1 o] o [T 179
203

HITACHI

JBPDANESE. ...ttt bbb bR A bk e R bt e R bbbt eenenas 12,16, 77
Japanese code Select iN SENG HEEIalS........ouiiiiii e e e 12
K

L

Language SPECITICALIONSccuiiiiriire ettt bbb e bt e et besbe b e e 159
[€NGLN (SUDOPLION) ...ttt ettt bbb et e e e et et e b s aeeae b e 10, 14
oY PP 921
00 T SR 35
Limits Of the C COMPIIES ...o.viieee e r e et sr et e e e eneas 35
Limits on floating-point NUMDEYS.cociiiiiieeseeeee et re e sre e 163
Linkage with assembly programs. ... e e 50
IR 1] o USSR 10, 23
[ISEFITE (OPLION) ...ttt b e e b e e bbbt et bbb e b 11,14
[IEH1€ (SUDOPLION) ...ttt ettt 12,18
LIt @NAIAN.......ceeeieeeecer s 12,18, 21, 48
Lo e o (0101 o 1= 42, 60
[ONG ettt bbb et b et 42, 45, 48, 58, 60
FoTe] o} (o] 011 To o) USSR 13,19
Low-level iNterfaCe rOULINE..........coeeeeeeetee ettt ettt 114, 117, 118, 121, 122
Iseek routine (low-level interface roUting)cccevveceeeeiece e 121, 129, 196
M

machine.h (standard header fil€) ..o s 73
MaChiNECOAE (SUDOPLION)......cuiteieeeeieie ettt bbb ettt sae b e 11,14
Y=ol (o =1 L= TSRS 11,14
MACSAVE (OPLION) ...ttt sttt sttt sttt se ettt b e b et stk se b e se e ke seebe s e e bt sbe st st e st st e e st e e nbe e 12,18
MANTISSAL ...t 174, 175, 176, 177, 178, 179
math.h (standard header fil€).........ccioueieieieee e 75, 169
mathf.h (standard header FIl€)o oo e e s 75
IVLESSAOE. ...ttt ettt h e bt he et e he e b e e e e Rt e e e eRe e e e eRe e R e ehe e EeeheeabeeRe e beeReereeae e et enes 133
MESSATE (OPLION) ..ttt ettt ettt ettt b et bt b et b et eb e e eb e s e e bt st eb e e e bt sa e st b e e eb e e b e e ebe e 13,18
Mutiply and aCCUMUIBEE OPEIEEIONc.ccveieierieiereeierieie ettt b e e sb e 70
N

NESLINTTNE (OPLION) ...ttt b e bt bbb e e e e e se e e e e e et e ae e b e e aesaesbeneas 13,19
O

OB ECE (SUBOPLION) ...ttt et et 10, 14
L@ o= ot 1o 26, 27
(o] o] = ex 11 TS (o] o L(0)) TSP 11,14
204

HITACHI

onexit function (termination Processing fUNCLION)c.cocvieiiieie e 189

open routine (Iow level iNterface FOULINE)cccceerererererese e 121, 124,194
(o o)1 a0 lL=Y (o] o 11 Lo o) SRR 10, 13
(@110 o FER OO 10
OPLiON COMDINGLTIONScueetiertereete sttt sttt sttt st e b e e eb e st b e bt a et bbb bt 20
Lo 101 oo L= (o] o110 0) TS 13,18
OVEITIOW ...t 88, 179, 180, 181
Overview Of SyStem INSAELIONoovieeee e e e e 95
P
PaAIAMIELEN ... e e e e e r e e e s e r e e e e e e narr e e e e e e aaraeeeeeannres 52, 56, 57, 58
Parameter alloCation EXAMPIEcvceeieeceee et neens 183
Parameter area allOCELION ..ot 57,58
peripheral (SUDOPLION)ceiieirire e bbb e 12,17
[Tl (o] o 1T'0] o) APPSR 11,16
Position INAEPENdENt COOR........ceoiieerireee e e 11, 16, 21
61157 0 7= TP P PP 61, 167
[0 1C=T 0w 1 L= (o] '] o) 12,18
PreproCessor SPECITICALIONSc.cvveicecieeeee ettt sr e bt sr et et e e ne e 167
Program (SUDOPLION)c.couiierieiere ettt sttt et b e e b se et se et eaeebenbenae 11,15
PIOGIEIM GIEAttt et et se et bt e ee s be e be s b e et e ebe et e e ae e bt easesseeaeeseeennesaeennens 39
Program CONFIQUIELTION.c.ooueirieirieierie et e 107, 113
Lo 1 OSSOSO 164, 168
Q
QUATIEN SPECITICALIONS ...ttt ettt 165
R
RAIM e bt b e e bt R e be e na bt e b e e e e e e b e e e e e e be e sareeree e 95, 100
read routine (low-level interface routing)..........coeoveeeevievcesie s 121,127,195
ReAAING @N INCIUAE FIl....ucueeeeceeeeeec ettt st st 167
L o 1 = U O PR STTN 53
Register Save and reCOVENY CONEIOLccoeriiiriirierie it sre st e et b e e e e e e e eeneas 83
REGiStEr SPECITICALIONS.......c.cetieiteeetereet ettt b e 164
regsave (Pragma SPECITICAIION)cireirieireeree et 83
REIUIN VBIUE. ..ot r e 56
RELUrNING VAIUE WITING GIEA......c.eceeuieieeieetieieie e stese st e e st e sae e e e e sessessesresbestesrestesteseansenseeeneesens 60
ROM et bbbt bR s e bbbt E b bRt E R bR e e b bt ne bt 95, 100
ROUNAING MELNOM ... ettt b e bbb bbb e se e e e e 163
TENEXE (OPTION) ..ttt sttt sttt b e e b e bt et bbbt bt b et b et b et e b e b et e 13,19
RUIES 0N ChaNgESs iN REJISLE'Sc..cueiuiirieietereete sttt s b e st be e seene e 53
L LT (S0 oo o110) 13,19
RUN tIME FOULINE.......c.ecteeieete bbbt b e 98
205

