Hitachi Microcomputer
Development Environment System

SuperH RISC engine Family

C Compiler

HITACHI

7/31/96
Hitachi Micro Systems, Inc.
Thomas Mayer

Notice

When using this document, keep the following in mind:

1

2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No oneis permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’ s permission.

Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user unit according to this document.

Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’ s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the exampl es described herein.

No licenseis granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’s products are not authorized for usein MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, usein life support systems. Buyers of
Hitachi’ s products are requested to notify the relevant Hitachi sales offices when planning to
use the productsin MEDICAL APPLICATIONS.

Preface

The Hitachi SuperH RISC (reduced instruction set computer) engine family is a new generation
series of single-chip RISC microprocessors that not only realize high-performance operation
processing, but contain several types of on-chip peripheral devices and can be incorporated into
devices operating with low power consumption.

These application notes describe how to create application programs making effective use of the
Hitachi SuperH RISC engine family functions and capabilities, using the SH Series C Compiler
Version 3.0.

For detailed specifications of the C compiler, refer to the SH Series C Compiler User Manual.

The Hitachi SuperH RISC engine family is made up of the SH-1, SH-2, and SH-3.

Application Notes Configuration

These application notes consist of five sections and severa appendices, as summarized below:

Section 1 describes methods of creating C language programs.

Section 2 describes techniques specific to the SH series C compiler extended functions and
intrinsic functions.

Section 3 describes methods of creating C programs that make good use of the Hitachi SuperH
RISC engine family capabilities.

Section 4 describes cautions when linking C language and assembly language programs, and
during use of cross software with object files generated by the C compiler.

Section 5isalisting of answers to questions commonly asked by users.

The appendices list the SH series C compiler options and differences between Version 2.0 and
Version 3.0.

Related Manuals

Related manuals are as follows:

The hardware manuals of each of the SH7000 series, SH7600 series, and SH7700 series
microcomputers.

H Series C Compiler User Manual

H Series Cross Assembler User Manual

H Series Linkage Editor User Manual

H SeriesLibrarian User Manual

H Series Smulator/Debugger User Manual

HITACHI

Contents

SECHION 1 INEOAUCTION........eeeieieeie et e 1
S @ 1Y T P 1
O L0 =S 1
1.3 InStalation MEthOQ.oiiiiie e seenes 1
0 25 R O 1N GV == T o ISR 1
1,32 PC VEISION....eiitiitiitiie ettt b bbb b et b s e e e s e et eseeseeaesbesbesbesnens 3
14 SEArtUP MEINOUot e et e reereeneenreeneesreeneas 9
1.5 Program Devel opment ProCEOUIES.ccoioiiiiieieeieesiesie e se e e 10
151 SoUrCE FilE CreatioN.....ccccciviirisesiereeieeeieeeeeese sttt se e e e e eseese e sre e 12
152 Relocatable Object File GENEIatioN.........ccvviveererenieseseseee e 12
153 Load Module File GENEIrationcccueeirieirieinieirnsie e 12
154 Load Module File Conversion to S-Type FOrmatcocceueeveneeieeenienieneneseneens 12
[1.6 Sample Program INrOQUCION................c.eveveveeeeereeeteteeeeeteteereseeeteeeeseseteteseseserearenenseesnnns 12|
G R VA C o (o g = o] L= T @ (= 1o o S 13
1.6.2 Header FIle Creationcccccoueeeeeeieeeeeese st s sae e se e se e s ssesnesnens 15
1.6.3 Main Processing Module Creationccoeeeeereeesieseseeseseseeseeseseesessessesessesem 20
1.6.4 Initiaizing Module Creationcccceeveeieiesiese et anen 21
1.6.5 Interrupt FUNCLION Creation.........ccooririreri et sn 23
1.6.6 Load Module Batch File Creation..........cocoiiiieniiinene s 24
1.6.7 Linkage Editor Subcommand File Creation...........cccoeeverererenenenenesesse e 25
SECHION 2 FUNCHIONS......cviitiiteiicecete ettt 26
2.1 INEETUPE FUNCHIONS ...ttt et e tesaeneenaeneeneeneeneaneeresressessen 26
211 Interrupt Function Definition (Without Options)cccevevereneneeieiereeeeenen 26
2.1.2 Interrupt Function Definition (With Options)c.cooerererereeienereee e 32
213 Vector Table Creationcoeieeeeeeeeee e 34
[2.2 INEINSIC FUNCHONS.......cvcvcvevcececectetetetctctctetetetceeteteteteececeeeetesescscseeesesesescassesesesesssesesesesessaeen 36|
221 Status Register Setting/REFEIENCINGcveeeereeeeere e 37
2.2.2 Vector Base Register Setting/RefErenCiNgcovvvvvererievesieseseseereeeeseeeesesseen 39
223 AcCesSING /O REGISIEIS (1) ...ccuerererierierie ettt s 41
224 AccesSING I/O REGISIEIS (2) ...ceuerererierierie ettt s 43
225 SYSIEM CONLIOloiiiiiieciiieceee ettt 45
226 Multiply/Accumulate OPerations (1)coceeeereereeereeerieesee s 46
2.2.7 Multiply/Accumulate OpPerationS (2)cceeveeeeeeeereresesieseseeseesseseeseesessessessessenn 49
228 SYSIEM Call .ot 53
229 PrefetCh INSIIUCHIONoeeieeeeeeee e b 54
I T S e e 1o A 55|
2.3.1 Inline EXpansion Of FUNCLIONS...........cociriiiriiiniincsees e 55
2.3.2 Embedded Assembler Inline Expansion Notation Method............ccccocevrinnieneee 58
ii

HITACHI

[24 GBRBaseVariable DESIGNAONc.c.cueueueueuetetetetetctctctetetetetctetetetetctetetetesescsesesesesesesesesn 61|

[2.5 Register Save/Restore Controlocooiviveiceiciesiessssece e 64
[26 2-Byte Address Variahle DESgNalioNcooorrsrrresorreesseresseeeeseeeeessseessaeeesseeeaseeee 67
[27 Section Name DESIgNaliONorwerreerrrrerseresrreeesssreessseesssaeesssseeesssaeeesseeesseeeeseeeessseeees 69
[2:8 7 SeCtion SWITCRING ... rrrecorreesreeerssreesssreessseeesereeesseseesssseessseeesssareessseeessseeesseeeeeseeeessseeeees 70
[2.9 PoSition INAEPENTENt COUE. ... rverrrerrrressreessreeesssmeessseessseeesssareesssereesseessseeeeeseseessseeees 71
200 OPUONS ...vovvoveeveveeeeeveeseeseeseeseeseeseeeseseeesessesseseeeeeseeseeseesseseeeeeseeseeseresesseseeseeseeseesseseesees 72
Section 3 Effective Programming TeChniqQUES..........ccccceveeveeceneere e 74
L R BT c= 1 D1 Lo g 1o PP 76
311 Loca Variables (Dala SIZE)......ccccuiruerereriinienie et 76
3.1.2 Global Variables (SIgn).....ccoeeereriieniie e e 78
3.1.3 DataSize (MUItipliCALION)coueuiieirieierieerie e 80
314 DataStruCt CONVEISION......ccveieeieeeeeeeeeeeeresestesresteseeseessesseseeseesesseeseesessesssssessenn 81
315 DataConsOlidationccoeereeuerieerieririeisieiesieeste sttt be e s seene 83
3.1.6 Initial Valuesand CoNst FOMMEL............ccureiririrenniseie e 84
3.1.7 Loca and Global Variables.........coccoeiiiiiinine e 85
3.1.8 Useof Pointer Variables ... 87
319 Constant REFErENCING (L)....coveuereereruererieierieierieesieesieeseese e 89
3.1.10 Constant REFErENCING (2)....cvrverererieirieerieirieesieresieeseses et 90
3.1.11 Variableswith FIXed VAUES (1)ccveeeeeeeirere e sestesie e esesse e s 92
3.1.12 Variableswith FIXed VAUES (2)coveuirieiriiiriiisieresereee s 94
[B.2 FUNCHON CaAlIS......ooiveveeeeeeeeteeeeeeeteeeeete ettt et etreneteteteeeeneaeteseenesetensanenssesenssnseeseneans 95|
321 Module Conversion Of FUNCHONS.........ccooirirerininie e e 96
3.22 Function Calls by Pointer Variable..........ccoveiiininniee e 98
323 FUNCHON INEEITACE ..o et 100
324 Tall RECUISION ..c.viiieiiicritste ettt et bbb 102
[3.3 Operation MENOUS.............coceeveeereeieereietieeeeeeteeeeee e eteteeete e teeeeretetesreneeeeeseesenseeseneans 104
3.3.1 Movement of Constant Expressions Within LOOPS.........cceoererereneneneneneseenens 105
3.3.2 Loop Iteration REAUCLION..........coeiireriiie it 108
3.3.3 Replacing Arithmetic Operations with Logical Operations..........cccccoceeevveerenn 110
334 Multiplication/DiViSION USE........ccoiiuiriiiriiinieesieesie et 111
3.35 Application of FOrMUIBS........cccoerierieieece s 112
3.3.6 Practical Use of TADIES......ccoveiieiieirese e 114
3.3.7 Conditional EXPrESSIONS.......cceiuerieieieeeieetesie sttt see et s se e se e sse s sre e 117
3.3.8 Floating Point Operation SPEEQ.........c.cciiiirere e e 119
=T e T T 120|
3.4.1 switch Statement and if StAEMENTccoveiriiri e 120
I S i 1o A T 122
3.5.1 Inline EXpansion Of FUNCLIONS...........ccccviiinenie it 123
3.5.2 Embedded Inline Assembler Development...........ccovereeieriniennene e 127
3.6 Practical Use of the Global Base Register (GBR) ... 132
3.7 Register SAVE/RESIONE CONLIOLiieeeieieiee ettt e s eeeeeeeneereenesneseeseesneas 136
1

HITACHI

[3.8 2-Byte Address DESIGNAION.c.c.cueueveeeretetetetetetetetetetetetetetetetete ettt ettt teteseeenesesenans 144

[3.9 PrefefCh INSIIUCH ON.......vvevevevveeeeeteteteteeetetetetete ettt ettt et tenseeeeeesenenses 146
Section 4 Relation to Assembly Language Programs and Cross Software....... 152
4.1 Relation to Assembly Language Programs...........c.eecuveeeceeeeieeseeeseeieseeieeeeveseeeeeseeenns 152

41.1 External Name Reciprocal Referencing Methods..........ccooooeiinininncncicn 152
4.1.2 Function Call INterfae......coo e 154
4.1.3 Argument and Return Value Setting/Referencing.........c.ccovvererenrennenseninieneens 157
4.2 Relation to the LiNKAge EAITONcccveeeueeeerieeieieeeeiseetiseeestensesesveeesresessesesseseeseseesesennes 166 |
421 ROM Conversion SUPPOrt FUNCLIONccceievieeierie e 166
4.2.2 PrecautionS 0N LiNKBOE........ccoceriririiiiesie et 167

4.3 Relation to the SIMUlator/DEDUGOETcceveeeveeeeereeeereteteereeeteeteeeeeeetereeeetereneneeesnenans 169|
Section 5 QUESLIONS @NA ANSWENS......cc.eeeereereeeieeeesteeeesreesseeseesseesseeeesseessessees 17
5.1 CONSE DECIAIAHONcueveetieete ettt et sttt sttt sbe e 17
5.2 Reentrants and Standard LiDraries. ... 17
5.3 Method of Correctly Judging I-Bit Dalal.......c.ooocerrresorresorreesooreesoseesssreeesaseessseeeesaseeeee 175
B4 INSEITAION .o rvvooreeesreeesseeeesseeeeesseeessereessseeeesseresssaeeesseeeseseeesseeessseeessseeesssaeeseseneesseereeen 1ﬁ7|
5.5 Specifications and Speeds for EXecution ROULINESccvieiiiineieieieeeececececeeee 17
5.6 SH Series Object COmMPatibDilityccveieieieieiseiieeseseseseseseeseeeeeeeeeeeeeereseeseeeneas 180
5.7 Concerning Operating Host Machinesand OS.........coceoooiiciciiicccsc e, 181
5.8 C SourceLevel Debugging NOt POSSIDIE..........cccoviiiiiie e 182
5.9 Warnings Appear during Inline Development ... 182
510 “FUNCTION NOT OPTIMIZED” Appears during Compilation...........cccceeeeeeeerccrcenuenen 183
5.11 “COMPILER VERSION MISMATCH" Appearsduring Compilation...........cccccceeevena 183
512 “MEMORY OVERFLOW” Appears during Compilation...........ccccoeeerererennennenenenens 184
513 “UNDEFINED SYMBOL” Appearsduring Linkageooceeiiiiiciciiiiiicciiiisciin 184
5.14 “RELOCATION SIZE OVERFLOW” Appears during Linkage...........cccceeerererereneneenn 185
5.15 “SECTION ATTRIBUTE MISMATCH” Appears during Linkage.........cccoeevverererenenen 185
5.16 Executing the Transfer of Programsto RAM ... 185
5.17 Priority of INClUdE DESIGNEHIONS........coeeieeiiieteeiesieseeetesieseeseesieseeseeeeeeseeeeseeneenesreseesnesneas 190
5.18 Compilation BalCh FilES. ..ot ee e eeeneeneeneeresresnesneas 191
5.19 Notation of Japanese Within PrOgrams...........ccevievererieseeseseseesseseesessessesesessessessessessens 192
5.20 DataAllocation, “Endian” FOrMELcuieiieiiiiiiisisieeseesiee s 192
Appendix A Compliler OPLIONS.........cceiirieiiereereeee e 195
S R o 0o 1 = g o1 o] PP 195
Appendix B ChangeSTN VErSioN 3.0 ... ceeseeevee e seeeseaeseeesseenneens 200
B.1 Additions and IMProVEMENESccueuveeeieeieeeeeeeeeecieetee e eeeetes e seeeeeseeeeeeseereeseeresressesns 200
B.2 Additionsto the COmMPiler OPLIONS............cuecueieeeeieeieeieeseeiieseeeeteeeeereeneeeeesreeeesreenes 203
[APPENAIX C ASCIH COUBS ...ttt 204
v

HITACHI

Figures

Figure 1.1
Figure 1.2
Figure 2.1
Figure 2.2
Figure 2.3
Figure2.4
Figure2.5
Figure 2.6
Figure 2.7
Figure 2.8
Figure 2.9
Figure3.1
Figure 3.2
Figure 4.1
Figure 4.2
Figure 4.3
Figure4.4
Figure4.5
Figure 4.6
Figure 4.7
Figure 4.8
Figure 4.9

Figure 4.10
Figure5.1
Figure 5.2
Figure 5.3
Figure5.4

Tables

Table 1.1
Table1.2
Table 1.3
Table 1.4
Table2.1
Table2.2
Table2.3
Table2.4
Table 2.5
Table 2.6
Table 2.7
Table2.8

Program Development FEBLUNES...........cooeereirieereeeieresie et 11
Sample Program INtrOAUCLION...........ccveeeereieses s nee 13
Example of Stack Use by an Interrupt FUNCLION..........ccceceveveciceeeeeceece e 34
GBR Base Variable REFEreNCiNgcccoererininere e 62
Register Save/ReStOre CONLrol (1)cccooeerererierieiesie e s 66
Register Save/Restore CONIol (2)cevveereeerieirieesiereeienese et 66
Register Save/Restore CoNntrol (3)ceveereieneireeseresesese e 67
Byte Address Variable DeSIgNation...........cccvvveeereieseneseeseeseseeseeesese e e seeseens 69
Section Name Designation Method............cccovvvieiinece e 70
Section SWitching Method...........ccooriiii s 71
Position Independent COOR ..o b 72
Data Placement Before and After Improvementcoooveeveieneeneenecneieneens 84
I T TS w1 = T o . 103
Stack Frame AllOCati ONREIEASE........c.cceveircirecre e 155
Argument Allocation Areafor C Language Programs..........ccceceeeeeeeveeceeesesesvenen 160
C Language Program Argument Allocation (Example 1)cccocevrenvincncncnennn, 162
C Language Program Argument Allocation (Example 2)cccceoveninncnnnenn. 162
C Language Program Argument Allocation (Example 3)ccccooeevenienenevenennn. 163
C Language Program Argument Allocation (Example)cccccvvrvinnenneneenes 163
C Language Program Argument Allocation (Example5)ccccceveevvevcevvnesenennnn, 164
C Language Program Argument Allocation (Example 6)cccccvevvvrcvreseveennenn, 165
C Language Program Return Value Setting Area when Return Values Are Set
INTE SEACK. ...t e e 166
Memory Allocation by the ROM Conversion Support Function............cccceeeevenene 167
Object Compatibility REIGHONSNIPcccevereririeeriecreere e 181
Incorrect Directory Configuration vs. Correct Directory Configuration................ 184
Operating ENVIFONMENTcvoiieiceeececeee ettt sne s 185
SECtiON CONFIGUIBLTION ...ttt et s sr e sae 186
C Compiler File Organization (UNIX VEISION)ccoeeirenineninenesenese s 2
C Compiler File Organization (PC VEISION)ccccvvvereriereereereeneeeeesesesreseeseeseenes 4
Sample Program Development ENVironmentccoceeeveevieieeiecieeesiesie e 13
Exception Processing Vector Table........ccoviininiiinise e 14
Interrupt SPECIfiCatioN LIStcoooiririieienere s 32
INEANSIC FUNCHION LISt .. .ceieieeeeeeee e 37
Status Register Usage INtrinsic FUNCLIONS ..o 38
Vector Base Register Usage Intrinsic FUNCLIONS........ccvcovereeeeenece e 40
Global Base Register Usage INtrinsSic FUNCLION...........cccvveevieviereeeeece e 41
Specia Instruction Usage INtrinsic FUNCLIONS..........oooieieieieeceeesere e 45
Multiply/Accumul ate Operation Usage Intrinsic FUNCLIONS............ccccvveneienienn 47
Link Buffer Related Multiply/Accumulate Operation Intrinsic Functions............. 50
\Y

HITACHI

Table 2.9
Table3.1
Table3.2
Table3.3
Table3.4
Table3.5
Table 3.6
Table 3.7
Table4.1
Table4.2
Table4.3
Table4.4
Table 4.5
Table5.1
Table5.2
Table5.3
Table5.4
Table5.5
TableA.1
Table A.2

Table B.1

vi

Options for COAE GENEIELION.......c.covereeeereetereeiereeie et 73
Effective Program Creation TEChNIQUES..........oovviriririeenieereesie e 75
Cautions 0N Data DeSIGNALIiONcccveeeeeereeeee e sre e 76
Cautions 0N FUNCLION CallS.........ccviveiiirrceeer e 95
Cautions on Operation MEthOdScccciererineneieee e 105
Floating Point Four Arithmetical Operation SPeedsccoeverereienienienenerenins 119
Floating Point Library Operation Speed Average ValUes..........occvvveevccenenenienens 119
Cautions on INlNE DEVEIOPMENTc.couiririirieireerieereeeie s 122
Rule for Register Preservation Immediately after Function Callsin C Programs.. 155
Rules for FOrmMat CONVEISION.........ceerrirrereinesiereeesesee s 158
General Rulesfor Argument Allocation in C Programs.........c.cceceeeereerienienieniennen 161
Return Value Formats and Setting Locationsin C Programs.........ccccceeeeceveneerienn 165
Treating Error Messages DUring Linkage ..o 168
REENLIANE LIDIAIY ...ttt 172
Execution Routine Speeds/FPL SPEedS.........ccovvvvevereneveseseseeseeeeese s 178
HOoSt MAChiNES @Nd OS.........cuiiieiieieiererieeeere e 181
System and Kanji Character Code Correspondence..........occoeevereerererieriesieseresnen 192
Relationship between Standard Libraries and Compile Options..........c.ccceeevenene 194
COMPITEN OPLIONS.....cvieetereetirieieriei sttt sa b b e snenas 195
Macro Names, Names, and Constants That Can Be Designated with the Define

L@ o)1 o) o 199
Compiler LIMIt VAIUES ..ottt et a e nne 200

HITACHI

Section 1 Introduction

11 Overview

The SH series C compiler enables the creation of effective C programs making use of the
functions and capabilities of single-chip RISC microprocessor Hitachi SuperH RISC engine
family with onboard peripherals. This manual describes the methods of creating application
programs using this C compiler.

1.2 Features

Functions. The following functions allow creation of effective Hitachi SuperH RISC engine
family application programs:

e Clanguage specification for interrupt functions and Hitachi SuperH RISC engine family
dedicated special instructions

« Position independent code generation (SH-2, SH-3 only)
« High-speed floating-point operations
« Selection of optimized execution speed priority, memory efficiency priority

Optimizations: The following optimizations give full capability to the Hitachi SuperH RISC
engine family with its RISC type instruction set:

« Automatic/optimized allocation of local variablesto registers
e Operation reduction

* Pipeline optimization

» Fold-in of constants

e Commonality of character strings

« Deletion of common format/loop constant format

« Deletion of unnecessary statements

e Tail recursion optimization

The above features make efficient programming possible for individuals not familiar with the
Hitachi SuperH RISC engine family architecture.

1.3 Installation M ethod

131 UNIX Version

File Format: Archivefile format (tar format).

HITACHI

Table 1.1 shows the C compiler file organization.

Table1l.1 C Compiler File Organization (UNIX Version)

Item

File Names

C compiler unit shc, shcfrt, shcmdl, shcgen, shepep, shcasm, shcprm, shctil, shcerr.msg,

shcerr.off, shchip.msg

Standard assert.h, ctype.h, errno.h, float.h, limits.h, machine.h, math.h, mathf.h,
include files setjmp.h, stdarg.h, stddef.h, stdio.h, stdlib.h, string.h. smachine.h,
umachine.h

Standard library shclib.lib, shcnpic.lib, shepic.lib, she3npb.lib, she3pb.lib, shc3npl.lib,

files

shc3pl.lib

Sample files 7032.h, 7032.c

Installation: Perform the following stepsto install the SH series C compiler onto the UNIX
system (“%" within the explanation indicates a shell prompt).

1. Create a path that stores each file of the C compiler.

%

nkdi r A<C conpi | er pat hname>(RETURN)

2. Input the following commands to copy the C compiler filesin the path just created (input
deviceis assumed to be /dev/rst0). Caution: Store all of the C compiler unit filesin the same
directory.

%
%

cdA<C conpi | er pat hnane>(RETURN)
t ar Axvf &/ dev/ r st O(RETURN)

3. Set the path in which the C compiler isinstalled.
e For the C shell, add the following settings to the login path file (.login):

set Apat h=(<C conpi | er pat hname>A<pat hnane string bei hg used>) (RETURN) #1
set envASHC LI BA<C conpi | er pat hname>(RETURN) *2

Note 1: Add the path in which the C compiler is stored to the head of the path list within
parentheses. Example: When setApath=(.A/user/binA/bin) is already established,
designate as follows:

set Apat h=(<C conpi | er use pat hname>A. A/ user/ bi nA/ bi n) (RETURN)

Note2: Set the environment variables indicating the C compiler path. Example: When
the C compiler is stored in /ex/shcV 3/bin, designate as follows:

set envASHC LI BA ex/ shcV3/ bin (RETURN)

HITACHI

For the Bourne shell, add the following settings to the login path file (.profile).
PATH=<C conpi | er use pat hnane>A<pat hnane string bei ng used>) (RETURN) *
expor t APATH (RETURN) **
SHC LI B=<C conpi | er use pat hnanme>(REI’LRI\I)*2
expor t ASHC LI B (RETURN) *2

1

Note1: Add the path in which the C compiler is stored to the head of the path list.
Example: When PATH=.:/user/bin:/bin) is already established, designate as
follows.

PATH=(<C conpi | er use pat hnane>:.:/user/bin:/bin (RETURN

Note 2; Set the environment variables indicating the C compiler use path. Example:
When the C compiler is stored in /ex/shcV 3/bin, designate as follows.

SHC LI B=/ ex/ shcV3/ bin (RETURN)

Explanation of Environment Variables:

1

SHC_LIB. Indicates the storage location of the SHC compiler unit. Consequently, the C
compiler will not operate unless al of the C compiler unit files are placed in the same directory
beforehand.

SHC_TMP. The C compiler creates atemporary filein a path called either /usr/tmp or /tmp for
the internal data necessary during compilation. Confirm that the path exists. If it does not,
create a path for storing the temporary file. If apath is established in alocation other than
Jusr/tmp or /tmp, set the path for storing temporary files with the environment variable
SHC_TMP. Temporary files are deleted after completion of the compilation process.
SHC_INC. Designated when the SHC compiler standard header file isretrieved from a
specified path. Multiple designations can be made for this path by using commas (,) as
delimiters. When this is not designated, the standard header file isretrieved from SHC LIB.

1.3.2 PC Version

File Format: Thefilesare MS-DOS file format. (The provided medium is 1.2-Mbyte format with
the PC-98 version, and 1.44-Mbyte format with the IBM-PC version.)

