
Hitachi Microcomputer
Development Environment System

SuperH RISC engine Family

C Compiler

7/31/96
Hitachi Micro Systems, Inc.
Thomas Mayer

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

Preface

The Hitachi SuperH RISC (reduced instruction set computer) engine family is a new generation
series of single-chip RISC microprocessors that not only realize high-performance operation
processing, but contain several types of on-chip peripheral devices and can be incorporated into
devices operating with low power consumption.

These application notes describe how to create application programs making effective use of the
Hitachi SuperH RISC engine family functions and capabilities, using the SH Series C Compiler
Version 3.0.

For detailed specifications of the C compiler, refer to the SH Series C Compiler User Manual.

The Hitachi SuperH RISC engine family is made up of the SH-1, SH-2, and SH-3.

Application Notes Configuration

These application notes consist of five sections and several appendices, as summarized below:

• Section 1 describes methods of creating C language programs.

• Section 2 describes techniques specific to the SH series C compiler extended functions and
intrinsic functions.

• Section 3 describes methods of creating C programs that make good use of the Hitachi SuperH
RISC engine family capabilities.

• Section 4 describes cautions when linking C language and assembly language programs, and
during use of cross software with object files generated by the C compiler.

• Section 5 is a listing of answers to questions commonly asked by users.

• The appendices list the SH series C compiler options and differences between Version 2.0 and
Version 3.0.

Related Manuals

Related manuals are as follows:

• The hardware manuals of each of the SH7000 series, SH7600 series, and SH7700 series
microcomputers.

• SH Series C Compiler User Manual
i

• SH Series Cross Assembler User Manual

• H Series Linkage Editor User Manual

• H Series Librarian User Manual

• SH Series Simulator/Debugger User Manual

ii

Contents

Section 1 Introduction.. 1
1.1 Overview.. 1
1.2 Features.. 1
1.3 Installation Method.. 1

1.3.1 UNIX Version .. 1
1.3.2 PC Version.. 3

1.4 Startup Method .. 9
1.5 Program Development Procedures .. 10

1.5.1 Source File Creation ... 12
1.5.2 Relocatable Object File Generation.. 12
1.5.3 Load Module File Generation .. 12
1.5.4 Load Module File Conversion to S-Type Format .. 12

1.6 Sample Program Introduction.. 12
1.6.1 Vector Table Creation .. 13
1.6.2 Header File Creation .. 15
1.6.3 Main Processing Module Creation ... 20
1.6.4 Initializing Module Creation .. 21
1.6.5 Interrupt Function Creation.. 23
1.6.6 Load Module Batch File Creation.. 24
1.6.7 Linkage Editor Subcommand File Creation ... 25

Section 2 Functions.. 26
2.1 Interrupt Functions .. 26

2.1.1 Interrupt Function Definition (Without Options) ... 26
2.1.2 Interrupt Function Definition (With Options) .. 32
2.1.3 Vector Table Creation .. 34

2.2 Intrinsic Functions ... 36
2.2.1 Status Register Setting/Referencing ... 37
2.2.2 Vector Base Register Setting/Referencing ... 39
2.2.3 Accessing I/O Registers (1).. 41
2.2.4 Accessing I/O Registers (2).. 43
2.2.5 System Control ... 45
2.2.6 Multiply/Accumulate Operations (1) ... 46
2.2.7 Multiply/Accumulate Operations (2) ... 49
2.2.8 System Call .. 53
2.2.9 Prefetch Instruction .. 54

2.3 Inline Expansion.. 55
2.3.1 Inline Expansion of Functions.. 55
2.3.2 Embedded Assembler Inline Expansion Notation Method 58

iii

2.4 GBR Base Variable Designation ... 61
2.5 Register Save/Restore Control .. 64
2.6 2-Byte Address Variable Designation ... 67
2.7 Section Name Designation .. 69
2.8 Section Switching.. 70
2.9 Position Independent Code.. 71
2.10 Options .. 72

Section 3 Effective Programming Techniques... 74
3.1 Data Designation ... 76

3.1.1 Local Variables (Data Size).. 76
3.1.2 Global Variables (Sign).. 78
3.1.3 Data Size (Multiplication) .. 80
3.1.4 Data Struct Conversion... 81
3.1.5 Data Consolidation ... 83
3.1.6 Initial Values and const Format.. 84
3.1.7 Local and Global Variables.. 85
3.1.8 Use of Pointer Variables .. 87
3.1.9 Constant Referencing (1).. 89
3.1.10 Constant Referencing (2).. 90
3.1.11 Variables with Fixed Values (1)... 92
3.1.12 Variables with Fixed Values (2)... 94

3.2 Function Calls.. 95
3.2.1 Module Conversion of Functions ... 96
3.2.2 Function Calls by Pointer Variable .. 98
3.2.3 Function Interface .. 100
3.2.4 Tail Recursion .. 102

3.3 Operation Methods .. 104
3.3.1 Movement of Constant Expressions Within Loops.. 105
3.3.2 Loop Iteration Reduction.. 108
3.3.3 Replacing Arithmetic Operations with Logical Operations 110
3.3.4 Multiplication/Division Use ... 111
3.3.5 Application of Formulas... 112
3.3.6 Practical Use of Tables ... 114
3.3.7 Conditional Expressions... 117
3.3.8 Floating Point Operation Speed.. 119

3.4 Branching .. 120
3.4.1 switch Statement and if Statement ... 120

3.5 Inline Expansion.. 122
3.5.1 Inline Expansion of Functions.. 123
3.5.2 Embedded Inline Assembler Development.. 127

3.6 Practical Use of the Global Base Register (GBR) ... 132
3.7 Register Save/Restore Control .. 136

iv

3.8 2-Byte Address Designation.. 144
3.9 Prefetch Instruction.. 146

Section 4 Relation to Assembly Language Programs and Cross Software 152
4.1 Relation to Assembly Language Programs.. 152

4.1.1 External Name Reciprocal Referencing Methods .. 152
4.1.2 Function Call Interface ... 154
4.1.3 Argument and Return Value Setting/Referencing.. 157

4.2 Relation to the Linkage Editor .. 166
4.2.1 ROM Conversion Support Function .. 166
4.2.2 Precautions on Linkage .. 167

4.3 Relation to the Simulator/Debugger.. 169

Section 5 Questions and Answers.. 171
5.1 const Declaration ... 171
5.2 Reentrants and Standard Libraries... 171
5.3 Method of Correctly Judging 1-Bit Data ... 175
5.4 Installation ... 177
5.5 Specifications and Speeds for Execution Routines ... 177
5.6 SH Series Object Compatibility .. 180
5.7 Concerning Operating Host Machines and OS.. 181
5.8 C Source Level Debugging Not Possible .. 182
5.9 Warnings Appear during Inline Development .. 182
5.10 “FUNCTION NOT OPTIMIZED” Appears during Compilation 183
5.11 “COMPILER VERSION MISMATCH” Appears during Compilation........................... 183
5.12 “MEMORY OVERFLOW” Appears during Compilation.. 184
5.13 “UNDEFINED SYMBOL” Appears during Linkage ... 184
5.14 “RELOCATION SIZE OVERFLOW” Appears during Linkage...................................... 185
5.15 “SECTION ATTRIBUTE MISMATCH” Appears during Linkage 185
5.16 Executing the Transfer of Programs to RAM.. 185
5.17 Priority of Include Designations.. 190
5.18 Compilation Batch Files .. 191
5.19 Notation of Japanese within Programs .. 192
5.20 Data Allocation, “Endian” Format .. 192

Appendix A Compiler Options.. 195
A.1 Compiler Options .. 195

Appendix B Changes in Version 3.0 ... 200
B.1 Additions and Improvements .. 200
B.2 Additions to the Compiler Options.. 203

Appendix C ASCII Codes ... 204

v

Figures
Figure 1.1 Program Development Features.. 11
Figure 1.2 Sample Program Introduction ... 13
Figure 2.1 Example of Stack Use by an Interrupt Function... 34
Figure 2.2 GBR Base Variable Referencing .. 62
Figure 2.3 Register Save/Restore Control (1) .. 66
Figure 2.4 Register Save/Restore Control (2) .. 66
Figure 2.5 Register Save/Restore Control (3) .. 67
Figure 2.6 Byte Address Variable Designation.. 69
Figure 2.7 Section Name Designation Method .. 70
Figure 2.8 Section Switching Method.. 71
Figure 2.9 Position Independent Code ... 72
Figure 3.1 Data Placement Before and After Improvement .. 84
Figure 3.2 Tail Recursion... 103
Figure 4.1 Stack Frame Allocation/Release ... 155
Figure 4.2 Argument Allocation Area for C Language Programs ... 160
Figure 4.3 C Language Program Argument Allocation (Example 1) 162
Figure 4.4 C Language Program Argument Allocation (Example 2) 162
Figure 4.5 C Language Program Argument Allocation (Example 3) 163
Figure 4.6 C Language Program Argument Allocation (Example 4) 163
Figure 4.7 C Language Program Argument Allocation (Example 5) 164
Figure 4.8 C Language Program Argument Allocation (Example 6) 165
Figure 4.9 C Language Program Return Value Setting Area when Return Values Are Set

in the Stack.. 166
Figure 4.10 Memory Allocation by the ROM Conversion Support Function............................ 167
Figure 5.1 Object Compatibility Relationship ... 181
Figure 5.2 Incorrect Directory Configuration vs. Correct Directory Configuration................ 184
Figure 5.3 Operating Environment .. 185
Figure 5.4 Section Configuration ... 186

Tables
Table 1.1 C Compiler File Organization (UNIX Version) ... 2
Table 1.2 C Compiler File Organization (PC Version) .. 4
Table 1.3 Sample Program Development Environment ... 13
Table 1.4 Exception Processing Vector Table.. 14
Table 2.1 Interrupt Specification List ... 32
Table 2.2 Intrinsic Function List... 37
Table 2.3 Status Register Usage Intrinsic Functions .. 38
Table 2.4 Vector Base Register Usage Intrinsic Functions .. 40
Table 2.5 Global Base Register Usage Intrinsic Function.. 41
Table 2.6 Special Instruction Usage Intrinsic Functions .. 45
Table 2.7 Multiply/Accumulate Operation Usage Intrinsic Functions................................... 47
Table 2.8 Link Buffer Related Multiply/Accumulate Operation Intrinsic Functions............. 50

vi

Table 2.9 Options for Code Generation.. 73
Table 3.1 Effective Program Creation Techniques... 75
Table 3.2 Cautions on Data Designation .. 76
Table 3.3 Cautions on Function Calls... 95
Table 3.4 Cautions on Operation Methods ... 105
Table 3.5 Floating Point Four Arithmetical Operation Speeds .. 119
Table 3.6 Floating Point Library Operation Speed Average Values 119
Table 3.7 Cautions on Inline Development .. 122
Table 4.1 Rule for Register Preservation Immediately after Function Calls in C Programs.. 155
Table 4.2 Rules for Format Conversion.. 158
Table 4.3 General Rules for Argument Allocation in C Programs... 161
Table 4.4 Return Value Formats and Setting Locations in C Programs 165
Table 4.5 Treating Error Messages During Linkage .. 168
Table 5.1 Reentrant Library.. 172
Table 5.2 Execution Routine Speeds/FPL Speeds.. 178
Table 5.3 Host Machines and OS.. 181
Table 5.4 System and Kanji Character Code Correspondence ... 192
Table 5.5 Relationship between Standard Libraries and Compile Options............................ 194
Table A.1 Compiler Options.. 195
Table A.2 Macro Names, Names, and Constants That Can Be Designated with the Define

Option ... 199
Table B.1 Compiler Limit Values ... 200

Section 1 Introduction

1.1 Overview

The SH series C compiler enables the creation of effective C programs making use of the
functions and capabilities of single-chip RISC microprocessor Hitachi SuperH RISC engine
family with onboard peripherals. This manual describes the methods of creating application
programs using this C compiler.

1.2 Features

Functions: The following functions allow creation of effective Hitachi SuperH RISC engine
family application programs:

• C language specification for interrupt functions and Hitachi SuperH RISC engine family
dedicated special instructions

• Position independent code generation (SH-2, SH-3 only)

• High-speed floating-point operations

• Selection of optimized execution speed priority, memory efficiency priority

Optimizations: The following optimizations give full capability to the Hitachi SuperH RISC
engine family with its RISC type instruction set:

• Automatic/optimized allocation of local variables to registers

• Operation reduction

• Pipeline optimization

• Fold-in of constants

• Commonality of character strings

• Deletion of common format/loop constant format

• Deletion of unnecessary statements

• Tail recursion optimization

The above features make efficient programming possible for individuals not familiar with the
Hitachi SuperH RISC engine family architecture.

1.3 Installation Method
1

1.3.1 UNIX Version

File Format: Archive file format (tar format).

Table 1.1 shows the C compiler file organization.

Table 1.1 C Compiler File Organization (UNIX Version)

Item File Names

C compiler unit shc, shcfrt, shcmdl, shcgen, shcpep, shcasm, shcprm, shctil, shcerr.msg,
shcerr.off, shchlp.msg

Standard
include files

assert.h, ctype.h, errno.h, float.h, limits.h, machine.h, math.h, mathf.h,
setjmp.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h. smachine.h,
umachine.h

Standard library
files

shclib.lib, shcnpic.lib, shcpic.lib, shc3npb.lib, shc3pb.lib, shc3npl.lib,
shc3pl.lib

Sample files 7032.h, 7032.c

Installation: Perform the following steps to install the SH series C compiler onto the UNIX
system (“%” within the explanation indicates a shell prompt).

1. Create a path that stores each file of the C compiler.

% mkdir∆<C compiler pathname>(RETURN)

2. Input the following commands to copy the C compiler files in the path just created (input
device is assumed to be /dev/rst0). Caution: Store all of the C compiler unit files in the same
directory.

% cd∆<C compiler pathname>(RETURN)

% tar∆xvf∆/dev/rst0(RETURN)

3. Set the path in which the C compiler is installed.

• For the C shell, add the following settings to the login path file (.login):

set∆path=(<C compiler pathname>∆<pathname string being used>)(RETURN)*1

setenv∆SHC_LIB∆<C compiler pathname>(RETURN)*2

Note 1: Add the path in which the C compiler is stored to the head of the path list within
parentheses. Example: When set∆path=(.∆/user/bin∆/bin) is already established,
designate as follows:

set∆path=(<C compiler use pathname>∆.∆/user/bin∆/bin)(RETURN)
2

Note 2: Set the environment variables indicating the C compiler path. Example: When
the C compiler is stored in /ex/shcV3/bin, designate as follows:

setenv∆SHC_LIB∆/ex/shcV3/bin (RETURN)

• For the Bourne shell, add the following settings to the login path file (.profile).

PATH=<C compiler use pathname>∆<pathname string being used>)(RETURN)*1

export∆PATH (RETURN)*1

SHC_LIB=<C compiler use pathname>(RETURN)*2

export∆SHC_LIB (RETURN)*2

Note 1: Add the path in which the C compiler is stored to the head of the path list.
Example: When PATH=.:/user/bin:/bin) is already established, designate as
follows.

PATH=(<C compiler use pathname>:.:/user/bin:/bin (RETURN)

Note 2: Set the environment variables indicating the C compiler use path. Example:
When the C compiler is stored in /ex/shcV3/bin, designate as follows.

SHC_LIB=/ex/shcV3/bin (RETURN)

Explanation of Environment Variables:

1. SHC_LIB. Indicates the storage location of the SHC compiler unit. Consequently, the C
compiler will not operate unless all of the C compiler unit files are placed in the same directory
beforehand.

2. SHC_TMP. The C compiler creates a temporary file in a path called either /usr/tmp or /tmp for
the internal data necessary during compilation. Confirm that the path exists. If it does not,
create a path for storing the temporary file. If a path is established in a location other than
/usr/tmp or /tmp, set the path for storing temporary files with the environment variable
SHC_TMP. Temporary files are deleted after completion of the compilation process.

3. SHC_INC. Designated when the SHC compiler standard header file is retrieved from a
specified path. Multiple designations can be made for this path by using commas (,) as
delimiters. When this is not designated, the standard header file is retrieved from SHC_LIB.

1.3.2 PC Version
3

File Format: The files are MS-DOS file format. (The provided medium is 1.2-Mbyte format with
the PC-98 version, and 1.44-Mbyte format with the IBM-PC version.)

Table 1.2 shows the C compiler file organization.

Table 1.2 C Compiler File Organization (PC Version)

Item File Names

C compiler unit SHC.EXE, SHCPRM.EXE, SHCTIL.EXE, SHCFRT.EXE, SHCMDL.EXE,
SHCGEN.EXE, SHCPEP.EXE, SHCASM.EXE, DOS4G.EXE, SHCERR.MSG,
SHCERR.OFF, SHCHLP.MSG

Standard
include files

ASSERT.H, CTYPE.H, ERRNO.H, FLOAT.H, LIMITS.H, MATH.H, MATHF.H,
SETJMP.H, STDARG.H, STDDEF.H, STDIO.H, STDLIB.H, STRING.H,
MACHINE.H, SMACHINE.H, UMACHINE.H

Standard library
files

SHCLIB.LIB, SHCPIC.LIB, SHCNPIC.LIB, SHC3NPB.LIB, SHC3PB.LIB,
SHC3NPL.LIB, SHC3PL.LIB

Sample files 7032.C, 7032.H

Installation: Use the installer (install) to perform the installation onto the machine being used.
“A>” within the explanation indicates a prompt.

1. SHC compiler directory organization: When the installer is run, directories are created with the
following organization.

• A:\SHC\BIN C compiler unit, standard include files

• A:\SHC\LIB standard library files

• A:\SHC\SAMPLE sample files

2. Running the installer: Insert the first floppy disk (1/2) into the drive (drive name is assumed to
be B:) and input the following command:

A>B:\install(RETURN)

SH SERIES C Compiler Installation Program

Copyright (C) 1995 Hitachi, Ltd., Hitachi Software Engineering Co., Ltd.

Licensed Material of Hitachi, Ltd., Hitachi Software Engineering Co., Ltd.

Menu:
4

1 - Default installation

2 - Custom installation

3 - Quit

Input number: 1 *1

Perform the installation with the default settings.

Installation parameters

(1) Files to be installed Displays the files to

Execution files, include files, be installed

library files, sample programs

(2) Library type Displays CPU type for

SH1, SH2, SH3 library to be installed

(3) Directory Displays installation

Execution files directory [A:\SHC\BIN] destination directory for

Include files directory [A:\SHC\BIN] each file

Library files directory [A:\SHC\LIB]

Sample programs directory [A:\SHC\SAMPLE]

Compiler work directory [A:\TMP] Displays directory

containing temporary file

created when compiler is

being used

Menu:
1 - Start installation

2 - Select files to be installed

3 - Select library type

4 - Change install directories

5 - Quit

Input number: 1 *2

Start installation: (Y: Yes, N: No)? Y

Start the installation.

MKDIR A:\SHC\BIN Creates installation

MKDIR A:\SHC\LIB destination directories

MKDIR A:\SHC\SAMPLE

EXPAND ASSERT.H A:\SHC\BIN Displays expanded file

EXPAND CTYPE.H A:\SHC\BIN names and installation

EXPAND ERRONO.H A:\SHC\BIN destination directories
5

EXPAND FLOAT.H A:\SHC\BIN

:

:

Change floppy disk number 2 and press any key:

Insert the second floppy disk (2/2) and input any key.

EXPAND SHC.EXE A:\SHC\BIN Displays expanded file

EXPAND SHCPRM.EXE A:\SHC\BIN names and installation

EXPAND SHCTIL.EXE A:\SHC\BIN destination directories

EXPAND SHCFRT.EXE A:\SHC\BIN

:

:

Installation completed. SETSHC.BAT is created in A:\SHC\BIN

This completes the installation. An environment setting usage sample batch file has been created
in the directory where the compiler unit is installed. The environment setting usage sample batch
file (SETSHC.BAT) has been created with the following contents in combination with the
installation directory settings.

PATH A:\SHC\BIN; A:\;A:\DOS;A:\TOOL The underlined section

SET SHC_LIB=A:\SHC\BIN indicates the currently

SET SHC_INC=A:\SHC\BIN established pathname

SET SHC_TMP=A:\TMP

SET DOS16M=1@1M–4M

Note that the DOS16M settings differ depending on the amount of memory installed in the
machine being used; this should be confirmed by the user. To modify the installation files, CPU
type for the libraries, or installation directories, select custom installation at the point marked *1 or
else 2-4 at *2. Each of the settings can be modified.

An example of setting modification is given below. The modifications are: sample programs not
installed; only SH-3 usage library installed; and installation destination directory name modified.
[Y] indicates files installed; [N] indicates files not installed.

Installation file modification:

1. Files to be installed When not modifying the contents
6

Execution files [Y]: (RETURN) within [], just press RETURN

Include files [Y]: (RETURN)

Library files [Y]: (RETURN)

Sample programs [Y]: N Modification occurs with “N”

Library type modification:

2. Library type Input “N” for items not to be installed

SH1[Y]:N

SH2[Y]:N

SH3[Y]:(RETURN) Press RETURN when not modifying

Installation directory name modification:

3. Directory

Execution files directory Input directory names for those to be

[A:\SHC\BIN]:A\SHC3\BIN(RETURN) modified

Include files directory

[A:\SHC\BIN]:A\SHC3\INC(RETURN)

Library files directory

[A:\SHC\LIB]:A\SHC3\LIB(RETURN)

Compiler work directory Press RETURN when not modifying

[A:\TMP]:(RETURN)

After all setting modifications have been completed, or else when modification processing is
discontinued with the [ESC] key, the installation information is displayed.

Installation file modification:

Installation parameters

1. Files to be installed

Execution files, include files, library files

2. Library type

SH3

3. Directory

Execution files directory[A:\SHC3\BIN]

Include files directory [A:\SHC3\INC]

Library files directory [A:\SHC3\LIB]

Compiler work directory [A:\TMP]

Continue the installation operation following directions on the screen and confirming the
modification locations.
7

Explanation of Environment Variables: Modify the contents of AUTOEXEC.BAT for the
environment variable settings while referring to the environment setting usage sample batch file
(SETSHC.BAT).

• SHC_LIB: Indicates the storage location of the SHC compiler unit.

• SHC_TMP: Designates the path where a temporary file used by the SHC compiler during
operation is created. This setting cannot be omitted.

• SHC_INC: Designated when the SHC compiler standard header file is retrieved from a
specified path. Multiple designations can be made for this path by using commas (,) as
delimiters. When this is not designated the standard header file is retrieved from SHC_LIB.

• DOS16M: The protected memory area used by the compiler is designated with the
environment variable DOS16M for the SHC compiler to use additional extended memory.

SET DOS16M=<switch_mode>[@<start_address>][:size] or

SET DOS16M=<switch_mode>[@<start_address>[-final address]]

Contents within [] can be omitted. 1-16M can be designated for both the address and size.

switch_mode

PC-98 series or compatible machine: 1

IBM-PC/AT series or compatible machine: 0

• Start address: Designates the first address of the memory area used by the compiler.

• End address: Designates the last address of the memory area used by the compiler.

• Size: Designates the amount of protected memory used by the compiler.

The setting of items is performed in decimal or hexadecimal (for hexadecimal, the prefix 0x is
necessary). Numbers can be designated in kbyte/Mbyte units. Numbers without a suffix are
considered to be kbytes.

Example: PC-98 series settings: 6 Mbytes of extended memory are installed, and the 5 Mbytes
from 1 Mbyte to 6 Mbyte are used:

A> SET DOS16M=1@1M–6M (RETURN) or

A> SET DOS16M=1@1M:5M (RETURN)

When using 4,096 kbytes of extended memory:

A> SET DOS16M=1:4096K (RETURN)

The DOS16M memory area setting can be omitted when the EMS driver corresponds to the VCPI
(Virtual Control Program Interface) standards, or the DPMI (DOS protected mode interface)
standards.

The EMS drivers (EMM.SYS, EMM386.EXE) for DOS Version 6.2 and earlier do not conform
with the VCPI or DPMI standards, so the SHC compiler cannot be used when they are installed.
8

For this reason, take the following countermeasures:

• When using MS-DOS Version 3.3:

 Install an EMS driver that corresponds to the VCPI or DPMI standards, such as the Melco
Company’s Melware or the I/O Data Company’s Memory Server II.

 Refer to the individual product manuals for the specifications of these drivers.

• When using MS-DOS Version 5.0:

 When EMS memory is not necessary, do not install the EMS driver.

 When EMS memory is necessary (using the EMM386.EXE included with DOS Version
5.0), execute DPMI.EXE before using the SHC compiler (DPMI.EXE is included with
DOS Version 5.0).

 General purpose EMS drivers (EMM.SYS) cannot be used.

• When using MS-DOS Version 6.2:

 When EMS memory is not necessary, do not install the EMS driver.

 When EMS memory is necessary (using the EMM386.EXE included with DOS Version
6.2), the compiler can be used by installing the included EMS driver (EMM386.EXE).

 General purpose EMS drivers (EMM.SYS) cannot be used.

Memory Requirements and Disk Space Occupied (for both PC-98 and IBM-PC versions):

• CPU: The CPU must be an 80386SX or later.

• Memory Used: 640 kbytes of main memory and 5 Mbytes or more of protected memory
are necessary to operate this system. 8 Mbytes or more of protected memory is
recommended.

• Disk Space Occupied: Approximately 3,500 kbytes (when all libraries are installed).

1.4 Startup Method

This section explains the startup method for the SH series C compiler and gives an example of its
use. For information on the compiler options, refer to Appendix A, Compiler Options.

The general command line is:

shc[∆<option>∆...][∆<file name>[∆<option>∆...]...]

1. Single file compilation (file name: send_msg.c): An object file with the name send_msg.obj is
generated.

> shc∆send_msg.c(RETURN)

2. Single file compilation with compiler options designated (file name: send_msg.c): Both types
of command line perform the same function.

> shc∆-listfile∆-show=noobject,expansion∆send_msg.c(RETURN)

> shc∆send_msg.c∆-listfile∆-show=noobject,expansion(RETURN)

An object file named send_msg.obj and a list file named send_msg.lis without an object list,
9

and with a source list after macro expansion, are generated.

Add a hyphen (-) before compiler options. Use a comma (,) to delimit suboptions. In the PC
version, a slash mark (/) can be designated instead of a hyphen before the compiler options,
and suboptions can be bundled within parentheses (from Version 1.0 on). Consequently, the
following description is also possible in the PC version.