HITACHI

S

sbrk routine (low-level interface routing)ccoovereninene s 121, 130, 196
oz =T 1Y/ o< TP 42
LSS o (o] o DS SUPRS 38, 39, 82
LS oo gl (o] o 11 o] 1) SRR PRPPRPPRP 11,15
section (Pragma SPECITICALION)........ccvieiirerereeece et e e r e e snesresresn e e e e s 74
SECtion ChaNGE fUNCLIONocuiiice ettt ae b be s re s e e e e e e 74
SECHON INITTAITZBITON ...t b e e 107, 110
SeCtioN iNItIAli ZAHTON FOULINE ... ettt a bbb e seeeas 112
SECLION NAIMIE ...ttt ce et e et e e e te e et e et e e eseeeateesaeeeaseesbesenseeabessnteesseesabeesseesnseessesenseensensns 11, 15
setjmp.h (standard header filE) ... i 169
Setting C library function eXection enVIrONMENLccocveeviereriesesesesese e se e 113
Setting the eXecUtion ENVIFONMENEcoii e re e ene e reere e 107
SNL (SUBOPLION) ...ttt ettt a bbb b e bbb e e et e e e ene e 10, 13
LS V2 (S W oo (o) IO USRS 10, 13
SN (SUDOPLION) ...ttt ettt sttt sttt b e bbbt e bt s e bbbt a st bt b e e b e e b e ere e 10, 13
SN3E (SUDOPLION) ...ttt et ettt b ettt be e 10, 13
S T N[O 30
1S T I 1 SRS 30
1S [1Y TSRS 30
S [= PSS S 30
S 010 RSOSSN 42, 45, 48, 58, 60, 82
LS 10TV (o] L (1o g) OSSPSR 10, 14
S 0| = (=1 o 45
Single-precision floating-PoiNt DIaryccceieeieieieie s s 75
LSl (o] 111l) H USSP 10, 14
LS ESX (] o 1o o) RSP ROURRIN 12,16, 77
SIS (SUDOPLION) ...ttt b e stk e bt et b et b e b e b e b 13,18
smachine.h (standard header filE)coeiiiiiirr e 66, 73
LS 01X (S W o0 o1 g) I 10, 14
RS 01U o T E 11 o SRS 23
SP (Stack SWItCh SPECITICALION)........eierie ittt s b e s sn s 62
SP (SEACKPOINTEL) ...veuveeeeeieee ettt et b bbb b e e es 63, 105, 107, 108
Specifications for Structure, Union, Enumeration, and Bit Field TYPES........ccovevrenninncnnienen 165
Specifying two-byte address variables...........ccviiric e 81
15072 o (0] o 11 o0) IS 10, 14
S R (S = LU ISR o 1= =) TSSO 63, 67
SEBCK BICAL. ...t ettt ettt bt e et h e h e ae bbbt e bR e et ettt benaeeae bt 39, 52
0 Q1 =0 1S T SO 52
SEACK POIMEET ...ttt bbbt b et bt b et b et b e b e bt n e st 52
S 0 QRS 7 o o 62, 63
start (linkage editor SUbCOMMAN)coueiueiieiecece e snen 101
Statement SPECITICALIONS.........cci i st se e e aeeaeesesaesrenre e 166
206