Table 1.2 shows the C compiler file organization.

HITACHI

Tablel.2 C Compiler File Organization (PC Version)

Item File Names

C compiler unit SHC.EXE, SHCPRM.EXE, SHCTIL.EXE, SHCFRT.EXE, SHCMDL.EXE,
SHCGEN.EXE, SHCPEP.EXE, SHCASM.EXE, DOS4G.EXE, SHCERR.MSG,
SHCERR.OFF, SHCHLP.MSG

Standard ASSERT.H, CTYPE.H, ERRNO.H, FLOAT.H, LIMITS.H, MATH.H, MATHF.H,
include files SETJMP.H, STDARG.H, STDDEF.H, STDIO.H, STDLIB.H, STRING.H,
MACHINE.H, SMACHINE.H, UMACHINE.H

Standard library SHCLIB.LIB, SHCPIC.LIB, SHCNPIC.LIB, SHC3NPB.LIB, SHC3PB.LIB,
files SHC3NPL.LIB, SHC3PL.LIB

Sample files 7032.C, 7032.H

Installation: Use theinstaller (install) to perform the installation onto the machine being used.
“A>" within the explanation indicates a prompt.

1. SHC compiler directory organization: When the installer is run, directories are created with the
following organization.

« A:NSHCBIN C compiler unit, standard include files
« ANSHC\LIB standard library files
e ANSHC\SAMPLE samplefiles

2. Running theinstaller: Insert the first floppy disk (1/2) into the drive (drive name is assumed to
be B:) and input the following command:
A>B:\instal | (RETURN)

SH SERES C Conpiler Installation Program
Copyright (C 1995 Htachi, Ltd., Htachi Software Engineering Co., Ltd.
Li censed Material of Htachi, Ltd., Htachi Software Engineering Co., Ltd.

Menu:
1 - Default installation
2 - Qustominstallation
3 - Quit
I nput nunber: 1 *1

HITACHI

Perform the installation with the default settings.

Instal l ati on paraneters

(1) Files to be installed
Execution files, include files,
library files, sanple prograns

(2) Library type
SH1, SH2, SH3

(3) Directory
Execution files directory [A\SHOBI N
Include files directory [A\SHOBIN
Library files directory [A\SHC LI B
Sanpl e prograns directory [A \ SHQ SAVPLE]
Conpi l er work directory [A\TM

Menu:
1- Start installation
2 - Select files to be installed
3 - Select library type
4 - Change install directories
5- Qit

I nput nunber: 1
Start installation: (Y: Yes, N No)? Y

Start the installation.

MDI R A\SHQ BI N

MO R A\SHO LI B

MKD R A\ SHQ\ SAMPLE
EXPAND ASSERT. H A\ SHQ\ BI N
EXPAND CTYPE H A'\SHO\ BIN
EXPAND ERRONQ H A:\ SHO\ BI N
EXPAND FLOAT.H A/\SHO\ BIN

Change fl oppy di sk nunber 2 and press any key:

HITACHI

Displaysthefilesto
beinstalled

Displays CPU type for
library to beinstalled
Displaysinstallation
destination directory for
each file

Displays directory
containing temporary file
created when compiler is
being used

*2

Creates installation
destination directories

Displays expanded file
names and installation
destination directories

Insert the second floppy disk (2/2) and input any key.

BEXPAND SHC. EXE A\ SHO\BI N Displays expanded file
EXPAND SHCPRM EXE A\ SHQ\BI N names and installation
EXPAND SHCTI L. EXE A\ SHQ\ BI N destination directories

EXPAND SHCFRT. EXE A\ SHQ\ BI N

Installation conpl eted. SETSHC BAT is created in A'\SHQ BIN

This completes the installation. An environment setting usage sample batch file has been created
in the directory where the compiler unit isinstalled. The environment setting usage sample batch
file (SETSHC.BAT) has been created with the following contents in combination with the
installation directory settings.

PATH A\SHOBIN A\ ; A\ DOS A\ TOOL The underlined section
SET SHC LI B=A'\SHO BIN indicates the currently
SET SHC | NC=A:\ SHC\ BI N established pathname

SET SHC TMP=A:\ TMP
SET DOS16MF1@M-4M

Note that the DOS16M settings differ depending on the amount of memory installed in the
machine being used; this should be confirmed by the user. To modify the installation files, CPU
type for the libraries, or installation directories, select custom installation at the point marked *1 or
else 2-4 at *2. Each of the settings can be modified.

An example of setting modification is given below. The modifications are: sample programs not
installed; only SH-3 usage library installed; and installation destination directory name modified.
[Y] indicatesfilesinstalled; [N] indicates files not installed.

Installation file modification:

1. Files to be installed When not modifying the contents
Execution files [Y]: (RETURN within [], just press RETURN
Include files [Y]: (RETURN
Library files [VY]: (RETURN
Sanpl e prograns [Y]: N Modification occurs with “N”

HITACHI

Library type modification:

2. Library type Input “N” for items not to beinstalled
SHI[Y]: N
SH2[Y]: N
SH3[Y] : (RETURN) Press RETURN when not modifying

Installation directory name modification:

3. Directory
Execution files directory Input directory names for those to be
[A'\SHO BI N : A SHC3\ Bl N RETURN) modified
Include files directory
[A'\SHO BI N : A SHC3\ | NO{ RETURN)
Library files directory
[A\ SHO LI B] : A\ SHC3\ LI B{ RETURN)
Conpi | er work directory Press RETURN when not modifying
[A\TM] : (RETURY)

After all setting modifications have been completed, or else when modification processing is
discontinued with the [ESC] key, the installation information is displayed.

Installation file modification:

Install ati on paraneters
1. Files to be installed
Execution files, include files, library files
2. Library type
SH3
3. Directory
Execution files directory[A\SHC\BI N
Include files directory [A \SHC3\ I NJ
Library files directory [A \SHZ3\LI B
Conpi l er work directory [A\ TM)

Continue the installation operation following directions on the screen and confirming the
modification locations.

Explanation of Environment Variables: Modify the contents of AUTOEXEC.BAT for the
environment variable settings while referring to the environment setting usage sample batch file
(SETSHC.BAT).

e SHC_LIB: Indicates the storage location of the SHC compiler unit.

HITACHI

e SHC_TMP: Designates the path where atemporary file used by the SHC compiler during
operation is created. This setting cannot be omitted.

e SHC_INC: Designated when the SHC compiler standard header fileis retrieved from a
specified path. Multiple designations can be made for this path by using commas (,) as
delimiters. When this is not designated the standard header fileis retrieved from SHC_LIB.

« DOSI16M: The protected memory area used by the compiler is designated with the
environment variable DOS16M for the SHC compiler to use additional extended memory.

SET DCS16Me<swi t ch_node>[@st art _address>] [: si ze] or
SET DCB16Me<swi t ch_node>[@st art _address>[-final address]]

Contents within [] can be omitted. 1-16M can be designated for both the address and size.
swi t ch_node
PG 98 series or conpatible nachine: 1
| BM PO/ AT series or conpatible nachine: 0

e Start address: Designates the first address of the memory area used by the compiler.
¢ End address: Designates the last address of the memory area used by the compiler.
« Size: Designates the amount of protected memory used by the compiler.

The setting of itemsis performed in decimal or hexadecimal (for hexadecimal, the prefix Ox is
necessary). Numbers can be designated in kbyte/Mbyte units. Numbers without a suffix are
considered to be kbytes.

Example: PC-98 series settings: 6 Mbytes of extended memory are installed, and the 5 Mbytes
from 1 Mbyte to 6 Mbyte are used:

A> SET DOS16M1@M-6M (RETURN) or
A> SET DOS16M-1@M 5M (RETURN)

When using 4,096 kbytes of extended memory:
A> SET DOB16M=1: 4096K (RETURN)

The DOS16M memory area setting can be omitted when the EM S driver corresponds to the VCPI
(Virtual Control Program Interface) standards, or the DPMI (DOS protected mode interface)
standards.

The EMS drivers (EMM.SY S, EMM386.EXE) for DOS Version 6.2 and earlier do not conform
with the VCPI or DPMI standards, so the SHC compiler cannot be used when they are installed.
For this reason, take the following countermeasures:

¢ Whenusing MS-DOS Version 3.3:

O Install an EMSdriver that corresponds to the VCPI or DPMI standards, such as the Melco
Company’s Melware or the I/0 Data Company’s Memory Server 1.

HITACHI

0 Refertotheindividual product manuals for the specifications of these drivers.
e Whenusing MS-DOS Version 5.0:
O When EMS memory is not necessary, do not install the EM S driver.

0 When EMS memory is necessary (using the EMM386.EXE included with DOS Version
5.0), execute DPMI.EXE before using the SHC compiler (DPMI.EXE isincluded with
DOS Version 5.0).

0 General purpose EMS drivers (EMM.SY S) cannot be used.
¢ Whenusing MS-DOS Version 6.2:
0 When EMS memory is not necessary, do not install the EMS driver.

0 When EMS memory is necessary (using the EMM386.EXE included with DOS Version
6.2), the compiler can be used by installing the included EMS driver (EMM386.EXE).
0 General purpose EMS drivers (EMM.SY S) cannot be used.

Memory Requirementsand Disk Space Occupied (for both PC-98 and |BM-PC versions):

¢ CPU: The CPU must be an 80386SX or later.

* Memory Used: 640 kbytes of main memory and 5 Mbytes or more of protected memory
are necessary to operate this system. 8 Mbytes or more of protected memory is
recommended.

» Disk Space Occupied: Approximately 3,500 kbytes (when al libraries are installed).

14 Startup Method

This section explains the startup method for the SH series C compiler and gives an example of its
use. For information on the compiler options, refer to Appendix A, Compiler Options.

The general command lineis:

shc[A<option>A...][A<fil e name>[A<option>A...]...]
1. Singlefile compilation (file name: send_msg.c): An object file with the name send_msg.obj is
generated.
> shcAsend_nsg. c(RETURN)
2. Single file compilation with compiler options designated (file name: send_msg.c): Both types
of command line perform the same function.
> shcA-listfil eA-show=noobj ect, expansi onAsend_nsg. c(RETURN)
> shcAsend_nsg. cA-1istfil eA-show=noobj ect, expansi on(RETURN)
An object file named send_msg.obj and alist file named send_msg.lis without an object list,
and with a source list after macro expansion, are generated.

Add ahyphen (-) before compiler options. Use acomma (,) to delimit suboptions. In the PC
version, aslash mark (/) can be designated instead of a hyphen before the compiler options,
and suboptions can be bundled within parentheses (from Version 1.0 on). Consequently, the
following description is also possible in the PC version.

HITACHI

> shci/listfil el show=(noobject, expansi on) Asend_nsg. c(RETURN)

3. Multiple file compilation with compiler options designated (file names: send_msg.c,
get_msg.c)
> shcA- cpu=sh2Asend_nsg. cAget _nsg. c(RETURN)
The two SH-2 object files named send_msg.obj and get_ msg.obj are generated. When compiler
options are designated at the start of all the files, the compiler options become effective for
every file.
> shcAsend_nsg. cA- debugAget _nsg. c(RETURN)
Two object files are generated; one named send_msg.obj that has debug information, and one
named get_msg.obj that has no debug information. When compiler options are designated after
afile, the compiler options become effective for that file only.
4. Input the startup command
shc(RETURN)
The command line format and compiler option list are output.
5. Cautions:. If the compiler cannot be started up after installation, reconfirm the following items:
O Isthe environment variable “PATH” set to a C compiler directory?
O Istheenvironment variable “SHC_LIB” set to a C compiler unit directory?
The environment variable “SHC _LIB” isused to designate the directory where the SHC
compiler unit resides. Conseguently, the compiler will not operate unless all of the C compiler
unit files are placed in the same directory beforehand.
O For the PC version, are the environment variables“SHC LIB”, “SHC TMP’, and
“DOS16M” correctly set?
O For the PC version, isan EMS driver installed? Or else, is execution occurring under the
MS-Windows environment?
There are cases in which the compiler cannot be activated if an EMS driver isinstalled.
Remove the EMS driver from CONFIG.SY S and restart. Additionally, there are cases in which
coexistence with EM S applicationsis not possible. Activate the compiler from a DOS prompt
in the MS-Windows environment, Version 3.1 or later. Refer to section 1.3, Installation
Method, and attached software materials for details.

15 Program Development Procedures

Figure 1.1 shows program devel opment features.

10
HITACHI

User-created
include files

Assembly
source file

on_mo

A4
Assembler
ver. 2.0

asmsh

User-created

C language

source file

on_motor.c

tor.src

object file

on_motor.obj

A4
Linkage editor

|
|
|
|
|
|
|
|
}
Relocatable |
|
|
|
|
|
|
|
|
|

library files ver. 5.3*4
sensor.lib Ink :
v
Object converter Load
ver. 1.5 module file
cnvs

A 4

S-type
format load
module file

on_motor.abs

A 4

Simulator/debugger
ver. 2.0*5

sdsh

on_motor.mot

Software provided by

C compiler system
(UNIX version)

Standard
include files

Standard
library files

Notes: 1. Assembly source files can be output through option designation.

2. Define the C library functions and the names of macros necessary to use them.

3. A group of standard functions that can be used in C language programs.
Includes C library functions and rountines used during execution.

4, See sect
5. See sect

ion 4.2, Relation to the Linkage Editor.
ion 4.3, Relation to the Simulator/Debugger.

zrisi0l.eps

Figure1.1 Program Development Features

HITACHI

11

The program development procedure will be explained below, using as an example the source file
on_motor.c, which includes the header file motor.h. Refer to the individual cross software user
manuals for details on cross software usage.

151 Sour ce File Creation
Using the editor, create the sourcefile.
152 Relocatable Object File Generation

Activate the compiler and compile the sourcefile.
shcAon_not or . ¢(RETURN)

An optimized relocatable object file named on_motor.obj that has no debug information is
generated. Designate the listfile option to generate alist file.

153 L oad M odule File Generation

When the linkage editor is activated with the library file sensor.lib included as noted below, an
executable load module file named on_motor.abs is generated.

| nkAon_not or. obj A-1i brary=sensor. | i b(RETURN)

Please note that even if the relocatable object file has debug information attached, no debug
information will be output in the load module file if the debug option is omitted during linkage.

154 Load Module File Conversion to S-Type For mat

When using a ROM writer to write into an EPROM, activate the file converter as follows.
cnvsAon_not or . abs(RETURN)

An S-type format load module file named on_motor.mot is generated.

1.6 Sample Program I ntroduction

Figure 1.2 shows sample program introduction.

12
HITACHI

Interrupt
Initialization processing

_INITSCT a=PB-DR.WORD

Section initialization Port B data read out

init_peripheral

PC - DR.WORD = padata

Register initialization Port C data set

motor

zrisi02.eps

Figure1.2 SampleProgram Introduction

This section explains the actual creation of a program, using a sample program. The development
environment isindicated in table 1.3.

Table1.3 Sample Program Development Environment
OoS CPU
UNIX SH-1

1.6.1 Vector Table Creation

The vector table creation program is shown below. Refer to section 2.1.3, Vector Table Creation,

for details.

HITACHI

13

/**/

/* file name “vect.c” */
/**/
extern void main(void);

extern void inv_inst(void);

extern void | RQ(void);

void (* const vec_table[])(void)={
main,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0O,
0,000000000000,0,0,DO0,
inv_inst,0,00000000000,0,0,0,
0,0000000000000,0,0,
| RO
b
The SH-1 vector table created is shown in table 1.4. The function main is activated by a power on
reset. The stack pointer is set to O at thistime. The start address of function inv_inst is set to vector

number 32; the start address of function IRQO is set to vector number 64. These are, respectively,
the user vector and external interrupt start vector numbers.

Tablel.4 Exception Processing Vector Table

Vector
Exception Source Number Vector Table Address Offset
Power on reset PC 0 H'00000000—-H'00000003
SP 1 H'00000004-H'00000007
Manual reset PC 2 H'00000008-H'0000000B
SP 3 H'0000000C—-H'0000000F
Trap instruction (user vector) 32 H'00000080-H'00000083
63 H'000000FC—-H'000000FF
Interrupt IRQ0O 64 H'000000FC-H'00000103
255 H'0000000C—-H'0000000F

14
HITACHI

The above written in assembly language is as follows:
Vector Table Creation Program (Assembly L anguage Version):

. SECTI ON VECT, DATA, ALl G\F4
. I MPCRT _main

. | MPCRT _inv_inst

JAMPCRT _IRQ

.DATA L _main ;__main start address set in vector 0
.DATA L H 0000000 ;SPinitia value set in vector 1

. CORG H 0080

.DATA L _inv_inst ;_inv_inst start address set in vector 32
. CORG H 0100

.DATA L _IRQ ;/IRQO start address set in vector 64

. BEND

Add an underscore () to the beginning of the C program external names in the assembly language
program.

16.2 Header File Creation

The header file used throughout the sample program is shown below. By defining 1/O ports such
asIPRA, those /O ports can be accessed by name in the same manner as variables.

15
HITACHI

/**/

/* file name “7032. h"

*/

/**/

/**/

/* Definitions of 1/0O Registers

/**/

struct st_intc {

uni on {

unsi gned short WORD,

struct {
unsi gned short UJ 4,
unsi gned short UL: 4,
unsi gned short LU 4,
unsi gned short LL: 4,
} B T;

} | PRA;

union {

unsi gned short WCRD,

struct {
unsi gned short UUJ 4;
unsi gned short UL: 4,
unsi gned short LU 4;
unsi gned short LL: 4,
} BT

} | PRB;

b
#define INTC (*(volatile struct st_intc
16

HITACHI

*/
[*struct INTC */
/*IPRA */
[* Word Access */
[* Bit Access */
[* IRQO */
I* IRQ1 */
[* IRQ2 */
I* IRQ3 */
[* */
[* */
/*1IPRB */
[* Word Access */
[* Bit Access */
I* IRQ4 */
[* IRQ5 */
I* IRQ6 */
[* IRQ7 */
[* */
[* */
*) OX5FFFF84)
[*INTC Address*/

/**/

/* Timer registers

/**/

struct st_itu0 {
union {
unsi gned char BYTE;
struct {

unsi gned char wk

unsi gned char CCLR
unsi gned char CKEG
unsi gned char TPSC
} BIT,

} TR

Ww DN R

|3
#define 1 TUWO (*(volatile struct st_itu0O

HITACHI

*/
[*struct 1TUO */
*TCR */
[* Byte Access */
[* Bit Access */
[* */
I* CCLR */
I* CKEG */
I* TPSC */
[* */
I* */
*) OX5FFFF04)
/*ITUO Address*/

17

/**/

/* PCORT registers */

Y

struct st_pa { [*struct PA */

uni on { [*PADR */

unsi gned short V\CRD, [* Word Access */

struct { [* Bit Access */

unsi gned short B15:1; [* Bit 15 */

unsi gned short Bl4:1; [* Bit 14 */

unsi gned short B13:1; [* Bit 13 */

unsi gned short B12:1; [* Bit 12 */

unsi gned short B11:1,; [* Bit 11 */

unsi gned short B10: 1; [* Bit 10 */

unsi gned short B9: 1; [* Bit9 */

unsi gned short B8:1; [* Bit 8 */

unsi gned short B7:1; [* Bit 7 */

unsi gned short B6:1; [* Bit 6 */

unsi gned short B5: 1; [* Bit5 */

unsi gned short B4:1; [* Bit4 */

unsi gned short B3:1; [* Bit 3 */

unsi gned short B2:1; [* Bit 2 */

unsi gned short B1:1; [* Bit 1 */

unsi gned short BO: 1; [* Bit O */

} BIT; /% */

} DR I* */

b I *
#define PB (*(volatile struct st_pa *)Ox5FFFFC2)

PB Address/

18
HITACHI

struct st_pc { [*struct PC */

uni on { [*PCDR */

unsi gned short WCRD, /*Word Access */

struct { [*Bit Access */

unsi gned short wk:8; [* Bit 8 */

unsi gned short B7:1; [* Bit 7 */

unsi gned short B6:1; [* Bit 6 */

unsi gned short B5:1; [* Bit5 */

unsi gned short B4:1; [* Bit4 */

unsi gned short B3:1; [* Bit 3 */

unsi gned short B2:1; [* Bit 2 */

unsi gned short B1:1; /* Bit 1 */

unsi gned short BO: 1; [* Bit O */

} BIT; [* */

} R I* */

}; [* *[
#define PC (*(volatile struct st_pc *)Ox5FFFFDO)

I*PC Address*/

/**/
* H “ ” *
/ file nane “sanple.h /
/**/
/**/

/* Timer registers */

/**/

struct tcsr {
short OWF :1; [*TCSR struct OVF bit ~ */
short W T: 1; [AWTIT bit */
short 2 3; [*work area */
short OKS2:1; [*CKS2 bit */
short CKSL1:1; [*CKS1 bit */
short | 9; /*work area */

¥

#def i neTCSR_ FRT (*(vol atil e unsigned short *)Ox5FFFFB3)
#defineTCSR_FRT (*(volatile struct tcsr*)0x5FFFFB8)

HITACHI

19

extern void notor(void); /*motor module
*/

extern void _INTSCT (void); [*section initialize module
*/
extern void init_peripheral (void); [*periphera initialize module*/

16.3 Main Processing Module Creation

The main processing program is shown below. The function main, activated by a power on reset,
and the function motor, called continuously until an interrupt occurs, are defined.

/**/

/* file name “sanple.c” */
/**/
#i ncl ude “7032. h”

#i ncl ude “sanpl e. h”

#i ncl ude <machi ne. h> /*Defines the intrinsic function sleep*/
const short padat a=0x3 /*C section */
short a=0; /*D section */
int work; /*B section */

/**/

/* mai n nodul e */

/**/

voi d mai n(voi d)

{ _INITSCT() ; [*Initiaization of each section*/
i nit_peripheral ();
whil e(!a) notor();
sl eep();
}
20

HITACHI

/**/

/* not or nodul e */

/**/

void motor (voi d) /*Called until an interrupt occurs*/
{

ret ull‘ n;
}

In the function main, _INITSCT and init_peripheral are called and the sections and internal
registers are initialized, then await occurs until the value of global variable ais modified. The
function motor is called continuously during that interval. Low power state is entered when the
value of a becomes anything other than 0.

16.4 Initializing Module Creation

The assembly language program for setting the values of external names used in section
initialization is shown below.

-**/

file name “sct.src” */

-**/

. SECTI ON B, DATA ALI G\=4
. SECTI ON R DATA, ALI G\=4
. SECTI ON D, DATA, ALI G\=4
Wien sections are to be added, describe them here.

21
HITACHI

. SECTI ON C, DATA, ALI G\=4

__ B BGM .DATA L (STARTCF B)
B END .DATAL (STARTCF B)+(S| ZECF B)
_ DBGN .DATAL (STARTCF R
_DEND .DATAL (STARTCF R +(Sl ZECF R
__DRM .DATAL (STARTCF D)

_EXPCRT B BON

_EXPCRT __B END

_EXPCRT D BN

_EXPCRT _ D END

_EXPCRT D ROM

.END

The B section and D section start and end addresses are defined. When section names are not
designated by the section option at the time of compilation, the C compiler assigns the various
names as follows:

¢ Program area section: P
¢ Constant area section: C
¢ Initialized data area section: D
¢ Uninitialized data area section: B

The R section indicates the RAM area for copying the initialized data areain ROM using the
ROM conversion support function of the linkage editor. Refer to section 4.2.1, ROM Conversion
Support Function, for details on the ROM conversion support function of the linkage editor.

STARTOF is an operator for obtaining the section collective start address, using the
“STARTOF<section name>" description. SIZEOF is an operator for obtaining the section
collective size in byte units, using the “ SIZEOF<section name>" description.

The C language program that performs the section and register initializations is shown below.
/**/
/* file name “init.c” */
/**/
#i ncl ude “7032. h”

#i ncl ude “sanpl e. h”

/**/

/* section initialize nodul e */

/**/

extern int * B BGN * B END,* D BG\N * D END, * D ROM

22
HITACHI

void _I N TSCT(voi d)

{
register int *p,*q;
for (p=_B BA\ p<_B END p++)
*p=0;
for (p=_D BG\N g=_D ROM p<_D END, p++, g++)
*p=*a;
}

/**/

/* peripheral initialize nodul e */

/**/

voi d init_peripheral (voi d)

{
| NTC- 1 PRA. WORD = 0x3000 [*1PRA initialization*/
| TW - TCR BYTE = 0x02 [*TCRO initiaization*/
TCSR_FRT = 0x5A01 [*TCSR initiaization*/
PB-DR WRD = 0x80 [*PORT initialization*/
}

The section initialization module _INITSCT performs a zero clear of the B section based on the
section address designated by sct.src, and copies the initialized data areain ROM into RAM. The
format designator used isint, but char should be used when the sizeis any other than 4n bytes.