> shc∆/listfile∆/show=(noobject,expansion)∆send_msg.c(RETURN)

3. Multiple file compilation with compiler options designated (file names: send_msg.c,
get_msg.c)

> shc∆-cpu=sh2∆send_msg.c∆get_msg.c(RETURN)

The two SH-2 object files named send_msg.obj and get_msg.obj are generated. When compiler
options are designated at the start of all the files, the compiler options become effective for
every file.

> shc∆send_msg.c∆-debug∆get_msg.c(RETURN)

Two object files are generated; one named send_msg.obj that has debug information, and one
named get_msg.obj that has no debug information. When compiler options are designated after
a file, the compiler options become effective for that file only.

4. Input the startup command

shc(RETURN)

The command line format and compiler option list are output.

5. Cautions: If the compiler cannot be started up after installation, reconfirm the following items:

 Is the environment variable “PATH” set to a C compiler directory?

 Is the environment variable “SHC_LIB” set to a C compiler unit directory?

The environment variable “SHC_LIB” is used to designate the directory where the SHC
compiler unit resides. Consequently, the compiler will not operate unless all of the C compiler
unit files are placed in the same directory beforehand.

 For the PC version, are the environment variables “SHC_LIB”, “SHC_TMP”, and
“DOS16M” correctly set?

 For the PC version, is an EMS driver installed? Or else, is execution occurring under the
MS-Windows environment?

There are cases in which the compiler cannot be activated if an EMS driver is installed.
Remove the EMS driver from CONFIG.SYS and restart. Additionally, there are cases in which
coexistence with EMS applications is not possible. Activate the compiler from a DOS prompt
in the MS-Windows environment, Version 3.1 or later. Refer to section 1.3, Installation
Method, and attached software materials for details.
10

1.5 Program Development Procedures

Figure 1.1 shows program development features.

C language
source file

Relocatable
object file

Load
module file

S-type
format load
module file

User-created
library files

Assembly
source file

User-created
include files

Standard
include files

Standard
library files

C compiler
ver. 3.0

motor.h

on_motor.src

asmsh

*2

on_motor.c

Software provided by
C compiler system

(UNIX version)

Linkage editor
ver. 5.3*4

Assembler
ver. 2.0

cnvs

Object converter
ver. 1.5

User device

Simulator/debugger
ver. 2.0*5

sensor.lib

on_motor.mot

*3

on_motor.obj

Ink

on_motor.abs

sdsh

shc

*1

Notes: 1.
2.
3.

Assembly source files can be output through option designation.
Define the C library functions and the names of macros necessary to use them.
A group of standard functions that can be used in C language programs.
11

zrisi01.eps

4.
5.

Includes C library functions and rountines used during execution.
See section 4.2, Relation to the Linkage Editor.
See section 4.3, Relation to the Simulator/Debugger.

Figure 1.1 Program Development Features

The program development procedure will be explained below, using as an example the source file
on_motor.c, which includes the header file motor.h. Refer to the individual cross software user
manuals for details on cross software usage.

1.5.1 Source File Creation

Using the editor, create the source file.

1.5.2 Relocatable Object File Generation

Activate the compiler and compile the source file.

shc∆on_motor.c(RETURN)

An optimized relocatable object file named on_motor.obj that has no debug information is
generated. Designate the listfile option to generate a list file.

1.5.3 Load Module File Generation

When the linkage editor is activated with the library file sensor.lib included as noted below, an
executable load module file named on_motor.abs is generated.

lnk∆on_motor.obj∆-library=sensor.lib(RETURN)

Please note that even if the relocatable object file has debug information attached, no debug
information will be output in the load module file if the debug option is omitted during linkage.

1.5.4 Load Module File Conversion to S-Type Format

When using a ROM writer to write into an EPROM, activate the file converter as follows.

cnvs∆on_motor.abs(RETURN)

An S-type format load module file named on_motor.mot is generated.
12

1.6 Sample Program Introduction

Figure 1.2 shows sample program introduction.

_INITSCT

main

Section initialization

Initialization

init_peripheral

Register initialization

motor

SLEEP

Motor rotation

a = PB→DR.WORD

IRQ0

RTE

Port B data read out

Interrupt
processing

PC→DR.WORD = padata

Port C data set

Main processing

No

Yes

a = 0

zrisi02.eps

Figure 1.2 Sample Program Introduction

This section explains the actual creation of a program, using a sample program. The development
environment is indicated in table 1.3.

Table 1.3 Sample Program Development Environment

OS CPU

UNIX SH-1
13

1.6.1 Vector Table Creation

The vector table creation program is shown below. Refer to section 2.1.3, Vector Table Creation,
for details.

/**/

/* file name “vect.c” */

/**/

extern void main(void);

extern void inv_inst(void);

extern void IRQ0(void);

void (* const vec_table[])(void)={

main,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

inv_inst,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

IRQ0

};

The SH-1 vector table created is shown in table 1.4. The function main is activated by a power on
reset. The stack pointer is set to 0 at this time. The start address of function inv_inst is set to vector
number 32; the start address of function IRQ0 is set to vector number 64. These are, respectively,
the user vector and external interrupt start vector numbers.

Table 1.4 Exception Processing Vector Table

Exception Source
Vector
Number Vector Table Address Offset

Power on reset PC 0 H'00000000–H'00000003

SP 1 H'00000004–H'00000007

Manual reset PC 2 H'00000008–H'0000000B

SP 3 H'0000000C–H'0000000F

: : :

Trap instruction (user vector) 32 H'00000080–H'00000083

: :

63 H'000000FC–H'000000FF
14

Interrupt IRQ0 64 H'000000FC–H'00000103

: : :

: 255 H'0000000C–H'0000000F

The above written in assembly language is as follows:

Vector Table Creation Program (Assembly Language Version):

.SECTION VECT,DATA,ALIGN=4

.IMPORT _main

.IMPORT _inv_inst

.IMPORT _IRQ0

.DATA.L _main ;_ main start address set in vector 0

.DATA.L H'0000000 ;SP initial value set in vector 1

.ORG H'0080

.DATA.L _inv_inst ;_inv_inst start address set in vector 32

.ORG H'0100

.DATA.L _IRQ0 ;IRQ0 start address set in vector 64

.END

Add an underscore (_) to the beginning of the C program external names in the assembly language
program.
15

1.6.2 Header File Creation

The header file used throughout the sample program is shown below. By defining I/O ports such
as IPRA, those I/O ports can be accessed by name in the same manner as variables.

1

/**/

/* file name “7032.h” */

/**/

/**/

/* Definitions of I/O Registers */

/**/

struct st_intc { /*struct INTC */

union { /*IPRA */

unsigned short WORD; /* Word Access */

struct { /* Bit Access */

unsigned short UU:4; /* IRQ0 */

unsigned short UL:4; /* IRQ1 */

unsigned short LU:4; /* IRQ2 */

unsigned short LL:4; /* IRQ3 */

} BIT; /* */

} IPRA; /* */

union { /*IPRB */

unsigned short WORD; /* Word Access */

struct{ /* Bit Access */

unsigned short UU:4; /* IRQ4 */

unsigned short UL:4; /* IRQ5 */

unsigned short LU:4; /* IRQ6 */

unsigned short LL:4; /* IRQ7 */

} BIT; /* */
6

} IPRB; /* */

};

#define INTC (*(volatile struct st_intc *)0x5FFFF84)

/*INTC Address*/

/**/

/* Timer registers */

/**/

struct st_itu0 { /*struct ITU0 */

union { /*TCR */

unsigned char BYTE; /* Byte Access */

struct { /* Bit Access */

unsigned char wk :1; /* */

unsigned char CCLR :2; /* CCLR */

unsigned char CKEG :2; /* CKEG */

unsigned char TPSC :3; /* TPSC */

} BIT; /* */
17

} TCR; /* */

};

#define ITU0 (*(volatile struct st_itu0 *)0x5FFFF04)

/*ITU0 Address*/

1

/**/

/* PORT registers */

/**/

struct st_pa { /*struct PA */

union { /*PADR */

unsigned short WORD; /* Word Access */

struct { /* Bit Access */

unsigned short B15:1; /* Bit 15 */

unsigned short B14:1; /* Bit 14 */

unsigned short B13:1; /* Bit 13 */

unsigned short B12:1; /* Bit 12 */

unsigned short B11:1; /* Bit 11 */

unsigned short B10:1; /* Bit 10 */

unsigned short B9:1; /* Bit 9 */

unsigned short B8:1; /* Bit 8 */

unsigned short B7:1; /* Bit 7 */

unsigned short B6:1; /* Bit 6 */

unsigned short B5:1; /* Bit 5 */

unsigned short B4:1; /* Bit 4 */

unsigned short B3:1; /* Bit 3 */

unsigned short B2:1; /* Bit 2 */

unsigned short B1:1; /* Bit 1 */

unsigned short B0:1; /* Bit 0 */

} BIT; /* */
8

} DR; /* */

}; /* */

#define PB (*(volatile struct st_pa *)0x5FFFFC2)

/*PB Address*/

struct st_pc { /*struct PC */

union { /*PCDR */

unsigned short WORD; /*Word Access */

struct { /*Bit Access */

unsigned short wk:8; /* Bit 8 */

unsigned short B7:1; /* Bit 7 */

unsigned short B6:1; /* Bit 6 */

unsigned short B5:1; /* Bit 5 */

unsigned short B4:1; /* Bit 4 */

unsigned short B3:1; /* Bit 3 */

unsigned short B2:1; /* Bit 2 */

unsigned short B1:1; /* Bit 1 */

unsigned short B0:1; /* Bit 0 */

} BIT; /* */

} DR; /* */

}; /* */

#define PC (*(volatile struct st_pc *)0x5FFFFD0)

/*PC Address*/

/**/

/* file name “sample.h” */

/**/

/**/

/* Timer registers */

/**/

struct tcsr {

short OVF :1; /*TCSR struct OVF bit */

short WTIT:1; /*WTIT bit */

short :3; /*work area */

short CKS2:1; /*CKS2 bit */

short CKS1:1; /*CKS1 bit */
19

short :9; /*work area */

};

#defineTCSR_FRT (*(volatile unsigned short *)0x5FFFFB8)

#defineTCSR__FRT (*(volatile struct tcsr*)0x5FFFFB8)

extern void motor(void); /*motor module
*/

extern void _INITSCT (void); /*section initialize module
*/

extern void init_peripheral (void); /*peripheral initialize module*/

1.6.3 Main Processing Module Creation

The main processing program is shown below. The function main, activated by a power on reset,
and the function motor, called continuously until an interrupt occurs, are defined.

/**/

/* file name “sample.c” */

/**/

#include “7032.h”

#include “sample.h”

#include <machine.h> /*Defines the intrinsic function sleep*/

const short padata=0x3 /*C section */

short a=0; /*D section */

int work; /*B section */

/**/

/* main module */

/**/

void main(void)

{
_INITSCT(); /*Initialization of each section*/
20

init_peripheral();

while(!a) motor();

sleep();

}

/**/

/* motor module */

/**/

void motor (void) /*Called until an interrupt occurs*/

{

.

.

.

.
return;

}

In the function main, _INITSCT and init_peripheral are called and the sections and internal
registers are initialized, then a wait occurs until the value of global variable a is modified. The
function motor is called continuously during that interval. Low power state is entered when the
value of a becomes anything other than 0.

1.6.4 Initializing Module Creation

The assembly language program for setting the values of external names used in section
initialization is shown below.

;**/

; file name “sct.src” */

;**/
21

.SECTION B,DATA.ALIGN=4

.SECTION R,DATA,ALIGN=4

.SECTION D,DATA,ALIGN=4

When sections are to be added, describe them here.

.SECTION C,DATA,ALIGN=4

__B_BGN: .DATA.L (STARTOF B)

__B_END: .DATA.L (STARTOF B)+(SIZEOF B)

__D_BGN: .DATA.L (STARTOF R)

__D_END: .DATA.L (STARTOF R)+(SIZEOF R)

__D_ROM: .DATA.L (STARTOF D)

.EXPORT __B_BGN

.EXPORT __B_END

.EXPORT __D_BGN

.EXPORT __D_END

.EXPORT __D_ROM

.END

The B section and D section start and end addresses are defined. When section names are not
designated by the section option at the time of compilation, the C compiler assigns the various
names as follows:

• Program area section: P

• Constant area section: C

• Initialized data area section: D

• Uninitialized data area section: B

The R section indicates the RAM area for copying the initialized data area in ROM using the
ROM conversion support function of the linkage editor. Refer to section 4.2.1, ROM Conversion
Support Function, for details on the ROM conversion support function of the linkage editor.

STARTOF is an operator for obtaining the section collective start address, using the
“STARTOF<section name>” description. SIZEOF is an operator for obtaining the section
collective size in byte units, using the “SIZEOF<section name>” description.

The C language program that performs the section and register initializations is shown below.

/**/

/* file name “init.c” */

/**/

#include “7032.h”

#include “sample.h”
22

/**/

/* section initialize module */

/**/

extern int *_B_BGN,*_B_END,*_D_BGN,*_D_END,*_D_ROM

void _INITSCT(void)

{

register int *p,*q;

for (p=_B_BGN; p<_B_END; p++)

*p=0;

for (p=_D_BGN,q=_D_ROM; p<_D_END; p++,q++)

*p=*q;

}

/**/

/* peripheral initialize module */

/**/

void init_peripheral(void)
{

INTC→IPRA.WORD = 0x3000 /*IPRA initialization*/

ITU0→TCR.BYTE = 0x02 /*TCR0 initialization*/

TCSR_FRT = 0x5A01 /*TCSR initialization*/

PB→DR.WORD = 0x80 /*PORT initialization*/

}

The section initialization module _INITSCT performs a zero clear of the B section based on the
section address designated by sct.src, and copies the initialized data area in ROM into RAM. The
format designator used is int, but char should be used when the size is any other than 4n bytes.

The internal register initialization module init_peripheral performs each of the following settings:

• The IRQ0 interrupt priority level is set to 3 in interrupt priority level setting register A

• Clear prohibition of 16-bit integrated timer pulse unit timer counter 0, counting on the rising
edge, and counting by φ/4 of the internal clock are set in timer control register 0

• Timer counter of the watchdog timer is set to 0 × 01

• Port B is set to 0 × 80
23

1.6.5 Interrupt Function Creation

The interrupt function is shown below. The external interrupt processing function IRQ0 and the
trap instruction function inv_inst are defined.

/**/

/* file name “int.c” */

/**/

#include “7032.h”

#include “sample.h”

extern const short padata; /*C section */

extern short a; /*D section */

extern int work; /*B section */

#pragma interrupt(IRQ0, inv_inst)

/**/

/* interrupt module IRQ0 */

/**/

void IRQ0(void)

{

a = PB→DR.WORD;

PC→.DR.WORD = padata;

}

/***/

/* interrupt module inv_inst */

/***/

void inv_inst(void)

{

return;

}

The function IRQ0 sets PB→DR.WORD (0 × 80) in the global variable a when an IRQ0 external
interrupt occurs. This causes the CPU to enter the low power state.

1.6.6 Load Module Batch File Creation

The batch file for creating an S-type format load module (sample.mot) is shown below.

shc -debug sample.c init.c int.c Compile the C language program

asmsh sct.src -debug Assemble assembly language program
24

shc -debug -section=c=VECT vect.c Compile vector table creation program

lnk -subcommand=rom.sub Link using the subcommand file

cnvs sample.abs Create S-type format load module

rm *.obj *.abs Delete temporary file

The program vect.c is compiled as an independent file and becomes a section different from the
other initialized data areas with option section=VECT attached. During linkage it is allocated from
address 0.

1.6.7 Linkage Editor Subcommand File Creation

The linkage editor subcommand file (file name: rom.sub) used during load module creation is
shown below.

debug

input sample,init,int,vect,sct ;Designate input files

library /user/unix/SHCV3.0/shclib.lib ;Designate standard libraries

output sample.abs ;Designate output file name

rom (D,R) ;Designate ROM conversion

support option

start VECT(0),P,C,D(0400),R,B,(0F000000) ;Designate start address

of each section

;Allocate section VECT

from address 0

;Allocate sections P,C,D

in order from address H'400

;Allocate sections R,B in

order from address

H'0F000000
25

form a ;Designate absolute format

print sample,map ;Designate output of

memory map information

exit

Section 2 Functions

This section describes the SH series C compiler extended functions and specific programming
techniques for software intrinsic to the individual machines. The assembly language code is
obtained through the following command line:

shc∆<C language file>∆-code=asmcode

The assembly language code may change in the future due to improvements in the compiler.

2.1 Interrupt Functions

2.1.1 Interrupt Function Definition (Without Options)

Interrupt functions can be created in C using the preprocessor control statement #pragma.
Functions declared with “#pragma interrupt” save/restore all registers (excepting the global base
register GBR and vector base register VBR) used within the function before and after the function
processing. For this reason, it is not necessary to provide interrupt processing for interrupted
functions.

Description:

#pragma interrupt (<function name>[,<function name>...])

Example: The interrupt function handler1 is declared. This function operates using the stack
handed over from the interrupted function and returns with an RTE instruction after processing is
completed.

C Language Code when GBR, VBR Are Not Saved/Restored:

#pragma interrupt(handler1) /* Interrupt function declaration */
26

void handler1(void)

{

: /* Interrupt function processing */

}

Assembly Language Code:

.EXPORT _handler1

.SECTION P,CODE,ALIGN=4

handler1: ;function: handler1

. ;Save registers used in processing

. ;Interrupt function processing

. ;Restore registers used in processing

RTE

NOP

.END

C Language Code when GBR, VBR Are Saved/Restored:

#pragma interrupt(handler1)

void handler1(void)

{

void** save_vbr; /*VBR save area */

void* save_gbr; /*GBR save area */

save_vbr = get_vbr(); /*Save VBR */

save_gbr = get_gbr(); /*Save GBR */
27

: /*Interrupt function processing */

set_vbr(save_vbr); /*Restore VBR */

set_gbr(save_gbr); /*Restore GBR */

}

Assembly Language Code:

.EXPORT handler1

.SECTION P,CODE,ALIGN=4

_handler1: ;function: handler3

;frame size=16

MOV.L R5,@-R15

STC GBR,R5 ;Save GBR

MOV.L R4,@-R15

STC VBR,R4 ;Save VBR

: ;Save registers used in processing

: ;Interrupt function processing

: ;Restore registers used in
processing

LDC R4,VBR ;Restore VBR

LDC R5,GBR ;Restore GBR

MOV.L @R15+,R4

MOV.L @R15+,R5

RTE

NOP

L211:

.DATA.W H'FF0F

.END

Precautions:

1. The only data format returned by interrupt functions is the void format. Example:

#pragma interrupt(f1, f2) /*interrupt function declaration*/

void f1(void){...} /*interrupt function f1 definition*/

int f2(void){...} /*interrupt function f2 definition*/

The interrupt function f1 definition is correct, but the interrupt function f2 definition results in
an error.
28

2. The only memory class designator that can be designated in interrupt function definitions is
extern. Even if static is designated, the processing will be as extern.

3. Functions declared as interrupt functions cannot be called as ordinary functions. Operation
during execution cannot be guaranteed when functions declared as interrupt functions are
called from ordinary functions.

Example:

• test1.c file contents

#pragma interrupt(f1) /*interrupt function declaration*/

void f1(void){...} /*interrupt function f1 definition*/

int f2(){ f1(); }

• test2.c file contents

f3(){ f1(); }

In the test1.c file, an error results in function f2. In the test2.c file, no error results in function
f3, but function f1 is interpreted as being extern int f1() and operation during execution
becomes undefined.

4. Operation upon an interrupt is different with the SH-3 from SH-1 and SH-2; an interrupt
handler is required. An example of an interrupt handler is given below.

;**;

; SH-3 Interrupt Starter Routine

;**;

.SECTION inthandl,CODE,ALIGN=4

.ORG H'600

.EXPORT __int_start

.EXPORT __int_term

__int_start:

STC.L SSR,@-R15 ; save ssr

STC.L SPC,@-R15 ; save spc

;

MOV.L R8,@-R15 ; save work register

ADD #-4,R15 ; sr stack area

MOV.L R0,@-R15 ; save work register

MOV.L R1,@-R15 ; save work register

MOV.L R2,@-R15 ; save work register

;

29

MOV.L INTEVT,R0 ; set INTEVT address to r0

MOV.L @R0,R1 ; set exception code to r1

MOVA vcttbl,R0 ; set vector table address to r0

SHLR2 R1 ; 3-bit shift-right exception code

30
SHLR R1

ADD #-(h'1c0>>3),R1 ; exception code –h'1c0

MOV.L @(R0,R1),R8 ; set interrupt function addr to r8

MOVA imasktbl,R0 ; set interrupt mask table addr to r0

SHLR2 R1 ; 2-bit shift-right exception code

MOV.B @(R0,R1),R1 ; set interrupt mask to r1

EXTU.B R1,R1

STC SR,R0 ; save sr to r0

LDC R0,SSR ; set current status to ssr

MOV.L IMASKclr,R2 ; set IMASK clear data to r1

AND R2,R0 ; clear interrupt mask

OR R1,R0 ; set interrupt mask

MOV.L RBBLclr,R1 ; set RB,BL clear data to r1

AND R1,R0 ; (RB = BL = 0)

MOV.L R0,@(12,R15) ; push sr

;

MOVA __int_term,R0 ; set __int_term addr to spc

LDC.L R0,SPC

;

MOV.L @R15+,R2 ; restore work register

MOV.L @R15+,R1 ; restore work register

MOV.L @R15+,R0 ; restore work register
LDC.L @R15+,SR ; restore sr

JMP @R8 ; jump to interrupt function

MOV.L @R15+,R8 ; restore work register

;

;**;

; SH-3 Interrupt Terminator Routine

;**;

.ALIGN 4

__int_term

LDC.L @R15+,SPC ; load spc

LDC.L @R15+,SSR ; load ssr

RTE ; rte

NOP

;

.ALIGN 4

RBBLclr .DATA.L H'4FFFFFFF

IMASKclr .DATA.L H'FFFFFF0F

INTEVT .DATA.L H'FFFFFFD8

;

vcttbl ; Interrupt Vector Table

.DATA.L H'00000000 ; NMI

.DATA.L H'00000000 ; IRL = 0

.DATA.L H'00000000 ; IRL = 1

; :

; :

.RES.L 26

; :

; :

.DATA.L H'00000000 ; RCVI

;

imasktbl ; Interrupt Mask Table

.DATA.B H'F0 ; NMI

.DATA.B H'F0 ; IRL = 0

.DATA.B H'E0 ; IRL = 1

; :

; :

.RES.B 26
31

; :

; :

.DATA.B H'00 ; RCVI

.END

Note: Make the interrupt priority rank of the imasktbl on-chip peripheral module the same as
that established by the interrupt level setting registers A–B (IPRA–IPRB).

2.1.2 Interrupt Function Definition (With Options)

The interrupt function definition options consist of the stack switching designation and the trap
instruction return designation. With the stack switching designation, the stack pointer is switched
to a designated address when an external interrupt occurs, and the interrupt function operates using
this stack. The stack pointer before the interrupt occurrence is returned to upon restoration after
the interrupt routine. It becomes unnecessary to secure any extra interrupt function stack
beforehand for functions interrupted with this designation.

With the trap instruction return designation, the return is performed with a TRAPA instruction.
When not designated, the return is by an RTE instruction.

Description:

#pragma interrupt
(<function_name>[(<interrupt_specification>)][,<function_name>[
(<interrupt_specification>)]...])

Table 2.1 Interrupt Specification List

Item Format Option Contents of Designation

Stack switching
designation

sp= <variable> |

& <variable> |

<constant>

New stack address designated with a
variable or constant

<variable>: variable (object type) value

& <variable>: variable (pointer type) address

<constant>: constant value

Trap instruction
return designation

tn= <constant> End designated with a TRAPA instruction

<constant>: constant value (trap vector
32

number)

The interrupt function handler2 is declared. This function uses the array STK as a stack and
returns with a “TRAPA #63” instruction after completion of processing.

C Language Code:

extern int STK[100];

int *ptr = STK + 100;

#pragma interrupt(handler2(sp=ptr,tn=63)) /*Interrupt function declaration*/

void handler2(void)

{

: /*Interrupt function processing description*/

}

Assembly Language Code:

.IMPORT _STK

.EXPORT _ptr

.EXPORT _handler2

.SECTION P,CODE,ALIGN=4

_handler2 ; function: handler2

MOV.L R0,@-R15

MOV.L L211,R0

MOV.L @R0,R0

MOV.L R15,@-R0

MOV R0,R15

: ; Save registers used in processing

: ; Interrupt function processing

: ; Restore registers used in
processing

MOV.L @R15+,R15

MOV.L @R15+,R0

TRAPA #63

L211:

.DATA.L _ptr
33

.SECTION D,DATA,ALIGN=4

_ptr: ; static: ptr

.DATA.L H'00000190+_STK

.END

STK (0)

Immediately
after interrupt

STK (99)

:
:

Lower address

Interrupted
function stack

Upper address

STK (0)

Within
interrupt function

Interrupt end
(immediately before TRAPA

#63 instruction issued)

Old R15

:
:

SP

SP
Old PC

Old SR

SP
Old PC

Old SR

Lower address

Interrupted
function stack

Upper address

Old R0
Old PC
Old SR

zrisi03.eps

Figure 2.1 Example of Stack Use by an Interrupt Function

2.1.3 Vector Table Creation
34

Vector tables can be created in C as follows:

1. Provide a vector table usage array and designate an exception processing function pointer for
each element.

2. After compiling this file, designate and link the vector table start address.

C Language Code: vect_table.c:

extern void reset(void); /*Power on reset processing function*/

extern void warm_reset(void); /*Manual reset processing function*/

extern void irq0(void); /*IRQ0 interrupt processing function*/

extern void irq1(void); /*IRQ1 interrupt processing function*/

:

:

void (* const vect_table[])(void) = {

reset, /*Start address for power on reset*/

0, /*Stack pointer for power on reset*/

warm_reset, /*Start address for manual reset*/

0, /* Stack pointer for manual reset*/

:

:

irq0, /* Vector number 64 */

irq1, /* Vector number 65 */

:

:

};

Batch File:

shc -section=c=VECT vect_table

shc reset warm_reset irq0 irq1...

lnk vect_table,reset,warm_reset,irq0,irq1,...-output=sample.abs-
start=VECT(0),P,C,D(0400),B(0F000000)
35

Compiling vect_table.c generates the relocatable object file vect_table.obj for the initialized data
section (VECT) only.