HITACHI

S e (ToR= <= = [o= o o 97

Sz S =SSR 23,28
Sz RS oY ST ole] 011 To o) SRR 10, 14
stddef.h (standard hAdEr Fil€)uoiieiuruiiriee et 168
stdio.h (standard header fil) ..o e 170, 173
S (0] =0 LSl 0 1 = (O 58, 59
LS aTo N (o] o 11 To) IS 11,16
string.h (standard NEAAEN TIl€)o i e 171
SEIUCIUIE ...ttt ettt sttt s b et e b e st e e b e e s b e e b e e s s e e Re e et e Re e et eaeeeeeeaeesheeneesheeasesbeenbesbeenne e 43
Structure Of ObJECE PrOGIAIMSc.eiveuirieieieeie ettt sttt ettt sttt st eene 38
SUDCOMMEAND (OPLION) ...ttt ettt et b e st se et sa bbb b e e ebenes 12,17
SUBCOMMENG FIl....ceiicieciee bbb 12,17
T
tn (trap intruction return SPECITICALION)ccoeriiiiire e e 62
I oS 8ot (o] I = (T 62, 63
IR YN T 0 (0 o 1o o TR 62, 63, 69
I (018 o] == oo (oo 20
TYPE CONVErSION Of PAIAIMELEL'Sccuecviiieieietisiestestesteste st e e et e e ese s e s e sresbesaesresbestesresansesaeseneeneeseans 56
)
umachine.h (standard header fil) ..o 66, 73
L0 L0 T0 1< o T R 169, 179, 180
LU o] o DT SO SSS S O SO U R PR PRPPTPRTO 43, 44
011 T 1o SRS 42, 45, 48
Usage of registers and StACK @r@aL.........ccoo i s 187
V
VeCtor Dase regiSter (VBR) ..ottt 67
V= e (g = o L= 1 1 o 108, 114
VEC_TBL (VECION tADIE)cueveeeeieeeiesietereete ettt 108, 114
Ao] 3PP PRRST 165
W
LT 1T o TSP PSPPSRSO 133
(VLo g IS T o] o 1 o 0) TS 10, 14
write routine (low level interface routing)..........coeeeceve s 121, 128, 195
X
Y

207

HITACHI

Z

A= (o N =< 1= o] o 45
B 0 15 L SRS 114
N - 1 =TT 167
L 107, 108, 109
B L 2 TP 114, 115, 116
U INITSCT e et ebe st s b sbesbesbese et ense e eneeneeneen 107, 110, 115
LU INIT _TOLIB ettt ettt ettt sttt ettt esbesbesbesbesee b enteseseseeseeneesentesaesretm 117
INIT _LOWLEVEL ..ttt ettt e et e 117
B O 1 I 1 = RS 117
I 1 =PSSO 167
Symbol

I N OO 20
O RO 82
1 R 82
208

HITACHI

SH Series C Compiler User’s Manual

Publication Date: 1st Edition, April 1997
Published by: Semiconductor and IC Div.
Hitachi, Ltd.
Edited by: Technical Documentation Center
Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1997. All rights reserved. Printed in Japan.

	Preface
	Contents SH Series C Compiler
	Part I Overview and operations
	1 Overview
	2 Developing Procedures
	3 C Compiler Execution
	3.1 How to Invoke the C Compiler
	3.2 Naming Files
	3.3 Compiler Options
	3.4 Option Combinations
	3.5 Correspondence to Standard Libraries
	3.6 C Compiler Listings
	3.7 C Compiler Environment Variables
	3.8 Implicit Declaration by Option

	Part II C Programming
	1 Limits of the C Compiler
	2 Executing a C Program
	2.1 Structure of Object Programs
	2.2 Internal Data Representation
	2.3 Linkage with Assembly Programs

	3 Extended Specifications
	3.1 Interrupt Functions
	3.2 Intrinsic Functions
	3.3 Section Change Function
	3.4 Single-Precision Floating-Point Library
	3.5 Japanese Description in String Literals
	3.6 Inline Function
	3.7 Inline Expansion in Assembly Language
	3.8 Specifying Two-byte Address Variables
	3.9 Specifying GBR Base Variables
	3.10 Register Save and Recovery Control
	3.11 Global Variable Register Allocation

	4 Notes on Programming
	4.1 Coding Notes
	4.2 Notes on Program Development

	Part III System Installation
	1 Overview of System Installation
	2 Allocating Memory Areas
	2.1 Static Area Allocation
	2.2 Dynamic Area Allocation

	3 Setting the Execution Environment
	3.1 Vector Table Setting (VEC_TBL)
	3.2 Initialization (_ _INIT)
	3.3 Section Initialization (_ _INITSCT)

	4 Setting the C Library Function Execution Environment
	4.1 Vector Table Setting (VEC_TBL)
	4.2 Initializing Registers (_ _INIT)
	4.3 Initializing Sections (_ _INITSCT)
	4.4 Initializing C Library Functions (_ _INITLIB)
	4.5 Closing Files (_ _CLOSEALL)
	4.6 Creating Low-Level Interface Routines

	Part IV Error Messages
	1 Error Messages
	2 C Standard Library Error Messages

	Appendix
	A Language and Standard Library Function Specifications of the C Compiler
	A.1 Language Specifications of the C Compiler
	A.2 C Library Function Specifications
	A.3 Floating-Point Number Specifications

	B Parameter Allocation Example
	C Usage of Registers and Stack Area
	D Creating Termination Functions
	D.1 Creating Library onexit Function
	D.2 Creating exit Function
	D.3 Creating Abort Routine

	E Examples of Low-Level Interface Routine
	F ASCII Codes

	Index
	Imprint