The internal register initialization module init_peripheral performs each of the following settings:

The IRQO interrupt priority level isset to 3 in interrupt priority level setting register A

Clear prohibition of 16-bit integrated timer pulse unit timer counter 0, counting on the rising
edge, and counting by @/4 of theinternal clock are set in timer control register O

Timer counter of the watchdog timer is set to 0 x 01

Port B isset to 0 x 80

16.5 Interrupt Function Creation

Theinterrupt function is shown below. The external interrupt processing function IRQO and the
trap instruction function inv_inst are defined.

23
HITACHI

/**/

/* file name “int.c” */
/**/
#i ncl ude “7032. h”

#i ncl ude “sanpl e. h”

extern const short padat a; /*C section */
extern short a; /*D section */
extern int work; /*B section */

#pragna interrupt (1 RQY, inv_inst)

/**/

/* interrupt nodule | RQ */
/**/
voi d | RQO(voi d)

a = PB-DR WORD,
PC-. DR WIRD = padat a;
}

/***/

/* i nterrupt nodul e inv_inst */

/***/
voi d inv_inst(void)

{

return;

}

The function IRQO sets PB - DR.WORD (0 x 80) in the global variable awhen an IRQO external
interrupt occurs. This causes the CPU to enter the low power state.

1.6.6 L oad Module Batch File Creation

The batch file for creating an S-type format |oad module (sample.mot) is shown below.

shc -debug sanple.c init.c int.c Compile the C language program
asnmsh sct.src -debug Assemble assembly language program
shc -debug -section=c=VECT vect.c Compile vector table creation program
I nk - subcomrand=r om sub Link using the subcommand file
cnvs sanpl e. abs Create S-type format load module
rm *.obj *.abs Delete temporary file

24

HITACHI

The program vect.c is compiled as an independent file and becomes a section different from the

other initialized data areas with option section=VECT attached. During linkage it is allocated from

address 0.

16.7 Linkage Editor Subcommand File Creation

The linkage editor subcommand file (file name: rom.sub) used during load module creation is

shown below.

debug

i nput
library
out put
rom

start

form
print

exit

sanpl e,init,int,vect, sct
/user/uni x/ SHCV3. 0/ shclib.lib
sanpl e. abs

(DR

VECT(0), P, C, { 0400) , R B, (OFO00000)

sanpl e, nap

HITACHI

;Designate input files
;Designate standard libraries
;Designate output file name
;Designate ROM conversion
support option

;Designate start address

of each section

;Allocate section VECT
from address 0

;Allocate sections P,C,D

in order from address H'400
;Allocate sectionsR,B in
order from address
H'0F000000

;Designate absolute format
;Designate output of
memory map information

25

Section 2 Functions

This section describes the SH series C compiler extended functions and specific programming
techniques for software intrinsic to the individual machines. The assembly language code is
obtained through the following command line;

shcA<C | anguage fi | e>A- code=asntode

The assembly language code may change in the future due to improvementsin the compiler.

21 Interrupt Functions

211 Interrupt Function Definition (Without Options)

Interrupt functions can be created in C using the preprocessor control statement #pragma.
Functions declared with “#pragmainterrupt” save/restore all registers (excepting the global base
register GBR and vector base register VBR) used within the function before and after the function
processing. For this reason, it is not necessary to provide interrupt processing for interrupted
functions.

Description:
#pragma i nterrupt (<function nane>[, <function name>...])

Example: Theinterrupt function handlerl is declared. This function operates using the stack
handed over from the interrupted function and returns with an RTE instruction after processing is
compl eted.

C Language Code when GBR, VBR Are Not Saved/Restored:
#pragna i nterrupt (handl er1) [* Interrupt function declaration ~ */

voi d handl er 1(voi d)

{
[* Interrupt function processing */

26
HITACHI

Assembly L anguage Code:

. EXPCRT _handl er1
. SECTI ON P, QCDE, ALI G\=4
handl er 1: :function: handlerl

;Save registers used in processing
;Interrupt function processing
;Restore registers used in processing

RTE

NCP

. END

C Language Code when GBR, VBR Are Saved/Restor ed:

#pragna i nterrupt (handl er1)
voi d handl er 1(voi d)

{
voi d** save_vbr; /*VBR save area */
voi d* save_gbr; /*GBR save area */
save_vbr = get_vbr(); /*Save VBR */
save_gbr = get_gbr(); /*Save GBR */
; [* Interrupt function processing */
set _vbr (save_vbr); /*Restore VBR */
set _gbr (save_gbr); /*Restore GBR */

}

HITACHI

Assembly L anguage Code:

. EXPCRT handl er 1
. SECTI ON P, CCDE, ALI G\=4
_handl er 1: ;function: handler3

:frame size=16

MOV. L R5, @R15

STC &BR B ;Save GBR

MOV. L R4, @RL5

STC VBR R4 ;Save VBR
;Save registers used in processing
;Interrupt function processing
;Reﬂorg registersused in
processing

LDC R4, VBR :Restore VBR

LDC R5, GBR ;Restore GBR

MOV. L @15+ ~4

MOV. L @R15+, RS

RTE

NCP

L211:
. DATA W H FFOF
. END
Precautions:

1. Theonly dataformat returned by interrupt functionsis the void format. Example:

#pragna interrupt(f1, f2) [*interrupt function declaration*/
void f1(void){...} [*interrupt function f1 definition*/
int f2(void){...} [*interrupt function f2 definition*/

Theinterrupt function f1 definition is correct, but the interrupt function f2 definition resultsin
an error.

2. The only memory class designator that can be designated in interrupt function definitionsis
extern. Even if static is designated, the processing will be as extern.

3. Functions declared asinterrupt functions cannot be called as ordinary functions. Operation
during execution cannot be guaranteed when functions declared as interrupt functions are
called from ordinary functions.

28
HITACHI

Example:

* testl.cfile contents
#pragna interrupt (f1) [*interrupt function declaration*/
void fl(void){...} [*interrupt function f1 definition*/

i nt f20{ f10;}

* test2.cfile contents
f30){ f10); 1}

Inthetestl.c file, an error resultsin function f2. In the test2.c file, no error resultsin function
f3, but function f1 isinterpreted as being extern int f1() and operation during execution
becomes undefined.

4. Operation upon an interrupt is different with the SH-3 from SH-1 and SH-2; an interrupt
handler is required. An example of an interrupt handler is given below.

rkkkkhkkhkhkkkhkhkhhhkhhkhhkdhhhhkhhhhhkkhhhdhhkkhhhdhkhhhdhkhhhkdhkhkhhkdhhkkhhkkdhkkhkkrhkkdxkx-.
’ ’

SH 3 Interrupt Starter Routine

rkkkkkhkkkhkhkkhkhkhkhkkhhkhhkdhhdhhkdhhhhkkhhhdhkhhhdhhhhdhkhhhkdhhhhkdhkhkhhkkdhkkkhhkkhhkkhkkx:.
’

. SECTI ON i nt handl , OCDE, ALI G\=4
. CRG H 600
. EXPCRT __int_start
. EXPCRT _int_term
__int_start:
STC L SSR @R15 ; save ssr
STC L SPC, @RL5 ; save spe
MOV. L R8, @R15 ; save work register
ADD #-4, R15 ; S stack area
MOV. L RO, @R15 ; save work register
MOV. L RL, @RL5 ; save work register
MOV. L R, @RL5 ; save work register
MOV. L I NTEVT, RO ;set INTEVT addressto rO
MOV. L @, RL ; Set exception codeto rl
MOVA vctthl, RO ; set vector table addressto r0
SH R R ; 3-bit shift-right exception code

29
HITACHI

MOV. L

MOVA

M. B
EXTU B

STC
LDC
MOV. L

MOV. L

MOV. L

MOVA
LDC L

MOV. L
MOV. L
MOV. L
LDC L
JWP

MOV. L

30

RL

#-(h' 1c0>>3) , RL ; exception code —h'1cO
@RO,RL), R8 ; Set interrupt function addr to r8
i maskt bl , RO ; Set interrupt mask table addr to rO
RL ; 2-bit shift-right exception code
@RO,RL), RL ; Set interrupt mask to rl1

Rl, RL

SR RO ; savesrtor0

RO, SSR ; Set current status to ssr

| MASKcl 1, R2 ; set IMASK clear datato rl

R, RO ; clear interrupt mask

RL, RO ; set interrupt mask

RBBLcl r, RL ; set RB,BL clear datatorl

RL, RO :(RB=BL =0)

RO, @12, RL5) ; push sr

_int_termRO ;set _int_term addr to spc

RO, SPC

@5+ R2 ; restore work register

@15+ RL ; restore work register

@15+ RO ; restore work register

@r15+, SR ; restore sr

@8 ; jJump to interrupt function
@r15+, R8 ; restore work register

HITACHI

BRIk b o R R R R kS R R R R o R R A
’ ’

; SH3 Interrupt Term nator Routine

B Rk b R S R R R R o R o R U R R R R S
’ ’

CALIGN 4

_int_term
LDC L @r15+, SPC ; load spc
LDC L @15+, SSR ; load ssr
RTE ; rte
NCP
.ALIGN 4

RBBLcl r .DATA L H 4FFFFFFF

| MASKcl r .DATA L H FFFFFFOF

| NTEVT .DATA L H FFFFFFD8

vctt bl ; Interrupt Vector Table
.DATA L H 00000000 ; NMI
.DATA L H 00000000 ;IRL=0
.DATA L H 00000000 ;IRL=1
.RES. L 26
.DATA L H 00000000 ; RCVI

i maskt bl ; Interrupt Mask Table
. DATA B H FO i NMI
. DATA B H FO ;IRL=0
. DATA B H EO JIRL=1
.RES. B 26
. DATA. B H 00 ; RCVI
. END

HITACHI

Note: Maketheinterrupt priority rank of the imasktbl on-chip peripheral module the same as
that established by the interrupt level setting registers A—B (IPRA—PRB).

212 Interrupt Function Definition (With Options)

Theinterrupt function definition options consist of the stack switching designation and the trap
instruction return designation. With the stack switching designation, the stack pointer is switched
to adesignated address when an external interrupt occurs, and the interrupt function operates using
this stack. The stack pointer before the interrupt occurrence is returned to upon restoration after
the interrupt routine. It becomes unnecessary to secure any extrainterrupt function stack
beforehand for functions interrupted with this designation.

With the trap instruction return designation, the return is performed with a TRAPA instruction.
When not designated, the return is by an RTE instruction.

Description:
#pragna interrupt
(<function_name>[(<i nterrupt_specification>)][, <function_nane>[

(<interrupt_specification>)]...])

Table2.1 Interrupt Specification List

Item Format Option Contents of Designation
Stack switching sp= <variable> | New stack address designated with a
designation & <variable> | variable or constant
<constant> <variable>: variable (object type) value
& <variable>: variable (pointer type) address
<constant>: constant value
Trap instruction tn= <constant> End designated with a TRAPA instruction

return designation <constant>: constant value (trap vector

number)

The interrupt function handler2 is declared. This function uses the array STK as a stack and
returns with a“ TRAPA #63” instruction after completion of processing.

32
HITACHI

C Language Code:

extern int STK 100];
int *ptr = STK + 100;

#pragna i nterrupt (handl er2(sp=ptr, tn=63))

voi d handl er 2(voi d)
{

}
Assembly L anguage Code:

. MPCRT
. EXPCRT
. EXPCRT
. SECTI CN
_bhandl er 2
MOV. L
MOV. L
MOV. L
MOV. L

MOV. L

MOV. L

TRAPA
L211:

.DATA L

. SECTI ON

_ptr:
.DATA L

[*Interrupt function declaration*/

[* Interrupt function processing description*/

STK

_ptr
_handl er2

P, QCDE, ALI G\=4
; function: handler2

RO, @ R15

L211, RO

@0, RO

R15, @RO

RO, R15
; Saveregistersused in processing
; Interrupt function processing
; Restore registersused in
processing

@R15+, R15

@15+, R0

#63

_pt r

D, DATA, ALI G\=4
; static: ptr

H 00000190+_STK

33

HITACHI

Interrupt end

Immediately Within (immediately before TRAPA
after interrupt interrupt function #63 instruction issued)
Lower address %
STK (0) STK (0)
Interrupted : :
function stack : SP— :
STK (99) Old R15
Upper address |
Lower address t
Int_errupted SP_» Old RO SP-»
function stack old PC Old PC old PC
Old SR Old SR Old SR
Upper address |

zrisi03.eps

Figure2.1 Exampleof Stack Use by an Interrupt Function

2.1.3 Vector Table Creation
Vector tables can be created in C as follows:

1. Provide a vector table usage array and designate an exception processing function pointer for
each element.

2. After compiling thisfile, designate and link the vector table start address.

34
HITACHI

C Language Code: vect_table.c:

extern void reset(void); [* Power on reset processing function*/
extern void warmreset(void); /*Manua reset processing function*/

extern void irgO(void); /*1RQO interrupt processing function*/
extern void irgl(void); /*IRQ1 interrupt processing function®*/

void (* const vect_table[])(void) = {

reset, [* Start address for power on reset*/
0, [* Stack pointer for power on reset*/
war mreset , [* Start address for manual reset*/
0, [* Stack pointer for manual reset*/
i rqo, [* Vector number 64 */
irql, [* Vector number 65 */
b
Batch File:

shc -section=c=VECT vect table
shc reset warmreset irq0o irqgl...

I nk vect_tabl e, reset,warmreset,irq0,irql,...-output=sanpl e. abs-
start=VECT(0), P, C D(0400), B(0FO00000)

Compiling vect_table.c generates the relocatable object file vect_table.obj for theinitialized data
section (VECT) only.

The section VECT is designated with a start address of H'0 and linked along with the other files,
and the load module sample.abs is obtained.

35
HITACHI

Assembly L anguage Code: vect.table.src:

. I MPCRT _reset

. | MPCRT _warm reset

. MPCRT _irqo

. I MPCRT _irql

. EXPCRT _vect _table

. SECTI ON VECT, DATA, ALI G\
_vect _table: ;static: vect_table

. DATA L _reset

. DATA L H 00000000

. DATA L _warm reset

. DATA L H 00000000

.DATA L _irq0,irql

. END

Precautions:

1. Operation upon an interrupt for the SH-3 is different from SH-1 and SH-2 in that a vector table
isnot used and an interrupt handler is necessary.

2. Since the vector table must be allocated to a fixed absolute address, it was created here as an
independent file, but by using the section switching function it is possible to make it afile
identical to that of other modules. Refer to section 2.7, Section Name Designation, for details.

2.2 Intrinsic Functions

Theintrinsic functions indicated in table 2.2 are provided to enable C language description of the
instructions inherent to the SH-1, SH-2, and SH-3. The standard header file “machine.h” must be
included when using intrinsic functions. Also, “machine.h” is partitioned in response to the SH-3
execution mode for each function that can be used with the respective mode. Include “smachine.h”
when using functions usable only when in privileged mode, and “umachine.h” when using all
other functions.

36
HITACHI

Table2.2

Item

Intrinsic Function List

Function

Usable Execution Mode (SH-3)

Status register (SR)

SR setting

SR referencing

Interrupt mask setting

Interrupt mask referencing

Privileged mode only

Vector base register
(VBR)

VBR setting

VBR referencing

Privileged mode only

Global base register
(GBR)

GBR setting

GBR referencing

GBR-base byte referencing

GBR-base word referencing

GBR-base longword referencing

GBR-base byte setting

GBR-base word setting

GBR-base longword setting

GBR-base byte AND

GBR-base byte OR

GBR-base byte XOR

GBR-base byte TEST

No restrictions

System control

SLEEP instruction

Privileged mode only

TAS instruction

TRAPA instruction

No restrictions

Multiply/accumulate
operation

Word multiply/accumulate

Longword multiply/accumulate

Ring buffer corresponding word
multiply/accumulate

Ring buffer corresponding longword

multiply/accumulate

No restrictions

System call

System call execution

No restrictions

Prefetch instruction

Prefetch instruction

No restrictions

221 Status Register Setting/Referencing

The functionsindicated in table 2.3 are provided for status register setting/referencing.

HITACHI

Table2.3 StatusRegister Usage Intrinsic Functions

Item Description Explanation

Status register setting void set_cr (int cr) Sets cr (32 bit) in the status register

Status register referencing int get_cr (void) References the status register

Interrupt mask setting void set_imask(int Sets mask (4 bit) in the interrupt mask (4 bit)
mask)

Interrupt mask referencing int get_imask(void) References the interrupt mask (4 bit)

The function funcl performs processing after prohibiting external interrupts by setting the
interrupt mask to its maximum (15). After completion of processing, the original interrupt mask
level isrestored and the function ends.

C Language Code:

i ncl ude <machi ne. h>

voi d funcl(voi d)

{
int mask; /* Interrupt mask level storage location */
mask = get i mask(); [* Store the interrupt mask level */

set _i mask(15); [* Set the interrupt mask level to 15 */
: [* Prohibit interrupts and execute processing*/

set i mask(nmask); /* Restore the interrupt mask level */
}

38
HITACHI

Assembly L anguage Code:

. EXPCRT _funcl
. SECTI ON P, CCDE, ALI G\=4
_funcl ; function: funcl
MOV. W L210, R3
STC SR RO
SH.R2 RO
SH R RO
AND #15, R0
MOV RO, R4
STC SR RO
AND R3, R0
xR #240, RO
LDC RO, SR
MOV R4, RO
AND #15, R0
SHLL2 RO
SHL2 RO
STC SR R2
MOV R3, RL
AND Rl, R2
R R2, R0
LDC RO, SR
RTS
NCP
L210:
. DATA W H FFOF
. END

222 Vector Base Register Setting/Referencing

The functionsindicated in table 2.4 are provided for vector base register setting/referencing.

HITACHI

Table2.4 Vector Base Register Usage Intrinsic Functions

Item Description Explanation

Vector base register setting void set_vbr (void Sets **base (32 bit) in the vector base
**hase) register

Vector base register void **get_vbr (void) References the vector base register

referencing

The vector base register (VBR) isinitialized to 0 by areset. When the vector table starts from an
address other than address O, if the next function is established in the start address (H'00000008)
for amanual reset and a manual reset occurs at the time of system startup, exception processing
can be executed using the established vector table.

C Language Code:

#i ncl ude <nachi ne. h>
#define VBR 0x0000FQ00 /*Vector table start address */

void warmreset (void)

{
set _vbr ((voi d**) VBR);
[*Vector the vector base register */
[*Establish in the table’ s start address*/
}
Assembly L anguage Code:
. EXPCRT _warm reset
. SECTI ON P, CCDE, ALI G\-4
_warmstart: ; function: warm_reset
MOV. L L209, R3
LDC R3, VBR
RTS
NCP
L209:
.DATA L H 0000FQ00
. END

Precautions: Perform modifications of the vector base register after establishing the vector table.
If this order isreversed, an external interrupt occurrence during vector table establishment will
cause a system failure.

40
HITACHI

223 Accessing | /0 Registers (1)

The functionsin table 2.5 are provided for global base register (GBR) manipulation to allow

accessto 1/O registers.

Table2.5

Item

Description

Global Base Register Usage Intrinsic Function

Explanation

Global base register
setting*?

void set_gbr(void *base)

Sets *base (32 bit) in the global base register

Global base register
referencing*?2

int *get_gbr(void)

References the global base register

Global base register
base byte
referencing*2

unsigned char

gbr_read_byte(int offset)

References global base register relative
offset byte data (8 bit)

Global base register
base word
referencing*?

unsigned short

gbr_read_word(int offset)

References global base register relative
offset word data (16 bit)

Global base register
base longword
referencing*?2

unsigned long

gbr_read_long(int offset)

References global base register relative
offset longword data (32 bit)

Global base register
base byte setting*2

void gbr_write_byte(int offset,

unsigned char data)

Sets data (8 bit) in the global base register
relative offset

Global base register
base word setting*?

void gbr_write_word(int
offset, unsigned short data)

Sets data (16 bit) in the global base register
relative offset

Global base register
base longword
setting*2

void gbr_write_long(int offset,

unsigned long data)

Sets data (32 bit) in the global base register
relative offset

Global base register
base byte AND

void gbr_and_byte(int offset,

unsigned char mask)

Takes the AND of the global base register
relative offset byte data and mask, sets it in
offset

Global base register
base byte OR

void gbr_or_byte(int offset,

unsigned char mask)

Takes the OR of the global base register
relative offset byte data and mask, sets it in
offset

Global base register
base byte XOR

void gbr_xor_byte(int offset,

unsigned char mask)

Takes the XOR of the global base register
relative offset byte data and mask, sets it in
offset

Global base register
base byte TEST

int gbr_tst_byte(int offset,

unsigned char mask)

Takes the AND of the global base register
relative offset byte data and mask; judges
that value as 0. Result is set in the T bit

Notes: 1. Establish base as a multiple of 2 when the access size is word, and as a multiple of 4

when the access size is longword.

41

HITACHI

2. The offset must be a constant for these items. The range that can be designated for
offset is +255 bytes when the access size is byte, +510 bytes when it is word, and
+1020 bytes when it is longword.

3. The mask must be a constant. The range that can be designated for mask is 0 to +255.

4. The global base register is a control register, so saving and restoring of values at
function entrances and exits is not executed by the C compiler. When modifying the
global base register value, the user must carry out the save/restore of the value at the
function entrance/exit.

The following is an example of atimer driver using the SH7034 on-chip 16 bit integrated timer
pulse unit.

C Language Code:

#i ncl ude <machi ne. h>
#def i ne | CBASE 0x05f f f ecO /*1/O base address */
#define TSR (Ox05ffff07 - 1 CBASE)

[*Timer status flag register offset address*/
#defi ne TSRCLR (unsi gned char) Oxf 8

[*Timer status flag register clear value*/

voi d t nr hdr (voi d)

{
voi d *gbr save; /*Global base register value storage
location™*/
gbrsave = get_gbr(); [* Store the global base register value*/
set _gbr ((voi d*) | CBASE) ; /* Set the 1/O base address in the global
register*/
gbr_read byte(TSR); /*Dummy read to clear the timer status
flag register*/
gbr_and_byte(TSR TSRCLR); /*Clear the timer status flag register
compare match flag*/
set _gbr (gbrsave); /* Restore the global base register value*/
}

42
HITACHI

Assembly L anguage Code:

. EXPCRT _tnrhdr
. SECTI ON P, CCDE, ALI G\=4
_tnrhdr: ;function: tmrhdr
MOV. L L210, R3
STC BR R4
LDC R3, 3BR
MOV. B @71, BR, R0
MOV #71, RO
AND. B #248, @ RO, GBR)
RTS
LDC R4, GBBR
L210:
.DATA L H O5FFFEQD
. END

224 Accessing | /0O Registers(2)

Use of the standard library offsetof eliminates the need to calculate the value of the global base
register relative offset beforehand.

HITACHI

C Language Code:

#i ncl ude <stddef. h>
#i ncl ude <nachi ne. h>
struct | OTBL{
char cdat al;
char cdat a2;
char cdat a3;

short sdatal;

i nt i dat al:
i nt i dat a2;
} table;

voi d f (voi d)

[*offset O */
[*offset 1 */
[*offset 2 */
[*offset 4 */
[*offset 8 */
[*offset 12 */

/*Global base register value storage
location™*/

[* Store the global base register value*/

[* Set the table start address in the global
base register*/

gbr _and_byt e(of f set of (struct | OIBL, cdata2), 0x10);

{
voi d *gbrsave;
gbrsave = get_gbr();
set _gbr (& abl e);
set _gbr (gbrsave);

}

44

/*Take the AND of the table.cdata2 value
and 0x10 and set it in table.cdata2 */

/*Restore the global base register value*/

HITACHI

Assembly L anguage Code:

. EXPCRT _table
. EXPCRT f
. SECTI ON P, GCDE, ALI G\+4
_f: ; function: f
MOV. L L211+2, R3
MOV #1, R0
STC BR R4
LDC R3, 3BR
AND. B #16, @R0, GBR)
RTS
LDC R4, GBBR
L211:
.RES. W 1
. DATA L _table
. SECTI ON B, DATA, ALI G\+4
_table: ; static: table
.RES. L 4
. END

225 System Control

The functionsindicated in table 2.6 are provided as Hitachi SuperH RISC family engine dedicated
special instructions.

Table2.6 Special Instruction Usage I ntrinsic Functions

Iltem Description Explanation

SLEEP instruction void sleep(void) Compiles to the SLEEP instruction
TAS instruction void tas(char *addr) Compiles to TAS.B @addr
TRAPA instruction void trapa(int trap_no) Compiles to TRAPA #trap_no

Notes: 1. The trap_no in the table must be a constant.

2. The trapa intrinsic function activates an interrupt function from the C program. Create
the called function as an interrupt function.

45
HITACHI

In the following example, a SLEEP instruction isissued and the CPU is placed in the low power
state. In the low power state, execution of the next instruction is halted and the internal status of
the CPU is maintained while the occurrence of an interrupt request is awaited. Low power stateis
exited when an interrupt occurs.