The section VECT is designated with a start address of H'0 and linked along with the other files,
and the load module sample.abs is obtained.

Assembly Language Code: vect.table.src:

.IMPORT _reset

.IMPORT _warm_reset

.IMPORT _irq0

.IMPORT _irq1

.EXPORT _vect_table

.SECTION VECT,DATA,ALIGN=4

_vect_table: ;static: vect_table

.DATA.L _reset

.DATA.L H'00000000

.DATA.L _warm_reset

.DATA.L H'00000000

:

:

.DATA.L _irq0,irq1

:

:

.END

Precautions:

1. Operation upon an interrupt for the SH-3 is different from SH-1 and SH-2 in that a vector table
is not used and an interrupt handler is necessary.

2. Since the vector table must be allocated to a fixed absolute address, it was created here as an
independent file, but by using the section switching function it is possible to make it a file
identical to that of other modules. Refer to section 2.7, Section Name Designation, for details.

2.2 Intrinsic Functions

The intrinsic functions indicated in table 2.2 are provided to enable C language description of the
36

instructions inherent to the SH-1, SH-2, and SH-3. The standard header file “machine.h” must be
included when using intrinsic functions. Also, “machine.h” is partitioned in response to the SH-3
execution mode for each function that can be used with the respective mode. Include “smachine.h”
when using functions usable only when in privileged mode, and “umachine.h” when using all
other functions.

Table 2.2 Intrinsic Function List

Item Function Usable Execution Mode (SH-3)

Status register (SR) SR setting Privileged mode only

SR referencing

Interrupt mask setting

Interrupt mask referencing

Vector base register VBR setting Privileged mode only
(VBR) VBR referencing

Global base register GBR setting No restrictions
(GBR) GBR referencing

GBR-base byte referencing

GBR-base word referencing

GBR-base longword referencing

GBR-base byte setting

GBR-base word setting

GBR-base longword setting

GBR-base byte AND

GBR-base byte OR

GBR-base byte XOR

GBR-base byte TEST

System control SLEEP instruction Privileged mode only

TAS instruction No restrictions

TRAPA instruction

Multiply/accumulate Word multiply/accumulate No restrictions
operation Longword multiply/accumulate

Ring buffer corresponding word
multiply/accumulate

Ring buffer corresponding longword
multiply/accumulate

System call System call execution No restrictions

Prefetch instruction Prefetch instruction No restrictions
37

2.2.1 Status Register Setting/Referencing

The functions indicated in table 2.3 are provided for status register setting/referencing.

Table 2.3 Status Register Usage Intrinsic Functions

Item Description Explanation

Status register setting void set_cr (int cr) Sets cr (32 bit) in the status register

Status register referencing int get_cr (void) References the status register

Interrupt mask setting void set_imask(int
mask)

Sets mask (4 bit) in the interrupt mask (4 bit)

Interrupt mask referencing int get_imask(void) References the interrupt mask (4 bit)

The function func1 performs processing after prohibiting external interrupts by setting the
interrupt mask to its maximum (15). After completion of processing, the original interrupt mask
level is restored and the function ends.

C Language Code:

include <machine.h>

void func1(void)

{

int mask; /*Interrupt mask level storage location */

mask = get_imask(); /*Store the interrupt mask level */

set_imask(15); /*Set the interrupt mask level to 15 */
38

: /* Prohibit interrupts and execute processing*/

:

set_imask(mask); /* Restore the interrupt mask level */

}

Assembly Language Code:

.EXPORT _func1

.SECTION P,CODE,ALIGN=4

_func1 ; function: func1

MOV.W L210,R3

STC SR,R0

SHLR2 R0

SHLR2 R0

AND #15,R0

MOV R0,R4

STC SR,R0

AND R3,R0

OR #240,R0

LDC R0,SR

:

:

MOV R4,R0

AND #15,R0

SHLL2 R0

SHLL2 R0

STC SR,R2

MOV R3,R1

AND R1,R2

OR R2,R0

LDC R0,SR

RTS

NOP

L210:

.DATA.W H'FF0F
39

.END

2.2.2 Vector Base Register Setting/Referencing

The functions indicated in table 2.4 are provided for vector base register setting/referencing.

Table 2.4 Vector Base Register Usage Intrinsic Functions

Item Description Explanation

Vector base register setting void set_vbr (void
**base)

Sets **base (32 bit) in the vector base
register

Vector base register
referencing

void **get_vbr (void) References the vector base register

The vector base register (VBR) is initialized to 0 by a reset. When the vector table starts from an
address other than address 0, if the next function is established in the start address (H'00000008)
for a manual reset and a manual reset occurs at the time of system startup, exception processing
can be executed using the established vector table.

C Language Code:

#include <machine.h>

#define VBR 0x0000FC00 /*Vector table start address */

void warm_reset(void)

{

set_vbr((void**)VBR);

/*Vector the vector base register */

/*Establish in the table’s start address*/

}

Assembly Language Code:

.EXPORT _warm_reset

.SECTION P,CODE,ALIGN=4

_warm_start: ; function: warm_reset

MOV.L L209,R3

LDC R3,VBR

RTS

NOP

L209:

.DATA.L H'0000FC00
40

.END

Precautions: Perform modifications of the vector base register after establishing the vector table.
If this order is reversed, an external interrupt occurrence during vector table establishment will
cause a system failure.

2.2.3 Accessing I/O Registers (1)

The functions in table 2.5 are provided for global base register (GBR) manipulation to allow
access to I/O registers.

Table 2.5 Global Base Register Usage Intrinsic Function

Item Description Explanation

Global base register
setting*2

void set_gbr(void *base) Sets *base (32 bit) in the global base register

Global base register
referencing*2

int *get_gbr(void) References the global base register

Global base register
base byte
referencing*2

unsigned char
gbr_read_byte(int offset)

References global base register relative
offset byte data (8 bit)

Global base register
base word
referencing*2

unsigned short
gbr_read_word(int offset)

References global base register relative
offset word data (16 bit)

Global base register
base longword
referencing*2

unsigned long
gbr_read_long(int offset)

References global base register relative
offset longword data (32 bit)

Global base register
base byte setting*2

void gbr_write_byte(int offset,
unsigned char data)

Sets data (8 bit) in the global base register
relative offset

Global base register
base word setting*2

void gbr_write_word(int
offset, unsigned short data)

Sets data (16 bit) in the global base register
relative offset

Global base register
base longword
setting*2

void gbr_write_long(int offset,
unsigned long data)

Sets data (32 bit) in the global base register
relative offset

Global base register
base byte AND

void gbr_and_byte(int offset,
unsigned char mask)

Takes the AND of the global base register
relative offset byte data and mask, sets it in
offset

Global base register
base byte OR

void gbr_or_byte(int offset,
unsigned char mask)

Takes the OR of the global base register
relative offset byte data and mask, sets it in
offset

Global base register
base byte XOR

void gbr_xor_byte(int offset,
unsigned char mask)

Takes the XOR of the global base register
relative offset byte data and mask, sets it in
offset
41

Global base register
base byte TEST

int gbr_tst_byte(int offset,
unsigned char mask)

Takes the AND of the global base register
relative offset byte data and mask; judges
that value as 0. Result is set in the T bit

Notes: 1. Establish base as a multiple of 2 when the access size is word, and as a multiple of 4
when the access size is longword.

2. The offset must be a constant for these items. The range that can be designated for
offset is +255 bytes when the access size is byte, +510 bytes when it is word, and
+1020 bytes when it is longword.

3. The mask must be a constant. The range that can be designated for mask is 0 to +255.
4. The global base register is a control register, so saving and restoring of values at

function entrances and exits is not executed by the C compiler. When modifying the
global base register value, the user must carry out the save/restore of the value at the
function entrance/exit.

The following is an example of a timer driver using the SH7034 on-chip 16 bit integrated timer
pulse unit.

C Language Code:

#include <machine.h>

#define IOBASE 0x05fffec0 /*I/O base address */

#define TSR (0x05ffff07 - IOBASE)

/*Timer status flag register offset address*/

#define TSRCLR (unsigned char)0xf8

/*Timer status flag register clear value*/

void tmrhdr(void)

{

void *gbrsave; /*Global base register value storage
location*/

gbrsave = get_gbr(); /*Store the global base register value*/

set_gbr((void*)IOBASE); /*Set the I/O base address in the global
register*/

gbr_read_byte(TSR); /*Dummy read to clear the timer status
flag register*/
42

gbr_and_byte(TSR, TSRCLR); /*Clear the timer status flag register
compare match flag*/

set_gbr(gbrsave); /*Restore the global base register value*/

}

Assembly Language Code:

.EXPORT _tmrhdr

.SECTION P,CODE,ALIGN=4

_tmrhdr: ;function: tmrhdr

MOV.L L210,R3

STC GBR,R4

LDC R3,GBR

MOV.B @(71,GBR),R0

MOV #71,R0

AND.B #248,@(R0,GBR)

RTS

LDC R4,GBR

L210:

.DATA.L H'05FFFEC0

.END
43

2.2.4 Accessing I/O Registers (2)

Use of the standard library offsetof eliminates the need to calculate the value of the global base
register relative offset beforehand.

C Language Code:

#include <stddef.h>

#include <machine.h>

struct IOTBL{

char cdata1; /*offset 0 */

char cdata2; /*offset 1 */

char cdata3; /*offset 2 */

short sdata1; /*offset 4 */

int idata1: /*offset 8 */

int idata2; /*offset 12 */

} table;

void f(void)

{

void *gbrsave; /*Global base register value storage
location*/

gbrsave = get_gbr(); /*Store the global base register value*/

set_gbr(&table);

/*Set the table start address in the global
base register*/

:

:

gbr_and_byte(offsetof(struct IOTBL, cdata2),0x10);

/*Take the AND of the table.cdata2 value
and 0x10 and set it in table.cdata2 */
44

:

:

set_gbr(gbrsave); /*Restore the global base register value*/

}

Assembly Language Code:

.EXPORT _table

.EXPORT _f

.SECTION P,CODE,ALIGN=4

_f: ; function: f

MOV.L L211+2,R3

MOV #1,R0

STC GBR,R4

LDC R3,GBR

:

:

AND.B #16,@(R0,GBR)

:

:

RTS

LDC R4,GBR

L211:

.RES.W 1

.DATA.L _table

.SECTION B,DATA,ALIGN=4

_table: ; static: table

.RES.L 4

.END

2.2.5 System Control

The functions indicated in table 2.6 are provided as Hitachi SuperH RISC family engine dedicated
special instructions.

Table 2.6 Special Instruction Usage Intrinsic Functions

Item Description Explanation

SLEEP instruction void sleep(void) Compiles to the SLEEP instruction
45

TAS instruction void tas(char *addr) Compiles to TAS.B @addr

TRAPA instruction void trapa(int trap_no) Compiles to TRAPA #trap_no

Notes: 1. The trap_no in the table must be a constant.
2. The trapa intrinsic function activates an interrupt function from the C program. Create

the called function as an interrupt function.

In the following example, a SLEEP instruction is issued and the CPU is placed in the low power
state. In the low power state, execution of the next instruction is halted and the internal status of
the CPU is maintained while the occurrence of an interrupt request is awaited. Low power state is
exited when an interrupt occurs.

C Language Code:

#include <machine.h>

void func(void)

{

.

.

.

.
sleep(); /* Issue SLEEP instruction*/

.

.

.

.

}

Assembly Language Code:

.EXPORT _func

.SECTION P,CODE,ALIGN=4

_func: ;function: func

.

.

.

.
SLEEP

.

.

.

.
RTS

NOP
46

.END

2.2.6 Multiply/Accumulate Operations (1)

The functions indicated in table 2.7 are provided for multiply/accumulate operations.

Table 2.7 Multiply/Accumulate Operation Usage Intrinsic Functions

Item Description Explanation

Word multiply/accumulate int macw(short *ptr1,
short *ptr2, unsigned
int count)

Multiply/accumulate word data *ptr1 (16 bit)
with word data *ptr2 (16 bit) number of times
indicated by count

Longword
multiply/accumulate

int macl(int *ptr1, int
*ptr2, unsigned int
count)

Multiply/accumulate longword data *ptr1 (32
bit) with longword data *ptr2 (32 bit) number
of times indicated by count

The word multiply/accumulate function macw is supported by SH-1, SH-2, and SH-3, but the
longword multiply/accumulate function macl is only supported by SH-2 and SH-3.

The multiply/accumulate operation intrinsic function does not perform an argument check. Adjust
both of the data tables on which multiply/accumulate operations are performed so that the
boundaries are 2-byte for word multiply/accumulate functions and 4-byte for longword
multiply/accumulate functions.

In the example below, the multiply/accumulate operation is performed. When the number of
multiply/accumulate operation executions is 32 times or fewer, they are realized by repeating the
MAC instruction, but when the number is 33 times or more, or else when the number of iterations
is a variable, they are realized with a MAC instruction loop.

C Language Code:

include <machine.h>

short a[SIZE];

short b[SIZE];

void func(void)

{ a[0] * b[0]

: + a[1] * b[1]

: + a[2] * b[2]
47

macw(a,b,SIZE); + : :

: + a[SIZE-2] * b[SIZE-2]

: + a[SIZE-1] * b[SIZE-1]

}

Assembly Language Program:

• For SIZE ≤ 32: Repeat the MAC instruction

.EXPORT _func

.SECTION P,CODE,ALIGN=4

_func: ; function: func

STS.L MACH,@-R15

STS.L MACL,@-R15

:

:

MOV.L L211+2,R3

CLRMAC

MOV.L L211+6,R2

MAC.W @R2+,@R3+ ;Repeat according to SIZE

:

:

STS MACL,R0

LDS.L @R15+,MACL

RTS

LDS.L @R15+,MACH

L211:
48

.RES.W 1

.DATA.L _b

.DATA.L _a

.END

• For SIZE > 32, or variable: Realize through a MAC instruction loop

.EXPORT _func

.SECTION P,CODE,ALIGN=4

_func: ; function: func

STS.L MACH,@-R15

MOV #SIZE,R3

STS.L MACL,@-R15

:

:

TST R3,R3

CLRMAC

BT L211

MOV.L L213+2,R2

SHLL R3

MOV.L L213+6,R1

ADD R1,R3

L212:

MAC.W @R1+,@R2+

CMP/HI R1,R3

BT L212

L211:

STS MACL,R0

:

:

LDS.L @R15+,MACL

RTS

LDS.L @R15+,MACH

L213:

.RES.W 1

.DATA.L _b

.DATA.L _a

.END
49

2.2.7 Multiply/Accumulate Operations (2)

The functions indicated in table 2.8 are provided for multiply/accumulate operations which
correspond to the link buffer.

Table 2.8 Link Buffer Related Multiply/Accumulate Operation Intrinsic Functions

Item Description Explanation

Link buffer related
word
multiply/accumulate

int macwl(short *ptr1,
short *ptr2,unsigned int
count, unsigned int mask)

Multiply/accumulate word data *ptr1 (16 bit)
with the word data *ptr2 (16 bit) designated by
mask number of times indicated by count

Link buffer related
longword
multiply/accumulate

int macll(int *ptr1, int
*ptr2,unsigned int count,
unsigned int mask)

Multiply/accumulate longword data *ptr1 (32
bit) with the longword data *ptr2 (32 bit)
designated by mask number of times indicated
by count

The link buffer related word multiply/accumulate function macwl is supported by SH-1, SH-2, and
SH-3, but the link buffer related longword multiply/accumulate function macll is only supported
by SH-2 and SH-3.

The link buffer related multiply/accumulate operation intrinsic function does not perform an
argument check.

Use 2-byte boundaries when the first argument is a word multiply/accumulate function, 4-byte
when it is a longword multiply/accumulate function, and make the second argument twice that of
50

the link buffer size.

In the example below, the link buffer related multiply/accumulate operation is performed. Because
the second argument must be adjusted so that the boundary is twice that of the link buffer size, it is
treated as a separate file.

C Language Source Code: macwl.c:

#include <machine.h>

short a[SIZE];

extern short b[]; a[0] * b[0]

+ a[1] * b[1]

void func(void) + :
:

{ + a[7] * b[7]

: + a[8] * b[0]

: + a[9] * b[1]

macwl(a,b,SIZE,-0x10); + a[15] * b[7]

+ :
:

: + a[SIZE-8] * b[0]

: + a[SIZE-7] * b[1]

} + :
:

+ a[SIZE-1] * b[7]

Assembly Language Source Code: buffer.src:

.EXPORT _b
51

.SECTION B,DATA,ALIGN=32

_b: ; static: b

.RES.W 8

.END

Assembly Language Code: macwl.src:

.IMPORT _b

.EXPORT _a

.EXPORT _func

.SECTION P,CODE,ALIGN=4

_func: ; function: func

STS.L MACH,@-R15

MOV #SIZE,R3

STS.L MACL,@-R15

:
:

TST R3,R3

CLRMAC

BT L211

MOV.L L213+2,R1

SHLL R3

MOV.L L213+6,R4

MOV #-17,R2

ADD R4,R3

L212:
52

MAC.W @R4+,@R1+

AND R2,R1

CMP/HI R4,R3

BT L212

L211:

STS MACL,R0

:
:

LDS.L @R15+,MACL

RTS

LDS.L @R15+,MACH

L213:

.RES.W 1

.DATA.L _b

.DATA.L _a

.SECTION B,DATA,ALIGN=4

_a:

.RES.W SIZE

.END

2.2.8 System Call

The description of the intrinsic function that allows issuance of system calls from C programs is
noted below. The number of arguments for system calls is variable from 0 to 4.

Description:

ret=trapa_svc(int trap_no, int code,

[type1 p1[, type2 p2[, type3 p3[, type4 p4]]]])

• trap_no: trap number (designated by a constant)

• code: function code, allocated to R0

• p1: first argument, allocated to R4

• p2: second argument, allocated to R5

• p3: third argument, allocated to R6

• p4: fourth argument, allocated to R7

• type1–type4: argument formats are general integer format
53

([unsigned]char, [unsigned]short, [unsigned]int,
[unsigned]long), or else pointer format

In the example below, a system call of an OS that can be designated by trap number 63 is issued
using this function.

C Language Code:

#include <machine.h>

#defineSIG_SEM0xffc8

void func(void)

{

:

:

trapa_svc(63, SIG_SEM, 0x05);

:

:

}

Assembly Language Code:

.EXPORT _func

.SECTION P,CODE,ALIGN=4

_func: ; function: func

:

:

MOV.L L209+2,R0

MOV #5,R4

TRAPA #63

:

:

RTS

NOP

L209:

.RES.W 1

.DATA.L H'0000FFC8

.END
54

2.2.9 Prefetch Instruction

The description of the intrinsic function that performs prefetches of the cache for the SH-3 is noted
below. This intrinsic function is effective only when -cpu=sh3 is designated.

Description:

void prefetch(void *p1)

p1: address for which prefetch is performed

C Language Code:

#include <umachine.h>

int a[1200];

f ()

{

int *pa = a;

:

:

prefetch(pa+8);

:

:

}

Assembly Language Code:

_f: ; function: f

:

:

ADD #32,R6

PREF @R6

:

:

2.3 Inline Expansion

2.3.1 Inline Expansion of Functions
55

The function inline expansion capability is used to increase program execution speed. Ordinarily,
function calls take the form of a branch to a section with a series of processes and implementing
that processing. However, with this capability, the function processing is inserted at the function
call position and the branch section instructions are deleted to increase the speed. This can have a
large effect, particularly when functions called from within loops are expanded.

There are two types of inline expansion of functions, as follows:

1. Automatic Inline Expansion:

When the -speed option is designated during compilation, automatic inline development of
functions takes effect and small functions are automatically expanded. The size of functions to
be expanded can be designated with the -inline option to more precisely control the automatic
inline development. Moreover, the node count (the number of variable, operator statements
excepting the declaration section) designates the function size (the -inline option default value
is 20).

Description:

shc -speed[-inline=<node count>]...

2. Inline Expansion by a Control Statement:

Functions to be expanded inline can be designated with a #pragma inline statement.

Description:

#pragma inline(<function name>[,<function name>...])

A function called from within a loop is expanded inline.

An example of automatic inline expansion is below. When the following program is compiled
after adding the -speed option, f is expanded inline.

C Language Code:

extern int *z;

int f (int pl,int p2) /* Expanded function */

{

if (p1 > p2)

return p1;

else if (p1 < p2)

return p2;

else

return 0;

}

void g (int *x, int *y, int count)
56

{

for (; count>0; count--, z++, x++, y++)

*z = f(*x, *y);

}

An example of inline expansion by a control statement is shown below. Functions f1 and f2
designated by #pragma inline are expanded inline.

C Language Code:

int v,w,x,y;

#pragma inline(f1,f2) /* Designation of functions for inline
expansion*/

int f1(int a, int b) /* Expanded function */

{

return (a+b)/2;

}

int f2(int c, int d) /* Expanded function */

{

return (c-d)/2;

}

void g ()

{

int i;

for(i=0;i<100;i++){

if(f1(x,y) == f2(v,w))

sleep();

}

}

Precautions:

1. Designate #pragma inline before the function body definition.

2. Functions designated by #pragma inline also generate external definitions, so when writing
inline functions within files where multiple files are included, always designate static in the
function declaration.

3. The following functions are not expanded inline:

• Functions with variable parameters

• Functions that reference parameter addresses within functions

• Functions for which the number and format of actual arguments and temporary
arguments are not in agreement
57

• Functions called by an address

• Functions called from inline expanded functions

4. With the SH-2 and SH-3, there are cases in which speed is not increased by inline expansion
because of cache errors.

5. When this capability is used, there is a tendency for program size to increase because
equivalent code is expanded in the function call position. Consideration should be given to
finding a balance between execution speed and program size.

2.3.2 Embedded Assembler Inline Expansion Notation Method

There are cases in which one wants to use CPU instructions not supported by the C language, or
wants to improve performance by making statements in assembly language rather than in C. In
such cases, there is a method of making the statements in assembly language and joining that code
with the C program, but the SH series C compiler can incorporate such code into the C source
program by using the embedded assembler inline expansion capability.

Code written in assembly language is generally written in the same form as that of C language
functions, and when those functions are declared as functions written by the assembler by placing
a “#pragma inline_asm” before them, the compiler expands the assembler code in the function call
position.

Follow the C compiler creation rules concerning the interface between functions. The C compiler
stores parameter values in registers R4 to R7, and generates code assuming that return values are
stored in R0.

Description:
58

#pragma inline_asm(<function name>[,<function name>...])

In the following example, when upper and lower byte switching occurs frequently, it is the key to
performance, so a byte swap function is written by the assembler and embedded inline expansion
is used.

C Language Code:

pragma inline_asm(swap) /*Designation of assembler function to be
expanded*/

short swap(short p1) /*Write with the assembler the function for
improved performance*/

{
EXTU.W R4,R0 ;clear upper word

SWAP.B R0,R2 ;swap with R0 lower word

CMP/GT R2,R0 ;if (R2 < R0)

BT ?0001 ; then goto ?0001

NOP ;

MOV R2,R0 ;return R2

?0001: ;local label

}

void f (short *x, short *y, int i)

{

for (; i > 0; i--, x++, y++)

*y = swap(*x); /*Written in the same manner as a C
function call*/

}

Assembly Language Expansion Code (Partial):

_f:

MOV.L R14,@-R15

MOV R6,R14

MOV.L R13,@-R15

CMP/PL R14

MOV.L R12,@-R15

MOV R5,R13
59

MOV R4,R12

BT L218

MOV.L L219,R3

JMP @R3

60
NOP

L218:

L216:

MOV.W @R12,R4

BRA L217

NOP

L219:

.DATA.L L215

L217:

EXTU.W R4,R0

SWAP.B R0,R2

CMP/GT R2,R0

BT ?0001

NOP

MOV R2,R0

?0001:

.ALIGN 4

MOV.W R0,@R13

ADD #-1,R14

ADD #2,R12

ADD #2,R13

CMP/PL R14

BF L220

MOV.L L221+2,R3

JMP @R3

NOP

L220:

L215:

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS
MOV.L @R15+,R14

L221:

.RES.W 1

.DATA.L L216

Precautions:

1. Designate #pragma inline_asm before the function body definition.

2. Functions designated by #pragma inline_asm also generate external definitions, so when
writing inline expansion functions within files where multiple files are included, always
designate static in the function declaration.

3. When using labels within assembler notation, always use local labels.

4. When using registers R8 to R15 in an assembler notation function, it is necessary to save and
restore those registers at the beginning and end, respectively, of the assembler notation
function.

5. Do not write an RTS at the end of an assembler notation function.

6. Compile using the object format designation option -code=asmcode.

7. When this capability has been used, C source level debugging is subject to restrictions.

8. Refer to section 4.1.2, Function Call Interface, for details on performing function calls between
C language and assembly language programs.

9. Refer to the user manual for details on combining C programs and assembly programs.

2.4 GBR Base Variable Designation

There are cases when one might wish to increase the execution speed of modules that often access
external variables. The GBR base variable designation capability is used in such cases to reference
61

frequently accessed data by the relative addressing mode, using the global base register (GBR).
GBR referenced variables are allocated to the $G0, $G1 sections and are referenced by offset from
the start address of the $G0 section stored in the GBR. For this reason, the developed code is more
compact and faster than code by which an address is loaded to make the reference. This is
effective in improving both execution speed and ROM efficiency.

1 byte

2 bytes

Data sizes that can be placed

4 bytes
or larger

$G0 section

$G1 section

Memory
Byte 0

Byte 127

Byte 255

Byte 510

Byte 1020

GBR
$G0 section start address

zrisi04.eps

Figure 2.2 GBR Base Variable Referencing

GBR base referencing of external variables is performed by using a preprocessor control
statement.

The “#pragma gbr_base” designates that the variable is in an offset of 0 to 127 bytes from the
address pointed to by the GBR. Variables designated here are allocated to the “$G0” section.

The “#pragma gbr_base1” designates that the offset for the variable from the address pointed to by
the GBR is a maximum of 255 bytes for char format or unsigned char format, a maximum of 510
bytes for short format or unsigned short format, and a maximum of 1020 bytes for int format,
unsigned int format, long format, unsigned long format, float format, or double format. Variables
designated here are allocated to the “$G1” section.
62

Description:

#pragma gbr_base(<function name>[,<function name>...])

#pragma gbr_base1(<function name>[,<function name>...])