C Language Code:

#i ncl ude <nachi ne. h>
void func(void)

{

sl eép() ; /* 1ssue SLEEP instruction®*/

}

Assembly L anguage Code:

. EXPCRT _func
. SECTI CN P, OCDE, ALI G\=4
_func: ;function: func

SLEEP

RTS
NCP
. END

226 Multiply/Accumulate Operations (1)

The functionsindicated in table 2.7 are provided for multiply/accumul ate operations.

46
HITACHI

Table2.7 Multiply/Accumulate Operation Usage I ntrinsic Functions

Item Description Explanation

Word multiply/accumulate int macw(short *ptrl, Multiply/accumulate word data *ptrl (16 bit)
short *ptr2, unsigned with word data *ptr2 (16 bit) number of times

int count) indicated by count
Longword int macl(int *ptrl, int Multiply/accumulate longword data *ptrl (32
multiply/accumulate *ptr2, unsigned int bit) with longword data *ptr2 (32 bit) number
count) of times indicated by count

The word multiply/accumulate function macw is supported by SH-1, SH-2, and SH-3, but the
longword multiply/accumulate function macl is only supported by SH-2 and SH-3.

The multiply/accumul ate operation intrinsic function does not perform an argument check. Adjust
both of the data tables on which multiply/accumulate operations are performed so that the
boundaries are 2-byte for word multiply/accumulate functions and 4-byte for longword
multiply/accumulate functions.

In the exampl e below, the multiply/accumulate operation is performed. When the number of
multiply/accumul ate operation executions is 32 times or fewer, they are realized by repeating the
MAC instruction, but when the number is 33 times or more, or el se when the number of iterations
isavariable, they are realized with aMAC instruction loop.

C Language Code:

i ncl ude <machi ne. h>
short a[Sl Zf;
short b[Sl ZE] ;

voi d func(voi d)

{ a[0] * b[0O]
: + a[1] * b[1]

: + a[2] * b[2]

macw(a, b, Sl ZE) ; + : :

+a[SIZE-2] * b[SlZE-2]
+a[SIZE-1] * b[SlZE-1]

47
HITACHI

Assembly L anguage Program:

e For SIZE < 32: Repeat the MAC instruction

. EXPCRT _func
. SECTICN P, OCDE, ALI G\=4
_func: ; function: func
STS. L MACH @RL5
STS. L MACL, @ R15
MOV. L L211+2, R3
CLRVAC
MOV. L L211+6, R2
MAC. W @+, @3+ ;Repeat according to SIZE
STS MACL, RO
LDS. L @r15+, NACL
RTS
LDS. L @r15+, NACH
L211:
.RES. W 1
.DATA L |
.DATA L _a
.END

48
HITACHI

e For SIZE > 32, or variable: Realize through aMAC instruction loop

. EXPCRT _func
. SECTI ON P, CCDE, ALI G\=4
_func: ; function: func
STS. L MACH @ R15
MOV #Sl ZE, R3
STS. L MACL, @ RL5
TST R3, R3
CLRVAC
BT L211
MOV. L L213+2, R2
SHL R3
MOV. L L213+6, RL
ADD RL, R3
L212:
MAC. W @R+, @2+
Qw/ H Rl, R3
BT L212
L211:
STS MACL, RO
LDS. L @R15+, MACL
RTS
LDS. L @R15+, NACH
L213:
.RES. W 1
.DATA L b
.DATA L ‘a
. END

2.2.7 Multiply/Accumulate Operations (2)

The functionsindicated in table 2.8 are provided for multiply/accumul ate operations which
correspond to the link buffer.

HITACHI

Table2.8 Link Buffer Related Multiply/Accumulate Operation Intrinsic Functions

Item Description Explanation

Link buffer related int macwil(short *ptrl, Multiply/accumulate word data *ptrl (16 bit)

word short *ptr2,unsigned int with the word data *ptr2 (16 bit) designated by

multiply/accumulate count, unsigned int mask) mask number of times indicated by count

Link buffer related int macll(int *ptrl, int Multiply/accumulate longword data *ptrl (32

longword *ptr2,unsigned int count, bit) with the longword data *ptr2 (32 bit)

multiply/accumulate unsigned int mask) designated by mask number of times indicated
by count

Thelink buffer related word multiply/accumulate function macwl is supported by SH-1, SH-2, and
SH-3, but the link buffer related longword multiply/accumulate function macll is only supported
by SH-2 and SH-3.

Thelink buffer related multiply/accumul ate operation intrinsic function does not perform an
argument check.

Use 2-byte boundaries when the first argument is aword multiply/accumul ate function, 4-byte
when it is alongword multiply/accumulate function, and make the second argument twice that of
the link buffer size.

In the example below, the link buffer related multiply/accumulate operation is performed. Because
the second argument must be adjusted so that the boundary is twice that of the link buffer size, it is
treated as a separatefile.

50
HITACHI

C Language Sour ce Code: macwl.c:

#i ncl ude <machi ne. h>
short a[Sl ZE] ;

extern short b[]; a[0] * b[O]
a[1] * b[1]
void func(voi d) :

{ + a[7] * b[7]
+ a[8] * b[O]
: + a[9] * b[1]
nmacw (a, b, Sl ZE, - 0x10) ; + a[15] * b[7]
. .
+ a[Sl ZE-8] * b[O]
+ a[SIZE-7] * b[1]
} + :

+a[SIZE-1] * b[7]

Assembly L anguage Sour ce Code: buffer.src:

. EXPCRT b
. SECTI ON B, DATA, ALI G\=32
b ; static: b
.RES. W 8
. END

51
HITACHI

Assembly L anguage Code: macwl.src:

.| MPCRT b
. EXPCRT _a
. EXPCRT _func
. SECTI ON P, CCDE, ALI G\=4
_func: ; function: func
STS. L MACH @ R15
MOV #Sl ZE, R3
STS. L MACL, @ R15
TST R3, R3
CLRVAC
BT L211
MOV. L L213+2, R1
SHL R3
MOV. L L213+6, R4
MOV #-17, R
ADD R4, R3
L212:
MAC W @4+, @1+
AND Rz, R1
oW/ H R4, R3
BT L212

52
HITACHI

L211:

STS MACL, RO

LDS. L @RL5+, MACL

RTS

LDS. L @RL5+, MACH
L213:

.RES. W 1

.DATA L |

.DATA L

. SECTI ON B, DATA, ALl G\=4
_a

.RES. W Sl ZE

.END

228 System Call

The description of the intrinsic function that allows issuance of system calls from C programsis
noted below. The number of arguments for system callsis variable from 0 to 4.

Description:

ret=trapa_svc(int trap_no, int code,
[typel pl[, type2 p2[, type3 p3[, type4 p4]]]])

e trap_no: trap number (designated by a constant)

e code: function code, alocated to RO

e plL first argument, allocated to R4

e p2 second argument, allocated to R5

e p3: third argument, alocated to R6

e pd fourth argument, allocated to R7

e typel-typed: argument formats are general integer format

([unsigned]char, [unsigned]short, [unsigned]int,
[unsigned]long), or else pointer format

In the example below, a system call of an OS that can be designated by trap number 63 isissued
using this function.

HITACHI

C Language Code:

#i ncl ude <machi ne. h>
#def i ne SI G_SEMOxf f c8

voi d func(voi d)

{

trapa_svc(63, SI G SEM 0x05);

}

Assembly Language Code:

. EXPCRT _func

. SECTI ON P, CCDE, ALI G\=4
_func: ; function: func

MOV. L L209+2, RO

MOV #5, R4

TRAPA #63

RTS

NCP
L209:

.RES' W 1

.DATA L H 0000FFC3

. END

2.29 Prefetch Instruction

The description of the intrinsic function that performs prefetches of the cache for the SH-3 is noted
below. Thisintrinsic function is effective only when -cpu=sh3 is designated.

54
HITACHI

Description:
voi d prefetch(void *pl)
pl: address for which prefetch is performed
C Language Code:

#i ncl ude <unachi ne. h>

int a[1200];
f ()
{
int *pa = a;
pr ef et ch(pa+8) ;
}
Assembly L anguage Code:
_f: ; function: f
ADD #32, R6
PREF @6
2.3 Inline Expansion
231 Inline Expansion of Functions

The function inline expansion capability is used to increase program execution speed. Ordinarily,
function callstake the form of abranch to a section with a series of processes and implementing
that processing. However, with this capability, the function processing is inserted at the function
call position and the branch section instructions are deleted to increase the speed. This can have a
large effect, particularly when functions called from within loops are expanded.

55
HITACHI

There are two types of inline expansion of functions, as follows:

1. Automatic Inline Expansion:

When the -speed option is desighated during compilation, automatic inline devel opment of
functions takes effect and small functions are automatically expanded. The size of functions to
be expanded can be designated with the -inline option to more precisely control the automatic
inline development. Moreover, the node count (the number of variable, operator statements
excepting the declaration section) designates the function size (the -inline option default value
is 20).

Description:
shc -speed[-inline=<node count>]..

2. Inline Expansion by a Control Statement:
Functions to be expanded inline can be designated with a#pragma inline statement.

Description:
#pragma i nline(<function nanme>[, <function nanme>...])
A function called from within aloop is expanded inline.

An example of automatic inline expansion is below. When the following program is compiled
after adding the -speed option, f is expanded inline.

C Language Code:

externint *z;

int f (int pl,int p2) /* Expanded function */
{
if (pl > p2)
return pl
elseif (pl < p2)
return p2
el se
return O
}
void g (int *x, int *y, int count)
{
for (; count>0; count--, z++ Xx++ y++)
*z = f(*x, *y);
}

56
HITACHI

An example of inline expansion by a control statement is shown below. Functions f1 and f2
designated by #pragmainline are expanded inline.

C Language Code:

i nt vV, W X,Y;
#pragma inline(fl,f2) [* Designation of functionsfor inline
expansion*/

int fi(int a, int b) /* Expanded function */
{

return (atb)/2;
}
int f2(int c, int d) /* Expanded function */
{

return (c-d)/2;
}
void g ()
{

int i;

for(i=0;i<100;i++){

if(f1(x,y) == f2(v,wW)
sl eep();

}

}
Precautions:

1. Designate #pragma inline before the function body definition.

2. Functions designated by #pragma inline also generate external definitions, so when writing
inline functions within files where multiple files are included, always designate static in the
function declaration.

3. Thefollowing functions are not expanded inline:

Functions with variable parameters
Functions that reference parameter addresses within functions

Functions for which the number and format of actual arguments and temporary
arguments are not in agreement

Functions called by an address
Functions called from inline expanded functions

4. With the SH-2 and SH-3, there are cases in which speed is not increased by inline expansion
because of cache errors.

57
HITACHI

5. When this capability is used, there is atendency for program size to increase because
equivalent code is expanded in the function call position. Consideration should be given to
finding a balance between execution speed and program size.

232 Embedded Assembler Inline Expansion Notation Method

There are cases in which one wants to use CPU instructions not supported by the C language, or
wants to improve performance by making statements in assembly language rather thanin C. In
such cases, there is a method of making the statements in assembly language and joining that code
with the C program, but the SH series C compiler can incorporate such code into the C source
program by using the embedded assembler inline expansion capability.

Code written in assembly language is generally written in the same form as that of C language
functions, and when those functions are declared as functions written by the assembler by placing
a“#pragmainline_asm” before them, the compiler expands the assembler code in the function call
position.

Follow the C compiler creation rules concerning the interface between functions. The C compiler
stores parameter values in registers R4 to R7, and generates code assuming that return values are
stored in RO.

Description:
#pragna inline_asn(<function name>[, <function nane>...])

In the following example, when upper and lower byte switching occurs frequently, it is the key to
performance, so a byte swap function iswritten by the assembler and embedded inline expansion
is used.

58
HITACHI

C Language Code:

pragna i nl i ne_asn{swap) /*Designation of assembler function to be

short swap(short pl)

EXTU W
SWAP. B
ow/ Gr

?0001.:

expanded*/

improved performance*/

R4, RO ;clear upper word
RO, R ;swap with RO lower word
R, RO ;if (R2<RO)
20001 ; then goto 20001
R2, RO ;return R2

:local label

void f (short *x, short *y, int i)

{

for (;

}

i >0 i--, x++, y++)
*y = swap(*x); [*Written in the same manner asaC
function call*/

Assembly L anguage Expansion Code (Partial):

f:

MOV. L R14, @R15
MOV R6, R14
MOV. L R13, @R15
oW/ PL R14

MOV. L R12, @R15
MOV R5, R13
MOV R4, R12

BT L218

MOV. L L219, R3
JWP a3

HITACHI

/*Write with the assembler the function for

59

60

L218:
L216:

L219:

L217:

?0001:

L220:
L215:

L221:

MOV. W

. DATA L

EXTU W
SWAP. B
oW/ Gr

JALTGN
MOV. W

oW/ PL

MOV. L
JWP

MOV. L
MOV. L
RTS

MOV. L

.RES. W
. DATA L

@12, R4
L217

L215

R4, RO
RO, R2
R2, RO
2?0001

R2, RO

4
RO, @13
#-1, R4
#2, R12
#2, R13
R14

L220
L221+2, R3
@3

@r15+, R12
@R15+, R13

@r15+ R14

L216

HITACHI

Precautions:

1. Designate #pragmainline_asm before the function body definition.

2. Functions designated by #pragmainline_asm also generate external definitions, so when
writing inline expansion functions within files where multiple files are included, always
designate static in the function declaration.

3. When using labels within assembler notation, always use local 1abels.

When using registers R8 to R15 in an assembl er notation function, it is necessary to save and
restore those registers at the beginning and end, respectively, of the assembler notation
function.

Do not write an RTS at the end of an assembler notation function.

Compile using the object format designation option -code=asmcode.

When this capability has been used, C source level debugging is subject to restrictions.

Refer to section 4.1.2, Function Call Interface, for details on performing function calls between
C language and assembly language programs.

9. Refer to the user manual for details on combining C programs and assembly programs.

e

O N O O

24 GBR Base Variable Designation

There are cases when one might wish to increase the execution speed of modules that often access
external variables. The GBR base variable designation capability is used in such cases to reference
frequently accessed data by the relative addressing mode, using the global base register (GBR).
GBR referenced variables are alocated to the $G0, $G1 sections and are referenced by offset from
the start address of the $G0 section stored in the GBR. For this reason, the devel oped code is more
compact and faster than code by which an address is|oaded to make the reference. Thisis
effective in improving both execution speed and ROM efficiency.

61
HITACHI

GBR
$GO section start address

\ Memory Data sizes that can be placed
Byte O N N
$GO section
2 bytes
Byte 255 4 bytes
or larger
$G1 section
Byte 510 e
Byte 1020 e

zrisi04.eps

Figure2.2 GBR Base Variable Referencing

GBR base referencing of external variablesis performed by using a preprocessor control
Statement.

The “#pragmagbr_base” designatesthat the variable isin an offset of 0 to 127 bytes from the
address pointed to by the GBR. Variables designated here are all ocated to the “$G0” section.

The “#pragmagbr_basel” designates that the offset for the variable from the address pointed to by
the GBR is amaximum of 255 bytes for char format or unsigned char format, a maximum of 510
bytes for short format or unsigned short format, and a maximum of 1020 bytes for int format,
unsigned int format, long format, unsigned long format, float format, or double format. Variables
designated here are all ocated to the “$G1” section.

Description:

#pragma gbr_base(<function name>[, <function nane>...])
#pragna gbr_basel(<functi on name>[, <function nane>...])

62
HITACHI

C Language Code:

#pragna gbr_base(al, b1, cl)

#pragna gbr_basel (a2, b2, c2)

char
short
| ong
voi d

{

}

al, az;
b1, b2;
cl, c2;
f 0

al = a2
bl = b2
cl =c2

Assembly L anguage Code:

f

MOv. B
MOV. B
MOV. W
MOV, W
MOV. L
RTS

MOV. L

@_a2- (STARTCF $Q0), GBR), RO
RO, @_al- (STARTCF $Q0), GBR)
@_b2- (STARTCF $Q0), GBR), RO
RO, @_b1- (STARTCF $Q0), GBR)
@_c2- (STARTCF $Q0), GBR), RO

RO, @ _c1- (STARTCF $Q0), GBR)

When using GBR base variables it is necessary to establish beforehand the $GO section start
addressin the GBR. An exampleis given below.

Initializing Program (Assembly L anguage Section):

G BG\

. SECTI ON $Q0, DATA, ALl G\=4

. DATA L (STARTCF $Q0) ;Establish the $GO0 section start address

.EXPCRT __G B&N

HITACHI

63

Initializing Program (C L anguage Section):

#i ncl ude <machi ne. h>
extern int *_G BG\

void _INTSCT () /* Function executed before the main function*/
{
set_gbr(_G B@\); [* Establish the $GO0 section start in the GBR
register*/
}
Precautions:

1. Establish the $GO0 section start addressin GBR at the start of program execution.

2. Always place the $G1 section immediately after the $GO0 section during linkage, and always
create a $GO section, even when using only #pragma gbr_basel.

3. Operation cannot be guaranteed when the total size exceeds 128 bytes after section $G0
linkage, or when data have offsets within section $G1 greater than those of the individual
formats indicated for “#pragmagbr_basel”.

4. Incorrect operation will result if items 2 and 3 above are not fulfilled, so confirm these items
with the map list that is output during linkage.

5. Asmuch as possible, allocate frequently accessed data and data on which bit operations are
performed to the $GO section. Accessing data allocated to the $GO section resultsin the
generation of objects that are more efficient in size and that allow faster execution speed than
when dataiis allocated to the $G1 section.

6. Variables designated by “#pragmagbr_base” or “#pragmagbr_basel” are alocated to the
individual sectionsin the order that they are declared. Keep in mind that the data size will
increase if variables of different sizes are alternately declared.

25 Register Save/Restore Control

For functions called from functions that perform only function call processing, there are casesin
which one might wish to increase execution speed by not performing register saves and
restorations. The preprocessor control statements #pragma noregsave, #pragma noregalloc, and
#pragma regsave are used in such cases for finer control of register saves/restores.

* #pragma noregsave designates that save/restore of general registersis not performed at
function entry and exit.

64
HITACHI

« #pragmanoregalloc designates that save/restore of genera registersis not performed at
function entry and exit, and that objects are generated without allocating register variable
usage registers (R8 to R14) for cases of exceeding the function calls.

* #pragmaregsave designates that save/restore of R8 to R14 from among the general registersis
performed at function entry and exit.

« Multiple designations of #pragma noregsave and #pragma noregalloc are possible for the same
function. When there are multiple designations, all register variable usage registers (R8 to R14)
are saved/restored at function entry/exit, and objects are generated without all ocating register
variable usage registers for cases of exceeding the function calls.

Description:

#pragnma nor egsave(<function nane>[, <function name>...])
#pragma nor egal | oc(<functi on nane>[, <function name>...])
#pragnma regsave(<function nanme>[, <function nanme>...])

Conditions under which register save/restore can be deleted or reduced are indicated below.

Example 1. In a case such as when registers R8 to R14 are used by afunction activated at power
on, it is not necessary to save/restore the registers, so the object size and execution speed can be
improved by designating “#pragma noregsave”.

Example 2: In acase such as when registers R8 to R14 are used in a function through which low
power mode ensues without returning to the calling source, it is not necessary to save/restore the
registers, so the object size and execution speed can be improved by designating “#pragma
noregsave”.

Example 3: When registers R8 to R14 are not allocated in function A, but are allocated in
functions B, C, D, and E, objects are generated that the save/restore R8 to R14 at the entry/exit of
functions B, C, D, and E. Because R8 to R14 are not used in function A, there is no effect if
register saves/restores are not performed by functions called by function A, but since there are
cases in which they will be used by functions that have called function A, it is possible to perform
the savelrestore at the entry/exit of function A, to avoid performing saves/restores in individual
functions called from function A.

65
HITACHI

When viewed from function A entry/exit,
the contents, upon entry, are returned without
change, so the contents of R8 to R14 do not change.

\ R8-R14

! R8—R14 not used ! savelrestore

| |
A / #pragma regsave (A) A /
| |

#pragma noregsave (B, C D, E)

_—
| | | | Addition | | | |
B C D E B C D E
N NS S NS S
Since R8 to R14 are used The R8 to R14 save/restore for
by each function, register each function is eliminated.

save/restore is necessary.

zrisi05.eps

Figure2.3 Register Save/Restore Control (1)

Example 4: For the same kind of calling relationship as in example 3, when functions C and C1
both use registers R8 to R14, it is necessary to insure that the use of R8 to R14 in function C1 does
not cross over into the function C call. In such cases, it is possible to designate function C with a
“#pragmanoregsave’ if adirectiveis given by designating function C1 with a“#pragma
noregalloc” so that R8 to R14 are not allocated to exceed the function call.

#pragma regsave (A)

| |
A #pragma noregsave (B, C D, E) A
| #pragma noregal | oc (Cl) |
C T T 1 — C T T 1
B||ci||D|]|E Addition B||ci||D|]|E
C C
Since R8 to R14 are used by The save/restore of R8 to R14
both functions, it is necessary to can be eliminated in C because
insure that function C processing R8 to R14 are not allocated in C1
does not influence C1. S0 as to cross over into the C call.

zrisi06.eps

Figure2.4 Register Save/Restore Control (2)

Example 5: For the same kind of calling relationship as that in example 3, when registers R8 to
R14 arealso used in function A, it is necessary to insure that use of R8 to R14 in function A does
not cross over into the function B, C, D, and E calls. In such cases, the multiple designations of

66
HITACHI

“#pragmaregsave’ and “#pragma noregaloc” are used for function A. When the multiple
designations of “#pragmaregsave” and “#pragma noregalloc’ are made, the R8 to R14
saves/restores are performed at function entry/exit, and code is output in which there is no cross
over alocation of R8 to R14 in function calls, so it becomes possible to designate functions B, C,
D, and E with “#pragma noregsave’.

Since R8 to R14 are used, The store/restore of R8 to R14
it is necessary to insure that is performed at function entry/exit,
processing in calling functions and R8 to R14 are not allocated in A,
does not influence A. to avoid crossover into the B to E calls.
““““ L
L #pragna regsave (A) L
A #pragnma noregal | oc (A) A
| #pragma noregsave (B, C D, E) |
—_—
1 Addition L L1
B C D E B C D E

zrisi07.eps

Figure2.5 Register Save/Restore Control (3)

Precautions: The results of calling functions with a#pragma noregsave designation can not be
guaranteed for any cases other than the following:

1. Functionsthat are not called by other functions, but that are used as first activated functions.
2. Callsfrom functions with a#pragma regsave designation.

3. Cadlsfrom functions with a#pragma regsave designation, by way of functions with #pragma
noregalloc designations.

2.6 2-Byte Address Variable Designation

By using a preprocessor control statement, it is possible to indicate to the compiler that externaly
referenced variables or function addresses are 2-byte.

The compiler regards identifiers declared with “#pragma abs16” as addresses that can be
expressed as 2-byte, and always allocates only a 2-byte portion to the storage area allocated for
4-byte addresses. Using this process, it is possible to improve ROM efficiency by decreasing the
object size.

This function can be used to great effect if memory placement is arranged during design so that
variables and functions referenced by multiple functions are given priority placement in addresses
that can be expressed as 2-byte.

67
HITACHI

Description:

#pragnma abs16 (<identifier> [,<identifier> ..])

Identifier: variable name | function name
External access variables and function addresses are established as 2-byte.
C Language Code:

#pragna abs16 (x,y, z)
extern int x();
int y;
long z;
f 0
{
z =x() *+vy;
}

Assembly L anguage Code:

f:

STS. L PR @R15
MOV. W L212, R3 ;Load the x address
JSR @3
NCP
MOV. W L212+2, R3 ;Load the y address
MOV. L @3, R
MOV. W L212+4, RL ;Load the z address
ADD R2, R0
LDS. L @R15+, PR
RTS
MOV. L RO, @&1
L212:

. DATA W X
. DATA W y
. DATA W oz

Precautions:

1. Set variables and functions designated as 2-byte address in a separate section with the section
switching function, and place the section so that the address can be expressed as 2 bytes during

68
HITACHI

linkage (figure 2.6). An error will occur during linkage if they are not placed in addresses

00000000

!

expressed as 2 bytes.
00007FFF }

—— Area that can be accessed by 2 bytes

FFFF8000

| b
FFFFFFFF

2risi08.eps

Figure2.6 Byte AddressVariable Designation

2. Function addresses will not be generated as 2-byte if position independent code generation is
designated during compilation.

2.7 Section Name Designation

Methods of allocating sections with the same attributes within one system to various addresses (for
example, when wishing to allocate certain modules to external RAM and other modules to on-chip
RAM), assigning different names to the partitioned sections and designating the addresses at
which the various sections are to be placed during linkage are described. The SH-seriesC

compiler provides two different methods of designating section names. In the explanatory example
below, modulesf, g, h, and dataa, b are dlocated tof, h, a, and g, b respectively.