C Language Code:

#pragma gbr_base(a1,b1,c1)

#pragma gbr_basel(a2,b2,c2)

char a1,a2;

short b1,b2;

long c1,c2;

void f ()

{

a1 = a2;

b1 = b2;

c1 = c2;

}

Assembly Language Code:

_f:

MOV.B @(_a2-(STARTOF $G0),GBR),R0

MOV.B R0,@(_a1-(STARTOF $G0),GBR)

MOV.W @(_b2-(STARTOF $G0),GBR),R0

MOV.W R0,@(_b1-(STARTOF $G0),GBR)

MOV.L @(_c2-(STARTOF $G0),GBR),R0

RTS

MOV.L R0,@(_c1-(STARTOF $G0),GBR)

When using GBR base variables it is necessary to establish beforehand the $G0 section start
address in the GBR. An example is given below.

Initializing Program (Assembly Language Section):

:
:

.SECTION $G0,DATA,ALIGN=4

:
:

__G_BGN: .DATA.L (STARTOF $G0) ;Establish the $G0 section start address

:

63

:

.EXPORT __G_BGN

:
:

.END

Initializing Program (C Language Section):

#include <machine.h>

extern int *_G_BGN;

void _INITSCT () /* Function executed before the main function*/

{

:
:

set_gbr(_G_BGN); /* Establish the $G0 section start in the GBR
register*/

:
:

}

Precautions:

1. Establish the $G0 section start address in GBR at the start of program execution.

2. Always place the $G1 section immediately after the $G0 section during linkage, and always
create a $G0 section, even when using only #pragma gbr_base1.

3. Operation cannot be guaranteed when the total size exceeds 128 bytes after section $G0
linkage, or when data have offsets within section $G1 greater than those of the individual
formats indicated for “#pragma gbr_base1”.

4. Incorrect operation will result if items 2 and 3 above are not fulfilled, so confirm these items
with the map list that is output during linkage.

5. As much as possible, allocate frequently accessed data and data on which bit operations are
performed to the $G0 section. Accessing data allocated to the $G0 section results in the
generation of objects that are more efficient in size and that allow faster execution speed than
when data is allocated to the $G1 section.

6. Variables designated by “#pragma gbr_base” or “#pragma gbr_base1” are allocated to the
individual sections in the order that they are declared. Keep in mind that the data size will
increase if variables of different sizes are alternately declared.

2.5 Register Save/Restore Control

For functions called from functions that perform only function call processing, there are cases in
which one might wish to increase execution speed by not performing register saves and
64

restorations. The preprocessor control statements #pragma noregsave, #pragma noregalloc, and
#pragma regsave are used in such cases for finer control of register saves/restores.

• #pragma noregsave designates that save/restore of general registers is not performed at
function entry and exit.

• #pragma noregalloc designates that save/restore of general registers is not performed at
function entry and exit, and that objects are generated without allocating register variable
usage registers (R8 to R14) for cases of exceeding the function calls.

• #pragma regsave designates that save/restore of R8 to R14 from among the general registers is
performed at function entry and exit.

• Multiple designations of #pragma noregsave and #pragma noregalloc are possible for the same
function. When there are multiple designations, all register variable usage registers (R8 to R14)
are saved/restored at function entry/exit, and objects are generated without allocating register
variable usage registers for cases of exceeding the function calls.

Description:

#pragma noregsave(<function name>[,<function name>...])

#pragma noregalloc(<function name>[,<function name>...])

#pragma regsave(<function name>[,<function name>...])

Conditions under which register save/restore can be deleted or reduced are indicated below.

Example 1: In a case such as when registers R8 to R14 are used by a function activated at power
on, it is not necessary to save/restore the registers, so the object size and execution speed can be
improved by designating “#pragma noregsave”.

Example 2: In a case such as when registers R8 to R14 are used in a function through which low
power mode ensues without returning to the calling source, it is not necessary to save/restore the
registers, so the object size and execution speed can be improved by designating “#pragma
noregsave”.

Example 3: When registers R8 to R14 are not allocated in function A, but are allocated in
functions B, C, D, and E, objects are generated that the save/restore R8 to R14 at the entry/exit of
65

functions B, C, D, and E. Because R8 to R14 are not used in function A, there is no effect if
register saves/restores are not performed by functions called by function A, but since there are
cases in which they will be used by functions that have called function A, it is possible to perform
the save/restore at the entry/exit of function A, to avoid performing saves/restores in individual
functions called from function A.

A

Since R8 to R14 are used
by each function, register
save/restore is necessary.

Addition

#pragma regsave (A)
#pragma noregsave (B,C,D,E)

zrisi05.eps

B C D E

A

R8–R14
save/restoreR8–R14 not used

B C D E

The R8 to R14 save/restore for
each function is eliminated.

When viewed from function A entry/exit,
the contents, upon entry, are returned without

change, so the contents of R8 to R14 do not change.

Figure 2.3 Register Save/Restore Control (1)

Example 4: For the same kind of calling relationship as in example 3, when functions C and C1
both use registers R8 to R14, it is necessary to insure that the use of R8 to R14 in function C1 does
not cross over into the function C call. In such cases, it is possible to designate function C with a
“#pragma noregsave” if a directive is given by designating function C1 with a “#pragma
noregalloc” so that R8 to R14 are not allocated to exceed the function call.

A

Since R8 to R14 are used by
both functions, it is necessary to
insure that function C processing

does not influence C1.

The save/restore of R8 to R14
can be eliminated in C because

R8 to R14 are not allocated in C1
so as to cross over into the C call.

#pragma regsave (A)
#pragma noregsave (B,C,D,E)
#pragma noregalloc (C1)

zrisi06.eps

B C1 D E

A

B C1

C C

D EAddition
66

Figure 2.4 Register Save/Restore Control (2)

Example 5: For the same kind of calling relationship as that in example 3, when registers R8 to
R14 are also used in function A, it is necessary to insure that use of R8 to R14 in function A does
not cross over into the function B, C, D, and E calls. In such cases, the multiple designations of

“#pragma regsave” and “#pragma noregalloc” are used for function A. When the multiple
designations of “#pragma regsave” and “#pragma noregalloc” are made, the R8 to R14
saves/restores are performed at function entry/exit, and code is output in which there is no cross
over allocation of R8 to R14 in function calls, so it becomes possible to designate functions B, C,
D, and E with “#pragma noregsave”.

A

zrisi07.eps

B C D E

A

Since R8 to R14 are used,
it is necessary to insure that

processing in calling functions
does not influence A.

B C D E

The store/restore of R8 to R14
is performed at function entry/exit,

and R8 to R14 are not allocated in A,
to avoid crossover into the B to E calls.

#pragma regsave (A)
#pragma noregalloc (A)
#pragma noregsave (B,C,D,E)

Addition

Figure 2.5 Register Save/Restore Control (3)

Precautions: The results of calling functions with a #pragma noregsave designation can not be
guaranteed for any cases other than the following:

1. Functions that are not called by other functions, but that are used as first activated functions.

2. Calls from functions with a #pragma regsave designation.

3. Calls from functions with a #pragma regsave designation, by way of functions with #pragma
noregalloc designations.

2.6 2-Byte Address Variable Designation

By using a preprocessor control statement, it is possible to indicate to the compiler that externally
referenced variables or function addresses are 2-byte.

The compiler regards identifiers declared with “#pragma abs16” as addresses that can be
expressed as 2-byte, and always allocates only a 2-byte portion to the storage area allocated for
4-byte addresses. Using this process, it is possible to improve ROM efficiency by decreasing the
67

object size.

This function can be used to great effect if memory placement is arranged during design so that
variables and functions referenced by multiple functions are given priority placement in addresses
that can be expressed as 2-byte.

Description:

#pragma abs16 (<identifier> [,<identifier>...])

Identifier: variable name | function name

External access variables and function addresses are established as 2-byte.

C Language Code:

#pragma abs16 (x,y,z)

extern int x();

int y;

long z;

f ()

{

z = x() + y;

}

Assembly Language Code:

_f:

STS.L PR,@-R15

MOV.W L212,R3 ;Load the x address

JSR @R3

NOP

MOV.W L212+2,R3 ;Load the y address

MOV.L @R3,R2

MOV.W L212+4,R1 ;Load the z address

ADD R2,R0

LDS.L @R15+,PR

RTS

MOV.L R0,@R1

L212:

.DATA.W _x

.DATA.W _y

.DATA.W _z
68

Precautions:

1. Set variables and functions designated as 2-byte address in a separate section with the section
switching function, and place the section so that the address can be expressed as 2 bytes during

linkage (figure 2.6). An error will occur during linkage if they are not placed in addresses
expressed as 2 bytes.

00000000

Area that can be accessed by 2 bytes

00007FFF

FFFF8000

FFFFFFFF
zrisi08.eps

Figure 2.6 Byte Address Variable Designation

2. Function addresses will not be generated as 2-byte if position independent code generation is
designated during compilation.

2.7 Section Name Designation

Methods of allocating sections with the same attributes within one system to various addresses (for
example, when wishing to allocate certain modules to external RAM and other modules to on-chip
RAM), assigning different names to the partitioned sections and designating the addresses at
which the various sections are to be placed during linkage are described. The SH-series C
compiler provides two different methods of designating section names. In the explanatory example
below, modules f, g, h, and data a, b are allocated to f, h, a, and g, b respectively.
69

With the SH series C compiler, it is possible to designate section names for objects by designating
the -section option during compilation. Using this capability, it becomes possible to group both
modules and data one wishes to partition into separate files, designate different section names
during compilation, and designate the individual start addresses during linkage (figure 2.7).

Source file 1 (file1.c)

int a;
f()
{

a=1;
}

h()
{

a=b;
}

Object file 1

Section
name

Section
partition

a

f()
h()

B

P

zrisi09.eps

shc file1.c

Source file 2 (file2.c)

int b;
g()
{

b=2;
}

Object file 2

Section
name

Section
partition

bBX

PX

-section = p = PX,
b = BX file2.c

Start address can
be designated

for each section
during linkage. g()

Figure 2.7 Section Name Designation Method

2.8 Section Switching
70

The -section option only allows designation of section names in file units. However, by using
“#pragma section”, it becomes possible to switch section names with the same attributes within a
single file, and makes memory allocation more precise. Using this function, it is possible to
describe even the section partitions indicated in section 2.7.1 within one file. Figure 2.8 shows an
example of this capability.

zrisi10.eps

Source file

int a;
f()
{

a=1;
}

#pragma section X

int b;
g()
{

b=2;
}

#pragma section

h()
{

a=b;
}

Object file

Section
name

Section
partition

a

f()
h()

B

P

b

g()

BX

PX

Start address can
be designated

for each section
during linkage.

Figure 2.8 Section Switching Method

In this figure, the designation “#pragma section X” causes the program area section name from
this line to the line designated by “#pragma section” becomes “PX” and the uninitialized data
section name becomes “BX”. A “#pragma section” designation causes a return to the default
section name.

2.9 Position Independent Code

There are cases in which code in ROM is transferred to RAM upon startup and operation from
RAM is implemented to increase execution speed. To realize this capability, it is necessary that
71

the program allow loading to arbitrary addresses. Coding that allows this is called position
independent code (figure 2.9).

The SH series C compiler can generate position independent code if “pic=1” is designated in the
command line option during compilation.

Execution in target system

Execution format load module

Program can be loaded
to an arbitrary address
and executed.
The execution address in
the target system need not
be decided when creating
the execution format
load module.

Load address of the
data section is fixed.

RAM

ROM

zrisi011.eps

Program

Program

Data

Figure 2.9 Position Independent Code

Precautions:

• Position independent coding can only be used with the SH-2 or SH-3, not with the SH-1.

• Position independent coding cannot be applied to data sections.

• When executing as position independent code, function addresses cannot be designated as
initial values. For example:

extern int f();

int (*fp)() = f;

Operation cannot be guaranteed in this case because it is not certain that the function f address
has been loaded in RAM.

• When using position independent coding, link to the standard libraries “shcpic.lib” for SH-2,
and “shc3pb.lib” or “shc3pl.lib” for SH-3. When position independent coding is not used, link
to the standard libraries “shcnpic.lib” for SH-2, and “shc3npb.lib” or “shc3npl.lib” for SH-3.
72

2.10 Options

The options described in table 2.9 are provided with the SH series C compiler so that users can
select the policies for code generation.

Table 2.9 Options for Code Generation

Option Explanation

-speed Generates optimized for speed code.

-size Generates code giving priority to size reduction.

-divsion Selects the method of division. Three methods can be selected, which are, in order of
speed, using the CPU division instruction (cpu), using the divider with an interrupt
mask (peripheral), and using the divider without an interrupt mask (nomask).
However, because the method selected with this option chooses whether to make the
CPU or the divider process the division, it is only effective for the SH7604, which
includes a divider (even if SH-1 or SH-3 are selected with the -cpu option, code to
cause use of the divider will not be executed, though it will be generated).

-macsave Selects whether to save/restore the contents of the MACL and MACH registers, which
store multiplication results, at function entry/exit. The compiler performs MACL,
MACH register save/restore as the default, but as long as the MACL, MACH register
contents are not referenced extending beyond a jump instruction or not being used in
place or general registers it is possible to eliminate unnecessary register saves and
73

restores by not performing MACL, MACH register save/restore. Further, with the code
generated by the compiler, multiplication results are immediately stored in general
registers and there is no MACL, MACH register referencing which extends into
function calls. Consequently, when using only objects output by the compiler it is
possible to eliminate the MACL, MACH register save/restore.

Section 3 Effective Programming Techniques

The SH series C compiler performs optimization, but it is possible to improve performance further
through skillful programming. This section describes techniques for the user to create more
efficient programs. The two standards for program evaluation are that the execution speed be as
fast as possible, and that the program size be as small as possible. The SH series C compiler can
perform optimization giving priority to execution speed. Designate “speed” in the compiler
options to make this so. The basic rules for creating efficient programs are as follows:

• Improve Execution Speed: Because execution speed is determined by statements that are
frequently executed and by complex statements, the processing of such should be adequately
improved.

• Reduce Size: Similar processes should be standardized and complex functions revised in order
to reduce the program size.

As a result of compiler optimization, execution speed will sometimes differ from that found
through investigation on the desktop. Use a variety of methods and confirm actual compiler
execution in order to obtain better performance. Assembly language development code in this
section is obtained by using the following command line:

shc∆<C_language_file>∆-code=asmcode
74

This section mentions only cases such as assembly language development code differences
between the SH-1, SH-2, and SH-3. The assembly language development code may change in the
future due to improvements in the compiler.

Table 3.1 is a listing of effective program creation techniques.

Table 3.1 Effective Program Creation Techniques

Item
ROM
Efficiency

RAM
Efficiency

Execution
Speed

Local variables (data size) O O

Global variables (sign) O O

Multiplication data size O O

Data struct conversion O O

Data consolidation O

Initial values and const format O

Local and global variables O O

Use of pointer variables O O

Constant referencing (1) O

Constant referencing (2) O

Variables that become fixed values (1)

Variables that become fixed values (2)

Module conversion of functions O O

Function calls by pointer variable O O

Function interface O O

Tail recursion O O

Movement of constant expressions within loops O

Loop iteration reduction X O

Replacing arithmetic operations with logical operations O O

Multiplication/division usage

Application of formulas O

Practical use of tables O O

Conditional expressions O O

Floating point operation speed

switch statement and if statement O O

Inline assembly of functions X O

Inline assembly of asm code O

Practical use of the global base register (GBR) O O
75

Register save/restore control O O

2-byte address designation O

Prefetch instruction O

Note: O: improves performance; X: could worsen performance

3.1 Data Designation

Table 3.2 is a listing of items to be given consideration concerning data.

Table 3.2 Cautions on Data Designation

Item Execution Speed

Data format designators,
format modifiers

• There are cases in which program size increases when one tries to
reduce the data size. Make format declarations considering the
data usage.

• Program size can sometimes change depending on the
presence/absence of signs, so be careful when making such
selections.

• For initialized data with unchanging values within the program, the
amount of memory used will be reduced if the const operator is
attached beforehand.

Data consolidation Allocate data so that no wasted areas are produced in the data area.

Struct
definition/referencing

• Program size can sometimes be reduced by placing frequently
accessed/modified data in a struct and using a pointer variable.

• Data size can be reduced by using bit fields.

Local variables and global
variables

Local variables are more efficient, so always declare any one that can
be used as a local variable as such, and not as a global variable.

Use of the pointer format Check to see whether or not programs using array format can be
rewritten using pointer format.

Use of on-chip ROM/RAM Because accessing on-chip memory is faster than accessing external
memory, common variables should be stored in on-chip memory.

3.1.1 Local Variables (Data Size)

Improvements: ROM efficiency and execution speed can sometimes be improved if the local
variable size is taken as 4 bytes.

Explanation: Since the Hitachi SuperH RISC engine family general registers are 4-byte, the basis
of processing is 4 bytes. Consequently, if there are operations using 1-byte/2-byte local variables,
76

code is added for conversion to 4-byte format. If variables for which 1 byte or 2 bytes are
sufficient are also taken as 4-byte, program size is reduced and execution speed can sometimes be
improved.

Example: The total sum of the numbers from 1 to 10 is obtained.

Source Code before Improvement:

int f(void)

{

char a = 10;

int c = 0;

for(; a > 0; a--)

c += a;

return(c);

}

Assembled Code before Improvement:

_f:

MOV #10,R4

MOV #0,R5

L211:

EXTS.B R4,R3

ADD R3,R5

ADD #-1,R4

EXTS.B R4,R2

CMP/PL R2

BT L211

RTS

MOV R5,R0

Source Code after Improvement:

int f(void)

{

long a = 10;

int c = 0;

for(; a > 0; a--)
77

c += a;

return(c);

}

Assembled Code after Improvement:

_f:

MOV #10,R4

MOV #0,R5

L211:

ADD R4,R5

ADD #-1,R4

CMP/PL R4

BT L211

RTS

MOV R5,R0

Item Before Improvement After Improvement

Code size 20 bytes 16 bytes

Execution speed 84 cycles 64 cycles

3.1.2 Global Variables (Sign)

Improvements: When global variable format conversions are included within expressions, ROM
efficiency and execution speed can be improved if integers are declared as signed when either
signed or unsigned is acceptable for the integer format.

Explanation: With the Hitachi SuperH RISC engine family, when 1-byte/2-byte data is
transferred from memory with a MOV instruction, the EXTU instruction is added for unsigned
data. Consequently, unsigned format integers are less efficient than signed format integers.

Example: The value of variable a is substituted into variable b.

Source Code before Improvement:

unsigned short a;

unsigned short b;

int c;
78

void f(void)

{

c = b + a;

}

Assembled Code before Improvement:

_f:

MOV.L L212,R2

MOV.W @R2,R3

MOV.L L212+4,R0

EXTU.W R3,R3

MOV.W @R0,R1

EXTU.W R1,R1

ADD R1,R3

MOV.L L212+8,R1

RTS

MOV.L R3,@R1

L212:

.DATA.L _b

.DATA.L _a

.DATA.L _c

Source Code after Improvement:

short a;

short b;

int c;
79

void f(void)

{

c = b + a;

}

Assembled Code after Improvement:

_f:

MOV.L L212,R2

MOV.W @R2,R3

MOV.L L212+4,R0

MOV.W @R0,R1

ADD R1,R3

MOV.L L212+8,R1

RTS

MOV.L R3,@R1

L212:

.DATA.L _b

.DATA.L _a

.DATA.L _c

Item Before Improvement After Improvement

Code size 32 bytes 28 bytes

Execution speed 15 cycles 14 cycles

3.1.3 Data Size (Multiplication)

Improvements: Execution speed can be improved during multiplication if the
multiplicand/multiplier are declared as (unsigned)char or (unsigned)short.

Explanation: In SH-2, SH-3 multiplication, the multiplicand/multiplier are implemented with
MULS.W/MULU.W instructions when they are 1-byte/2-byte, but with the MUL.L instruction
when they are 4-byte.

In SH-1 multiplication, the multiplicand/multiplier are implemented with MULS.W/MULU.W
instructions when they are 1-byte/2-byte, but the runtime library is called when they are 4-byte.

Example: The product of variable a and variable b is obtained and returned (SH-1).

Source Code before Improvement:
80

int f(long a, long b)

{

return(a * b);

}

Assembled Code before Improvement:

_f:

STS.L PR,@-R15

MOV R4,R1

MOV.L L212,R3

JSR @R3

MOV R5,R0

LDS.L @R15+,PR

RTS

NOP

L212:

.DATA.L __muli

Source Code after Improvement:

int f(short a, short b)

{

return(a * b);

}

Assembled Code after Improvement:

_f:

STS.L MACL,@-R15

MULS R5,R4

STS MACL,R0

RTS

LDS.L @R15+,MACL

Item Before Improvement After Improvement

Code size 20 bytes 10 bytes

Execution speed 31 cycles 8 cycles

Note: For a = 1, b = 2.
81

3.1.4 Data Struct Conversion

Improvements: Execution speed can sometimes be improved if related data are declared with a
struct.

Explanation: When references are made many times within the same function, a struct becomes
more efficient if the base address is allocated to a register. Efficiency is also improved for passing
as arguments. Assembling frequently accessed data at the head of the struct is effective.

Such fine tuning as the modification of data expressions is simplified when data is converted into a
struct.

Example: Numerical values are substituted into variables a, b, and c.

Source Code before Improvement:

int a, b, c;

void f(void)

{

a=1;

b=2;

c=3;

}

Assembled Code before Improvement:

_f:

MOV.L L212,R2

MOV #2,R1

MOV.L L212+4,R0

MOV #1,R3

MOV.L R3,@R2

MOV #3,R3

MOV.L R1,@R0

MOV.L L212+8,R1

RTS

MOV.L R3,@R1
82

L212:

.DATA.L _a

.DATA.L _b

.DATA.L _c

Source Code after Improvement:

struct s{

int a;

int b;

int c;

} sl;

void f(void)

{

register struct s *p=&sl;

p→a=1;

p→b=2;

p→c=3;

}

Assembled Code after Improvement:

_f:

MOV.L L211,R4

MOV #1,R3

MOV.L R3,@R4

MOV #2,R2

MOV.L R2,@(4,R4)

MOV #3,R3

RTS

MOV.L R3,@(8,R4)

L211:

.DATA.L _s1

Item Before Improvement After Improvement

Code size 32 bytes 20 bytes

Execution speed 12 cycles 10 cycles
83

3.1.5 Data Consolidation

Improvements: The amount of RAM used can sometimes be reduced by rearranging the order of
data declarations.

Explanation: When declaring variables with different size formats, variables with the same size
format should be grouped together and declared. Data consolidation in this manner minimizes
vacant space in the data area.

Example: A total of 8 bytes of data are placed in memory.

Source Code before Improvement:

char a;

int b;

short c;

char d;

Source Code after Improvement:

char a;

char d;

short c;

int b;

zrisi12.eps

a

b

c d

a d c

b

Before After

Figure 3.1 Data Placement before and after Improvement

3.1.6 Initial Values and const Format

Improvements: Initial values for which there are no modifications should be declared with the
const format.

Explanation: Initialized data is usually transferred from the ROM area to the RAM area during
startup, and processing is carried out using the RAM area. For this reason, the secured RAM area
is wasted when initialized data with unchanging values exist in the program. If the const operator
is added to the initialized data, the transfer to the RAM area during startup is suppressed, resulting
in a reduction of the memory used.
84

Additionally, ROM conversion is simplified if programs are created following the rule that initial
values are not modified.

Example: Five initialized data are established.

Source Code before Improvement:

char a[] =

{1, 2, 3, 4, 5};

The initial values are transferred from ROM to RAM and processing is performed.

Source Code after Improvement:

const char a[] =

{1, 2, 3, 4, 5};

Processing is performed using the initial values in ROM.

3.1.7 Local and Global Variables

Improvements: Execution speed can be improved if locally used variables such as temporary
variables, loop counters, etc. are declared as local variables within the functions.

Explanation: For variables that can be used as local variables, always declare them as such, and
never as global variables. The values of global variables can end up changing due to such things as
function calls or pointer manipulations, so they do not become objects of global optimization.

Use of local variables provides the following advantages:

• The access cost is cheap.

• They can be allocated to registers.

• They become objects of optimization.

Example: A loop of 10 iterations is effected.

Source Code before Improvement:

int i;
85

void f(void)

{

for(i = 0; i < 10; i++);

}

Assembled Code before Improvement:

_f:

MOV.L L212+2,R4

MOV #0,R3

MOV #10,R5

BRA L210

MOV.L R3,@R4

L211:

MOV.L @R4,R1

ADD #1,R1

MOV.L R1,@R4

L210:

MOV.L @R4,R3

CMP/GE R5,R3

BF L211

RTS

NOP

L212:

.RES.W 1

.DATA.L _i

Source Code after Improvement:

void f(void)

{

86

int i;

for(i = 0; i < 10; i++);

}

Assembled Code after Improvement:

_f:

MOV #10,R5

MOV #0,R4

L210:

ADD #1,R4

CMP/GE R5,R4

BF L210

RTS

NOP

Item Before Improvement After Improvement

Code size 32 bytes 15 bytes

Execution speed 125 cycles 54 cycles

3.1.8 Use of Pointer Variables

Improvements: Execution speed can sometimes be improved if programs using array format are
rewritten using pointer format.

Explanation: For an array reference a[i], code is generated to add i to the address of a[0]. There
are cases where the number of variables and operations can be reduced if a pointer variable is
used.

Example: The sum total of 10 (= count) integers is obtained.

Source Code before Improvement:

int f(int data[], int count)

{

int ret = 0, i;
87

for(i = 0; i < count; i++)

ret += data[i];

return ret;

}

Assembled Code before Improvement:

_f:

MOV #0,R0

MOV R0,R7

MOV R0,R6

CMP/GE R5,R0

BT L213

L214:

ADD #1,R6

MOV.L @R4,R2

CMP/GE R5,R6

ADD R2,R7

ADD #4,R4

BF L214

L213:

RTS

MOV R7,R0

Source Code after Improvement:

int f(int *data, int count)

{

int ret = 0
88

for(; count > 0; count--)

ret += *data++;

return ret;

}

Assembled Code after Improvement:

_f:

MOV #0,R6

CMP/PL R5

BF L212

L213:

ADD #-1,R5

MOV.L @R4+,R3

CMP/PL R5

ADD R3,R6

BT L213

L212:

RTS

MOV R6,R0

Item Before Improvement After Improvement

Code size 26 bytes 20 bytes

Execution speed 87 cycles 75 cycles

3.1.9 Constant Referencing (1)

Improvements: Code size can be reduced if immediate values are expressed beforehand, as much
as possible, as 1 byte.