With the SH series C compiler, it is possible to designate section names for objects by designating
the -section option during compilation. Using this capability, it becomes possible to group both
modules and data one wishes to partition into separate files, designate different section names
during compilation, and designate the individual start addresses during linkage (figure 2.7).

69
HITACHI

Source file 1 (filel.c)

Source file 2 (file2.c)

int a; int b;
f() a()
{ {
a=1; b=2;
} }
h()
{
a=b;
} -section = p = PX,
| b=BXfile2.c
shc filel.c
Object file 1 Obiject file 2
Section Section Section Section
name partition name partition
B a BX b
> |Startaddresscan| |¥
| bedesignated |
“| for each section |-
= E ; N during linkage. 4 py 9()

zrisi09.eps

Figure2.7 Section Name Designation Method

2.8 Section Switching

The -section option only allows designation of section namesin file units. However, by using
“#pragma section”, it becomes possible to switch section names with the same attributes within a
singlefile, and makes memory allocation more precise. Using this function, it is possible to
describe even the section partitions indicated in section 2.7.1 within one file. Figure 2.8 shows an
example of this capability.

70
HITACHI

Source file Object file

int a Section Section
f() name partition
{
a=1; B a
} v
#pragma section X .
b ()
i h() ™
int b; ~. | Start address can
a() "1 be designated
{ | for each section
b=2; .| during linkage.
} BX b >
#pragma section =
”
h() PX a()
{
a=b;
}

zrisi10.eps

Figure2.8 Section Switching Method

In this figure, the designation “#pragma section X” causes the program area section name from
this line to the line designated by “#pragma section” becomes “PX” and the uninitialized data
section name becomes “BX”. A “#pragma section” designation causes a return to the default
section name.

29 Position Independent Code

There are casesin which code in ROM istransferred to RAM upon startup and operation from
RAM isimplemented to increase execution speed. To realize this capability, it is necessary that
the program allow loading to arbitrary addresses. Coding that allows thisis called position
independent code (figure 2.9).

The SH series C compiler can generate position independent code if “pic=1" is designated in the
command line option during compilation.

HITACHI

71

Execution in target system
RAM

Execution format load module
Program can be loaded

to an arbitrary address

and executed.

_ The execution address in

=

the target system need not
% be decided when creating
the execution format
load module.

¢

Data Load add_res§ of the
data section is fixed.

zrisi01l.eps

Figure2.9 Position Independent Code
Precautions:

« Position independent coding can only be used with the SH-2 or SH-3, not with the SH-1.
¢ Position independent coding cannot be applied to data sections.

« When executing as position independent code, function addresses cannot be designated as
initial values. For example:

externint f();
int (*fp)() =f;
Operation cannot be guaranteed in this case because it is not certain that the function f address

has been loaded in RAM.

¢ When using position independent coding, link to the standard libraries “ shepic.lib” for SH-2,
and “shc3pb.lib” or “she3pl.lib” for SH-3. When position independent coding is not used, link
to the standard libraries “ shenpic.lib” for SH-2, and “ shc3npb.lib” or “shc3npl.lib” for SH-3.

210 Options

The options described in table 2.9 are provided with the SH series C compiler so that users can
select the policies for code generation.

72
HITACHI

Table2.9

Optionsfor Code Generation

Option Explanation

-speed Generates optimized for speed code.

-size Generates code giving priority to size reduction.

-divsion Selects the method of division. Three methods can be selected, which are, in order of
speed, using the CPU division instruction (cpu), using the divider with an interrupt
mask (peripheral), and using the divider without an interrupt mask (nomask).
However, because the method selected with this option chooses whether to make the
CPU or the divider process the division, it is only effective for the SH7604, which
includes a divider (even if SH-1 or SH-3 are selected with the -cpu option, code to
cause use of the divider will not be executed, though it will be generated).

-macsave Selects whether to save/restore the contents of the MACL and MACH registers, which

store multiplication results, at function entry/exit. The compiler performs MACL,
MACH register save/restore as the default, but as long as the MACL, MACH register
contents are not referenced extending beyond a jump instruction or not being used in
place or general registers it is possible to eliminate unnecessary register saves and
restores by not performing MACL, MACH register save/restore. Further, with the code
generated by the compiler, multiplication results are immediately stored in general
registers and there is no MACL, MACH register referencing which extends into
function calls. Consequently, when using only objects output by the compiler it is
possible to eliminate the MACL, MACH register save/restore.

73
HITACHI

Section 3 Effective Programming Techniques

The SH series C compiler performs optimization, but it is possible to improve performance further
through skillful programming. This section describes techniques for the user to create more
efficient programs. The two standards for program evaluation are that the execution speed be as
fast as possible, and that the program size be as small as possible. The SH series C compiler can
perform optimization giving priority to execution speed. Designate “speed” in the compiler
options to make this so. The basic rules for creating efficient programs are as follows:

¢ Improve Execution Speed: Because execution speed is determined by statements that are
frequently executed and by complex statements, the processing of such should be adequately
improved.

¢ Reduce Size: Similar processes should be standardized and complex functions revised in order
to reduce the program size.

Asaresult of compiler optimization, execution speed will sometimes differ from that found
through investigation on the desktop. Use a variety of methods and confirm actual compiler
execution in order to obtain better performance. Assembly language development code in this
section is obtained by using the following command line:

shcA<C | anguage_fi | e>A- code=asntode

This section mentions only cases such as assembly language development code differences
between the SH-1, SH-2, and SH-3. The assembly language devel opment code may changein the
future due to improvements in the compiler.

Table 3.1 isalisting of effective program creation techniques.

74
HITACHI

Table3.1 Effective Program Creation Techniques

ROM RAM Execution
Item Efficiency Efficiency Speed
Local variables (data size) (0] o
Global variables (sign) (0] (0]
Multiplication data size (0] 0]
Data struct conversion (0] (@)
Data consolidation o
Initial values and const format O
Local and global variables (0] o
Use of pointer variables (0] (0]
Constant referencing (1) (0]
Constant referencing (2) (0]
Variables that become fixed values (1)
Variables that become fixed values (2)
Module conversion of functions o @)
Function calls by pointer variable (0] (0]
Function interface O O
Tail recursion (0] o
Movement of constant expressions within loops (0]
Loop iteration reduction X 0]
Replacing arithmetic operations with logical operations O o
Multiplication/division usage
Application of formulas 0]
Practical use of tables o o
Conditional expressions (0] (0]
Floating point operation speed
switch statement and if statement o 0]
Inline assembly of functions X (0]
Inline assembly of asm code 0]
Practical use of the global base register (GBR) (0] (@)
Register save/restore control (0] (0]
2-byte address designation (0]
Prefetch instruction (@)

Note: O: improves performance; X: could worsen performance

HITACHI

31 Data Designation
Table 3.2 isalisting of itemsto be given consideration concerning data.

Table3.2 Cautionson Data Designation

Item Execution Speed

Data format designators, s There are cases in which program size increases when one tries to

format modifiers reduce the data size. Make format declarations considering the
data usage.

« Program size can sometimes change depending on the
presence/absence of signs, so be careful when making such
selections.

» For initialized data with unchanging values within the program, the
amount of memory used will be reduced if the const operator is
attached beforehand.

Data consolidation Allocate data so that no wasted areas are produced in the data area.

Struct » Program size can sometimes be reduced by placing frequently
definition/referencing accessed/modified data in a struct and using a pointer variable.

» Data size can be reduced by using bit fields.

Local variables and global Local variables are more efficient, so always declare any one that can
variables be used as a local variable as such, and not as a global variable.

Use of the pointer format Check to see whether or not programs using array format can be
rewritten using pointer format.

Use of on-chip ROM/RAM Because accessing on-chip memory is faster than accessing external
memory, common variables should be stored in on-chip memory.

311 Local Variables (Data Size)

Improvements: ROM efficiency and execution speed can sometimes be improved if the local
variable sizeistaken as 4 bytes.

Explanation: Since the Hitachi SuperH RISC engine family general registers are 4-byte, the basis
of processing is 4 bytes. Consequently, if there are operations using 1-byte/2-byte local variables,
code is added for conversion to 4-byte format. If variables for which 1 byte or 2 bytes are
sufficient are also taken as 4-byte, program size is reduced and execution speed can sometimes be
improved.

Example: Thetotal sum of the numbers from 1 to 10 is obtained.

76
HITACHI

Sour ce Code before |mprovement:

int f(void)
{
char a = 10;
int c=0;
for(; a>0; a--)
c += g
return(c);
}

Assembled Code before | mprovement:

MOV #10, R4

MOV #0, RS
L211:

EXTS. B R4, R3

ADD R3, RS

ADD #1, R4

EXTS. B R4, R2

Ow/ PL R2

BT L211

RTS

MOV R5, RO

Sour ce Code after |mprovement:

int f(void)
{
long a = 10;
int ¢ =0;
for(; a>0; a--)
c += g
return(c);
}

HITACHI

77

Assembled Code after |mprovement:

MOV #10, R4
MOV #0, RS
L211:

ADD R4, RS

ADD #-1, R4

oW/ PL R4

BT L211

RTS

MOV R5, RO
Item Before Improvement After Improvement
Code size 20 bytes 16 bytes
Execution speed 84 cycles 64 cycles

312 Global Variables (Sign)

I mprovements: When global variable format conversions are included within expressions, ROM
efficiency and execution speed can be improved if integers are declared as signed when either
signed or unsigned is acceptable for the integer format.

Explanation: With the Hitachi SuperH RISC engine family, when 1-byte/2-byte datais
transferred from memory with aMOV instruction, the EXTU instruction is added for unsigned
data. Consequently, unsigned format integers are less efficient than signed format integers.

Example: The value of variable ais substituted into variable b.
Sour ce Code befor e | mpr ovement:

unsi gned short a;
unsi gned short b;

i nt C;
voi d f(void)
{
c=b+a
}

78
HITACHI

Assembled Code before | mprovement:

MOV. L L212, R2

MOV. W @2, R3

MOV. L L212+4, RO

EXTU W R3, R3

MOV. W @0, RL

EXTU W Rl, R

ADD R, R3

MOV. L L212+8, RL

RTS

MOV. L R3, @
L212:

.DATA L B

.DATA L a

.DATA L

Sour ce Code after |mprovement:

short a;
short b;
i nt c;

voi d f(voi d)

HITACHI

79

Assembled Code after |mprovement:

MOV. L L212, R2

MOV. W @R, R3

MOV. L L212+4, RO

MOV. W @0, RL

ADD R, R3

MOV. L L212+8, Rl

RTS

MOV. L R3, @

L212:

. DATA L b

. DATA L _a

.DATA L _C
Item Before Improvement After Improvement
Code size 32 bytes 28 bytes
Execution speed 15 cycles 14 cycles

313 Data Size (Multiplication)

Improvements. Execution speed can be improved during multiplication if the
multiplicand/multiplier are declared as (unsigned)char or (unsigned)short.

Explanation: In SH-2, SH-3 multiplication, the multiplicand/multiplier are implemented with
MULS.W/MULU.W instructions when they are 1-byte/2-byte, but with the MUL.L instruction
when they are 4-byte.

In SH-1 multiplication, the multiplicand/multiplier are implemented with MULSW/MULU.W
instructions when they are 1-byte/2-byte, but the runtime library is called when they are 4-byte.

Example: The product of variable aand variable b is obtained and returned (SH-1).
Sour ce Code before | mprovement:

int f(long a, long b)
{

return(a * b);

80
HITACHI

Assembled Code before | mprovement:

STS. L PR @RL5
MV R4, RL
M. L L212, R3
JSR @3
MOV R5, RO
LDS. L @15+, PR
RTS
NP

L212:
.DATA L _ muli

Sour ce Code after |mprovement:

int f(short a, short b))
{

return(a * b);

}
Assembled Code after | mprovement:

f:

STS. L MACL, @ R15

MLS R5, R4

STS MACL, RO

RTS

LDS. L @r15+, MACL
Item Before Improvement After Improvement
Code size 20 bytes 10 bytes
Execution speed 31 cycles 8 cycles

Note: Fora=1,b=2.

314 Data Struct Conversion

Improvements. Execution speed can sometimes be improved if related data are declared with a
struct.

81
HITACHI

Explanation: When references are made many times within the same function, a struct becomes
more efficient if the base addressis allocated to aregister. Efficiency is also improved for passing
as arguments. Assembling frequently accessed data at the head of the struct is effective.

Such fine tuning as the modification of data expressionsis simplified when datais converted into a
struct.

Example: Numerical values are substituted into variables a, b, and c.

Sour ce Code before | mprovement:

int a, b, c;
voi d f(voi d)
{
a=1;
b=2;
c=3;
}

Assembled Code before | mprovement:

MOV. L L212, R2

MOV #2, Rl

MOV. L L212+4, RO

MOV #1, R3

MOV. L R3, @R

MOV #3, R3

MOV. L Rl, @0

MOV. L L212+8, RL

RTS

MOV. L R3, @
L212:

.DATA L _a

.DATA L b

.DATA L c

82
HITACHI

Sour ce Code after |mprovement:

struct s{
int a;
int b;
int c;

} sl

voi d f(voi d)
{
register struct s *p=&sl;
p-a=1;
p-b=2;
p-c=3;
}

Assembled Code after |mprovement:

f:

MOV. L L211, R4

MOV #1, R3

MOV. L R3, @4

MOV #2, R2

MOV. L R2, @4, R4)

MOV #3, R3

RTS

MOV. L R3, @8, R4)

L211:

.DATA L _sl
Iltem Before Improvement After Improvement
Code size 32 bytes 20 bytes
Execution speed 12 cycles 10 cycles

3.15 Data Consolidation

Improvements: The amount of RAM used can sometimes be reduced by rearranging the order of
data declarations.

83
HITACHI

Explanation: When declaring variables with different size formats, variables with the same size
format should be grouped together and declared. Data consolidation in this manner minimizes
vacant space in the data area.

Example: A total of 8 bytes of data are placed in memory.
Sour ce Code befor e | mprovement:

char

short

a
i nt b;

c
char d

Sour ce Code after | mprovement:

char a;
char d;
short «c;
i nt b;

Before After

a | a | d | c
b b
c | d |

zrisil2.eps

Figure3.1 Data Placement before and after | mprovement

3.16 Initial Values and const For mat

Improvements: Initial values for which there are no modifications should be declared with the
const format.

Explanation: Initialized datais usually transferred from the ROM areato the RAM area during
startup, and processing is carried out using the RAM area. For this reason, the secured RAM area
iswasted when initialized data with unchanging values exist in the program. If the const operator
is added to the initialized data, the transfer to the RAM area during startup is suppressed, resulting
in areduction of the memory used.

Additionally, ROM conversion is simplified if programs are created following the rule that initial
values are not modified.

Example: Fiveinitialized data are established.

84
HITACHI

Sour ce Code before |mprovement:

char a[] =
{1, 2, 3, 4, 5};

Theinitia values are transferred from ROM to RAM and processing is performed.
Sour ce Code after |mprovement:

const char a[] =
{1, 2, 3, 4, 5};

Processing is performed using the initial valuesin ROM.

3.1.7 L ocal and Global Variables

Improvements: Execution speed can be improved if locally used variables such as temporary
variables, loop counters, etc. are declared as local variables within the functions.

Explanation: For variables that can be used aslocal variables, always declare them as such, and
never as global variables. The values of global variables can end up changing due to such things as
function calls or pointer manipulations, so they do not become objects of global optimization.

Use of local variables provides the following advantages:

¢ The access cost is cheap.
e They can be allocated to registers.
* They become objects of optimization.

Example: A loop of 10 iterationsis effected.
Sour ce Code before | mprovement:
int i;

voi d f(voi d)

{
for(i =0; i <10; i++);

85
HITACHI

Assembled Code before | mprovement:

MOV, L L212+2, R4
MOV #0, R3
(VoY #10, RS
BRA L210
MOV, L R3, @
L211:
MOV, L @4, R
ADD #1, Rl
MOV. L RL, @4
L210:
MOV, L > R3
aw GE RS, R3
BF L211
RTS
NCP
L212:
.RES. W 1
.DATA L N

Sour ce Code after Improvement:

voi d f(voi d)
{

int i;

for(i =0; i <10; i++);
}

86
HITACHI

Assembled Code after | mprovement:

f:

MOV #10, RS
MOV #0, R4
L210:

ADD #1, R4

ow/ e R5, R4

BF L210

RTS

NCP
Iltem Before Improvement After Improvement
Code size 32 bytes 15 bytes
Execution speed 125 cycles 54 cycles

3.18 Use of Pointer Variables

Improvements. Execution speed can sometimes be improved if programs using array format are

rewritten using pointer format.

Explanation: For an array reference di], code is generated to add i to the address of g/Q]. There
are cases where the number of variables and operations can be reduced if apointer variableis

used.

Example: The sum total of 10 (= count) integersis obtained.

Sour ce Code before Improvement:

int f(int data[], int count)

{
int ret =0, i;
for(i =0; i < count; i++)
ret += data[i];
return ret;
}

HITACHI

87

Assembled Code before | mprovement:

MOV #0, RO
MOV RO, R7
MOV RO, R6
W/ GE R5, RO
BT L213
L214:
ADD #1, R6
MOV. L @4, R2
oW/ GE R5, R6
ADD R, R7
ADD #4, R4
BF L214
L213:
RTS
MOV R7, RO

Sour ce Code after | mprovement:

int f(int *data, int count)

{
int ret =0
for(; count > O; count--)
ret += *dat a++;
return ret;
}

88
HITACHI

Assembled Code after | mprovement:

MOV #0, R6
QW PL 23
BF L212
L213:
ADD # 1, RS
MOV. L @4+, R3
oW/ PL 23}
ADD R3, R6
BT L213
L212:
RTS
MOV R6, R0
Item Before Improvement After Improvement
Code size 26 bytes 20 bytes
Execution speed 87 cycles 75 cycles

3.19 Constant Referencing (1)

Improvements: Code size can be reduced if immediate values are expressed beforehand, as much
aspossible, as 1 byte.

Explanation: When 1-byte immediate values are used, they are embedded in the code. In contrast,
when 2-byte or 4-byte immediate values are used, they are generally placed in memory, and an
accessing format results.

Example: Animmediate valueis substituted into variablei.

Source Code (1):
voi d f(voi d)
{
i = 0x10000;
}

89
HITACHI

Assembly Development Code (1):

MOV. L L210, R3
MOV. L L210+4, R2
RTS
MOV. L R3, @
L210:
.DATA L H 00010000
.DATA L i
Sour ce Code (2):
voi d f(voi d)
{
i = 0x01;
}

Assembly Development Code (2):

f:

MOV. L L210, R2

MOV #1, R3

RTS

MOV. L R3, @

L210:

.DATA L _
Item (1) (2)
Code size 16 bytes 12 bytes
Execution speed 6 cycles 6 cycles

3.110 Constant Referencing (2)

Improvements: The generated code will not be larger if notation of constants in the source code is
made easier to read.

Explanation: There isafunction that allows the fold-in of constants. Even if constants are
expressed in formulas, they will not be reflected in the generated code because they are cal culated
during compilation.

Example: A constant is substituted into variable a.

90
HITACHI

Sour ce Code before |mprovement:

#def i ne MASK1 0x1000
#def i ne MASK2 0x10

int a=O0Oxffffffff;

voi d f(voi d)

{
int Xx;
X = NASK1,;
X | = MASK2;
a & x;

}

Assembled Code before | mprovement:

f:

MOV, W L211, R4
MOV, L L211+4, RS
MOV, L @5, R3
AND R4, R3
RTS
MOV, L R, @5
L211:
. DATA W H 1010
.RES. W 1
.DATA L a

91
HITACHI

Sour ce Code after | mprovement:

#def i ne MASK1 0x1000
#def i ne MASK2 0x10

int a=O0xffffffff;

voi d f(void)

{
a & NASKL | NASK2;

}
Assembled Code after |mprovement:

f:

MOV. L L210+4, R4

MOV. W L210, R3

MOV. L @4, R2

AND R3, R2

RTS

MOV. L R2, @4

L210:

. DATA W H 1010

.RES. W 1

.DATA L _a
Item Before Improvement After Improvement
Code size 20 bytes 20 bytes
Execution speed 10 cycles 10 cycles

3111 Variableswith Fixed Values (1)

Improvements: When variables have fixed values they are handled as constants, so memory
efficiency and execution speed will not change even if they are not calculated beforehand.

Explanation: The function that allows the fold-in of constants also operates on variables that
become constants; the values of such variables are traced, and constant calculation is performed.
Because of this, the generated code will not become larger if notation of the source code is made
easier to read.

Example: A return value is changed according to the results of variablerc.

92
HITACHI

Source Code (1) with Variable Value Calculated Beforehand:

#defi ne ERR -1
#defi ne NCRVAL 0

int f(void)
{

int rc, code;

rc =0;
code = NCRVAL;
return(code);

}
Assembly Development Code (1):

_f:

RTS
MOV #0, RO

Sour ce Code (2) with C Compiler Performing Calculation:

#defi ne ERR -1
#defi ne NCRVAL 0

int f(void)
{
int rc, code;
rc =0;
if(rc) code = ERR
el se code = NCRVAL;

return(code);

}

Assembly Development Code (2):

_f:

RTS
MOV #0, RO

93
HITACHI

Item Source Code (1) Source Code (2)

Code size 4 bytes 4 bytes

Execution speed 4 cycles 4 cycles

3112 Variableswith Fixed Values (2)

Improvements: When variables have fixed values they are handled as constants, so memory
efficiency and execution speed will not change even if they are not calculated beforehand.

Explanation: The function that allows the fold-in of constants also operates on variables that
become constants; the values of such variables are traced, and constant calculation is performed.
Because of this, the generated code will not become larger if notation of the source code is made
easier to read.

Example: The product of variables aand c is obtained, then substituted into variable b.

Sour ce Code (1) with Variable Value Calculated Beforehand:

int f(void)
{
int a, b;
a =3
b = 15;
return b;
}

Assembly Development Code (1):

_f:

RTS
MOV #15, RO

94
HITACHI

Sour ce Code (2) with C Compiler Performing Calculation:

int f(void)

{
int a, b, c;
a=3;
c =5
b=c"* aq
return b;

}

Assembly Development Code (2):

f:

RTS

MOV #15, R0
Item Source Code (1) Source Code (2)
Code size 4 bytes 4 bytes
Execution speed 4 cycles 4 cycles

3.2 Function Calls

Table 3.3 isalist of cautions concerning function calls.

Table 3.3 Cautions on Function Calls

HITACHI

95

Item

Cautions

Function placement

Group closely related functions within one file.

Interface

e Strictly choose the number of arguments (up to 4) so that all are
allocated to registers.

« When there are many arguments, use a struct and pass them with
a pointer.

Module partitioning

For very large modules, there are cases in which the various
optimizations will not be effectively performed. Use the function called
tail recursion to partition into modules with sizes for which optimization
can be effectively executed.

Replacement by macros

When there are many function calls, the execution speed can be
improved by use of macros. However, the program size increases
when macros are used, so select this according to the circumstances.

3.21 M odule Conver sion of Functions

I mprovements. Execution speed can be improved by grouping closely related functions within

onefile.

Explanation: Calling functionsin different filesisimplemented with a JSR instruction, but
function calls within the same file are implemented with a BSR instruction if the calling range is
close. Thisallows high speed and compact objects to be generated.

Additionally, modifications during tune-up are simplified by module conversion.

Example: Function g is called from function f.

Sour ce Code befor e | mpr ovement:

extern int g(void);

int f(void)

{

a();

96

HITACHI

Assembled Code before | mprovement:

f:

MOV, L L210+2, R3
WP B
NP
L210:
.RES. W 1
.DATA L g

Sour ce Code after |mprovement:

int g(void)
{
}

int f(void)
{

90);
}

Assembled Code after | mprovement:

9
RTS
NCP
_f:
BRA 9
NCP
Item Before Improvement After Improvement
Code size 12 bytes 4 bytes
Execution speed 5 cycles 3 cycles

Note: Therange that can be called with a BSR instruction is £4096 bytes (2048 instructions). If
the file size becomes too large, use of BSR loses its effectiveness.

97
HITACHI

322 Function Callsby Pointer Variable

I mprovements. Execution speed can be improved by using atable instead of branching with a
switch statement.

Explanation: If the processing for each switch statement caseis nearly the same, check to see
whether atable can be used.

Example: The function called is changed according to the value of function a.
Sour ce Code befor e | mprovement:

void f(int a)

{
swi tch(a)
{
caseO:
nop(); break;
case 1:
stop(); break;
case 2:
play(); break;
}
}

98
HITACHI

Assembled Code before | mprovement:

L214:

L215:

L216:

L217:

L218:

QW EQ

QW EQ

QW EQ

JMWP

RTS

.DATA L
. DATA L
. DATA L

R4, RO
#0, RO
L214
#1, RO
L215
#2, RO
L216
L217

L218, R3

L218+4, R3
a3

L218+8, R3
@3

_hop
_stop
_blay

HITACHI

99

Sour ce Code after | mprovement:

static int (*key[3])()=
{nop, stop, play};
void f(int a)
{
(*key[a]) ();
}

Assembled Code after | mprovement:

f:

MOV. L L215, RO
ADD #- 4, R15
MOV. L R4, @r15
MOV R4, R3
SH.L2 R3
MOV. L @RO, R3), R3
JwP R3
ADD #4, R15
L215:
.DATA L L210
. SECTI CN D, DATA, ALI G\=4
L210:
.DATA L _hop, _stop, _pl ay
Iltem Before Improvement After Improvement
Code size 52 bytes 20 bytes
Execution speed 14 cycles 10 cycles

3.2.3 Function Interface

I mprovements: The amount of RAM used can be reduced and execution speed improved through
management of function arguments (see section 4.1.2).

Explanation: Strictly limit the number of arguments (up to 4) so that all can be placed in registers.
When there are many arguments, use a struct and pass them with a pointer. Calls and function
entry/exit processing are simplified when the arguments are in registers. Also, the stack area can
be economized. Registers RO to R3 are work registers, R4 to R7 are for arguments, and R8 to R14
arefor local variables.

100
HITACHI

Example: The function f has five arguments, which is more than the number of registers for
argument.

Sour ce Code before |mprovement:
int f(int, int, int, int, int);

voi d g(void)

{
f(1, 2, 3, 4, 5);

}

Assembled Code before | mprovement:

_g:
STS. L PR @RL5
MOV #5, R3
MOV. L L210+2, R2
MOV #4, R7
MOV, L R3, @RL5
MOV #3, R6
MOV #2, RS
JSR are
MOV #1, R4
ADD #4, R15
LDS. L @15+, PR
RTS
NCP

L210:
.RES. W 1
.DATA L f

101
HITACHI

Sour ce Code after | mprovement:

struct b{
int a, b, c, d e
} b1x{1, 2, 3, 4, 5}

int f(struct b *p)

voi d g(void)
{

f(&b1);
}

Assembled Code after |mprovement:

9
MOV. L L211, R4
MOV. L L211+4, R3
IWP a3
NCP
L211:
.DATA L _bl
.DATA L f
Item Before Improvement After Improvement
Code size 32 bytes 16 bytes
Execution speed 16 cycles 6 cycles

3.24 Tail Recursion

Improvements: For large functions, execution speed will not suffer when programs are broken
into small modules with function calls one after another at the tail of the large function.

Explanation: When function func3() has been called in function func2() called from function
funcl(), atransfer to function func3() occurs with a BSR instruction/JSR instruction, and areturn
to function func2() occurs with an RTS instruction upon completion of function func3()
processing, and then areturn to function funcl() occurs with an RTS instruction upon completion
of function func2() processing (figure 3.2, left side).

In this case, when calling function func3() at the tail of function func2(), it is possible to transfer to
function func3() with a BSR instruction/JSR instruction and then return directly to function

102
HITACHI

funcl() with an RTS instruction upon completion of function func3() processing (figure 3.2, right
side). This capability is called tail recursion.

For very large modules, there are cases in which the various optimizations will not be effectively
performed. Performance can be improved by using this capability to partition into modules with
sizes for effective optimization.

funcl() func2() func3() funcl() func2() func3()

A

BSR BSR BSR BRA

\RTS \RTS \

RTS

T

zrisil4.eps

Figure3.2 Tail Recursion

Example: Functions g and h are called from function f. Returns from g and h are direct returns to
the function that called f without returning by way of f.

Sour ce Code before Application (Version 2.0):

void f(int x)
{
if (x==1)
9();
el se
h();
}

103
HITACHI

Assembled Code before Application:

STS. L PR @R15

MOV R4, R0

oW EQ #1, RO

BF L207

BRA 9

LDS. L @r15+, PR
L207:

BRA _h

LDS. L @R15+, PR

Sour ce Code after Application (Version 3.0):

void f(int x)
{
if (x==1)
90);

el se
h();
}

Assembled Code after Application:

MOV R15, RO

oW/ EQ #1, RO

BT 9

BRA _h

NCP
Item Before Application After Application
Code size 16 bytes 10 bytes
Execution speed 9 cycles 6 cycles

Note: When x = 2.

33 Operation Methods

Table 3.4 isalist of cautions concerning the form of operations.

104
HITACHI

Table3.4 Cautionson Operation Methods
Item Cautions
Constant « Investigate replacing partial expressions used in common within

expressions/unification of
common
expressions/movement

functions with temporary variables.

Place constant expressions used within for statements outside of
the for statements.

Loop iteration reduction

Investigate merging loop statements for which the loop conditions
are identical or similar.

Test the loop implementation.

Management of operation
methods

Reduce the number of operations by grouping identical operations.

Investigate whether the same results can be obtained by using
logical operators for operations using arithmetic operators.

Application of formulas

Investigate whether the number of operations can be reduced by
application of mathematical formulas.

High speed algorithm
usage

Investigate such algorithms as quick sorts in arrays that are completed
in a shorter calculation time.

Use of tables

If the processing for each switch statement case is nearly the
same, investigate whether a table can be used.

A method exists for improving execution speed by substituting
previous operation results into a table and referencing the table
values when those operation results become necessary. However,
this method increases the amount of ROM used, so select it after
balancing the required execution speed with the amount of leeway
in ROM capacity.

331

Movement of Constant Expressions Within Loops

Improvements: Execution speed can be improved if expressions within loops with unchanging
values are calculated before the start of the loop.

When expressions with unchanging valuesin aloop are calculated before the start of the loop, the
calculation can be omitted in each iteration and the execution instruction count can be reduced.

Example: Array element b[5] is substituted into array &[].

105
HITACHI

Sour ce Code before | mprovement:

voi d f(voi d)
{
int i, j;
j =5
for (1=0; i < 100; i++)
ali] =b[j] ;
}

Assembled Code before | mprovement:

f:

MOV L; L214+4, RS
MOV RS, R4
MOV, W L214, R6
ADD RS, R6
MOV, L L214+8, RS
L213:
MOV, L @5, R3
MOV, L R3, @%
ADD #4, R
QW HS R6, R4
BF L213
RTS
NP
L214:
.DATA W H 0190
.RES. W 1
.DATA L a
.DATA L H 00000014+ b

106
HITACHI

Sour ce Code after |mprovement:

voi d f(void)
{
int i, j, t;
i =5
for (1=0, t=b[j]; i < 100; i++)
ali] =t;
}

Assembled Code after | mprovement:

f:

MOV. L L215+4, RS

MOV. L @5, RS

MOV. L L215+8, R7

MOV R7, R4

MOV. W L215, R6

ADD R7, R6

L214:

MOV. L R5, @4

ADD #4, R4

OW/ HS R6, R4

BF L214

RTS

NCP

L215:

. DATA W H 0190

.RES. W 1

. DATA L H 00000014+ b

.DATA L _a
Item Before Improvement After Improvement
Code size 36 bytes 36 bytes
Execution speed 810 cycles 612 cycles

107
HITACHI

332 L oop Iteration Reduction
I mprovements. Execution speed can be greatly improved if loops are expanded.

Explanation: Loop expansion is particularly effective for inside loops. The program size
increases due to loop expansion, so this should be applied in order to improve execution speed
even if it means program size is sacrificed.

Example: Array & isinitialized.

Sour ce Code befor e | mprovement:

voi d f(voi d)
{
int i;
for (i =0; i <100; i++)
a[i] =0;
}

Assembled Code before | mprovement:

f:

MOV. L L212+2, R7
MOV #0, RB
MOV. W L212, R6
MOV R7, R4
ADD R7, R6
L211:
MOV. L R5, @4
ADD #4, R4
OW/ HS R6, R4
BF L211
RTS
NCP
L212:

. DATA W H 0190
. DATA L a

108
HITACHI

Sour ce Code after |mprovement:

voi d f(void)
{
int i;
for (i =0; i <100; i +=2)
{
ali] =0;
ali+l] =0;
}
}

Assembled Code after | mprovement:

f:

MOV. L L213+2, R7

MOV #0, R

MOV. W L213, R6

MOV R7, R4

ADD R7, R6

L212:

MOV R4, R7

MOV. L R5, @4

ADD #8, R4

MOV. L R5, @4, R7)

QW HS R6, R4

BF L212

RTS

NCP

L213:

. DATA W H 190

. DATA L _a
Iltem Before Improvement After Improvement
Code size 28 bytes 32 bytes
Execution speed 707 cycles 407 cycles

109
HITACHI

333 Replacing Arithmetic Operationswith L ogical Operations

Improvements. There are cases in which execution speed can be improved if arithmetic
operations are replaced by logical operations.

Explanation: Because the execution timeislonger for such operations as division, efficiency will
be improved when logical operations can be substituted.

Example: A return value is changed according to variable i being odd or even.
Sour ce Code befor e | mprovement:

int f(int i)

{
if (i %2) code
el se code

I
o
R

return(code);

}

Assembled Code before | mprovement:

f:

STS. L PR @R15

MOV R4, RL

MOV. L L214+2, R3

JSR @3

MOV #2, R0

TST RO, RO

BT L211

BRA L212

MOV #1, R4
L211:

MOV #0, R4
L212:

LDS. L @15+, PR

RTS

MOV R4, RO
L214:

.RES. W 1

. DATA L __modl s

110
HITACHI

Sour ce Code after |mprovement:

int f(int i)

{
if (i &1) code = -1;
el se code = 0;
return(code);

}

Assembly Development Code after | mprovement:

f:

MOV #1, R3
TST R3, R4
BT L211
BRA L212
MOV #1, 4
L211:
MOV #0, R4
L212:
RTS
MOV R4, R0
Item Before Improvement After Improvement
Code size 32 bytes 16 bytes
Execution speed 112 cycles 10 cycles

Note: Wheni=1.

334 Multiplication/Division Use

Improvements. When uncertain whether to apply multiplication/division or a shift operation, use
multiplication/division.

Explanation: Write programs so that they are easy to read. For multiplication/division, when the
multiplier/divisor and multiplicand/dividend are unsigned, compiler optimization resultsin
replacement by a combination of shift operations.

Example: Multiplication/division is executed.

111
HITACHI

Sour ce Code (Multiplication):

unsignd int a;

int f(void)
{

return(a*4);

}
Assembled Code for the Above:

f:

MOV. L L211, R3

MOV. L @3, R0

RTS

SH L2 RO
L211:

. DATA L a

Sour ce Code (Division):

unsignd int b;

int f(void)

{
return(b/ 2);

}
Assembled Code for the Above:

f:

MOv. L L211, R3

MOV. L @3, R0

RTS

SHR RO
L211:

. DATA L b

112
HITACHI

335 Application of Formulas

Improvements: Execution speed can be improved if the number of operations can be reduced
through application of mathematical formulas.

Explanation: Analysisis simplified due to mathematical formulas, but be aware that the number
of operations sometimes increases when arithmetic is applied.

Example: The sum total from 1 to 100 is obtained (for the SH-2 and SH-3, development iswith a
MUL.L instruction, so execution speed can be even further improved).

Sour ce Code before Improvement:

int f(long n)

{
int i, s;
for(s =0, i =1,
i <=n; i++)
S +=1i;
return(s);
}

Assembled Code before | mprovement:

f:

MOV #0, R6

MOV #1, R5

QW GT R4, RS

BT L212
L213:

ADD R5, R6

ADD #1, RS

oW/ GT R4, RS

BF L213
L212:

RTS

MOV R6, RO

113
HITACHI

Sour ce Code after | mprovement:

int f(long n)
{

return(n*(n+l)>>1);

}

Assembled Code after |mprovement:

f:

STS. L PR @R15

MOV R4, RL

MOV. L L211+2, R3

ADD #1, RL

JSR (@24]

MOV R4, R0

LDS. L @15+, PR

RTS

SHAR RO

L211:

.RES. W 1

.DATA L _muli
Item Before Improvement After Improvement
Code size 20 bytes 24 bytes
Execution speed 606 cycles 32 cycles

3.3.6 Practical Use of Tables

I mprovements. Execution speed can be improved by using tablesinstead of branching with
switch statements.

Explanation: If the processing for each switch statement caseis nearly the same, check to see
whether atable can be used.

Example: The character constant substituted into variable ch is changed according to the value of
variablei.

114
HITACHI

Sour ce Code before |mprovement:

char f(int i)

{
char ch;
switch(i)
{
case O:
ch ='a'; break;
case 1:
ch = 'x'; break;
case 2:
ch ="'b'; break;
}
return(ch);
}

115
HITACHI

Assembled Code before | mprovement:

MOV R4, RO
CVP/ EQ #0, RO
BT L212
CVP/ EQ #1, RO
BT L213
CVP/ EQ #2, RO
BT L214
BRA L215
NP
L212:
BRA L215
MOV #97, R4
L213:
BRA L215
MOV #120, R4
L214:
MOV #98, R4
L215:
RTS
MOV R4, RO

Sour ce Code after |mprovement:
char chbuf[] ={ 'a', 'x', 'b" };

char f(int i)

{
return(chbuf[i]);

116
HITACHI

Assembled Code after | mprovement:

f:

MOV. L L212+2, RO

RTS

MOV. B @RO,R4), RO

L212:

.RES. W 1

. DATA L _chbuf
Iltem Before Improvement After Improvement
Code size 32 bytes 12 bytes
Execution speed 14 cycles 5 cycles

Note: Wheni=2.

337 Conditional Expressions

Improvements: Efficient code is generated when 0 is used in performing comparisons with
constants.

Explanation: When comparing with O, no instruction is generated to load the constant value, so
shorter code is generated than when comparing with any value other than 0. Establish such
conditional expressions as loops and if statements so that comparisons are made with O.

Example: A return value is changed according to the argument value being one or greater, or not
one or greater.

Sour ce Code before | mprovement:

int f (int x)
{
if (x>1)
return 1;
el se
return O;
}

117
HITACHI

Assembled Code before | mprovement:

f:

MOV #1, R3

aw/ e R3, R4

BF L210

RTS

MOV #1, RO
L210:

MOV #0, RO
L211:

RTS

NCP

Sour ce Code after |mprovement:

int f (int x)
{
if (x>0
return 1;
el se
return O;
}

Assembly Development Code after | mprovement:

f:

aw/ PL R4

BF L210

RTS

MOV #1, R0
L210:

MOV #0, RO
L211:

RTS

NCP

118
HITACHI

Item Before Improvement After Improvement

Code size 16 bytes 14 bytes

Execution speed 7 cycles 6 cycles

338 Floating Point Operation Speed

Table 3.5 shows the speeds of the four arithmetical operations. Table 3.6 shows the operation
speeds of the elementary functions using standard libraries. In al cases, the clock frequency is 20
MHz, the values represent execution with on-chip ROM/RAM, and the units are puseconds.

Table3.5 Floating Point Four Arithmetical Operation Speeds

Double Accuracy Format Single Accuracy Format
Operation Average Value Worst Value Average Value Worst Value
Addition 8.8 16.8 53 6.6
Subtraction 10.0 18.1 5.4 7.4
Multiplication (SH-1) 13.6 14.0 6.0 6.0
Multiplication (SH-2) 9.9 10.1 5.3 5.5
Division 41.8 45.2 7.0 7.0

Table3.6 Floating Point Library Operation Speed Average Values

Double Accuracy Elementary Single Accuracy Elementary

Function Function Library Function Library
sin 185 95

cos 185 90

tan 260 120

asin 500 200

acos 500 210

atan 325 135

log 315 145

sqrt 97 33

exp 345 165

pow 680 325

119
HITACHI

34 Branching
Keep in mind the following items concerning branching:

e Group identical judgments together.
« When switch statements or else-if statements are long, place cases to be processed quickly and
frequently branching cases near the beginning.

¢ When switch statements or else-if statements are long, execution speed can be improved by
dividing into stages and judging.
34.1 switch Statement and if Statement

Improvements. For switch statements with up to 5 or 6 cases, execution speed can be improved
by using an if statement instead.

Explanation: Replace switch statements having small numbers of cases with if statements. The
switch statement has an overhead because it checks the value range of the variable before
consulting the case value table. On the other hand, because the if statement makes comparisons
over and over again, the efficiency dropsif the number of cases increases.

Example: A return value is changed according to the value of variable a.

Sour ce Code befor e | mprovement:

int x(int a)

{
switch(a)
{
case 1:
a = 2; break;
case 10:
a = 4; break;
defaul t:
a = 0; break;
}
return(a);
}

120
HITACHI

Assembled Code before | mprovement:

L211:

L212:

L213:

L214:

Sour ce Code after

int x(

{

QW EQ

QW EQ

RTS
MOV

Improvement:

int a)

if(a=1)
a= 2

R4, RO
#1, RO
L211

#10, RO

L212
L213

L214

#2, R4

L214
#4, R4

#0, R4

elseif(a==10)

a = 4
el se

a=0;
return(a);

HITACHI

121

Assembled Code after |mprovement:

X:
MOV R4, RO
oW/ EQ #1, RO
BF L210
BRA L211
MOV #2, R4
L210:
MOV R4, RO
oW EQ #10, RO
BF L212
BRA L211
MOV #4, R4
L212:
MOV #0, R4
L211:
RTS
MOV R4, RO
Item Before Improvement After Improvement
Code size 28 bytes 26 bytes
Execution speed 12 cycles 10 cycles

Note: When a=1.

35 Inline Expansion

Table 3.7 isalisting of items to be given consideration concerning inline expansion.

Table3.7 Cautionson Inline Development

Item

Cautions

Inline expansion of
functions

Try out the inline development of frequently called functions. However,
program size increases when functions are expanded, so select for a
balance between execution speed and ROM capacity.

Use of inline assembly
code

Programs written in assembler code can be called with the same
interface as for C language functions.

122

HITACHI

351 Inline Expansion of Functions

Improvements. Execution speed can be improved if frequently called functions are expanded
inline.

Explanation: Inline expansion of frequently called functions can improve execution speed.
Expansion will in some cases allow great effectiveness, particularly for functions called within
loops. However, program size tends to increase when inline expansion is used, so it should be
applied to improve the execution speed despite the fact program size will be sacrificed.

Example: The elements of array aand array b are exchanged.
Sour ce Code before |mprovement:

int x[10], y[10];
void g (int *a, int *b, int i)

{
int tenp;
tenp = afi];
a[i] =b[i];
b[i] = tenp;
}
void f (void)
{
int i;
for (i =0; i <10; i++)
a(x, y, i);
}

HITACHI

123

Assembled Code before | mprovement:

124

-G

L218:

SH L2
MOV. L

MOV. L
MOV. L

MOV. L
MOV. L
MOV. L
RTS

i
r - - -

aw/ e

LDS. L
MOV. L
MOV. L
MOV. L

#-4, R15
R6, R7
R

R7, @15
R4, R7
@7, R6
@5, R
RS, R4
a4, R
R3, @7
R, @4

#4, R15

R14, @R15
R13, @R15
#0, R14

R12, @R15
#10, R13
Rl1, @R15
PR @R15
L219+2, R11
L219+6, R12

R14, R6
R12, RS

9

R11, R4
#1, R4
R13, R14
L218
@15+, PR
@15+, R11
@15+, R12
@15+, R13

HITACHI

RTS

MOV, L @5+, R14
L219:

.RES. W 1

.DATA L X

.DATA L y

Sour ce Code after |mprovement:

#pragna inline (g)
int x[10], y[10];
void g (int *a, int *b, int i)

{
int tenp
tenp = ali];
a[i] =b[i];
b[i] = tenp;
}
void f (void)
{
int i;
for (i =0; i <10; i++)
a(x, y, i);
}

125
HITACHI

Assembled Code after |mprovement:

126

-G

SH L2
MOV. L

MOV. L
MOV. L

MOV. L
MOV. L
MOV. L
RTS

MOV. L

MOV. L
MOV. L
MOV. L
MOV. L

#-4, R15
R6, R7
R

R7, @15
R4, R7
@7, R6
@5, R
RS, R4
a4, R
R3, @7
R, @4

#4, R15

#0, R4

R12, @R15
#10, R12
R11, @R15
R10, @R1L5
L225+2, R10
L225+6, R11

HITACHI

L224:

MOV R4, RO

MOV Rl1, RL

MOV R10, R6

SH L2 RO

MOV RO, R7

ADD R6, R7

MOV. L @7, R6

MOV RO, RS

ADD Rl, RS

ADD #1, R4

MOV. L @5, R3

oW/ GE R12, R4

MOV. L R3, @7

MOV. L R6, @5

BF L224

MOV. L @15+, R10

MOV. L @r15+, R11

RTS

MOV. L @R15+, R12

L225:

.RES. W 1

.DATA L X

.DATA L -y
Iltem Before Improvement After Improvement
Code size 80 bytes 88 bytes
Execution speed 310 cycles 194 cycles

35.2 Embedded Inline Assembler Development
Improvements: Execution speed can be improved by writing assembler code into C programs.

Explanation: For the sake of performance, and particularly to improve execution speed, there are
times when one might wish to write programsin assembler code. In such cases, it is possible to
write only the required section in assembly code, and call that section in the same manner asaC
language function is called.

127
HITACHI

Example: The upper and lower bytes of the elements of array big are swapped, and then stored in
array little.

Sour ce Code befor e | mprovement:

#define A MAX 10
typedef unsigned char UChar;

short biglA MAX],little[A MAX;
short swap(short pl)

{
short ret;
*((Whar *)(&et)+1) = *((UChar *)(&p1));
*((Whar *)(&et)) = *((Whar *)(&p1)+1);
return ret;
}
void f (void)
{
int i;
short *x, *y;
x =1little;
y = big;
for(i=0; i<A MX i++ x++ y++){
*X = swap(*y);
}
}

128
HITACHI

Assembled Code before | mprovement:

_swap:
ADD #- 8, R15
MOV R15, R3
ADD #6, R3
MOV R15, R2
MOV. W R4, @3
MOV R15, RO
ADD #6, RO
MOV R15, R3
MOV. B @0, R0
MOV. B RO, @1, R?)
MOV R15, R2
ADD #6, R2
MOV. B @1,RrR),R0
MOV. B RO, @3
MOV. W @r15, R0
RTS
ADD #8, R15

_f:

MOV. L Rl4, @R15
MOV. L R13, @R15
MV #0, R14
MOV. L R12, @ R15
MDV. L Rl1l, @R15
STS. L PR @R15
MOV #10, R11
MOV. L L221, R13
MOV. L L221+4, R12

L220:

BSR _swap
MOV. W @r12, 4
MDV. W RO, @13
ADD #1, R14
ADD #2, R13
ADD #2, R12
oW/ GE Rl1, R14

129
HITACHI

BF L220

LDS. L @r15+, PR

MOV. L @5+, R11

MOV. L @15+, R12

MOV. L @5+, R13

RTS

MOV. L @5+, R14
L221:

.DATA L little

. DATA L _big

Sour ce Code after | mprovement:

#pragna i nline_asm (swap)
#define A MAX 10
typedef unsigned char UChar;

short big[A MAX],little[A MAX];
short swap(short p1l)

{
SWAP. B R4, RO
}
void f (void)
{
int i;
short *x, *y;
x =little;
y = big;
for(i=0; i<A MAX i++, Xx++ y++){
*x = svap(*y);
}
}

130
HITACHI

Assembled Code after | mprovement:

_swap:

L218:

L220:

SWAP. B
JALTGN
RTS

MOV. L

MOV. L

MOV. L

MOV. L

MOV. L
MOV. L

MOV. W

. RES. W
. DATA L
.DATA L

R4, @R15
#0, R14
R13, @R15
R12, @R15
R11, @R15
#10, R11
L220+2, R13
L220+6, R12

@12, R4
L219

little
_big

HITACHI

131

L219:

SWAP. B R4, RO

JALTQN 4

MOV. W RO, @R13

ADD #1, Rl4

ADD #2, R13

ADD #2, R12

aw/ & R11, R14

BT L221

MOV. L L222, R2

JWP ar

NCP

L221:

MOV. L @R15+ R11

MOV. L @15+ R12

MOV. L @R15+, R13

RTS

MOV. L @r15+, R14

L222:

. DATA L L218
Item Before Improvement After Improvement
Code size 88 bytes 64 bytes
Execution speed 358 cycles 185 cycles

3.6 Practical Use of the Global Base Register (GBR)

Improvements: Performance can be improved by using the GBR to reference external variables
with an offset.

Explanation: Compact objects are generated when frequently accessed external variables are
referenced by offset from the GBR used as a base register. Additionally, execution speed is
sometimes improved due to arelated reduction in the number of execution instructions.

Example: The contents of struct y are substituted into struct x.