Explanation: When 1-byte immediate values are used, they are embedded in the code. In contrast,
when 2-byte or 4-byte immediate values are used, they are generally placed in memory, and an
accessing format results.

Example: An immediate value is substituted into variable i.

Source Code (1):
89

void f(void)

{

i = 0x10000;

}

Assembly Development Code (1):

_f:

MOV.L L210,R3

MOV.L L210+4,R2

RTS

MOV.L R3,@R2

L210:

.DATA.L H'00010000

.DATA.L _i

Source Code (2):

void f(void)

{

i = 0x01;

}

Assembly Development Code (2):

_f:

MOV.L L210,R2

MOV #1,R3

RTS

MOV.L R3,@R2

L210:

.DATA.L _i

Item (1) (2)

Code size 16 bytes 12 bytes

Execution speed 6 cycles 6 cycles

3.1.10 Constant Referencing (2)

Improvements: The generated code will not be larger if notation of constants in the source code is
made easier to read.
90

Explanation: There is a function that allows the fold-in of constants. Even if constants are
expressed in formulas, they will not be reflected in the generated code because they are calculated
during compilation.

Example: A constant is substituted into variable a.

Source Code before Improvement:

#define MASK1 0x1000

#define MASK2 0x10

int a = 0xffffffff;

void f(void)

{

int x;

x = MASK1;

x |= MASK2;

a &= x;

}

Assembled Code before Improvement:

_f:

MOV.W L211,R4

MOV.L L211+4,R5

MOV.L @R5,R3

AND R4,R3

RTS

MOV.L R3,@R5
91

L211:

.DATA.W H'1010

.RES.W 1

.DATA.L _a

Source Code after Improvement:

#define MASK1 0x1000

#define MASK2 0x10

int a = 0xffffffff;

void f(void)

{

a &= MASK1 | MASK2;

}

Assembled Code after Improvement:

_f:

MOV.L L210+4,R4

MOV.W L210,R3

MOV.L @R4,R2

AND R3,R2

RTS

MOV.L R2,@R4

L210:

.DATA.W H'1010

.RES.W 1

.DATA.L _a

Item Before Improvement After Improvement

Code size 20 bytes 20 bytes

Execution speed 10 cycles 10 cycles

3.1.11 Variables with Fixed Values (1)

Improvements: When variables have fixed values they are handled as constants, so memory
efficiency and execution speed will not change even if they are not calculated beforehand.

Explanation: The function that allows the fold-in of constants also operates on variables that
92

become constants; the values of such variables are traced, and constant calculation is performed.
Because of this, the generated code will not become larger if notation of the source code is made
easier to read.

Example: A return value is changed according to the results of variable rc.

Source Code (1) with Variable Value Calculated Beforehand:

#define ERR -1

#define NORMAL 0

int f(void)

{

int rc, code;

rc = 0;

code = NORMAL;

return(code);

}

Assembly Development Code (1):

_f:

RTS

MOV #0,R0

Source Code (2) with C Compiler Performing Calculation:

#define ERR -1

#define NORMAL 0

int f(void)

{

int rc,code;

rc = 0;

if(rc) code = ERR;

else code = NORMAL;

return(code);

}

93

Assembly Development Code (2):

_f:

RTS

MOV #0,R0

Item Source Code (1) Source Code (2)

Code size 4 bytes 4 bytes

Execution speed 4 cycles 4 cycles

3.1.12 Variables with Fixed Values (2)

Improvements: When variables have fixed values they are handled as constants, so memory
efficiency and execution speed will not change even if they are not calculated beforehand.

Explanation: The function that allows the fold-in of constants also operates on variables that
become constants; the values of such variables are traced, and constant calculation is performed.
Because of this, the generated code will not become larger if notation of the source code is made
easier to read.

Example: The product of variables a and c is obtained, then substituted into variable b.

Source Code (1) with Variable Value Calculated Beforehand:

int f(void)

{

int a, b;

a = 3;

b = 15;

return b;

}

94

Assembly Development Code (1):

_f:

RTS

MOV #15,R0

Source Code (2) with C Compiler Performing Calculation:

int f(void)

{

int a, b, c;

a = 3;

c = 5;

b = c * a;

return b;

}

Assembly Development Code (2):

_f:

RTS

MOV #15,R0

Item Source Code (1) Source Code (2)

Code size 4 bytes 4 bytes

Execution speed 4 cycles 4 cycles
95

3.2 Function Calls

Table 3.3 is a list of cautions concerning function calls.

Table 3.3 Cautions on Function Calls

Item Cautions

Function placement Group closely related functions within one file.

Interface • Strictly choose the number of arguments (up to 4) so that all are
allocated to registers.

• When there are many arguments, use a struct and pass them with
a pointer.

Module partitioning For very large modules, there are cases in which the various
optimizations will not be effectively performed. Use the function called
tail recursion to partition into modules with sizes for which optimization
can be effectively executed.

Replacement by macros When there are many function calls, the execution speed can be
improved by use of macros. However, the program size increases
when macros are used, so select this according to the circumstances.

3.2.1 Module Conversion of Functions

Improvements: Execution speed can be improved by grouping closely related functions within
one file.

Explanation: Calling functions in different files is implemented with a JSR instruction, but
function calls within the same file are implemented with a BSR instruction if the calling range is
close. This allows high speed and compact objects to be generated.

Additionally, modifications during tune-up are simplified by module conversion.

Example: Function g is called from function f.

Source Code before Improvement:

extern int g(void);
96

int f(void)

{

g();

}

Assembled Code before Improvement:

_f:

MOV.L L210+2,R3

JMP @R3

NOP

L210:

.RES.W 1

.DATA.L _g

Source Code after Improvement:

int g(void)

{

}

int f(void)

{

g();

}

Assembled Code after Improvement:

_g:

RTS

NOP

_f:

BRA _g

NOP

Item Before Improvement After Improvement

Code size 12 bytes 4 bytes
97

Execution speed 5 cycles 3 cycles

Note: The range that can be called with a BSR instruction is ±4096 bytes (±2048 instructions). If
the file size becomes too large, use of BSR loses its effectiveness.

3.2.2 Function Calls by Pointer Variable

Improvements: Execution speed can be improved by using a table instead of branching with a
switch statement.

Explanation: If the processing for each switch statement case is nearly the same, check to see
whether a table can be used.

Example: The function called is changed according to the value of function a.

Source Code before Improvement:

void f(int a)

{

switch(a)

{

case0:

nop(); break;

case 1:

stop(); break;
98

case 2:

play(); break;

}

}

Assembled Code before Improvement:

_f:

MOV R4,R0

CMP/EQ #0,R0

BT L214

CMP/EQ #1,R0

BT L215

CMP/EQ #2,R0

BT L216

BRA L217

NOP

L214:

MOV.L L218,R3

JMP @R3

NOP

L215:

MOV.L L218+4,R3

JMP @R3

NOP

L216:

MOV.L L218+8,R3

JMP @R3

NOP

L217:

RTS

NOP
99

L218:

.DATA.L _nop

.DATA.L _stop

.DATA.L _play

Source Code after Improvement:

static int (*key[3])()=

{nop, stop, play};

void f(int a)

{

(*key[a])();

}

Assembled Code after Improvement:

_f:

MOV.L L215,R0

ADD #-4,R15

MOV.L R4,@R15

MOV R4,R3

SHLL2 R3

MOV.L @(R0,R3),R3

JMP R3

ADD #4,R15

L215:

.DATA.L L210

.SECTION D,DATA,ALIGN=4

L210:

.DATA.L _nop,_stop,_play

Item Before Improvement After Improvement

Code size 52 bytes 20 bytes

Execution speed 14 cycles 10 cycles

3.2.3 Function Interface

Improvements: The amount of RAM used can be reduced and execution speed improved through
management of function arguments (see section 4.1.2).
100

Explanation: Strictly limit the number of arguments (up to 4) so that all can be placed in registers.
When there are many arguments, use a struct and pass them with a pointer. Calls and function
entry/exit processing are simplified when the arguments are in registers. Also, the stack area can
be economized. Registers R0 to R3 are work registers, R4 to R7 are for arguments, and R8 to R14
are for local variables.

Example: The function f has five arguments, which is more than the number of registers for
argument.

Source Code before Improvement:

int f(int, int, int, int, int);

void g(void)

{

f(1, 2, 3, 4, 5);

}

Assembled Code before Improvement:

_g:

STS.L PR,@-R15

MOV #5,R3

MOV.L L210+2,R2

MOV #4,R7

MOV.L R3,@-R15

MOV #3,R6

MOV #2,R5

JSR @R2

MOV #1,R4

ADD #4,R15

LDS.L @R15+,PR

RTS
101

NOP

L210:

.RES.W 1

.DATA.L _f

Source Code after Improvement:

struct b{

int a, b, c, d, e;

} b1={1, 2, 3, 4, 5};

int f(struct b *p)

void g(void)

{

f(&b1);

}

Assembled Code after Improvement:

_g:

MOV.L L211,R4

MOV.L L211+4,R3

JMP @R3

NOP

L211:

.DATA.L _b1

.DATA.L _f

Item Before Improvement After Improvement

Code size 32 bytes 16 bytes

Execution speed 16 cycles 6 cycles

3.2.4 Tail Recursion

Improvements: For large functions, execution speed will not suffer when programs are broken
into small modules with function calls one after another at the tail of the large function.

Explanation: When function func3() has been called in function func2() called from function
func1(), a transfer to function func3() occurs with a BSR instruction/JSR instruction, and a return
to function func2() occurs with an RTS instruction upon completion of function func3()
102

processing, and then a return to function func1() occurs with an RTS instruction upon completion
of function func2() processing (figure 3.2, left side).

In this case, when calling function func3() at the tail of function func2(), it is possible to transfer to
function func3() with a BSR instruction/JSR instruction and then return directly to function

func1() with an RTS instruction upon completion of function func3() processing (figure 3.2, right
side). This capability is called tail recursion.

For very large modules, there are cases in which the various optimizations will not be effectively
performed. Performance can be improved by using this capability to partition into modules with
sizes for effective optimization.

func1()

BSR

func2() func3()

BSR

RTS

func1()

BSR

func2() func3()

BRA

RTS

zrisi14.eps

RTS

Figure 3.2 Tail Recursion

Example: Functions g and h are called from function f. Returns from g and h are direct returns to
the function that called f without returning by way of f.

Source Code before Application (Version 2.0):

void f(int x)

{

if (x==1)
103

g();

else

h();

}

Assembled Code before Application:

_f:

STS.L PR,@-R15

MOV R4,R0

CMP/EQ #1,R0

BF L207

BRA _g

LDS.L @R15+,PR

L207:

BRA _h

LDS.L @R15+,PR

Source Code after Application (Version 3.0):

void f(int x)

{

if (x==1)

g();

else

h();

}

Assembled Code after Application:

_f:

MOV R15,R0

CMP/EQ #1,R0

BT _g

BRA _h

NOP

Item Before Application After Application

Code size 16 bytes 10 bytes

Execution speed 9 cycles 6 cycles

Note: When x = 2.
104

3.3 Operation Methods

Table 3.4 is a list of cautions concerning the form of operations.

Table 3.4 Cautions on Operation Methods

Item Cautions

Constant
expressions/unification of
common
expressions/movement

• Investigate replacing partial expressions used in common within
functions with temporary variables.

• Place constant expressions used within for statements outside of
the for statements.

Loop iteration reduction • Investigate merging loop statements for which the loop conditions
are identical or similar.

• Test the loop implementation.

Management of operation
methods

• Reduce the number of operations by grouping identical operations.

• Investigate whether the same results can be obtained by using
logical operators for operations using arithmetic operators.

Application of formulas Investigate whether the number of operations can be reduced by
application of mathematical formulas.

High speed algorithm
usage

Investigate such algorithms as quick sorts in arrays that are completed
in a shorter calculation time.

Use of tables • If the processing for each switch statement case is nearly the
same, investigate whether a table can be used.

• A method exists for improving execution speed by substituting
previous operation results into a table and referencing the table
values when those operation results become necessary. However,
this method increases the amount of ROM used, so select it after
balancing the required execution speed with the amount of leeway
in ROM capacity.

3.3.1 Movement of Constant Expressions Within Loops

Improvements: Execution speed can be improved if expressions within loops with unchanging
values are calculated before the start of the loop.
105

When expressions with unchanging values in a loop are calculated before the start of the loop, the
calculation can be omitted in each iteration and the execution instruction count can be reduced.

Example: Array element b[5] is substituted into array a[].

Source Code before Improvement:

void f(void)

{

int i, j;

j = 5;

for (i=0; i < 100; i++)

a[i] = b[j] ;

}

Assembled Code before Improvement:

_f:

MOV.L; L214+4,R5

MOV R5,R4

MOV.W L214,R6

ADD R5,R6

MOV.L L214+8,R5

L213:

MOV.L @R5,R3

MOV.L R3,@R4

ADD #4,R4

CMP/HS R6,R4

BF L213

RTS

NOP

L214:
106

.DATA.W H'0190

.RES.W 1

.DATA.L _a

.DATA.L H'00000014+_b

Source Code after Improvement:

void f(void)

{

int i, j, t;

j = 5;

for (i=0, t=b[j]; i < 100; i++)

a[i] = t;

}

Assembled Code after Improvement:

_f:

MOV.L L215+4,R5

MOV.L @R5,R5

MOV.L L215+8,R7

MOV R7,R4

MOV.W L215,R6

ADD R7,R6

L214:

MOV.L R5,@R4

ADD #4,R4

CMP/HS R6,R4

BF L214

RTS

NOP

L215:

.DATA.W H'0190

.RES.W 1

.DATA.L H'00000014+_b

.DATA.L _a
107

Item Before Improvement After Improvement

Code size 36 bytes 36 bytes

Execution speed 810 cycles 612 cycles

3.3.2 Loop Iteration Reduction

Improvements: Execution speed can be greatly improved if loops are expanded.

Explanation: Loop expansion is particularly effective for inside loops. The program size
increases due to loop expansion, so this should be applied in order to improve execution speed
even if it means program size is sacrificed.

Example: Array a[] is initialized.

Source Code before Improvement:

void f(void)

{

int i;

for (i = 0; i < 100; i++)

a[i] = 0;

}

Assembled Code before Improvement:

_f:

MOV.L L212+2,R7

MOV #0,R5

MOV.W L212,R6

MOV R7,R4

ADD R7,R6

L211:

MOV.L R5,@R4

ADD #4,R4

CMP/HS R6,R4

BF L211

RTS
108

NOP

L212:

.DATA.W H'0190

.DATA.L _a

Source Code after Improvement:

void f(void)

{

int i;

for (i = 0; i < 100; i += 2)

{

a[i] = 0;

a[i+1] = 0;

}

}

Assembled Code after Improvement:

_f:

MOV.L L213+2,R7

MOV #0,R5

MOV.W L213,R6

MOV R7,R4

ADD R7,R6

L212:

MOV R4,R7

MOV.L R5,@R4

ADD #8,R4

MOV.L R5,@(4,R7)

CMP/HS R6,R4

BF L212

RTS

NOP

L213:

.DATA.W H'190

.DATA.L _a
109

Item Before Improvement After Improvement

Code size 28 bytes 32 bytes

Execution speed 707 cycles 407 cycles

3.3.3 Replacing Arithmetic Operations with Logical Operations

Improvements: There are cases in which execution speed can be improved if arithmetic
operations are replaced by logical operations.

Explanation: Because the execution time is longer for such operations as division, efficiency will
be improved when logical operations can be substituted.

Example: A return value is changed according to variable i being odd or even.

Source Code before Improvement:

int f(int i)

{

if (i % 2) code = -1;

else code = 0;

return(code);

}

Assembled Code before Improvement:

_f:

STS.L PR,@-R15

MOV R4,R1

MOV.L L214+2,R3

JSR @R3

MOV #2,R0

TST R0,R0

BT L211

BRA L212

MOV #-1,R4

L211:

MOV #0,R4

L212:

LDS.L @R15+,PR

RTS
110

MOV R4,R0

L214:

.RES.W 1

.DATA.L __modls

Source Code after Improvement:

int f(int i)

{

if (i & 1) code = -1;

else code = 0;

return(code);

}

Assembly Development Code after Improvement:

_f:

MOV #1,R3

TST R3,R4

BT L211

BRA L212

MOV #-1,R4

L211:

MOV #0,R4

L212:

RTS

MOV R4,R0

Item Before Improvement After Improvement

Code size 32 bytes 16 bytes

Execution speed 112 cycles 10 cycles

Note: When i = 1.

3.3.4 Multiplication/Division Use

Improvements: When uncertain whether to apply multiplication/division or a shift operation, use
multiplication/division.
111

Explanation: Write programs so that they are easy to read. For multiplication/division, when the
multiplier/divisor and multiplicand/dividend are unsigned, compiler optimization results in
replacement by a combination of shift operations.

Example: Multiplication/division is executed.

Source Code (Multiplication):

unsignd int a;

int f(void)

{

return(a*4);

}

Assembled Code for the Above:

_f:

MOV.L L211,R3

MOV.L @R3,R0

RTS

SHLL2 R0

L211:

.DATA.L _a

Source Code (Division):

unsignd int b;

int f(void)

{

return(b/2);

}

Assembled Code for the Above:

_f:

MOV.L L211,R3

MOV.L @R3,R0
112

RTS

SHLR R0

L211:

.DATA.L _b

3.3.5 Application of Formulas

Improvements: Execution speed can be improved if the number of operations can be reduced
through application of mathematical formulas.

Explanation: Analysis is simplified due to mathematical formulas, but be aware that the number
of operations sometimes increases when arithmetic is applied.

Example: The sum total from 1 to 100 is obtained (for the SH-2 and SH-3, development is with a
MUL.L instruction, so execution speed can be even further improved).

Source Code before Improvement:

int f(long n)

{

int i, s;

for(s = 0, i = 1;

i <= n; i++)

s += i;

return(s);

}

Assembled Code before Improvement:

_f:

MOV #0,R6

MOV #1,R5

CMP/GT R4,R5

BT L212

L213:

ADD R5,R6

ADD #1,R5

CMP/GT R4,R5
113

BF L213

L212:

RTS

MOV R6,R0

Source Code after Improvement:

int f(long n)

{

return(n*(n+1)>>1);

}

Assembled Code after Improvement:

_f:

STS.L PR,@-R15

MOV R4,R1

MOV.L L211+2,R3

ADD #1,R1

JSR @R3

MOV R4,R0

LDS.L @R15+,PR

RTS

SHAR R0

L211:

.RES.W 1

.DATA.L __muli

Item Before Improvement After Improvement

Code size 20 bytes 24 bytes

Execution speed 606 cycles 32 cycles

3.3.6 Practical Use of Tables

Improvements: Execution speed can be improved by using tables instead of branching with
switch statements.
114

Explanation: If the processing for each switch statement case is nearly the same, check to see
whether a table can be used.

Example: The character constant substituted into variable ch is changed according to the value of
variable i.

Source Code before Improvement:

char f(int i)

{

char ch;

switch(i)

{

case 0:

ch = 'a'; break;

case 1:

ch = 'x'; break;

case 2:
115

ch = 'b'; break;

}

return(ch);

}

Assembled Code before Improvement:

_f:

MOV R4,R0

CMP/EQ #0,R0

BT L212

CMP/EQ #1,R0

BT L213

CMP/EQ #2,R0

BT L214

BRA L215

NOP

L212:

BRA L215

MOV #97,R4

L213:

BRA L215

MOV #120,R4

L214:

MOV #98,R4

L215:

RTS

MOV R4,R0

Source Code after Improvement:

char chbuf[] = { 'a', 'x', 'b' };
116

char f(int i)

{

return(chbuf[i]);

}

Assembled Code after Improvement:

_f:

MOV.L L212+2,R0

RTS

MOV.B @(R0,R4),R0

L212:

.RES.W 1

.DATA.L _chbuf

Item Before Improvement After Improvement

Code size 32 bytes 12 bytes

Execution speed 14 cycles 5 cycles

Note: When i = 2.

3.3.7 Conditional Expressions

Improvements: Efficient code is generated when 0 is used in performing comparisons with
constants.

Explanation: When comparing with 0, no instruction is generated to load the constant value, so
shorter code is generated than when comparing with any value other than 0. Establish such
conditional expressions as loops and if statements so that comparisons are made with 0.

Example: A return value is changed according to the argument value being one or greater, or not
one or greater.

Source Code before Improvement:

int f (int x)

{

if (x >= 1)
117

return 1;

else

return 0;

}

Assembled Code before Improvement:

_f:

MOV #1,R3

CMP/GE R3,R4

BF L210

RTS

MOV #1,R0

L210:

MOV #0,R0

L211:

RTS

NOP

Source Code after Improvement:

int f (int x)

{

if (x > 0)

return 1;

else

return 0;

}

Assembly Development Code after Improvement:

_f:

CMP/PL R4

BF L210

RTS

MOV #1,R0
118

L210:

MOV #0,R0

L211:

RTS

NOP

Item Before Improvement After Improvement

Code size 16 bytes 14 bytes

Execution speed 7 cycles 6 cycles

3.3.8 Floating Point Operation Speed

Table 3.5 shows the speeds of the four arithmetical operations. Table 3.6 shows the operation
speeds of the elementary functions using standard libraries. In all cases, the clock frequency is 20
MHz, the values represent execution with on-chip ROM/RAM, and the units are µseconds.

Table 3.5 Floating Point Four Arithmetical Operation Speeds

Double Accuracy Format Single Accuracy Format

Operation Average Value Worst Value Average Value Worst Value

Addition 8.8 16.8 5.3 6.6

Subtraction 10.0 18.1 5.4 7.4

Multiplication (SH-1) 13.6 14.0 6.0 6.0

Multiplication (SH-2) 9.9 10.1 5.3 5.5

Division 41.8 45.2 7.0 7.0

Table 3.6 Floating Point Library Operation Speed Average Values

Function
Double Accuracy Elementary
Function Library

Single Accuracy Elementary
Function Library

sin 185 95

cos 185 90

tan 260 120

asin 500 200

acos 500 210

atan 325 135
119

log 315 145

sqrt 97 33

exp 345 165

pow 680 325

3.4 Branching

Keep in mind the following items concerning branching:

• Group identical judgments together.

• When switch statements or else-if statements are long, place cases to be processed quickly and
frequently branching cases near the beginning.

• When switch statements or else-if statements are long, execution speed can be improved by
dividing into stages and judging.

3.4.1 switch Statement and if Statement

Improvements: For switch statements with up to 5 or 6 cases, execution speed can be improved
by using an if statement instead.

Explanation: Replace switch statements having small numbers of cases with if statements. The
switch statement has an overhead because it checks the value range of the variable before
consulting the case value table. On the other hand, because the if statement makes comparisons
over and over again, the efficiency drops if the number of cases increases.

Example: A return value is changed according to the value of variable a.

Source Code before Improvement:

int x(int a)

{

switch(a)

{

case 1:

a = 2; break;

case 10:

a = 4; break;

default:
120

a = 0; break;

}

return(a);

}

Assembled Code before Improvement:

_x:

MOV R4,R0

CMP/EQ #1,R0

BT L211

CMP/EQ #10,R0

BT L212

BRA L213

NOP

L211:

BRA L214

MOV #2,R4

L212:

BRA L214

MOV #4,R4

L213:

MOV #0,R4

L214:

RTS

MOV R4,R0

Source Code after Improvement:

int x(int a)

{

if(a == 1)

a = 2;

else if(a == 10)

a = 4;
121

else

a = 0;

return(a);

}

Assembled Code after Improvement:

_x:

MOV R4,R0

CMP/EQ #1,R0

BF L210

BRA L211

MOV #2,R4

L210:

MOV R4,R0

CMP/EQ #10,R0

BF L212

BRA L211

MOV #4,R4

L212:

MOV #0,R4

L211:

RTS

MOV R4,R0

Item Before Improvement After Improvement

Code size 28 bytes 26 bytes

Execution speed 12 cycles 10 cycles

Note: When a = 1.

3.5 Inline Expansion

Table 3.7 is a listing of items to be given consideration concerning inline expansion.

Table 3.7 Cautions on Inline Development

Item Cautions

Inline expansion of Try out the inline development of frequently called functions. However,
122

functions program size increases when functions are expanded, so select for a
balance between execution speed and ROM capacity.

Use of inline assembly
code

Programs written in assembler code can be called with the same
interface as for C language functions.

3.5.1 Inline Expansion of Functions

Improvements: Execution speed can be improved if frequently called functions are expanded
inline.

Explanation: Inline expansion of frequently called functions can improve execution speed.
Expansion will in some cases allow great effectiveness, particularly for functions called within
loops. However, program size tends to increase when inline expansion is used, so it should be
applied to improve the execution speed despite the fact program size will be sacrificed.

Example: The elements of array a and array b are exchanged.

Source Code before Improvement:

int x[10], y[10];

void g (int *a, int *b, int i)

{

int temp;

temp = a[i];

a[i] = b[i];

b[i] = temp;

}

void f (void)

{

123

int i;

for (i = 0; i < 10; i++)

g(x, y, i);

}

Assembled Code before Improvement:

_g:

ADD #-4,R15

MOV R6,R7

SHLL2 R7

MOV.L R7,@R15

ADD R4,R7

MOV.L @R7,R6

MOV.L @R15,R4

ADD R5,R4

MOV.L @R4,R3

MOV.L R3,@R7

MOV.L R6,@R4

RTS

ADD #4,R15

_f:

MOV.L R14,@-R15

MOV.L R13,@-R15

MOV #0,R14

MOV.L R12,@-R15

MOV #10,R13

MOV.L R11,@-R15

STS.L PR,@-R15

MOV.L L219+2,R11

MOV.L L219+6,R12

L218:

MOV R14,R6

MOV R12,R5

BSR _g

MOV R11,R4

ADD #1,R14

CMP/GE R13,R14

BF L218
124

LDS.L @R15+,PR

MOV.L @R15+,R11

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

L219:

.RES.W 1

.DATA.L _x

.DATA.L _y

Source Code after Improvement:

#pragma inline (g)

int x[10], y[10];

void g (int *a, int *b, int i)

{

int temp;

temp = a[i];

a[i] = b[i];

b[i] = temp;

}

void f (void)

{

125

int i;

for (i = 0; i < 10; i++)

g(x, y, i);

}

Assembled Code after Improvement:

_g:

ADD #-4,R15

MOV R6,R7

SHLL2 R7

MOV.L R7,@R15

ADD R4,R7

MOV.L @R7,R6

MOV.L @R15,R4

ADD R5,R4

MOV.L @R4,R3

MOV.L R3,@R7

MOV.L R6,@R4

RTS

ADD #4,R15

_f:

MOV #0,R4

MOV.L R12,@-R15

MOV #10,R12
126

MOV.L R11,@-R15

MOV.L R10,@-R15

MOV.L L225+2,R10

MOV.L L225+6,R11

L224:

MOV R4,R0

MOV R11,R1

MOV R10,R6

SHLL2 R0

MOV R0,R7

ADD R6,R7

MOV.L @R7,R6

MOV R0,R5

ADD R1,R5

ADD #1,R4

MOV.L @R5,R3

CMP/GE R12,R4

MOV.L R3,@R7

MOV.L R6,@R5

BF L224

MOV.L @R15+,R10

MOV.L @R15+,R11

RTS

MOV.L @R15+,R12

L225:

.RES.W 1

.DATA.L _x

.DATA.L _y

Item Before Improvement After Improvement

Code size 80 bytes 88 bytes

Execution speed 310 cycles 194 cycles

3.5.2 Embedded Inline Assembler Development

Improvements: Execution speed can be improved by writing assembler code into C programs.
127

Explanation: For the sake of performance, and particularly to improve execution speed, there are
times when one might wish to write programs in assembler code. In such cases, it is possible to
write only the required section in assembly code, and call that section in the same manner as a C
language function is called.

Example: The upper and lower bytes of the elements of array big are swapped, and then stored in
array little.

Source Code before Improvement:

#define A_MAX 10

typedef unsigned char UChar;

short big[A_MAX],little[A_MAX];

short swap(short p1)

{

short ret;

*((UChar *)(&ret)+1) = *((UChar *)(&p1));

*((UChar *)(&ret)) = *((UChar *)(&p1)+1);

return ret;

}

void f (void)

{

int i;

short *x, *y;

x = little;
128

y = big;

for(i=0; i<A_MAX; i++, x++, y++){

*x = swap(*y);

}

}

Assembled Code before Improvement:

_swap:

ADD #-8,R15

MOV R15,R3

ADD #6,R3

MOV R15,R2

MOV.W R4,@R3

MOV R15,R0

ADD #6,R0

MOV R15,R3

MOV.B @R0,R0

MOV.B R0,@(1,R2)

MOV R15,R2

ADD #6,R2

MOV.B @(1,R2),R0

MOV.B R0,@R3

MOV.W @R15,R0

RTS

ADD #8,R15

_f:

MOV.L R14,@-R15

MOV.L R13,@-R15

MOV #0,R14

MOV.L R12,@-R15

MOV.L R11,@-R15

STS.L PR,@-R15

MOV #10,R11

MOV.L L221,R13

MOV.L L221+4,R12

L220:

BSR _swap

MOV.W @R12,R4

MOV.W R0,@R13
129

ADD #1,R14

ADD #2,R13

ADD #2,R12

CMP/GE R11,R14

BF L220

LDS.L @R15+,PR

MOV.L @R15+,R11

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

L221:

.DATA.L _little

.DATA.L _big

Source Code after Improvement:

#pragma inline_asm (swap)

#define A_MAX 10

typedef unsigned char UChar;

short big[A_MAX],little[A_MAX];

short swap(short p1)

{

SWAP.B R4,R0

}

void f (void)

{

int i;

short *x, *y;

x = little;
130

y = big;

for(i=0; i<A_MAX; i++, x++, y++){

*x = swap(*y);

}

}

Assembled Code after Improvement:

_swap:

SWAP.B R4,R0

.ALIGN 4

RTS

NOP

_f:

MOV.L R14,@-R15

MOV #0,R14

MOV.L R13,@-R15

MOV.L R12,@-R15

MOV.L R11,@-R15

MOV #10,R11

MOV.L L220+2,R13

MOV.L L220+6,R12

L218:

MOV.W @R12,R4

BRA L219

NOP
131

L220:

.RES.W 1

.DATA.L _little

.DATA.L _big

L219:

SWAP.B R4,R0

.ALIGN 4

MOV.W R0,@R13

ADD #1,R14

ADD #2,R13

ADD #2,R12

CMP/GE R11,R14

BT L221

MOV.L L222,R2

JMP @R2

NOP

L221:

MOV.L @R15+,R11

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

L222:

.DATA.L L218

Item Before Improvement After Improvement

Code size 88 bytes 64 bytes

Execution speed 358 cycles 185 cycles

3.6 Practical Use of the Global Base Register (GBR)

Improvements: Performance can be improved by using the GBR to reference external variables
with an offset.
132

Explanation: Compact objects are generated when frequently accessed external variables are
referenced by offset from the GBR used as a base register. Additionally, execution speed is
sometimes improved due to a related reduction in the number of execution instructions.

Example: The contents of struct y are substituted into struct x.

Source Code before Improvement:

struct {

char c1;

char c2;

short s1;

short s2;

long l1;

long l2;

} x, y;

void f (void)

{

x.c1 = y.c1;

x.c2 = y.c2;

x.s1 = y.s1;
133

x.s2 = y.s2;

x.l1 = y.l1;

x.l2 = y.l2;

}

Assembled Code before Improvement:

f:

MOV.L L211+2,R5

MOV.L L211+6,R4

MOV.B @R5,R3

MOV.B R3,@R4

MOV.B @(1,R5),R0

MOV.B R0,@(1,R4)

MOV.W @(2,R5),R0

MOV.W R0,@(2,R4)

MOV.W @(4,R5),R0

MOV.W R0,@(4,R4)

MOV.L @(8,R5),R3

MOV.L R3,@(8,R4)

MOV.L @(12,R5),R2

RTS

MOV.L R2,@(12,R4)
134

L211:

.RES.W 1

.DATA.L _y

.DATA.L _x

Source Code after Improvement:

#pragma gbr_base(x,y)

struct {

char c1;

char c2;

 short s1;

short s2;

long l1;

long l2;

} x, y;

void f (void)

{

x.c1 = y.c1;

x.c2 = y.c2;

x.s1 = y.s1;

x.s2 = y.s2;

x.l1 = y.l1;

x.l2 = y.l2;

}

Assembled Code after Improvement:

f:

MOV.B @(_y-(STARTOF $G0),GBR),R0

MOV.B R0,@(_x-(STARTOF $G0),GBR)

MOV.B @(_y-(STARTOF $G0)+1,GBR),R0

MOV.B R0,@(_x-(STARTOF $G0)+1,GBR)

MOV.W @(_y-(STARTOF $G0)+2,GBR),R0

MOV.W R0,@(_x-(STARTOF $G0)+2,GBR)

MOV.W @(_y-(STARTOF $G0)+4,GBR,R0

MOV.W R0,@(_x-(STARTOF $G0)+4,GBR)

MOV.L @(_y-(STARTOF $G0)+8,GBR),R0
135

MOV.L R0,@(_x-(STARTOF $G0)+8,GBR)

MOV.L @(_y-(STARTOF $G0)+12,GBR),R0

RTS

MOV.L R0,@(_x-(STARTOF $G0)+12,GBR)

Item Before Improvement After Improvement

Code size 40 bytes 26 bytes

Execution speed 28 cycles 25 cycles

3.7 Register Save/Restore Control

Improvements: Execution speed can be improved by managing the method of saving and
restoring registers.

Explanation: Execution speed and ROM efficiency can be improved by eliminating both the save
and restore of the register variable usage register performed at the entry and exit of a final
function. However, the opposite effect could possibly result because of the need to either save and
restore the register variable usage register in the function that called the function in which the
136

save/restore was eliminated, or to bypass the function call and use an object in which a register
variable usage register is not allocated. Select this only after carefully investigating the location
where it is to be applied.

Example: The save and restore of the stack are performed together by the function table.

Source Code before Improvement:

typedef int

ARRAY[LISTMAX][LISTMAX][LISTMAX];

ARRAY ary1, ary2, ary3;

void table (void)

{

init(74755, ary1);

copy(ary1, ary2);

sum(ary1, ary2, ary3);

}

void init (int seed, ARRAY p)

}

int i, j, k;

for (i=0; i<LISTMAX; i++)

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++){

seed = (seed*1309)&16383;

p[i][j][k] = seed;

}

}

void copy (ARRAY p, ARRAY q)

{

int i, j, k;

for (i=0; i<LISTMAX; i++)

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++)

q[k][i][j] = p[i][j][k];

}

void sum (ARRAY p, ARRAY q, ARRAY r)

{

int i, j, k;

for (i=0; i<LISTMAX; i++)
137

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++)

r[i][j][k]=p[i][j][k] + q[i][j][k];

}

Assembled Code before Improvement (Partial):

_table:

MOV.L R14,@-R15

STS.L PR,@-R15

MOV.L L244+6,R14

MOV.L L244+10,R4

BSR _init

MOV R14,R5

MOV.L L244+14,R5

BSR _copy

MOV R14,R4

MOV R14,R4

LDS.L @R15+,PR

MOV.L L244+18,R6

MOV.L L244+14,R5

BRA _sum

MOV.L @R15+,R14

_init:

MOV #2,R6

MOV.L R14,@-R15

MOV.L R13,@-R15

MOV.L R12,@-R15

MOV #0,R13

MOV.L R11,@-R15

MOV R5,R12

MOV.L R10,@-R15

MOV.L R9,@-R15

MOV.L R8,@-R15

:
:

LDS.L @R15+,PR

MOV.L @R15+,R8

MOV.L @R15+,R9

MOV.L @R15+,R10
138

MOV.L @R15+,R11

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

_copy:

MOV.L R14,@-R15

MOV.L R13,@-R15

MOV.L R12,@-R15

MOV.L R9,@-R15

MOV #2,R12

MOV.L R8,@-R15

:
:

MOV.L @R15+,R8

MOV.L @R15+,R9

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

:
:

_sum:

MOV.L R14,@-R15

MOV #0,R7

MOV.L R13,@-R15

MOV.L R12,@-R15

MOV.L R11,@-R15

MOV #2,R12

MOV.L R10,@-R15

MOV.L R9,@-R15

MOV.L R8,@-R15

:

MOV.L @R15+,R8

MOV.L @R15+,R9

MOV.L @R15+,R10

MOV.L @R15+,R11
139

MOV.L @R15+,R12

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

Source Code after Improvement:

#pragma regsave (table)

#pragma noregalloc (table)

#pragma noregsave (init, copy, sum)

typedef int

ARRAY[LISTMAX][LISTMAX][LISTMAX];

ARRAY ary1, ary2, ary3;

void table (void)

{

init(74755, ary1);

copy(ary1, ary2);

sum(ary1, ary2, ary3);

}

void init (int seed, ARRAY p)

{

int i, j, k;

for (i=0; i<LISTMAX; i++)

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++){

seed = (seed*1309)&16383;

p[i][j][k] = seed;

}

}

void copy (ARRAY p, ARRAY q)

{

int i, j, k;
140

for (i=0; i<LISTMAX; i++)

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++)

q[k][i][j] = p[i][j][k];

}

void sum (ARRAY p, ARRAY q, ARRAY r)

{
int i, j, k;

for (i=0; i<LISTMAX; i++)
141

for (j=0; j<LISTMAX; j++)

for (k=0; k<LISTMAX; k++)

r[i][j][k]=p[i][j][k] + q[i][j][k];

}

Assembled Code after Improvement (Partial):

_table:

MOV.L R14,@-R15

MOV.L R13,@-R15

MOV.L R12,@-R15

MOV.L R11,@-R15

MOV.L R10,@-R15

MOV.L R9,@-R15

MOV.L R8,@-R15

STS.L PR,@-R15

STS.L MACH,@-R15

STS.L MACL,@-R15

MOV.L L244+4,R5

MOV.L L244+8,R4

BSR _init

NOP

MOV.L L244+12,R5

MOV.L L244+4,R4

BSR _copy

NOP

MOV.L L244+16,R6

MOV.L L244+12,R5

MOV.L L244+4,R4

BSR _sum

NOP

LDS.L @R15+,MACL

LDS.L @R15+,MACH

LDS.L @R15+,PR

MOV.L @R15+,R8

MOV.L @R15+,R9

MOV.L @R15+,R10

MOV.L @R15+,R11

MOV.L @R15+,R12
142

MOV.L @R15+,R13

RTS

MOV.L @R15+,R14

_init:

STS.L PR,@-R15

MOV R5,R12

MOV.W L244,R9

MOV #0,R13

MOV.W L244+2,R10

MOV #2,R6

MOV R5,R8

ADD #32,R8

:
:

CMP/GE R6,R11

BF L236

ADD #16,R12

CMP/HS R8,R12

BF L235

LDS.L @R15+,PR

RTS

NOP

_copy:

ADD #-4,R15

MOV #0,R9

MOV R9,R13

MOV #2,R12

MOV R5,R8

ADD #32,R8

L238:

MOV R9,R14

:
:

ADD #1,R14

CMP/GE R12,R14

BF L239

ADD #1,R13

CMP/GE R12,R13
143

BF L238

RTS

ADD #4,R15

_sum:

ADD #-8,R15

MOV #2,R12

MOV #0,R7

MOV.L R7,@R15

L241:

MOV R7,R10

MOV.L @R15,R13

SHLL2 R13

:
:

BF L242

MOV.L @R15,R2

ADD #1,R2

CMP/GE R12,R2

MOV.L R2,@R15

BF L241

RTS

ADD #8,R15

L244:

.DATA.W H'3FFF

.DATA.W H'051D

.DATA.L _ary1

.DATA.L H'00012403

.DATA.L _ary2

.DATA.L _ary3

.DATA.L __muli

Item Before Improvement After Improvement

Code size 370 bytes 332 bytes

Execution speed 819 cycles 795 cycles

3.8 2-Byte Address Designation

Improvements: ROM efficiency can be improved by expressing variable and function addresses
as 2 bytes.
144

Explanation: When variables or functions are placed in addresses that can be expressed in 2
bytes, code size can be reduced by making the code on the referencing side 2-byte.

Example: The external function g is called when the value of function x is 1.

Source Code before Improvement:

extern int x;

extern void g(void);

void f (void)

{

if (x == 1)

g();

}

Assembled Code before Improvement:

_f:

MOV.L L212+2,R3

MOV.L @R3,R0

CMP/EQ #1,R0

BF L213

MOV.L L212+6,R2

JMP @R2

NOP

L213:

RTS

NOP
145

L212:

.RES.W 1

.DATA.L _x

.DATA.L _g

Source Code after Improvement:

#pragma abs16(x,g)

extern int x;

extern void g(void);

void f (void)

{

if (x == 1)

g();

}

Assembled Code after Improvement:

_f:

MOV.W L212,R3

MOV.L @R3,R0

CMP/EQ #1,R0

BF L213

MOV.W L212+2,R2

JMP @R2

NOP

L213:

RTS

NOP

L212:

.DATA.W _x

.DATA.W _g

Item Before Improvement After Improvement

Code size 28 bytes 22 bytes

Execution speed 16 cycles 16 cycles

Note: When x = 1 and function g is void g(){}.
146

3.9 Prefetch Instruction

Improvements: When accessing array variables, an improvement in execution speed can be
expected if a prefetch instruction is executed before the access (valid only for SH-3).

Explanation: When performing sequential accesses of an array with a loop, execution speed is
improved by performing a prefetch before referencing the array members. Additionally, prefetches
can be performed more effectively through loop expansion. However, no increase in speed can be
expected when prefetch instructions are executed consecutively, so be certain to execute with an
amount of separation sufficient to allow completion of a previous prefetch instruction.

Example: The product of each element of array a and array b are stored in array c.

Source Code before Improvement:

int a[1200], b[1200], c[1200];

void f (void)

{

int i;

int *pa, *pb, *pc;

for (pa=a, pb=b, pc=c,

i=0; i<1200; i+=4){

*pc++ = *pa++ * *pb++;

*pc++ = *pa++ * *pb++;
147

*pc++ = *pa++ * *pb++;

*pc++ = *pa++ * *pb++;

}

}

Assembled Code before Improvement:

_f:

STS.L MACL,@-R15

MOV #0,R7

MOV.W L218,R0

MOV.L L218+2,R6

MOV.L L218+6,R4

MOV.L L218+10,R5

L217:

MOV.L @R4+,R2

ADD #4,R7

MOV.L @R6+,R1

CMP/GE R0,R7

MUL.L R2,R1

STS MACL,R2

MOV.L R2,@R5

ADD #4,R5

MOV.L @R4+,R2

MOV.L @R6+,R1

MUL.L R2,R1

STS MACL,R2

MOV.L R2,@R5

ADD #4,R5

MOV.L @R4+,R2

MOV.L @R6+,R1

MUL.L R2,R1

STS MACL,R2

MOV.L R2,@R5

ADD #4,R5

MOV.L @R4+,R2

MOV.L @R6+,R1

MUL.L R2,R1

STS MACL,R2
148

MOV.L R2,@R5

BF/S L217

ADD #4,R5

RTS

LDS.L @R15+,MACL

L218:

.DATA.W H'04B0

.DATA.L _a

.DATA.L _b

.DATA.L _c

Source Code after Improvement:

#include <umachine.h>

int a[1200], b[1200], c[1200];

void f (void)

{

int i;

int *pa, *pb, *pc;

for (pa=a, pb=b, pc=c, i=0, i<1200; i+=4){

#ifdef PREF1

prefetch(pa+8);

#endif

*pc++ = *pa++ * *pb++;

*pc++ = *pa++ * *pb++;

#ifdef PREF2

prefetch(pb+8);

#endif
149

*pc++ = *pa++ * *pb++;

*pc++ = *pa++ * *pb++;

}

}

Assembly Development Code after Improvement (When PREF1, 2 Are Valid):

_f:

STS.L MACL,@-R15

MOV #0,R7

MOV.W L218,R0

MOV.L L218+2,R5

MOV.L L218+6,R4

MOV.L L218+10,R6

L217:

MOV R5,R3

ADD #32,R3

PREF @R3

MOV.L @R4+,R3

MOV.L @R5+,R1

MUL.L R3,R1

STS MACL,R3

MOV.L R3,@R6

MOV.L @R4+,R3

ADD #4,R6

MOV.L @R5+,R1

MOV R4,R2

MUL.L R3,R1

ADD #32,R2
150

STS MACL,R3

MOV.L R3,@R6

ADD #4,R6

PREF @R2

MOV.L @R4+,R2

ADD #4,R7

MOV.L @R5+,R1

CMP/GE R0,R7

MUL.L R2,R1

STS MACL,R2

MOV.L R2,@R6

ADD #4,R6

MOV.L @R4+,R2

MOV.L @R5+,R1

MUL.L R2,R1

STS MACL,R2

MOV.L R2,@R6

BF/S L217

ADD #4,R6

RTS

LDS.L @R15+,MACL

L218:

.DATA.W H'04B0

.DATA.L _a

.DATA.L _b

.DATA.L _c
151

Item Before Improvement
After Improvement 1
(PREF1 only)

After Improvement 2
(PREF1, 2)

Code size 84 bytes 92 bytes 96 bytes

Execution speed 61650 cycles 60300 cycles 57930 cycles

Section 4 Relation to Assembly Language Programs and
Cross Software

4.1 Relation to Assembly Language Programs

Because the SH series C compiler also supports Hitachi SuperH RISC engine family dedicated
special instructions, it allows most programs to be written in the C language. However, for better
performance, some sections require assembly language. Then those sections can be joined with the
C language programs.

This section outlines the following points one should be careful of when joining C language and
assembly language programs.

• External name reciprocal referencing methods

• Function call interface

Refer to the SH Series C Compiler User Manual for details.

4.1.1 External Name Reciprocal Referencing Methods

Referencing Assembly From C Language Programs: Referencing assembly language program
external definition names from C language programs is as follows:

• Make an external definition declaration using the “.EXPORT” or “.GLOBAL” assembler
control instructions of the symbol names (32 characters or fewer) for assembly language
programs with “_” added to the beginning of their names.

• In the C program, make an external reference declaration of the symbol names without “_”
added at the beginning, using an “extern” memory class designator.

Assembly Language Program (Defining Side):

.EXPORT _a, _b
152

.SECTION D,DATA,ALIGN=4

_a: .DATA.L 1

_b: .DATA.L 1

.END

C Language Program (Referencing Side):

extern int a, b;

f()

{

a += b;

}

Referencing C Programs from Assembly: Referencing C language program external definition
names from assembly language programs is as follows:

• Make an external definition of the symbol names (31 characters or fewer) in the C language
program.

• In the assembly language program, make an external reference declaration of the symbol
names with an underscore (_) added to the beginning, using an “.IMPORT” or “.GLOBAL”
assembler control instruction.

External definition names for C language programs are as follows:

• Those that are global variables, and further, are not static memory class

• Function names declared as extern memory class

• Function names for which static memory class is not designated

C Language Program (Defining Side):

int a;

Assembly Language Program (Referencing Side):

.IMPORT _a

.SECTION P, CODE, ALIGN=2

MOV.L A_a, R1

MOV.L @R1, R0

ADD #1, R0
153

RTS

MOV.L R0, @R1

A_a: .DATA.L _a

.END

4.1.2 Function Call Interface

When performing reciprocal function calls between C language programs and assembly language
programs, the following four rules should be observed on the assembly language program side:

1. Rule concerning the stack pointer

2. Rule concerning stack frame allocation/release

3. Rule concerning the registers

4. Rule concerning the setting/referencing of arguments and return values

Items 1 through 3 are explained below. Refer to section 4.1.3, Argument and Return Value
Setting/Referencing, for item 4.

Stack Pointer: Do not store valid data in the stack area lower (in the direction of the 0 address)
than the address pointed to by the stack pointer. Data stored in addresses lower than that of the
stack pointer could possibly be destroyed by interrupt processing.

Stack Frame Allocation/Release: At the point of a function call being performed (immediately
after execution of a JSR or BSR instruction), the stack pointer indicates the final address of the
stack used on the calling function side. Data allocation/setting for addresses higher than this area
(in the direction of address H'FFFFFFFF) is the duty of the calling side function.
154

At the time of the function return, the area established by the called function is released, then
returned to the calling function, usually through use of an RTS instruction. The area with higher
addresses than this (return value address and argument area) is released by the calling side
function (figure 4.1).

zrisi15.eps

0

SP

Lower addresses

Upper addresses

Immediately
before call/return

Return value address

Argument area

Stack used on the
called side

Stack used on the
calling side

Figure 4.1 Stack Frame Allocation/Release

Registers: Immediately after a function call, there are registers for which the C compiler preserves
the values, and others for which it does not. The rule for register preservation is listed in table 4.1.

Table 4.1 Rule for Register Preservation Immediately after Function Calls in C Programs

Item Object Registers Cautions on Assembly Language Programming

Registers
not
preserved

R0 to R7 If there are valid values in the object registers at the time of a
function call, those values are saved on the calling side. They
can be used by functions on the called side without saving.

Registers
preserved

R8 to R15, MACH,
MACL*, PR

Among the object registers, the values of those used within
functions are saved, then restored upon the return.

Note: MACH, MACL are not preserved when -macsave = 0.

Establish the connection between C language program and assembly language program functions
as follows:

• When calling assembly language functions from C language programs:

When the object assembly language function calls a different module, save the PR register
value to the stack at the assembly language function entrance, and restore it from the stack at
the exit.
155

When the R8 to R15, MACH, or MACL registers are used within the assembly language
function, save the register values to the stack before using, and restore them from the stack
after using.

Refer to section 4.1.3, Argument and Return Value Setting/Referencing, for details on how
arguments are passed to assembly language functions.

• When calling C language functions from assembly language programs:

If there are valid values in the R0 to R7 registers, save the values to empty registers or to the
stack before the C language function call.

Refer to section 4.1.3, Argument and Return Value Setting/Referencing, for details on how
return values are passed to assembly language functions.

The following is an example of how the assembly language function g is called by the C
language function f, and how the C language function h is called by the assembly language
function g.

C Language Function f:

extern void g();
156

f()

{

g();

{

Assembly Language Function g:

.EXPORT _g Function g external definition
declaration

.IMPORT _h Function h external reference
declaration

.SECTION P, CODE, ALIGN=2

_g: STS.L PR,@-R15 PR register value preservation

MOV.L R14,@-R15 Preservation of registers used by
function g

MOV.L R13,@-R15

:

MOV.L R2,@-R15 Preservation of registers used by
function h

MOV.L R1,@-R15

MOV.L L_h,R0 Call function h

JSR @R0

NOP

:

MOV.L @R15+,R13 Restoration of registers used by
function g

MOV.L @R15+,R14

RTS

LDS.L @R15+,PR PR register value restoration

L_h: .DATA.L _h

.END

C Language Function h:

h()

{

:

:

{

157

4.1.3 Argument and Return Value Setting/Referencing

The C compiler rules concerning argument and return value setting/referencing differ depending
on whether or not the individual argument and return value formats are clearly declared in the

function declaration. When the argument and return value formats are clearly declared in the C
language program the basic format declaration is used for the function.

In the following explanation, general rules concerning argument and return values in C programs
are described first, followed by an explanation of the allocation area for arguments, the method of
allocating arguments, and the location of return value establishment.

General Rules Concerning Arguments and Return Values in C Programs: Method of passing
arguments: Always call functions only after copying argument values to registers or to the
argument allocation area in the stack. The argument allocation area is not referenced by the calling
side function after a return, so even if the argument values are changed by functions on the called
side, the calling side processing is not directly effected.

Rules for format conversion: When arguments are passed or return values returned, there are cases
in which the formats are automatically converted. Table 4.2 indicates the rules concerning format
conversion.

Table 4.2 Rules for Format Conversion

Format Conversion Conversion Method

Format conversion of
arguments with declared
formats

Arguments with formats declared with a basic format declaration are
converted to the declared format.

Format conversion of
arguments without
declared formats

Arguments without formats declared with a basic format declaration are
converted according to the following rules:

• char format, unsigned char format, short format, and unsigned short
format arguments are converted to int format.

• float format arguments are converted to double format.

• Formats other than the above are not converted.

Format conversion of
return values

Return values are converted to the format returned by the function.

Example 1: When the format is declared with the basic format declaration:

long f();

long f()

{

float x;
158

:

:

return x;

}

The return value x is converted to long format in accordance with the basic format declaration.

Example 2: When the format is not declared with the basic format declaration:

void p(int,...);

long f()

{

char c;

:

p(1.0, c);

:

}

The first argument is converted to int format since the format of the corresponding argument is int
format. The second argument is converted to int format since the corresponding argument has no
format.