132
HITACHI

Sour ce Code before |mprovement:

struct {

} Xy

void f (void)

{

char

char

short
short

| ong

| ong

cl
c2
sl
s2
11
|2

S

cl;
c2;
sl;
s2;

L1

| 2;

HITACHI

133

Assembled Code before | mprovement:

134

f:

L211:

MOV. L
MOV. L
MOV. B
MOV. B
MOV. B
MOv. B
MOV. W
MOV. W
MOV. W
MOV. W
MOV. L
MOV. L
MOV. L
RTS

MOV. L

.RES. W
. DATA L
. DATA L

L211+2, RS
L211+6, R4
@5, R3

R3, @4
@1,R5), R0
RO, @1, R4)
@2,R5), R0
RO, @2, R4)
@4, R5), RO
RO, @4, R4)
@8, R5), R3
R3, @8, R4)
@12, R5), R2

R, @12, R4)

[En

HITACHI

Sour ce Code after |mprovement:

#pragna gbr_base(x,y)

struct {

}Xoys

char
char
short
short
| ong
| ong

void f (void)

{

}

X X ox X ox X

.cl =
c2 =
sl =
.82 =
11 =
12 =

cl

cl,
c2;
s1,
S2;
I1;
12

< ¥ <X < ¥

Assembled Code after | mprovement:

f

MV. B
MOv. B
MV. B
MOv. B
MOV, W
MOV. W
MOV, W
MOV. W
MOV. L
MOV. L
MOV. L
RTS

MOV. L

@_y- (STARTCF $Q0), GBR), RO
RO, @ _x- (STARTCF $Q0), GBR)
@_y- (STARTCF $Q0) +1, GBR) , RO
RO, @ _x- (STARTCF $Q0) +1, GBR)
@_y- (STARTCF $Q0) +2, GBR) , RO
RO, @_x- (STARTCF $Q0) +2, GBR)
@_y- (STARTCF $Q0) +4, GBR RO
RO, @ _x- (STARTCF $Q0) +4, GBR)
@_y- (STARTCF $Q0) +8, GBR) , RO
RO, @ _x- (STARTCF $Q0) +8, GBR)
@_y- (STARTCF $Q0) +12, GBR) , R0

RO, @_x- (STARTCF $Q0) +12, GBR)

HITACHI

135

Item Before Improvement After Improvement

Code size 40 bytes 26 bytes

Execution speed 28 cycles 25 cycles

3.7 Register Save/Restore Contr ol

I mprovements: Execution speed can be improved by managing the method of saving and
restoring registers.

Explanation: Execution speed and ROM efficiency can be improved by eliminating both the save
and restore of the register variable usage register performed at the entry and exit of afinal
function. However, the opposite effect could possibly result because of the need to either save and
restore the register variable usage register in the function that called the function in which the
save/restore was eliminated, or to bypass the function call and use an object in which aregister
variable usage register is not allocated. Select this only after carefully investigating the location
whereit isto be applied.

Example: The save and restore of the stack are performed together by the function table.

136
HITACHI

Sour ce Code before |mprovement:

typedef int

ARRAY[LI STMAX] [LI STMAX] [LI STMAX] ;
ARRAY aryl, ary2, arys3;

void table (void)

{
init(74755, aryl);
copy(aryl, ary2);
sum(aryl, ary2, ary3);
}
void init (int seed, ARRAY p)
}
int i, j, k;
for (i=0; i<LISTMAX, i++)
for (j=0; j<LISTMAX, j++)
for (k=0; k<LISTMAX; k++){
seed = (seed*1309) &16383;
plil[i]1[k] = seed;
}
}
voi d copy (ARRAY p, ARRAY Q)
{
int i, j, k;
for (i=0; i<LISTMAX, i++)
for (j=0; j<LISTMAX, j++)
for (k=0; Kk<LISTMAX, k++)
alKI[iT05] = pliT[i10K];
}
voi d sum (ARRAY p, ARRAY g, ARRAY r)
{
int i, j, k;
for (i=0; i<LISTMAX i++)
for (j=0; j<LISTMAX |++)
for (k=0; k<LISTMAX, k++)
rliT0P 1K =pli1[i10Kk] + ali][i]1[k];
}

137
HITACHI

Assembled Code before Improvement (Partial):

138

_table:

_init:

MOV.
STS.

RTS

L

r- - - - - - -

R14, @R15
PR @R15
L244+6, R14
L244+10, R4
_init

R14, RS
L244+14, R5
_copy

R4, R4

R4, R4
@15+, PR
L244+18, R6
L244+14, RS
_sum
@r15+, R14

#2, R6

R4, @ R15
R13, @R15
R12, @R15
#0, R13
Rl1l, @R15
R5, R12
R10, @R15
R9, @R15
R8, @R15

@15+, PR
@R15+, R8
@OR15+, RO
@r15+, R10
@15+, R11
@R15+, R12
@15+, R13

HITACHI

_Ccopy:

_sum

MOV. L

MOV. L
MOV. L
MOV. L
MOV. L

MOV. L

MOV. L
MOV. L
MOV. L
MOV. L
RTS

MOV. L

MOV. L

MOV. L
MOV. L
MOV. L

MOV. L
MOV. L
MOV. L

MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
RTS

MOV. L

@r15+, R14

R4, @R15
R13, @R15
R12, @R15
R9, @R15
#2, R12

R8, @R15

@15+, R8
@15+, RO
@15+, R12
@r15+, R13

@r15+, R14

Rl4, @R15
#0, R7

R13, @R15
R12, @R15
Rl1l, @R15
#2, R12
R10, @R15
R9, @R15
R8, @R15

@r15+, R8
@15+, RO
@5+, R10
@15+, R11
@R15+, R12
@15+, R13

@r15+, R14

HITACHI

139

Sour ce Code after | mprovement:

#pragna regsave (table)
#pragna noregal | oc (table)
#pragna noregsave (init, copy, sum
typedef int

ARRAY[LI STVAX] [LI STMAX] [LI STMAX] ;
ARRAY aryl, ary2, ary3;
voi d table (void)

{
init(74755, aryl);
copy(aryl, ary2);
sun{aryl, ary2, ary3);
}
void init (int seed, ARRAY p)
{
int i, j, k;
for (i=0; i<LISTMAX, i++)
for (j=0; j<LISTMAX, j++)
for (k=0; k<LISTMAX; k++){
seed = (seed*1309) &16383;
Plil[j1[k] = seed;
}
}
voi d copy (ARRAY p, ARRAY Q)
{
int i, j, k;

for (i=0; i<LISTMAX i++)
for (j=0; j<LISTMAX, j++)
for (k=0; k<LISTMAX, k++)
alkI[i10i1 = plill[i10KI;

140
HITACHI

}
voi d sum (ARRAY p, ARRAY ¢, ARRAY r)

{
int i, j, k;
for (i=0; i<LISTMAX, i++)
for (j=0; j<LISTMAX | ++)
for (k=0; k<LISTMAX; k++)
rliT0i1CkI=pli1[j10K] + ali][j]1[k];
}

141
HITACHI

Assembled Code after Improvement (Partial):

142

_table:

_init:

5

r- - r - - - - - - - -

STS.
STS.
STS.

LDS. L
LDS. L
LDS. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
MOV. L
RTS

MOV. L

R14, @R15
R13, @R15
R12, @R15
Rl1, @R15
R10, @R15
R9, @R15
R8, ®R15
PR @R15
MACH @ R15
MACL, @ R15
L244+4, RS
L244+8, R4

_init

L244+12, RS
L244+4, R4

_copy

L244+16, R6
L244+12, RS
L244+4, R4

_sum

@15+, NACL
@RL5+, MNACH
@15+, PR
@r15+, R8
@r15+, RO
@Rr15+, R10
@15+ R11
@R15+, R12
@5+, R13

@r15+, R14

HITACHI

_Ccopy:

L238:

_sum

STS. L

MOV. W

MOV. W

oW/ CE

QW HS

LDS. L
RTS

awl e

QW GE

RTS

PR @R15
R5, R12
L244, RO
#0, R13
L244+2, R10
#2, R6
R5, R8
#32, R8

R6, R11
L236
#16, R12
R8, R12
L235
@15+, PR

#-4, R15
#0, RO
R9, R13
#2, R12
R5, R8
#32, R8

#1, Rl4
R12, R14
L239
#1, R13
R12, R13
L238

#4, RL5

HITACHI

143

ADD #-8, R15

MOV #2, R12

MOV #0, R7

MOV. L R7, @15

L2471

MOV R7, RLO

MOV. L @r15, R13

SHL2 R13

BF L242

MOV. L @15, R2

ADD #1, R

awl GE R12, R2

MOV. L R2, @rR15

BF L241

RTS

ADD #8, RL5

L244.

. DATA W H 3FFF

. DATA W H 051D

.DATA L _aryl

. DATA L H 00012403

.DATA L _ary?

.DATA L _ary3

.DATA L ol
Item Before Improvement After Improvement
Code size 370 bytes 332 bytes
Execution speed 819 cycles 795 cycles

3.8 2-Byte Address Designation

Improvements. ROM efficiency can be improved by expressing variable and function addresses
as 2 bytes.

Explanation: When variables or functions are placed in addresses that can be expressed in 2
bytes, code size can be reduced by making the code on the referencing side 2-byte.

Example: The external function g is called when the value of function x is 1.
144
HITACHI

Sour ce Code before |mprovement:

extern int x;
extern void g(void);

void f (void)
{
if (x ==1)
90);
}

Assembled Code before | mprovement:

f:

MOV. L L212+2, R3
MOV. L @3, R0
oW/ EQ #1, R0
BF L213
MOV. L L212+6, R2
JWP @
NP
L213:
RTS
NCP
L212:
.RES' W 1
.DATA L X
.DATA L g

145
HITACHI

Sour ce Code after | mprovement:

#pragna abs16(x, g)
extern int x;

extern void g(void);

void f (void)
{
if (x == 1)
90);
}

Assembled Code after |mprovement:

f:

MOV. W L212, R3
MOV. L @3, R0
oW/ EQ #1, R0
BF L213
MOV. W L212+2, R2
JIwP (@24
NCP
L213:
RTS
NCP
L212:
. DATA W X
. DATA W g
Item Before Improvement After Improvement
Code size 28 bytes 22 bytes
Execution speed 16 cycles 16 cycles

Note: When x =1 and function g is void g(){}.

39 Prefetch Instruction

Improvements. When accessing array variables, an improvement in execution speed can be
expected if a prefetch instruction is executed before the access (valid only for SH-3).

146
HITACHI

Explanation: When performing sequential accesses of an array with aloop, execution speed is
improved by performing a prefetch before referencing the array members. Additionally, prefetches
can be performed more effectively through loop expansion. However, no increase in speed can be
expected when prefetch instructions are executed consecutively, so be certain to execute with an
amount of separation sufficient to allow completion of a previous prefetch instruction.

Example: The product of each element of array aand array b are stored in array c.
Sour ce Code before |mprovement:

int a[1200], b[1200], c[1200];
void f (void)
{

int i;

int *pa, *pb, *pc

for (pa=a, pb=b, pc=c,
i =0; i<1200; i+=4){
*pc++ = *pat++ * *pb++;
*pc++ = *pat++ * *pb++;
*pc++ = *pat++ * *pb++;

*pc++ = *pat++ * *pb++,

147
HITACHI

Assembled Code before | mprovement:

STS. L MACL, @R15

MOV #0, R7

MOV. W L218, RO

MOV. L L218+2, R6

MOV. L L218+6, R4

MOV. L L218+10, R
L217:

MOV. L @4+, R

ADD #4, R7

MOV. L @6+, RL

aw/ GE RO, R7

M. L R2, RL

STS MACL, R2

MOV. L R2, @5

ADD #4, RS

MOV. L @4+, R

MV. L @6+ RL

M. L R2, RL

STS MACL, R2

MOV. L R2, @5

ADD #4, RS

MOV. L @4+, R2

M. L @6+ RL

M. L R2, RL

STS MACL, R2

MOV. L R2, @5

ADD #4, RS

MOV. L @4+, R2

MOV. L @6+, RL

M. L R2, RL

STS MACL, R2

MOV. L R2, @5

BF/ S L217

ADD #4, R

RTS

148
HITACHI

LDS. L @15+, MACL

L218:
. DATA W H 04B0
. DATA L a
.DATA L b
. DATA L c

Sour ce Code after |mprovement:

#i ncl ude <unmachi ne. h>

int a[1200], b[1200], c[1200];

void f (void)
{
int i;
int *pa, *pb, *pc;

for (pa=a, pb=b, pc=c, i=0, i<1200; i+=4){

#i f def PREF1

pr ef et ch(pa+8) ;
#endi f

*pc++ = *pat+ * *pb++;

*pc++ = *pat+ * *pbt+;
#i fdef PREF2

pr ef et ch(pb+8) ;
#endi f

*pc++ = *pat+ * *pb++;

*pc++ = *pat+ * *pb++;

149
HITACHI

Assembly Development Code after |mprovement (When PREF1, 2 AreValid):

STS. L MACL, @R15
MOV #0, R7
MOV. W L218, RO
MOV, L L218+2, RS
MOV, L L218+6, R4
MOV, L L218+10, R6
L217:
MOV R5, R3
ADD #32, R3
PREF @3
MOV, L @4+, R3
MOV, L @5+ Rl
ML. L R3, RL
STS MACL, R3
MOV, L R3, @6
MOV, L @4+, R3
ADD #4, R6
MOV, L @5+ Rl
MDY R4, R2
ML. L R3, RL
ADD #32, R2
STS MACL, R3
MOV, L R3, @6
ADD #4, R6
PREF @

150
HITACHI

MOV. L @4+, R

ADD #4, R7

MOV. L @5+, Rl

oW/ GE RO, R7

MLL. L R2, RL

STS MACL, R2

MOV. L R2, @6

ADD #4, R6

MOV. L @4+, R2

MOV. L @5+, RL

MLL. L R2, RL

STS MACL, R2

MOV. L R2, @6

BF S L217

ADD #4, R6

RTS

LDS. L @r15+, NACL

L218:

. DATA W H 04B0

.DATA L _a

.DATA L b

.DATA L e

After Improvement 1 After Improvement 2

Iltem Before Improvement (PREF1 only) (PREF1, 2)
Code size 84 bytes 92 bytes 96 bytes
Execution speed 61650 cycles 60300 cycles 57930 cycles

HITACHI

151

Section 4 Relation to Assembly Language Programs and
Cross Software

4.1 Relation to Assembly L anguage Programs

Because the SH series C compiler also supports Hitachi SuperH RISC engine family dedicated
special instructions, it allows most programs to be written in the C language. However, for better
performance, some sections require assembly language. Then those sections can be joined with the
C language programs.

This section outlines the following points one should be careful of when joining C language and
assembly language programs.

e External namereciprocal referencing methods
e Function call interface

Refer to the SH Series C Compiler User Manual for details.

411 External Name Reciprocal Referencing Methods

Referencing Assembly From C L anguage Programs. Referencing assembly language program
external definition names from C language programsiis as follows:

¢ Make an external definition declaration using the “.EXPORT” or “.GLOBAL" assembler
control instructions of the symbol names (32 characters or fewer) for assembly language
programswith “_" added to the beginning of their names.

¢ Inthe C program, make an external reference declaration of the symbol names without “_”
added at the beginning, using an “extern” memory class designator.

Assembly L anguage Program (Defining Side):

. EXPCRT _a, _b

. SECTI ON D, DATA, ALl G\=4
i .DATA L 1
b .DATA L 1

. END

152
HITACHI

C Language Program (Referencing Side):

externint a, b;

fO)
{

a +=b;

}

Referencing C Programs from Assembly: Referencing C language program external definition
names from assembly language programsis as follows:

« Make an externa definition of the symbol names (31 characters or fewer) in the C language
program.

¢ Inthe assembly language program, make an external reference declaration of the symbol
names with an underscore (_) added to the beginning, using an “.IMPORT” or “.GLOBAL”
assembler control instruction.

External definition names for C language programs are as follows:

* Thosethat are global variables, and further, are not static memory class
* Function names declared as extern memory class
« Function names for which static memory classis not designated

C Language Program (Defining Side):
int a;

Assembly L anguage Program (Referencing Side):

. | MPCRT a
. SECTI ON P, OCDE, ALl Q\=2
MOV, L Aa R

MOV, L @1, RO

ADD #1, RO

RTS

MOV, L RO, @

Aa .DATAL a
.END

153
HITACHI

41.2 Function Call Interface

When performing reciprocal function calls between C language programs and assembly language
programs, the following four rules should be observed on the assembly language program side:

Rule concerning the stack pointer

Rule concerning stack frame all ocation/rel ease

Rule concerning the registers

Rule concerning the setting/referencing of arguments and return values

A w bR

Items 1 through 3 are explained below. Refer to section 4.1.3, Argument and Return Value
Setting/Referencing, for item 4.

Stack Pointer: Do not store valid datain the stack arealower (in the direction of the 0 address)
than the address pointed to by the stack pointer. Data stored in addresses lower than that of the
stack pointer could possibly be destroyed by interrupt processing.

Stack Frame Allocation/Release: At the point of afunction call being performed (immediately
after execution of a JSR or BSR instruction), the stack pointer indicates the final address of the
stack used on the calling function side. Data all ocation/setting for addresses higher than this area
(inthe direction of address H'FFFFFFFF) is the duty of the calling side function.

At the time of the function return, the area established by the called function is released, then
returned to the calling function, usually through use of an RTS instruction. The area with higher
addresses than this (return value address and argument area) is released by the calling side
function (figure 4.1).

154
HITACHI

Immediately
before call/return

0

Lower addresses —» Stack used on the

called side
SP —»
Return value address
Argument area

Stack used on the

Upper addresses —» calling side

zrisil5.eps

Figure4.1 Stack Frame Allocation/Release

Registers. Immediately after afunction call, there are registers for which the C compiler preserves
the values, and others for which it does not. The rule for register preservation islisted in table 4.1.

Table4.1 Rulefor Register Preservation Immediately after Function Callsin C Programs

Iltem Object Registers Cautions on Assembly Language Programming

Registers RO to R7 If there are valid values in the object registers at the time of a
not function call, those values are saved on the calling side. They
preserved can be used by functions on the called side without saving.

Registers R8 to R15, MACH, Among the object registers, the values of those used within
preserved MACL*, PR functions are saved, then restored upon the return.

Note: MACH, MACL are not preserved when -macsave = 0.

Establish the connection between C language program and assembly language program functions
asfollows:

* When calling assembly language functions from C language programs:
When the object assembly language function calls a different module, save the PR register
value to the stack at the assembly language function entrance, and restore it from the stack at
the exit.
When the R8 to R15, MACH, or MACL registers are used within the assembly language
function, save the register values to the stack before using, and restore them from the stack
after using.
Refer to section 4.1.3, Argument and Return Vaue Setting/Referencing, for details on how
arguments are passed to assembly language functions.

155
HITACHI

¢ When calling C language functions from assembly language programs:
If there are valid values in the RO to R7 registers, save the values to empty registers or to the
stack before the C language function call.
Refer to section 4.1.3, Argument and Return Value Setting/Referencing, for details on how
return values are passed to assembly language functions.
The following is an example of how the assembly language function g is called by the C
language function f, and how the C language function h is called by the assembly language
function g.

C Language Function f:
extern void g();
f()

{
a();

156
HITACHI

Assembly L anguage Function g:

. EXPCRT g Function g external definition
declaration

. | MPCRT _h Function h external reference
declaration

. SECTI CN P, OCDE, ALIQGN=2

O STS. L PR @RL5 PR register value preservation

MOV. L Rl4, @R15 Preservation of registers used by
function g

MOV. L R13, @RL5

MOV. L R, @RL5 Preservation of registers used by
function h

MOV. L R, @RL5

MOV. L L _h, RO Cdll function h

JSR @0

NCP

MOV. L @r15+, R13 Restoration of registers used by
functiong

MOV. L @15+, R14

RTS

LDS. L @5+, PR PR register value restoration

L_h: .DATAL _h
. END

C Language Function h:

h()
{

4.1.3 Argument and Return Value Setting/Refer encing
The C compiler rules concerning argument and return val ue setting/referencing differ depending

on whether or not the individual argument and return value formats are clearly declared in the

157
HITACHI

function declaration. When the argument and return value formats are clearly declared in the C
language program the basic format declaration is used for the function.

In the following explanation, general rules concerning argument and return values in C programs
are described first, followed by an explanation of the allocation area for arguments, the method of
allocating arguments, and the location of return value establishment.

General Rules Concerning Arguments and Return Valuesin C Programs. Method of passing
arguments: Always call functions only after copying argument values to registers or to the
argument allocation area in the stack. The argument allocation areais not referenced by the calling
side function after areturn, so even if the argument values are changed by functions on the called
side, the calling side processing is not directly effected.

Rules for format conversion: When arguments are passed or return values returned, there are cases
in which the formats are automatically converted. Table 4.2 indicates the rules concerning format
conversion.

Table4.2 Rulesfor Format Conversion

Format Conversion Conversion Method

Format conversion of Arguments with formats declared with a basic format declaration are
arguments with declared converted to the declared format.

formats

Format conversion of Arguments without formats declared with a basic format declaration are
arguments without converted according to the following rules:

declared formats « char format, unsigned char format, short format, and unsigned short

format arguments are converted to int format.
« float format arguments are converted to double format.
» Formats other than the above are not converted.

Format conversion of Return values are converted to the format returned by the function.
return values

Example 1. When the format is declared with the basic format declaration:

long f();
long f()
{

float x;

return Xx;

158
HITACHI

The return value x is converted to long format in accordance with the basic format declaration.
Example 2: When the format is not declared with the basic format declaration:

void p(int,...);

long f()
{
char c;
p(1.0, c);
}

Thefirst argument is converted to int format since the format of the corresponding argument isint
format. The second argument is converted to int format since the corresponding argument has no
format.

Example 3: When the format is not declared with the basic format declaration:

When the argument format is not declared with the basic format declaration, the same format
should be designated on the called side and calling side so that the argument will be correctly
passed. Operation is not guaranteed if the formats do not match.

voi d f(x)
float x;
{
}

voi d mai n()

{

float x:
f(x);
}

In this example, thereis no basic format declaration for the function f argument, so argument X is
converted to double format when it is called on the function main side. However, the argument has
been declared as float format on the function f side. Consequently, the argument cannot be
correctly handed over. The argument format must either be declared with a basic format
declaration, or the argument declaration must be double format on the function f side.

159
HITACHI

Proper declaration of the argument format with a basic format declaration is shown below.

void f(float x)
{

voi d mai n()
{
float x:
f(x);
}
Argument Allocation Method in C Programs. Arguments are sometimes allocated to

registers and sometimes to an argument areain the stack. Figure 4.2 shows the argument
allocation area, and table 4.3 lists the general rules for argument allocation.

'l |

o~ o~

Lower addresses T Stack
SP —»
Return value address
R4
Argument area R5
R6
R7

Upper addresses ¢ Argument storage

usage registers

|:| Argument allocation area

zrisil6.eps

Figure4.2 Argument Allocation Areafor C Language Programs

160
HITACHI

Table4.3 General Rulesfor Argument Allocation in C Programs

Arguments Allocation Rules
Arguments passed using Argument R4 to R7
registers storage usage

registers
Arguments passed using Object formats char, unsigned char, short, unsigned short, int,
registers unsigned int, long, unsigned long, float, pointer
Arguments passed using the stack « Arguments with formats other than those that are

objects of register passing

* Functions declared as having variable arguments
with the basic format declaration*

¢ When other arguments have already been
allocated to registers R4 to R7

Note:

When functions have been declared as having variable arguments with the basic format
declaration, arguments without corresponding formats within the declaration and the
arguments immediately preceding them are allocated to the stack. For example:

int f2(int, int, int, int,...);
f2(a, b, c, x, vy, 2)
{

}

Arguments up until the fourth argument are allocated to registers as usual, but x here is
also allocated to the stack.

Allocation to argument storage usage registers. Allocation to the argument storage usage registers
occurs from the lowest numbered register in the order of the source program declarations. Figure
4.3 shows an example of argument storage usage register allocation.

Allocation to the argument areain the stack: Allocation to the argument areain the stack occurs
from the lower addresses in the order declared in the source program. Figures 4.4 through 4.8
show examples of argument storage usage stack allocation.

Note:

When structs and common element format arguments are established, they are allocated to
4-byte boundaries regardless of the boundary adjustments of their formats, and
additionally, byte areas that are multiples of 4 are used for their areas. Thisis because the
SH stack pointer changesin 4-byte units.