Example 3: When the format is not declared with the basic format declaration:

When the argument format is not declared with the basic format declaration, the same format
should be designated on the called side and calling side so that the argument will be correctly
passed. Operation is not guaranteed if the formats do not match.

void f(x)

float x;

{

:

:

}

void main()

{

float x:

f(x);

}

159

In this example, there is no basic format declaration for the function f argument, so argument x is
converted to double format when it is called on the function main side. However, the argument has
been declared as float format on the function f side. Consequently, the argument cannot be
correctly handed over. The argument format must either be declared with a basic format
declaration, or the argument declaration must be double format on the function f side.

Proper declaration of the argument format with a basic format declaration is shown below.

void f(float x)

{

:

:

}

void main()

{

float x:

f(x);

}

Argument Allocation Method in C Programs: Arguments are sometimes allocated to
registers and sometimes to an argument area in the stack. Figure 4.2 shows the argument
allocation area, and table 4.3 lists the general rules for argument allocation.

0

SP

R4

R5

R6
R7

Lower addresses

Upper addresses

Stack

Argument storage
usage registers

Return value address

Argument area
160

zrisi16.eps

 Argument allocation area

Figure 4.2 Argument Allocation Area for C Language Programs

Table 4.3 General Rules for Argument Allocation in C Programs

Arguments Allocation Rules

Arguments passed using
registers

Argument
storage usage
registers

R4 to R7

Arguments passed using
registers

Object formats char, unsigned char, short, unsigned short, int,
unsigned int, long, unsigned long, float, pointer

Arguments passed using the stack • Arguments with formats other than those that are
objects of register passing

• Functions declared as having variable arguments
with the basic format declaration*

• When other arguments have already been
allocated to registers R4 to R7

Note: When functions have been declared as having variable arguments with the basic format
declaration, arguments without corresponding formats within the declaration and the
arguments immediately preceding them are allocated to the stack. For example:

int f2(int, int, int, int,...);

f2(a, b, c, x, y, z)

{

:

}

Arguments up until the fourth argument are allocated to registers as usual, but x here is
also allocated to the stack.

Allocation to argument storage usage registers: Allocation to the argument storage usage registers
occurs from the lowest numbered register in the order of the source program declarations. Figure
4.3 shows an example of argument storage usage register allocation.

Allocation to the argument area in the stack: Allocation to the argument area in the stack occurs
from the lower addresses in the order declared in the source program. Figures 4.4 through 4.8
show examples of argument storage usage stack allocation.

Note: When structs and common element format arguments are established, they are allocated to
4-byte boundaries regardless of the boundary adjustments of their formats, and
161

additionally, byte areas that are multiples of 4 are used for their areas. This is because the
SH stack pointer changes in 4-byte units.

Example 1: All arguments are register passing format → Allocated to R4 to R7 in order of
declaration (figure 4.3)

int f(char, short, int, float);

:

f(1, 2, 3, 4.0);

:

Not secured 1

3

4.0

Not secured 2

R4

R5

R6

R7
zrisi17.eps

Figure 4.3 C Language Program Argument Allocation (Example 1)

Example 2: There are many arguments and not all are allocated to registers → Arguments not
allocated to registers are allocated to the stack (figure 4.4)

int f(int, short, long, float,char);

:

f(1, 2, 3, 4.0, 5);

:

1

3

4.0

Not secured 2

R4

R5

Not secured 5

Lower addresses

Upper addresses

Argument area
(stack)

R6

R7

zrisi18.eps
162

Figure 4.4 C Language Program Argument Allocation (Example 2)

Example 3: There are arguments with formats not allocated to registers → Arguments not
allocated to registers are allocated to the stack (figure 4.5)

struct s { int x, y;} a;

int f(int, struct s, int);

:

f(1, a, 3);

:

1

3

a.x

a.y

R4

R5

Lower addresses

Upper addresses

Argument area
(stack)

zrisi19.eps

Figure 4.5 C Language Program Argument Allocation (Example 3)

Example 4: Functions have been declared as having variable arguments with the basic format
declaration → Arguments without corresponding formats and the arguments immediately
preceding them are allocated to the stack in the order of declaration (figure 4.6)

int f(double, int, int, . . .);

:

f(1.0, 2, 3, 4);

:

2

3

1.0

4

R4

Lower addresses

Argument area
(stack)
163

Upper addresses

zrisi20.eps

Figure 4.6 C Language Program Argument Allocation (Example 4)

Example 5: There are no basic format declarations → Char format expanded to int format, float
format expanded to double format before allocation (figure 4.7)

int f();

char a;

float b;

:

f(a,b);

:

a

b

R4

Lower addresses

Upper addresses

Argument area
(stack)

zrisi21.eps

Figure 4.7 C Language Program Argument Allocation (Example 5)

Example 6: The function’s return format exceeds 4 bytes, or it is a struct→ Return value address
established immediately before the argument area (figure 4.8)

struct s{char x, y, z}a, b;
164

double f(struct s);

:

f(a);

:

x y z

Return value address

Vacant area

Return value setting area

Lower addresses

Upper addressesArgument area
(stack)

zrisi22.eps

Figure 4.8 C Language Program Argument Allocation (Example 6)

Return Value Setting Location in C Programs: Return values are sometimes set in registers and
sometimes in the stack, depending on the function’s return value format. Refer to table 4.4 for the
relationship between return value format and setting location.

When the function return value is set in the stack, that return value is established in the area
pointed to by the return value address. The calling side secures not only the argument area, but the
return value setting area as well and sets that address in the return value address before making the
function call (see figure 4.9). The return value is not established if the function return value is void
format.

Table 4.4 Return Value Formats and Setting Locations in C Programs

Return Value Format Return Value Setting Location

char, unsigned char, short, unsigned R0: 32 bit (contents of the char, unsigned char upper 3
165

short, int, unsigned int, long,
unsigned long, float, pointer

bytes, and short, unsigned short upper 2 bytes are not
secured)

double, long double, structs,
common elements

Return value setting area (stack)

zrisi23.eps

Return value address

Argument area
(Secured by
calling side)

Return value
setting area

Figure 4.9 C Language Program Return Value Setting Area when Return Values Are Set in
the Stack

4.2 Relation to the Linkage Editor

4.2.1 ROM Conversion Support Function

When writing load modules into ROM, the initialized data area is also written in. However,
because data manipulation must be performed in RAM, the initialized data area must be copied
from ROM to RAM during startup. This processing can be easily executed by using the linkage
editor’s ROM conversion support function.

To use the ROM conversion support function, designate the option “ROM (D,R)” (D: initialized
data area section name in ROM, R: initialized data area section name in RAM) during linkage.
166

The following processes are carried out by the ROM conversion support function:

1. An area in RAM with the same size as the initialized data area in ROM is secured. Figure 4.10
shows the method of dual allocation to memory.

Initial values (D)

Initialized data area (D)

Object

zrisi24.eps

Initialized data area (R)

Linkage editor allocation

ROM
area

ROM (D, R)

D:

RAM
area

Initialized data area
section name in ROM
Initialized data area
section name in RAM

R:

Figure 4.10 Memory Allocation by the ROM Conversion Support Function

2. Referencing of symbols declared in the initialized data area is performed automatically by
resolving addresses as pointing to the RAM area address.

The user incorporates processing to copy data in ROM to RAM into the startup routine. Refer to
section 1.6.4, Initializing Module Creation, for an example. Refer to the H Series Linkage Editor
User Manual for details on the ROM conversion support function. This function is supported by
the H Series Linkage Editor Version 4 and later.
167

4.2.2 Precautions on Linkage

Table 4.5 lists methods of dealing with error messages output when linking relocatable object files
generated by the C compiler.

Table 4.5 Treating Error Messages During Linkage

Error Message Manner of Confirmation Method of Treatment

“CANNOT FIND
SECTION” is output.

Are C compiler output
section names desig-
nated with upper case
characters in the linkage
editor start option?

Designate a proper section name.

“UNDEFINED EXTERNAL
SYMBOL” is output, even
though the referenced
function has been defined.

Is defined function name
correct?

If function name is incorrectly defined, the C
compiler judges it to be a new function and
does not output an error message. User
should correct the function name.

“UNDEFINED EXTERNAL
SYMBOL” is output, even
though the referenced
function has been defined.

Is basic format
declaration correct?

If basic format declaration is in error,
compiler judges that a function not existing
in the program has been referenced. User
should correct the basic format declaration.

“UNDEFINED EXTERNAL
SYMBOL” is output for
an assembly program
external definition symbol
referenced by a C
program.

Is symbol name defined
with “_” at the beginning
in the assembly program?

Add “_” to the beginning of the assembly
program external definition symbol name.

“UNDEFINED EXTERNAL
SYMBOL” is output for a C
program external definition
symbol referenced by an
assembly program.

Is symbol name
referenced with “_” at
the beginning in the
assembly program?

Add “_” to the beginning of the assembly
program external reference symbol name.

“UNDEFINED EXTERNAL
SYMBOL” is output for a
symbol beginning with “_
_” (double underline).

— Designate a standard library for the library
file during linkage.

“UNDEFINED EXTERNAL
SYMBOL” is output for a
symbol other than those
mentioned above.

Is C library function
designated?

Include a standard library include file in the
C program. Also designate a standard
library for the library file during linkage.

“UNDEFINED EXTERNAL
SYMBOL” is output for a
symbol other than those
mentioned above.

Is C library function
standard I/O library being
used?

Create a low standard interface routine and
link.
168

Even if object files have debug information attached to them, that debug information will not be
output in the load module file if the -debug option is not designated during linkage. In such cases,
source level debugging will not be performed in the simulator/debugger.

4.3 Relation to the Simulator/Debugger

When load modules are executed using the simulator/debugger, there is a possibility that a
“MEMORY ACCESS ERROR” will be generated. As a preventative measure, apply one of the
following methods:

1. Use the same kind of memory mapping as for the actual machine when using the
simulator/debugger (the total byte count for any one section always becomes a multiple of 4).

2. During linkage, link the dummy section created by the following assembly language program
after all sections except the P section.

Assembly Language Program:

.SECTION DM,DUMMY,ALIGN=1

.RES.B 3

.END

Example of Combination during Linkage:

For the command line option:

-START=P,C,DM/0400,B,DM,D,DM/01000000

For subcommand files:

START P,C,DM(0400),B,DM,D,DM(01000000)

Cautions on performing source level debugging using the simulator/debugger are as follows:

1. Use Linkage Editor Version 5.3 or later.

2. Designate the -debug option during both compilation and linkage.

3. There are times when the local symbols of a concerned function cannot be referenced within
the function.

4. Only one statement can be displayed when multiple statements have been written into a single
169

source line.

5. Source lines eliminated due to optimization cannot be debugged.

6. Because of the occurrence of line switching, etc. due to optimization, there are cases in which
the program execution order or disassemble display will differ from the source listing order.

Example:

C Language Program:

12 for (i=0; 1<6; i++)

13 {

14 j = i+1;

15 j++;

16 }

17 j++

Simulator/Debugger Disassemble Display:

14 j = i+1;
170

12 for (i=0; 1<6; i++)

17 j++

7. There are cases in which the for or while statement will be displayed by a disassemble twice at
the entry and exit of loop statements.

Section 5 Questions and Answers

This section is a collection of answers to questions often asked by users.

5.1 const Declaration

Question: After making a const declaration, there was no allocation to the constant area (C)
section. Why?

Answer: When const declarations are made for symbols, be aware that the following meanings
result:

1. const char msg[]=“sun”;

Allocation to C section: character string “sun”

2. const char *msg[]={“sun”,”moon”};

Allocation to C section: character strings “sun” and “moon”

Allocation to D section: msg[0] and msg[1] (*msg[0] and *msg[1] start addresses)

3. const char *const msg[]={“sun”,”moon”};

Allocation to C section: character strings “sun” and “moon”, msg[0] and msg[1] (*msg[0] and
*msg[1] start addresses)

4. char *const msg[]={“sun”,”moon”};

Allocation to C section: character strings “sun” and “moon”, msg[0] and msg[1] (*msg[0] and
*msg[1] start addresses)

5.2 Reentrants and Standard Libraries

Question: What cautions are necessary when making functions reentrant?

Answer: Functions that use global variables do not become reentrant. Also, even when the
intention was to create a reentrant function, if standard libraries are used in the course of using the
following standard include files, the function does not become a reentrant because global variables
171

are used.

A reentrant library listing is shown in the table below. Functions marked with a ∆ in the table
establish _errno variables, and can therefore be executed as reentrant as long as _errno is not
referenced in the program.

Table 5.1 Reentrant Library

Standard Include File Function Name Reentrant

stddef.h offsetof O

assert.h assert X

ctype.h isalnum O

isalpha O

iscntrl O

isdigit O

isgraph O

islower O

isprint O

ispunct O

isspace O

isupper O

isxdigit O

tolower O

toupper O

math.h acos ∆

asin ∆

atan ∆

atan2 ∆

cos ∆

sin ∆

tan ∆

cosh ∆

sinh ∆

tanh ∆

exp ∆

frexp ∆

ldexp ∆
172

log ∆

log10 ∆

modf ∆

pow ∆

Table 5.1 Reentrant Library (cont)

Standard Include File Function Name Reentrant

math.h (cont.) sqrt ∆

ceil ∆

fabs ∆

floor ∆

fmod ∆

setjmp.h setjmp O

longjmp O

stdarg.h va_start O

va_arg O

va_end O

stdio.h fclose X

fflush X

fopen X

freopen X

setbuf X

setvbuf X

fprintf X

fscanf X

printf X

scanf X

sprintf X

sscanf X

vfprintf X

vprintf X

vsprintf X

fgetc X

fgets X

fputc X
173

fputs X

getc X

getchar X

gets X

Table 5.1 Reentrant Library (cont)

Standard Include File Function Name Reentrant

stdio.h (cont) putc X

putchar X

puts X

ungetc X

fread X

fwrite X

fseek X

ftell X

rewind X

clearerr O

feof O

ferror O

perror X

stdlib.h atof X

atoi X

atol X

strtod X

strtol X

rand X

srand X

calloc X

free X

malloc X

realloc X

bsearch O

qsort X

abs O
174

div X

labs O

ldiv X

Table 5.1 Reentrant Library (cont)

Standard Include File Function Name Reentrant

string.h memcpy O

strcpy O

strncpy O

strcat O

strncat O

memcmp O

strcmp O

strncmp O

memchr O

strchr O

strcspn O

strpbrk O

strrchr O

strspn O

strstr O

strtok X

memset O

strerror O

strlen O

memmove O

Note: O: Reentrant; X: Non-reentrant; ∆: _errno established.

5.3 Method of Correctly Judging 1-Bit Data

Question: It is difficult to judge whether data with a 1-bit size in the bit field is set or not. Why is
175

this?

Answer: When 1-bit data have been declared as signed, those 1-bit data are interpreted as being
sign bits. Consequently, values that can be expressed as 1-bit data become 0 and –1. In order to
express 0 and 1, always declare as unsigned.

Example Where Judgment Is Always Wrong:

struct{

char p7:1;

char p6:1;

char p5:1;

char p4:1;

char p3:1;

char p2:1;

char p1:1;

char p0:1;

}s1;

if(s1.p0 == 1){

s1.p1 = 0;

}

Example of Correct Judgment:

struct{

unsigned char p7:1;

unsigned char p6:1;

unsigned char p5:1;

unsigned char p4:1;

unsigned char p3:1;

unsigned char p2:1;

unsigned char p1:1;

unsigned char p0:1;

}s1;

if(s1.p0 == 1){
176

s1.p1 = 0;

}

Note: The generated code will be more efficient when if statement conditional expressions are
compared with 0.

5.4 Installation

Question: Startup wasn’t possible despite the fact that compiler, assembler, and linker commands
were input. Why?

Answer: Confirm that compiler, assembler, and linker installed directories are included in the
environment variable “PATH” designation. Refer to section 1.3, Installation Method, and the
software attached materials.

5.5 Specifications and Speeds for Execution Routines
177

Question: What are the speeds of the execution routines provided by the compiler?

Answer: Below is a table of the execution routine speeds/FPL speeds when on-chip ROM and
RAM are used.

Table 5.2 Execution Routine Speeds/FPL Speeds

Function Stack No. of Execution Cycles

Classification Name Volume SH-1 SH-2

Constant Multiplication _muli 12 24–44 —
operations Division _divbs 4 32 32

_divbu 0 25 25

_divls 8 88 88

_divlu 4 81 81

_divws 4 39 39

_divwu 0 32 32

Remainder _modbs 8 44–45 44–45

_modbu 4 30–33 30–33

_modls 12 99–100 99–100

_modlu 8 83–85 83–85

_modws 8 50–51 50–51

_modwu 4 37–40 37–40

Floating Addition _adds 24 88–114 86–114
point _addd 24 147–306 147–196
operations

Post-increment _poas 44 15+_adds 15+adds

_poad 84 38+_addd 38+_addd

Subtraction _subs 24 95–134 93–135

_subd 44 174–336 171–215

_subdr 44 3+_subd 3+_subd

Post-decrement _poss 44 15+_subs 15+_subs

_posd 84 38+_subd 38+_subd

Multiplication _muls 24 108–111 94–98

_muld 64 263–271 191–197

Division _divs 20 135–136 134–135

_divd 60 743–816 741–766

_divdr 60 3+_divd 3+_divd
178

Comparison _eqs 20 46 46

_eqd 32 65 65

_nes 20 53 53

_ned 32 67 67

Table 5.2 Execution Routine Speeds/FPL Speeds (cont)

Function Stack No. of Execution Cycles

Classification Name Volume SH-1 SH-2

Floating Comparison _gts 20 53 53
point (cont) _gtd 32 67 67
operations

_lts 20 53 53(cont)
_ltd 32 67 67

_ges 20 53 53

_ged 32 67 67

_les 20 53 53

_led 32 67 67

Sign conversion _negs 0 11 11

_negd 12 28 28

Conversion _stod 12 52 52

_dtos 20 90 90

_stoi 12 42–225 42–225

_dtoi 20 61–174 61–174

_stou 12 42–225 42–225

_dtou 20 61–174 61–174

_itos 12 39–194 39–194

_itod 12 48–203 48–203

_utos 8 31–186 31–186

_utod 8 37–192 37–192

Bit field setting _bfsbs 24 79–147 79–147

_bfsbu 20 49–97 49–97

_bfsls 24 79–435 79–435

_bfslu 20 49–263 49–263

_bfsws 24 79–243 79–243

_bfswu 20 49–151 49–151

Bit field referencing _bfxbs 8 30–99 30–99
179

_bfxbu 8 30–99 30–99

_bfxls 8 30–338 30–338

_bfxlu 8 30–338 30–338

_bfxws 8 30–179 30–179

Table 5.2 Execution Routine Speeds/FPL Speeds (cont)

Classifi- Stack No. of Execution Cycles

cation Function Name Volume SH-1 SH-2

Bit field
referencing
(cont)

_bfxwu 8 30-179 30-179

Area _quick_evn_mvn 4 12+3*(n/4) 12+3*(n/4)
movement _quick_mvn 8 17+3*(n/4)(n ≤ 64) 17+3*(n/4)(n ≤ 64)

24+1.625*(n/4)(n ≥
68)

24+1.625*(n/4)(n ≥
68)

_quick_odd_mvn 4 12+3*(n/4) 12+3*(n/4)

_slow_mvn 12 21+5*n+3*((n-1)/4) 21+5*n+3*((n-1)/4)

Character
string

_quick_strcmp 12 26+7*(n/4)+5*
((n-1)%4)

26+7*(n/4)+5*
((n-1)%4)

comparison _slow_strcmp 20 35+7*n 35+7*n

Character
string

_quick_strcpy 16 30+6*(n/4)+4*
((n-1)%4)

30+6*(n/4)+4*
((n-1)%4)

copy _slow_strcpy 24 24+6*n+2*((n-1)/4) 24+6*n+2*((n-1)/4)

Left shift _sftl 4 26–33 26–33

_sta_sftl0–31 0 9–14 9–14

Right shift _sftra 4 37–46 37–46

_sftrl 4 26–33 26–33

_sta_sftr0–31 0 9–14 9–14

_sta_sftra0–31 0 9–23 9–23

Note: n = number of bytes

5.6 SH Series Object Compatibility
180

Question: Are there any problems linking objects when using such compile options as -cpu=sh1
(or sh2, sh3), and -pic=1?

Answer: Fundamentally, there is upward compatibility, so it is possible to link SH-1 objects and
SH-3 objects and then execute with the SH-3. In this manner, previous assets can still be used.

SH-3 objects

SH-2 objects

SH-1 objects

zrisi25.eps

Figure 5.1 Object Compatibility Relationship

Notes: 1. SH-1 and SH-2 are Big Endian. When using them with SH-3, use Big Endian format.

2. Objects compiled with the -pic=1 option can be linked with objects compiled with the
-pic=0 option. However, they do not become position independent in this case.

3. For the SH-3, operation upon an interrupt is different from that of the SH-1 and SH-2,
and an interrupt handler is necessary.

Refer to section 5.20, Data Allocation, “Endian” Format, concerning the -endian option.

5.7 Concerning Operating Host Machines and OS

Question: What are the available host machines and OS?

Answer: The table below indicates the SH series C compiler (Version 3.0) available machines and
OS.

Table 5.3 Host Machines and OS

System Name OS Notes

HP9000/700 HP-UX Version 9.0 —

NEWS-RISC NewsOS Release 4.01R or later —

PC9801 MS-DOS Version 3.3 or later Must be able to operate with i386 CPU or
later (using DOS-EXTENDER)
181

IBM-PC/AT DOS Version 3.3 or later Must be able to operate with i386 CPU or
later (using DOS-EXTENDER)

SPARC SunOS Release 4.1.1 or later —

SPARC Solaris Version 2.1 or later —

5.8 C Source Level Debugging Not Possible

Question: C source level debugging wasn’t possible even though -debug was designated in the
compiler options. Why?

Answer: Has -debug been designated as an option both during compilation and during linkage? Or
have directories with source programs for compilation been modified?

5.9 Warnings Appear during Inline Development

Question: The warning “Function “function name” in #pragma inline is not expanded” was output
during an inline development. Why?

Answer: This warning message does not hinder execution in any way. Refer to the User Manual,
Programming Edition, to confirm whether or not the function with the #pragma inline designation
fulfills the conditions for inline development. Additionally, the second and later condition/logical
operators cannot be inline expanded. Confirm whether or not they have been inline designated.

Example:

#pragma inline(A,B)

int A(int a)

{

if(a<10) return 1;

else return 0;

}

int B(int a)

{

if(a<25) return 1;

else return 0;

}

main()

{

if (A(a)==1 && B(a)==1) A(0) is inline expanded, but B(0) is not.
(This is because there are cases where the
statement evaluates even without evaluating
182

B(a)==1.)

{

}

}

Question: The warning “Function not optimized” was output during an inline development. Why?

Answer: This is due to memory insufficiency. This warning message does not hinder execution in
any way. Function sizes become larger when the SH C compiler does inline expansion, and it is
conceivable that the amount of memory becomes insufficient during optimization processing, and
consequently optimizing processing on a level higher than the expression unit can no longer be
performed. Try the following possible countermeasures:

• Do not inline expand large functions.

• Do not inline expand functions called from a large number of locations.

• Reduce the number of functions inline expanded.

• Increase the amount of memory.

5.10 “FUNCTION NOT OPTIMIZED” Appears during Compilation

Question: The warning “Function not optimized” was output during a compile with the
“-optimize=1” option. This compile worked before, with the same system environment and same
compile option, without any problem. Why?

Answer: This warning message does not hinder execution in any way. The following are possible
causes of the message being displayed:

• Compiler limit values have been exceeded

There are cases in which the compiler exceeds its limit values during optimization processing
due to the generation of new internal variables. Such cases can be dealt with by partitioning
functions. Refer to the User Manual, Programming Edition 1 concerning the compiler’s limit
values.

• Memory is insufficient

If the SH series C compiler runs out of memory during optimization processing, it halts
optimizing above the expression unit level, and outputs this warning. Compilation then
continues, but the results obtained for the optimization level are the same as when optimize=0.
To avoid this warning, rewrite so as to partition large functions within the C source program.
When that is not possible, the only other solution is to increase the memory available to the
compiler.

There is inline expansion. Refer to section 5.9, Warnings Appear During Inline Development.

5.11 “COMPILER VERSION MISMATCH” Appears during
Compilation
183

Question: The message “compiler version mismatch” is output during compilation. Why?

Answer: Confirm that the directories designated in the environment variables “PATH” and
“SHC_LIB” are in agreement.

Example: The above message will be output for the following kind of environment variable
setting.

PATH = (SHC Version 2 path)

SHC_LIB = (SHC Version 3 C compiler unit pathname)

5.12 “MEMORY OVERFLOW” Appears during Compilation

Question: The message “memory overflow” is output during compilation. Why?

Answer: Are all of the C compiler unit files in the directory of the pathname designated in the
environment variable “SHC_LIB”?

Example: The above message will be output for the following kind of setting. When the
environment variable is set to SHC_LIB = /SHC/BIN, the directory organization shown on the left
side of figure 5.2 results.

In this case, files under /SHC/BIN and files under /SHC/MSG must all be under the single
directory /SHC/BIN.

The proper organization is shown on the right side of figure 5.2.

SHC.EXE
SHCPRM.EXE
SHCTIL.EXE
SHCFRT.EXE
SHCMDL.EXE
SHCGEN.EXE
SHCPEP.EXE
SHCASM.EXE
DOS4G.EXE

BINSHC

MSG

zrisi26.eps

SHCERR.EXE
SHCERR.OFF
SHCHLP.MSG

Incorrect directory configuration Correct directory configuration

SHC.EXE
SHCPRM.EXE
SHCTIL.EXE
SHCFRT.EXE
SHCMDL.EXE
SHCGEN.EXE
SHCPEP.EXE
SHCASM.EXE
DOS4G.EXE
SHCERR.EXE
SHCERR.OFF
SHCHLP.MSG

BINSHC

Figure 5.2 Incorrect Directory Configuration vs. Correct Directory Configuration
184

5.13 “UNDEFINED SYMBOL” Appears during Linkage

Question: The message “UNDEFINED SYMBOL” is output during linkage. Why, and what does
it mean?

Answer: Confirm whether or not the libraries are linked. Also, do the declared functions or
functions being used actually exist? Refer to section 4.2.2, Precautions on Linkage, for details.

5.14 “RELOCATION SIZE OVERFLOW” Appears during Linkage

Question: The warning message “RELOCATION SIZE OVERFLOW” (error number 108) is
output during linkage. How should this be dealt with?

Answer: Confirm that #pragma abs16, #pragma gbr_base and #pragma gbr_base1 have not been
designated so as to exceed the area limits.

5.15 “SECTION ATTRIBUTE MISMATCH” Appears during Linkage

Question: The warning message “SECTION ATTRIBUTE MISMATCH” (error number 107) is
output during linkage. How should this be dealt with?

Answer: Confirm that there are not different alignments for identical section names.

However, in the Linkage Editor Version 5.3 and later, this warning can be avoided by attaching
the ALIGN_SECTION option/subcommand. The ALIGN_SECTION option/subcommand
allocates addresses so that sections with identical names but differing boundary adjustment
numbers (designated with the align operand of the assembler’s SECTION control instruction) are
regarded as being the same section.

5.16 Executing the Transfer of Programs to RAM

Question: With the SH-1, I want to place programs in RAM with a fast execution speed. How
should this be done?

Answer: See figure 5.3.

ROM RAM

Startup

Transfer
zrisi27.eps
185

Figure 5.3 Operating Environment

1. Run a program residing in ROM.

2. Transfer to RAM a section that is part of the same program’s code.

When outputting SH-2 or SH-3 usage objects, relocatable load modules can be created if the
option to output position independent code (-pic=1) is designated, but this method cannot be used
with the SH-1. However, when always copying program code to a fixed address in RAM, it is also
possible to execute programs in RAM with the SH-1 by using the linker’s ROM conversion
support function in the same manner as with initialized data. It is not possible to decide the RAM
addresses and copy the program code during execution because addresses are resolved during
linkage.

Following is a program example for the kind of section configuration shown in figure 5.4 below.

Section name

VECT

INIT
INT

C

...

...

Address
0

Transferred
during
execution

0F000000

10000000

X

P

186

D
...

zrisi28.eps

Figure 5.4 Section Configuration

C Language Section:

/**/

/* file name “init.c” */

/--/

/* Program section name is made “INIT” with the compile option */
/**/

#include "sample.h" /* Include the Section 1 sample.h */

extern int *_B_BGN,*_B_END;

extern int *_P_BGN; /* P section start address */

extern int *_X_BGN; /* X section start address */

extern int *_X_END; /* X section final address */

extern void _INITSCT(void);

extern void _INIT();

extern void main();

void _INIT()

{

_INITSCT();

main();

for (; ;)

;

}

void _INITSCT(void)

{

int *p,*q;

for (p = _B_BGN; p <_B_END; p++)

 *p = 0;
187

/* Copy from P section to X section */

for (p = _X_BGN, q = _P_BGN; p < _X_END; p++, q++)

 *p = *q;

}

1

/**/

/* file name “main.c” */

/--/

/* Program section name is made the default “P” */
/**/
int a = 1;

int b;

const int c = 100;

void main(void)

}

/* This routine is executed in the copy destination (RAM)*/

for (; ;)

 ;

}

/**/

/* file name “int.c” */

/**/

#include "sample.h" /* Include the Section 1 sample.h */

extern int a; /* section D code */

extern int b; /* section B code */

extern const int c; /* section C code */

#pragma interrupt(IRQ0, inv_inst)

/**/

/* interrupt module IRQ0 */

/**/

extern void IRQ0(void)

{

a = PB_DR;

PC_DR = c;

}

/**/

/* interrupt module inv_inst */

/**/
88

extern void inv_inst(void)

{

return;

}

Assembly Language Section:

/**/

/* file name “sct.src” */

/**/

.SECTION P,CODE,ALIGN=4

.SECTION X,CODE,ALIGN=4

.SECTION B,DATA,ALIGN=4

.SECTION C,DATA,ALIGN=4

__P_BGN: .DATA.L (STARTOF P) ;P section start address

__X_BGN: .DATA.L (STARTOF X) ;Start address of the P
section in RAM

__X_END: .DATA.L (STARTOF X) + (SIZEOF X) ;Final address of the P
section in RAM

__B_BGN: .DATA.L (STARTOF B) ;BBS section start address

__B_END: .DATA.L (STARTOF B) + (SIZEOF B) ;BBS section final address

.EXPORT __P_BGN

.EXPORT __X_BGN

.EXPORT __X_END

.EXPORT __B_BGN

.EXPORT __B_END

.END

/**/

/* file name “vect.src” */

/**/

.SECTION VECT,DATA,ALIGN=4

.IMPORT _main

.IMPORT _inv_inst

.IMPORT _IRQ0

.DATA.L _main

.DATA.L H'FFFFFFC

.ORG H'0080
189

.DATA.L _inv_inst

.ORG H'0100

.DATA.L _IRQ0

.END

Command Designation: Set the command lines as follows:

shc -debug -section=P=INIT init.c

shc -debug -section=P=INT int.c

shc -debug main.c

asmsh sct.src-debug

asmsh vect.src -debug

lnk -sub=rom.sub

Linker Option File:

/**/

/* file name “rom.sub” */

/**/

debug

input vect, sct, init, int, main

ROM (P,X) ;Resolve address so that P section is allocated to X

start VECT(0),INIT,INT,P,C,D(10000000),X(0f000000)

;VECT, INIT, INT, P, C, D are stationed in ROM, X
is stationed in RAM

output sample.abs

print sample.map

exit

Due to the above programming, the section P program is copied into section X and executed.
Because section INIT is the copying routine, it must be a separate section from the copied routine.
Through this, the main program (section P) is executed in the copy destination.

Caution: C source level debugging is not possible for programs copied from ROM to RAM.

5.17 Priority of Include Designations

Question: The fact that there are a variety of options for including files is confusing. What are the
purposes and priority rankings of the options?

Answer: Designation of include file reference paths is performed by options or environment
variables.
190

Files enclosed within “<” and “>” are read in from the directory designated by the -include option,
and when multiple directories have been designated, they are referenced in the order of
designation. When files are not found in the directories designated by the -include option, each
directory designated by first the environment variable SHC_INC, and then the system directory,
(SHC_LIB) is referenced in order.

Files enclosed within quotation marks (“ ”) are referenced beginning from the current directory.
When there is no current directory, referencing occurs in accordance with the rules noted above.

The include file reference path priority, ranked intuitively, is as follows:

-inc > SHC_INC > SHC_LIB

Additionally, there is a -preinclude option for the compulsory reading of files it designates in a
manner different from those noted above. When this option is designated, the files designated by it
are inserted at the head of the compiled files and compilation is performed.

If the contents of such items as #pragma or test data, which one wishes to read in on a temporary
basis, are read in as a separate file with this option, recompiling is possible without having to treat
the source file.

5.18 Compilation Batch Files

Question: When there are many items designated with compile options, designating the same
items each time is bothersome. Isn’t there a better way?

Answer: The -subcommand option (-subcommand=<file_name>) is used during compilation. This
option can be designated multiple times within a command line. List command line arguments in a
subcommand file delimited with spaces, returns or tabs. The contents of subcommand files are
developed in the command line argument subcommand designation position.

Note that the -subcommand option cannot be designated within subcommand files.

Example:

The example below is equivalent to inputting the following command line:

shc -optimize=1 -listfile -debug -cpu=sh2 -pic=1 -size -euc -endian=big
191

test.c

Command Line:

shc -sub=test.sub test.c

Contents of test.c:

-optimize

-listfile

-debug

-cpu=sh2

-pic=1

-size

-euc

-endian=big

5.19 Notation of Japanese within Programs

Question: Source files have been developed on both workstations and personal computers, but
management of those source files is difficult because the Kanji character codes are different for
workstations and personal computers. Is there a good method for managing this?

Answer: When the Kanji character code notation is shift-JIS, use the compiler option -sj when
compiling on a workstation (which uses EUC code). In the opposite case, when the notation is in
EUC code and compiling on a personal computer, designate the compiler option -euc and compile.
Even in a workstation network environment where EUC and shift-JIS exist together, compiling
with either Kanji character code is possible through use of the compile option designation.
Compilation is possible with the Kanji character code used in the target (installed machine).

Table 5.4 System and Kanji Character Code Correspondence

Host Default

SPARC EUC

HP9000/700 Shift-JIS

NEWS Character code indicated by the environment variable “LANG”

PC-9801 Shift-JIS

IBM-PC Shift-JIS

Example: When the source is written on a workstation (SPARC) and the compiling is done on a
personal computer (IBM-PC), if compilation is done with the -sj option added, there is no need to
192

be concerned about character conversions of Kanji character codes within character strings.

5.20 Data Allocation, “Endian” Format

Question: Is SH data allocation Big Endian or Little Endian?

Answer: The Hitachi SuperH RISC engine family is Big Endian. However, the SH-3 supports the
-endian=Big(Little) option corresponding to the CPU Big/Little switching function. Compatibility
with Little Endian CPU is increased through this.

Caution:

1. The -endian option can be combined with -cpu option suboptions at will (but Little Endian
object programs can only be executed with the SH-3).

2. Big Endian objects and Little Endian objects cannot be used together.

3. Program execution results will sometimes be affected by differences in Endian.

Example: Coding for which differences in Endian format will have an effect:

f(){

int a=0x12345678;

char *p;

p=((char*)(&a));

if(*p==0x12){ (1) }

else{ (2) }

}

In this case, processing (1) is executed for Big Endian, but for Little Endian, *p is 0x78, so
processing (2) is executed. (Refer to the User Manual, Programming Edition, for details on data
allocation.) There are seven kinds of standard libraries, as listed below. Link the libraries shown in
table 5.5 by using combinations of the -cpu option, -pic option and -endian option.

• shclib.lib (SH-1 usage)

• shcnpic.lib (SH-2 usage position independent code non-corresponding)

• shcpic.lib (SH-2 usage position independent code corresponding)
193

• shc3npb.lib (SH-3 usage position independent code non-corresponding, Big Endian)

• shc3pb.lib (SH-3 usage position independent code corresponding, Big Endian)

• shc3npl.lib (SH-3 usage position independent code non-corresponding, Little Endian)

• shc3pl.lib (SH-3 usage position independent code corresponding, Little Endian)

Table 5.5 Relationship between Standard Libraries and Compile Options

Big Endian Little Endian

CPU pic = 0 pic = 1 pic = 0 pic = 1
194

SH-1 shclib.lib — — —

SH-2 shcnpic.lib shcpic.lib — —

SH-3 shc3npic.lib shc3pb.lib shc3npl.lib shc3pl.lib

195

Appendix A Compiler Options

A.1 Compiler Options

Table A.1 indicates the compiler option formats and abbreviated formats, and interpretation when
options are omitted. Characters with an underscore (_) indicate the abbreviated format, and bold
case characters (abc) are interpreted as being indicated when an item is omitted.

Table A.1 Compiler Options

Item Format Suboptions Contents of Designation

Optimizing op timize= 0 Unoptimized objects output
level 1 Optimized objects output

List content sh ow= so urce | noso urce Source list exists/doesn’t
and format*1

 ob ject | noob ject Object list exists/doesn’t

 st atistics | nost atistics Statistical information exists/doesn’t

 i nclude | noi nclude List after include development
exists/doesn’t

 e xpansion | noe xpansion List after macro development
exists/doesn’t

 w idth=<numerical value>*2 Maximum number of characters per
line, numerical value: 0, 80 to 132

 l ength=<numerical value>*2 Maximum number of characters per
page, numerical value: 0, 40 to 255

When abbrieviated: (w = 132, l
= 66)

—

List file listfile [=<listfile name>]*3 Output

 nol istfile No output

Object file ob jectfile=<objectfile name> Output

Object format c ode= m achincode Machine language program output

 a smcode Assembly source program output

Debug deb ug — Output
information nodeb ug — No output

196

Table A.1 Compiler Options (cont)

Item Format Suboptions Contents of Designation

Macro name
definition

 def ine= <macro name>
=<name>

<name> defined as <macro name>

<macro name>
=<constant>

<constant> defined as <macro name>

<macro name>*4 Assumed as defining a <macro name>

Include file i nclude=<pathname>*5 Designates the destination pathname
for include file inclusion (multiple
designations possible)

Section name section= p rogram=<section
name>

Program area section name designation

 c onst=<section name> Constant area section name
designation

 d ata=<section name> Initialized data area section name
designation

 b ss=<section name> Uninitialized data area section name
designation

When abbreviated: (p =
P, c = C, d = D, b = B)

—

Help message h elp*6 — Output

CPU classification cp u= sh1*7 SH-1 objects generated

sh2 SH-2 objects generated

sh3 SH-3 objects generated*8

Position
independent code

 p ic= 0 Position independent code not
generated

1 Position independent code generated*9

Character string st ring= c onst Output to constant section (C)
output area d ata Output to initializing data section (D)*10

Comment nesting com ment= n est Allow comment nesting

 non est Do not allow comment nesting*11

197

Table A.1 Compiler Options (cont)

Item Format Suboptions Contents of Designation

Optimization method
selection

 sp eed — Execution speed priority code
generation

 nosp eed — Implement optimization balancing
execution speed and size

 si ze — Size priority code generation*12

Selection of Japanese e uc*13 — Selects euc code
code in character strings s jis — Selects sjis code

Subcommand file
designation

 sub command=<file name> Include command options from the
file designated by <file name>*14

Form of division di vision= cp u Use the CPU division instructions

 p eripheral Use the divider (with interrupt mask)

 n omask Use the divider (without interrupt
mask)*15

Memory bit lineup en dian= b ig Big Endian
order designation l ittle Little Endian*16

Inline development
specifications

 in line — Designates whether or not to
perform inline development

 in line= <numerical
value>

Develop when performing inline
development

 noin line — Designates the function size limit*17

Default header file
designation

 pre include=<file name> Include the contents of designated
file at the head of the compile unit

MACH, MACL register
preservation

 m acsave= 0 Do not preserve MACH, MACL
registers with a function call

1 Preserve MACH, MACL registers
with a function call*18

Notes: 1. The show option becomes effective when listfile is designated.
2. When show=width=0 or show=length=0 are designated, they are interpreted as follows:

show=width=0: regarded as being 1 line until line return code is output.
show=length=0: maximum number of lines is not set; new pages are not carried out.

3. When file name designation has been omitted, files with standard expanders added are
generated with the same file name as the source file.

4. The specifications for macro names that can be designated by option are shown in
table A.2 below.

5. Refer to the User Manual Appendix A.1.13, Preprocessor Specifications, for the include
file referencing methods.

6. Other options become ineffective when this option is designated.
7. In Version 2.0, cpu=7000 designated the SH-1 and cpu=7600 designated the SH-2. In

order to preserve compatibility, these suboptions can also be designated.

198

8. The linked libraries will differ, depending on the cpu, pic, and endian options. Refer to
section 5.20, Data Allocation “Endian” Format, concerning the correspondence between
options and standard libraries, for details.

9. Cautions concerning the use of position independent code:
a. When pic=1 is designated, after linkage program sections can be placed in arbitrary

addresses and executed (data sections cannot be placed in addresses other than
those decided during linkage).

b. When executing as position independent code, function addresses cannot be
designated as initial values.

Example:
extern int f();

int(*fp)()=f; ← can be designated
c. When cpu=SH1 is designated, the pic=1 designation is ignored.

10. When string=const has been designated, the same character string can be jointly
owned.

11. Comment nesting example:
/* comment

int i; /* nest1 /* nest2 */ */

*/

When comment=nest is designated: the underlined section becomes a nested comment
When comment=nonest is designated: the comments are judged as ending with “nest2
/” and the following “/” causes an error.

12. Program execution speed will improve if the speed option is designated, but there are
cases where the size will increase.

13. Abbreviated characters differ depending on the host machine. Refer to section 5.19,
Notation of Japanese Within Programs, for details.

14. The subcommand option can be designated multiple times within a command line. List
command line arguments in a subcommand file delimited with spaces, returns, or tabs.
The subcommand option cannot be designated within subcommand files. Refer to
section 5.18, Compilation Batch Files, for details.

15. The execution routine for integer format division or remainder operations within the C
source is selected from among the three following items by the compiler option. This
option can be combined with the cpu option suboptions at will, but object programs with
peripheral or nomask designations can only be executed with the SH-2.
a. cpu: Selects an execution routine with DIV1 instructions.
b. peripheral: Selects an execution routine using the divider. Interrupts other than NMI

are prohibited during execution of this routine (15 is set in the interrupt
mask).

c. nomask: Selects an execution routine using the divider (the interrupt mask does
not change).

Be careful of the following points when peripheral or nomask are designated:
a. Zero division checks and errno setting are not performed.
b. Operation is not guaranteed if an interrupt occurs during divider operation and the

divider is used in the interrupt routine.
c. Overflow interrupts are not supported.

199

d. There are cases when the operation results for zero division, overflow interrupts,
etc., in accordance with the divider specifications, will be different from when there
are cpu suboption designations.

16. This option can be combined with the cpu option suboptions at will, but Little Endian
object programs can only be executed with the SH-3.

17. This designates whether or not to perform automatic inline development of functions.
The suboption numerical value indicates the maximum size of the inline developed
function by the function’s node count (total number of argument, operator, etc.
expressions excepting the declaration section).
When the speed option is designated the default is inline=20. When the nospeed, size
options are designated, or when the optimize=0 option is designated the default is
noinline.

18. Functions compiled with macsave=0 cannot be called from functions compiled with
macsave=1. Conversely, functions compiled with macsave=1 can be called from
functions compiled with macsave=0.

Table A.2 Macro Names, Names, and Constants That Can Be Designated with the Define
Option

Item Explanation

Macro names Character strings beginning with an English character or an underline, then
followed by 0 or more English characters, underlines or numbers

Names Character strings beginning with an English character or an underline, then
followed by 0 or more English characters, underlines or numbers

Constants Character strings that are a repetition of one or more numbers (0 to 9), or a
repetition of one or more numbers followed by a period, and then followed by 0
or more numbers. Or else, hexadecimal numbers beginning with 0x.

200

Appendix B Changes in Version 3.0

This section describes the changes from Version 2.0 to Version 3.0 of the SH Series C Compiler.

B.1 Additions and Improvements

A summary of the functions added to the SHC Compiler Version 3.0 is given below.

B.1.1 Optimization Strengthened

The Version 3.0 optimization has two options for giving importance to speed (-speed option) or to
size (-size option), and each of these optimizing functions has been strengthened. For the purpose
of speed, strengthening of loop optimization and support of inline development have been
realized. Concerning size, such strengthening as size importance instruction generation and the
joining of redundant processes have been realized.

B.1.2 SH-3 Support

In addition to the SH-1 and SH-2, SH-3 object generation can be designated (-cpu=sh3 option).
The following are supported as SH-3 usage functions:

1. The -endian option (-endian=big or -endian=little) corresponding to the function for setting bit
order in memory is supported.

2. The extended intrinsic function prefetch for generating cache prefetch instructions (PREF) is
supported.

B.1.3 Compiler Limit Value Extension

The compiler limit values have been extended for the items in table B.1.

Table B.1 Compiler Limit Values

Item Version 2.0 Version 3.0

Source programs that can be compiled at a time 16 files No limit

Source lines per one file 32,767 lines 65,535 lines

Source lines per one total compile unit 32,767 lines No limit

#include nest levels 8 levels 30 levels

B.1.4 Support of Japanese Language Code in Character Strings

Shift-JIS and EUC Japanese language codes can be written into programs as character string data.
When the input code is shift-JIS (-sjis option) the output code is also shift-JIS, and when the input
code is EUC (-euc option) the output code is also EUC. However, the GUI does not handle
Japanese code data display at present.

201

B.1.5 Option Designation by File

By designating file names with the -subcommand option, it is now possible to include options
from within files. This eliminates the need to designate a complex group of options each time with
a command line.

B.1.6 Use of the SH-2 Divider

The -division option is supported to allow use of the SH-2 divider.

B.1.7 Inline Expansion of C Functions

If the -speed option is designated, the compiler automatically performs the inline expansion of
small functions. This option can, through use of the -inline option, change the size conditions for
functions to be inline developed. The object functions for inline development can be clearly stated
with #pragma designations.

Example (Inline Development of C Functions):

#pragma inline (func)

int func(int a, int b)

{

return (a+b)/2;

}

main()

{

i=func(10, 20); /* Expanded into i = (10+20)/2 */

}

B.1.8 Inline Assembler Functions

#pragma inline_asm designates the inline assembler notation for user functions. However, when
performing inline embedding with #pragma inline_asm, make the compiler output assembler
source (-code=asmcode option).

202

Example (Inline Assembler Function):

#pragma inline_asm(rotl)

int rotl(int a)

{

ROTL R4

MOV R4,R0

}

main()

{

i=rotl(i); /* variable i is set in register R4 and the rotl
function code is used */

}

B.1.9 Use of the Short Address Designation (2-Byte Address Variables)

#pragma abs16(<variable name>|<function name>,...) can designate that variables or functions be
allocated to the address range (–32,768 to 32,767) that can be designated in 2 bytes. This
designation enables a reduction in the size of objects referencing such variables or functions.

B.1.10 Use of GBR Relative Addressing

#pragma gbr_base(<variable name>,...) can designate that variables be allowed to be referenced
using the GBR relative addressing mode. This designation not only enables a reduction in the size
of objects referencing variables, but also allows use of memory bit manipulation instructions
unique to the GBR relative addressing mode.

B.1.11 Register Save/Restore Control

#pragma noregsave(<function name>,...) can designate the suppression of register saves and
restores at the entrances and exits of functions. This can be used to create high speed, compact
functions without register saves and restores. Functions with a #pragma noregsave designation
cannot be called from ordinary functions, but they can be called from C language functions
(#pragma regsave) that are clearly designated to call #pragma noregsave. Program size can be
decreased and execution speed improved by designating #pragma noregsave for frequently
executed functions.

B.1.12 Improvement of Differences with ANSI Specifications

1. The standard header file <errno.h> is supported.

2. Pointer values to void format can now be designated in the initial values of pointer format data
to other than void format.

3. When there is no left parenthesis immediately following a macro name that has attached
arguments, processing is now possible as an ordinary name instead of as a macro name.

203

4. Even if typedef names and struct tag names are within the same scope, no error due to name
conflict will result.

5. enum names can be designated as case labels, bit fields, or array sizes.

6. Comparison operations between two groups of void* format data will no longer result in an
error.

7. When initializing character arrays with character strings, no error will result even if the
initialization is enclosed within {}.

8. The ANSI standard library function memmove has been added to the library functions.

#include <string.h>

void *memmove(void *s1, const void *s2, size_t n);

An area of n bytes from the address pointed to by s2 is copied to the area beginning at the
address pointed to by s1. In this case, the results are guaranteed even if the copy source area
and copy destination area overlap. FILE, size_t, and ptrdiff_t, were defined as macros with the
#define, but they were modified to definition by typedef.

B.1.13 Referencing from Interrupt Functions

For functions declared as interrupt functions, referencing of functions within the same file was not
possible, but this limitation has been removed.

B.2 Additions to the Compiler Options

Only additions to the compiler options are listed here. Refer to Appendix A, Compiler Options, for
details.

• SH-3 object generation

• Selection of Japanese language code in character strings

• Subcommand file designation

• Division method (use or not of an interrupt mask) designation

• Size priority code generation

• Memory bit order designation

• Inline development

• Default header file designation

• Preservation of MACH, MACL registers

204

Appendix C ASCII Codes

Lower Upper 4 Bits

4 Bits 0 1 2 3 4 5 6 7

0 NULL DLE SP 0 @ P ` p

1 SOH DC1 ! 1 A Q a q

2 STX DC2 “ 2 B R b r

3 ETX DC3 # 3 C S c s

4 EOT DC4 $ 4 D T d t

5 ENQ NAK % 5 E U e u

6 ACK SYN & 6 F V f v

7 BEL ETB ‘ 7 G W g w

8 BS CAN (8 H X h x

9 HT EM) 9 I Y i y

A LF SUB * : J Z j z

B VT ESC + ; K [k {

C FF FS , < L \ l |

D CR GS - = M] m }

E SO RS . > N ^ n ~

F SI US / ? O _ o DEL

	Preface
	Contents SH RISC engine C Compiler
	1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Installation Method
	1.4 Startup Method
	1.5 Program Development Procedures
	1.6 Sample Program Introduction

	2 Functions
	2.1 Interrupt Functions
	2.2 Intrinsic Functions
	2.3 Inline Expansion
	2.4 GBR Base Variable Designation
	2.5 Register Save/Restore Control
	2.6 2-Byte Address Variable Designation
	2.7 Section Name Designation
	2.8 Section Switching
	2.9 Position Independent Code
	2.10 Options

	3 Effective Programming Techniques
	3.1 Data Designation
	3.2 Function Calls
	3.3 Operation Methods
	3.4 Branching
	3.5 Inline Expansion
	3.6 Practical Use of the Global Base Register (GBR)
	3.7 Register Save/Restore Control
	3.8 2-Byte Address Designation
	3.9 Prefetch Instruction

	4 Relation to Assembly Language Programs and Cross Software
	4.1 Relation to Assembly Language Programs
	4.2 Relation to the Linkage Editor
	4.3 Relation to the Simulator/Debugger

	5 Questions and Answers
	5.1 const Declaration
	5.2 Reentrants and Standard Libraries
	5.3 Method of Correctly Judging 1-Bit Data
	5.4 Installation
	5.5 Specifications and Speeds for Execution Routines
	5.6 SH Series Object Compatibility
	5.7 Concerning Operating Host Machines and OS
	5.8 C Source Level Debugging Not Possible
	5.9 Warnings Appear during Inline Development
	5.10 “FUNCTION NOT OPTIMIZED” Appears during Compilation
	5.11 “COMPILER VERSION MISMATCH” Appears during Compilation
	5.12 “MEMORY OVERFLOW” Appears during Compilation
	5.13 “UNDEFINED SYMBOL” Appears during Linkage
	5.14 “RELOCATION SIZE OVERFLOW” Appears during Linkage
	5.15 “SECTION ATTRIBUTE MISMATCH” Appears during Linkage
	5.16 Executing the Transfer of Programs to RAM
	5.17 Priority of Include Designations
	5.18 Compilation Batch Files
	5.19 Notation of Japanese within Programs
	5.20 Data Allocation, “Endian” Format

	A Compiler Options
	B Changes in Version 3.0
	B.1 Additions and Improvements
	B.2 Additions to the Compiler Options

	C ASCII Codes