Example 1. All arguments are register passing format — Allocated to R4 to R7 in order of
declaration (figure 4.3)

161
HITACHI

int f(char, short, int, float);

f(1, 2, 3, 4.0);

R4 | Notsecued | 1 |
R5 |Notsecured| 2 |
R6 | 3 |
R7 | 4.0

zrisil7.eps

Figure4.3 C Language Program Argument Allocation (Example 1)

Example 2: There are many arguments and not all are allocated to registers — Arguments not
allocated to registers are allocated to the stack (figure 4.4)

int f(int, short, long, float,char);

f(1, 2, 3, 4.0, 5);

R4 | 1 |
R5 |Notsecured| 2 |
R6 | 3 |
R7 | 4.0 |

T Lower addresses

Argument area |

(stack) Not secured | 5 |

¢ Upper addresses

zrisi18.eps

Figure4.4 C Language Program Argument Allocation (Example 2)

Example 3: There are arguments with formats not allocated to registers — Arguments not
allocated to registers are allocated to the stack (figure 4.5)

162
HITACHI

struct s { int x, y;} &
int f(int, struct s, int);

f(1, a, 3);
R4 | 1 |
RS | 3 |
T Lower addresses
Argument area a.x

(stack) ay

¢ Upper addresses

zrisil9.eps

Figure4.5 C Language Program Argument Allocation (Example 3)

Example 4: Functions have been declared as having variable arguments with the basic format
declaration — Arguments without corresponding formats and the arguments immediately
preceding them are allocated to the stack in the order of declaration (figure 4.6)

int f(double, int, int, . . .);

f(1.0, 2, 3, 4);

R4 2 |

T Lower addresses

Argument area
(stack)

¢ Upper addresses

zrisi20.eps

Figure4.6 C Language Program Argument Allocation (Example 4)

163
HITACHI

Example5: There are no basic format declarations — Char format expanded to int format, float
format expanded to double format before alocation (figure 4.7)

int f();
char a;
float b;

f(a, b);

R4 a |

T Lower addresses

Argument area
(stack)

i Upper addresses

zrisi21.eps

Figure4.7 C Language Program Argument Allocation (Example 5)

Example 6: The function’s return format exceeds 4 bytes, or it isastruct - Return value address
established immediately before the argument area (figure 4.8)

struct s{char x, y, z}a, b;
doubl e f(struct s);

f(a);

164
HITACHI

T Lower addresses

Return value address

X y z Vacant area

Argument area ¢ Upper addresses

(stack)

zrisi22.eps

Figure4.8 C Language Program Argument Allocation (Example 6)

Return Value Setting L ocation in C Programs: Return values are sometimes set in registers and
sometimes in the stack, depending on the function’s return value format. Refer to table 4.4 for the
relationship between return value format and setting location.

When the function return value is set in the stack, that return value is established in the area
pointed to by the return value address. The calling side secures not only the argument area, but the
return value setting area as well and sets that address in the return value address before making the
function call (seefigure 4.9). Thereturn valueis not established if the function return value is void
format.

Table4.4 Return Value Formatsand Setting L ocationsin C Programs

Return Value Format Return Value Setting Location

char, unsigned char, short, unsigned RO: 32 bit (contents of the char, unsigned char upper 3
short, int, unsigned int, long, bytes, and short, unsigned short upper 2 bytes are not
unsigned long, float, pointer secured)

double, long double, structs, Return value setting area (stack)

common elements

165
HITACHI

Return value address

\ A

(Secured by Retgrn value
Argument area calling side) setting area

zrisi23.eps

Figure4.9 C Language Program Return Value Setting Area when Return Values Are Set in
the Stack

4.2 Relation to the Linkage Editor

421 ROM Conversion Support Function

When writing load modules into ROM, the initialized data areais also written in. However,
because data manipulation must be performed in RAM, theinitialized data area must be copied
from ROM to RAM during startup. This processing can be easily executed by using the linkage
editor’'s ROM conversion support function.

To use the ROM conversion support function, designate the option “ROM (D,R)” (D: initialized
data area section name in ROM, R: initialized data area section name in RAM) during linkage.

The following processes are carried out by the ROM conversion support function:

1. Anareain RAM with the same size as the initialized data areain ROM is secured. Figure 4.10
shows the method of dual allocation to memory.

166
HITACHI

ROM (D, R)

D: Initialized data area
section name in ROM ROM
R: Initialized data area area
section name in RAM

Initial values (D)

Initialized data area (D) ~N

4 Initialized data area (R)

RAM
area

Object Linkage editor allocation

zrisi24.eps

Figure4.10 Memory Allocation by the ROM Conversion Support Function

2. Referencing of symbols declared in theinitialized data areais performed automatically by
resolving addresses as pointing to the RAM area address.

The user incorporates processing to copy datain ROM to RAM into the startup routine. Refer to
section 1.6.4, Initializing Module Creation, for an example. Refer to the H Series Linkage Editor
User Manual for details on the ROM conversion support function. This function is supported by
the H Series Linkage Editor Version 4 and later.

4.2.2 Precautionson Linkage

Table 4.5 lists methods of dealing with error messages output when linking rel ocatable object files
generated by the C compiler.

167
HITACHI

Table45 Treating Error Messages During Linkage

Error Message

Manner of Confirmation

Method of Treatment

“CANNOT FIND
SECTION” is output.

Are C compiler output
section names desig-
nated with upper case
characters in the linkage
editor start option?

Designate a proper section hame.

“UNDEFINED EXTERNAL
SYMBOL" is output, even
though the referenced
function has been defined.

Is defined function name
correct?

If function name is incorrectly defined, the C
compiler judges it to be a new function and
does not output an error message. User
should correct the function name.

“UNDEFINED EXTERNAL
SYMBOL" is output, even
though the referenced
function has been defined.

Is basic format
declaration correct?

If basic format declaration is in error,
compiler judges that a function not existing
in the program has been referenced. User
should correct the basic format declaration.

“UNDEFINED EXTERNAL
SYMBOL" is output for

an assembly program
external definition symbol
referenced by a C
program.

Is symbol name defined
with “_" at the beginning
in the assembly program?

Add “_" to the beginning of the assembly
program external definition symbol name.

“UNDEFINED EXTERNAL
SYMBOL" is output fora C
program external definition
symbol referenced by an
assembly program.

Is symbol name
referenced with “_" at
the beginning in the
assembly program?

Add “_" to the beginning of the assembly
program external reference symbol name.

“UNDEFINED EXTERNAL
SYMBOL" is output for a
symbol beginning with “_
_" (double underline).

Designate a standard library for the library
file during linkage.

“UNDEFINED EXTERNAL
SYMBOL" is output for a
symbol other than those
mentioned above.

Is C library function
designated?

Include a standard library include file in the
C program. Also designate a standard
library for the library file during linkage.

“UNDEFINED EXTERNAL
SYMBOL” is output for a
symbol other than those
mentioned above.

Is C library function
standard /O library being
used?

Create a low standard interface routine and
link.

Even if object files have debug information attached to them, that debug information will not be
output in the load module file if the -debug option is not designated during linkage. In such cases,
source level debugging will not be performed in the simulator/debugger.

168

HITACHI

4.3 Relation to the Simulator/Debugger

When |oad modules are executed using the simulator/debugger, there is a possibility that a
“MEMORY ACCESS ERROR” will be generated. As a preventative measure, apply one of the
following methods:

1. Usethe same kind of memory mapping as for the actual machine when using the
simulator/debugger (the total byte count for any one section always becomes a multiple of 4).

2. During linkage, link the dummy section created by the following assembly language program
after all sections except the P section.

Assembly L anguage Program:

. SECTI ON DV DUMWY, ALI G\=1
.RES. B 3
. END

Example of Combination during Linkage:
For the command line option:
- START=P, C, DM 0400, B, DM D, DM 01000000
For subcommand files:
START P, C, DM 0400) , B, DV D, DM 01000000)
Cautions on performing source level debugging using the simulator/debugger are as follows:

1. UseLinkage Editor Version 5.3 or |ater.

2. Designate the -debug option during both compilation and linkage.

3. There are times when the local symbols of a concerned function cannot be referenced within
the function.

4. Only one statement can be displayed when multiple statements have been written into asingle
source line.

5. Source lines eliminated due to optimization cannot be debugged.

6. Because of the occurrence of line switching, etc. due to optimization, there are cases in which
the program execution order or disassemble display will differ from the source listing order.

169
HITACHI

Example:
C Language Program:

12 for (i=0; 1<6; i++)
13 {

14 j =i+l

15 j ++

16 }

17 j++

Simulator/Debugger Disassemble Display:

14 j =i+
12 for (i=0; 1<6; i++)
17 j++

7. There are cases in which the for or while statement will be displayed by a disassemble twice at
the entry and exit of loop statements.

170
HITACHI

Section 5 Questions and Answers

This section is a collection of answersto questions often asked by users.

51 const Declaration

Question: After making a const declaration, there was no alocation to the constant area (C)
section. Why?

Answer: When const declarations are made for symbols, be aware that the following meanings
result:

1. const char msg[]="sun”;

Allocation to C section: character string “sun”
2. const char *msg[]={"“sun”,”moon”};

Allocation to C section: character strings “sun” and “moon”

Allocation to D section: msg[0] and msg[1] (*msg[0] and *msg[1] start addresses)
3. const char *const msg[]={"“sun”,”moon”};

Allocation to C section: character strings “sun” and “moon”, msg[0] and msg[1] (*msg[0] and
*msg[1] start addresses)

4. char *const msg[]={"“sun”,”moon”};
Allocation to C section: character strings “sun” and “moon”, msg[0] and msg[1] (*msg[0] and

*msg[1] start addresses)

52 Reentrantsand Standard Libraries
Question: What cautions are necessary when making functions reentrant?

Answer: Functions that use global variables do not become reentrant. Also, even when the
intention was to create a reentrant function, if standard libraries are used in the course of using the
following standard include files, the function does not become a reentrant because global variables
are used.

A reentrant library listing is shown in the table below. Functions marked with aA in the table
establish _errno variables, and can therefore be executed as reentrant aslong as_errno is not
referenced in the program.

171
HITACHI

Table5.1 Reentrant Library

Standard Include File

Function Name

Reentrant

stddef.h

offsetof

assert.h

assert

ctype.h

isalnum

isalpha

iscntrl

isdigit

isgraph

islower

isprint

ispunct

isspace

isupper

isxdigit

tolower

toupper

math.h

acos

asin

atan

atan2

cos

sin

tan

cosh

sinh

tanh

exp

frexp

Idexp

log

log10

modf

pow

>i>|>|>|>|D>|>|D>|D>|D>|D>|B>PD> D> IDPDIO/O|]O|OO|O|O|O|O|O|O0O|0O|O0O|X|0O

172

HITACHI

Table5.1 Reentrant Library (cont)

Standard Include File Function Name Reentrant

math.h (cont.) sqrt

ceil
fabs

floor

fmod

setjmp.h setjmp

longjmp

stdarg.h va_start

va_arg

va_end

stdio.h fclose
fflush

fopen

freopen

setbuf

setvbuf

fprintf

fscanf

printf

scanf

sprintf

sscanf

viprintf

vprintf

vsprintf

fgetc

fgets

fputc

fputs

getc

getchar

XIX|X|IX|X|X|X|X|XIX|X|IX|X|X|X|IX|X|X|X|X|X|X|Oo|lOo|o|o|o|bp|bB|PB|D>|DP

gets

173
HITACHI

Table5.1 Reentrant Library (cont)

Standard Include File Function Name Reentrant

stdio.h (cont) putc

putchar

puts

ungetc

fread

fwrite

fseek

ftell

rewind

clearerr

feof

ferror

perror

stdlib.h atof

atoi

atol

strtod

strtol

rand

srand

calloc

free

malloc

realloc

bsearch

gsort

abs

div

labs

X|O|X|O|X|O|X|X|X|X|X|X|X|X|X|X|X|X|O|O|O|X|X|X|X|X|X|X|X

Idiv

174
HITACHI

Table5.1 Reentrant Library (cont)

Standard Include File

Function Name

Reentrant

string.h

memcpy

strcpy

strncpy

strcat

strncat

memcmp

stremp

strncmp

memchr

strchr

strcspn

strpbrk

strrchr

strspn

strstr

strtok

memset

strerror

strlen

memmove

O0O/0j|0|lO0O|X|O0O|/O|O|O|O|O|O|O|O|OCO|O|O|0O|0O]|O

Note: O: Reentrant; X: Non-reentrant; A: _errno established.

53 Method of Correctly Judging 1-Bit Data

Question: It isdifficult to judge whether data with a 1-bit sizein the bit field is set or not. Why is

this?

Answer: When 1-bit data have been declared as signed, those 1-bit data are interpreted as being

sign bits. Consequently, values that can be expressed as 1-bit data become 0 and —1. In order to

express 0 and 1, always declare as unsigned.

HITACHI

175

Example Wher e Judgment I's Always Wrong:

struct {
char p7:

char p6:

char p5:
char p4:
char p3:
char p2:

char pl:

P RPREPRPRPRRR

char pO:
}sl;

if(sl.p0 == 1){
sl.pl = O;
}

Example of Correct Judgment:

struct {
unsi gned char p7:

unsi gned char p6:

unsi gned char p5:
unsi gned char p4:
unsi gned char p3:

unsi gned char p2:

unsi gned char pl:

o S

unsi gned char pO:
}sl;

if(sl.p0 == 1){
sl.pl = O;
}

Note: The generated code will be more efficient when if statement conditional expressions are
compared with 0.

176
HITACHI

54 Installation

Question: Startup wasn't possible despite the fact that compiler, assembler, and linker commands

were input. Why?

Answer: Confirm that compiler, assembler, and linker installed directories are included in the
environment variable “PATH” designation. Refer to section 1.3, Installation Method, and the
software attached materials.

55 Specifications and Speeds for Execution Routines
Question: What are the speeds of the execution routines provided by the compiler?

Answer: Below isatable of the execution routine speeds/FPL speeds when on-chip ROM and
RAM are used.

HITACHI

177

Table5.2 Execution Routine Speeds/FPL Speeds

Function Stack No. of Execution Cycles
Classification Name Volume SH-1 SH-2
Constant Multiplication _muli 12 24-44 —
operations Division _divbs 4 32 32
_divbu 0 25 25
_divls 8 88 88
_divlu 4 81 81
_divws 4 39 39
_divwu 0 32 32
Remainder _modbs 8 44-45 44-45
_modbu 4 30-33 30-33
_modls 12 99-100 99-100
_modlu 8 83-85 83-85
_modws 8 50-51 50-51
_modwu 4 37-40 37-40
Floating Addition _adds 24 88-114 86-114
point _addd 24 147-306 147-196
operations Post-increment _poas 44 15+ adds 15+adds
_poad 84 38+ _addd 38+_addd
Subtraction _subs 24 95-134 93-135
_subd 44 174-336 171-215
_subdr 44 3+ subd 3+ subd
Post-decrement _poss 44 15+ subs 15+_subs
_posd 84 38+ _subd 38+ _subd
Multiplication _muls 24 108-111 94-98
_muld 64 263-271 191-197
Division _divs 20 135-136 134-135
_divd 60 743-816 741-766
_divdr 60 3+_divd 3+_divd
Comparison _eqs 20 46 46
_eqd 32 65 65
_nes 20 53 53
_hed 32 67 67
178

HITACHI

Table5.2 Execution Routine Speeds/FPL Speeds (cont)

No. of Execution Cycles

Function Stack
Classification Name Volume SH-1 SH-2
Floating Comparison _gts 20 53 53
point (cont) _gtd 32 67 67
operations
(cont) _lts 20 53 53
_ltd 32 67 67
_ges 20 53 53
_ged 32 67 67
_les 20 53 53
_led 32 67 67
Sign conversion _negs 0 11 11
_hegd 12 28 28
Conversion _stod 12 52 52
_dtos 20 90 90
_stoi 12 42-225 42-225
_dtoi 20 61-174 61-174
_stou 12 42-225 42-225
_dtou 20 61-174 61-174
_itos 12 39-194 39-194
_itod 12 48-203 48-203
_utos 31-186 31-186
_utod 37-192 37-192
Bit field setting _bfsbs 24 79-147 79-147
_bfsbu 20 49-97 49-97
_bfsls 24 79-435 79-435
_bfslu 20 49-263 49-263
_bfsws 24 79-243 79-243
_bfswu 20 49-151 49-151
Bit field referencing _bfxbs 8 3099 30-99
_bfxbu 8 30-99 30-99
_bfxls 8 30-338 30-338
_bfxlu 8 30-338 30-338
_bfxws 8 30-179 30-179

HITACHI

179

Table5.2

Execution Routine Speeds/FPL Speeds (cont)

No. of Execution Cycles

Classifi- Stack

cation Function Name Volume SH-1 SH-2

Bit field _bfxwu 8 30-179 30-179

referencing

(cont)

Area _quick_evn_mvn 4 12+3*(n/4) 12+3*(n/4)

movement _quick_mvn 17+3*(n/4)(n < 64) 17+3*(n/4)(n < 64)

24+1.625*(n/4)(n = 24+1.625*(n/4)(n =
68) 68)

_quick_odd_mvn 4 12+3*(n/4) 12+3*(n/4)
_slow_mvn 12 21+5*n+3*((n-1)/4) 21+5*n+3*((n-1)/4)

Character _quick_strcmp 12 26+7*(n/4)+5* 26+7*(n/4)+5*

string ((n-1)%4) ((n-1)%4)

companson - gjow_strcmp 20 35+7*n 35+7*n

Character _quick_strcpy 16 30+6*(n/4)+4* 30+6*(n/4)+4*

string ((n-1)%4) ((n-1)%4)

copy _slow_strcpy 24 24+6* n+2%((N-1)/4) 24+6*n+2*((n-1)/4)

Left shift _sftl 4 26-33 26-33
_sta_sftl0-31 0 9-14 9-14

Right shift _sftra 4 37-46 37-46
_sftrl 4 26-33 26-33
_sta_sftr0-31 0 9-14 9-14
_sta_sftra0-31 0 9-23 9-23

Note: n = number of bytes

5.6 SH Series Object Compatibility

Question: Are there any problems linking objects when using such compile options as -cpu=shl

(or sh2, sh3), and -pic=17?

Answer: Fundamentally, there is upward compatibility, so it is possible to link SH-1 objects and

SH-3 objects and then execute with the SH-3. In this manner, previous assets can still be used.

180

HITACHI

SH-3 objects
SH-2 objects
SH-1 objects

zrisi25.eps

Figure5.1 Object Compatibility Relationship

Notes: 1. SH-1and SH-2 are Big Endian. When using them with SH-3, use Big Endian format.

2. Objects compiled with the -pic=1 option can be linked with objects compiled with the
-pic=0 option. However, they do not become position independent in this case.

3. For the SH-3, operation upon an interrupt is different from that of the SH-1 and SH-2,
and an interrupt handler is necessary.

Refer to section 5.20, Data Allocation, “Endian” Format, concerning the -endian option.

57 Concerning Operating Host Machinesand OS
Question: What are the available host machines and OS?

Answer: Thetable below indicates the SH series C compiler (Version 3.0) available machines and
Os.

Table5.3 Host Machinesand OS

System Name OoS Notes

HP9000/700 HP-UX Version 9.0 —

NEWS-RISC NewsOS Release 4.01R or later —

PC9801 MS-DOS Version 3.3 or later Must be able to operate with i386 CPU or
later (using DOS-EXTENDER)

IBM-PC/AT DOS Version 3.3 or later Must be able to operate with i386 CPU or
later (using DOS-EXTENDER)

SPARC SunOS Release 4.1.1 or later —

SPARC Solaris Version 2.1 or later —

181
HITACHI

5.8 C Source Level Debugging Not Possible

Question: C source level debugging wasn't possible even though -debug was designated in the
compiler options. Why?

Answer: Has -debug been designated as an option both during compilation and during linkage? Or
have directories with source programs for compilation been modified?

59 Warnings Appear during Inline Development

Question: The warning “Function “function name” in #pragmainline is not expanded” was output
during an inline development. Why?

Answer: Thiswarning message does not hinder execution in any way. Refer to the User Manual,
Programming Edition, to confirm whether or not the function with the #pragma inline designation
fulfills the conditions for inline development. Additionally, the second and later condition/logical
operators cannot be inline expanded. Confirm whether or not they have been inline designated.

Example:

#pragna i nline(A B)

int A(int a)

{
i f(a<10) return 1;
el se return 0;

}
int B(int a)
{
i f(a<25) return 1;
el se return 0;
}
nmai n()
{
if (Ala)==1 && B(a)==1) A(0) isinline expanded, but B(0) is not.
(Thisis because there are cases where the
statement eval uates even without evaluating
B(a)==1)
¢ L
}
}
182

HITACHI

Question: The warning “Function not optimized” was output during an inline development. Why?

Answer: Thisisdue to memory insufficiency. Thiswarning message does not hinder execution in
any way. Function sizes become larger when the SH C compiler does inline expansion, and it is
conceivabl e that the amount of memory becomes insufficient during optimization processing, and
consequently optimizing processing on alevel higher than the expression unit can no longer be
performed. Try the following possible countermeasures:

< Do not inline expand large functions.

« Do not inline expand functions called from alarge number of locations.
¢ Reduce the number of functions inline expanded.

¢ Increase the amount of memory.

510 “FUNCTION NOT OPTIMIZED” Appearsduring Compilation

Question: The warning “Function not optimized” was output during a compile with the
“-optimize=1" option. This compile worked before, with the same system environment and same
compile option, without any problem. Why?

Answer: Thiswarning message does not hinder execution in any way. The following are possible
causes of the message being displayed:

e Compiler limit values have been exceeded
There are cases in which the compiler exceeds its limit values during optimization processing
due to the generation of new internal variables. Such cases can be dealt with by partitioning
functions. Refer to the User Manual, Programming Edition 1 concerning the compiler’s limit
values.

« Memory isinsufficient
If the SH series C compiler runs out of memory during optimization processing, it halts
optimizing above the expression unit level, and outputs this warning. Compilation then
continues, but the results obtained for the optimization level are the same as when optimize=0.
To avoid this warning, rewrite so asto partition large functions within the C source program.
When that is not possible, the only other solution isto increase the memory available to the
compiler.
Thereisinline expansion. Refer to section 5.9, Warnings Appear During Inline Devel opment.

511 “COMPILER VERSION MISMATCH” Appearsduring
Compilation

Question: The message “compiler version mismatch” is output during compilation. Why?

Answer: Confirm that the directories designated in the environment variables “PATH” and
“SHC_LIB” arein agreement.

183
HITACHI

Example: The above message will be output for the following kind of environment variable
setting.

PATH = (SHC Version 2 path)

SHC LIB = (SHC Version 3 C conpiler unit pathnane)

512 “MEMORY OVERFLOW” Appearsduring Compilation

Question: The message “memory overflow” isoutput during compilation. Why?

Answer: Areal of the C compiler unit filesin the directory of the pathname designated in the
environment variable “SHC_LIB"?

Example: The above message will be output for the following kind of setting. When the
environment variableis set to SHC LIB =/SHC/BIN, the directory organization shown on the left
side of figure 5.2 results.

In this case, files under /SHC/BIN and files under /SHC/MSG must all be under the single
directory /SHC/BIN.

The proper organization is shown on the right side of figure 5.2.

SHC BI' N SHC. EXE SHC BI' N SHC. EXE
SHCPRM EXE SHCPRM EXE
SHCTI L. EXE SHCTI L. EXE
SHCFRT. EXE SHCFRT. EXE
SHCVDL. EXE SHCMDL. EXE
SHCGEN. EXE SHCGEN. EXE
SHCPEP. EXE SHCPEP. EXE
SHCASM EXE SHCASM EXE
DCOSAG. EXE DOS4AG. EXE
MBG SHCERR EXE SHCERR. EXE
SHCERR OFF SHCERR OFF
SHCHLP. MG SHCHLP. MSG
Incorrect directory configuration Correct directory configuration

zrisi26.eps

Figure5.2 Incorrect Directory Configuration vs. Correct Directory Configuration

513 “UNDEFINED SYMBOL” Appearsduring Linkage

Question: The message “UNDEFINED SYMBOL" is output during linkage. Why, and what does
it mean?

184
HITACHI

Answer: Confirm whether or not the libraries are linked. Also, do the declared functions or
functions being used actually exist? Refer to section 4.2.2, Precautions on Linkage, for details.

514 “RELOCATION SIZE OVERFLOW?” Appearsduring Linkage

Question: The warning message “RELOCATION SIZE OVERFLOW"” (error number 108) is
output during linkage. How should this be dealt with?

Answer: Confirm that #pragma absl6, #pragmagbr_base and #pragma gbr_basel have not been
designated so as to exceed the area limits.

515 “SECTIONATTRIBUTE MISMATCH” Appearsduring Linkage

Question: The warning message “SECTION ATTRIBUTE MISMATCH” (error number 107) is
output during linkage. How should this be dealt with?

Answer: Confirm that there are not different alignments for identical section names.

However, in the Linkage Editor Version 5.3 and later, this warning can be avoided by attaching
the ALIGN_SECTION option/subcommand. The ALIGN_SECTION option/subcommand
allocates addresses so that sections with identical names but differing boundary adjustment
numbers (designated with the align operand of the assembler’s SECTION control instruction) are
regarded as being the same section.

516 Executingthe Transfer of Programsto RAM

Question: With the SH-1, | want to place programs in RAM with a fast execution speed. How
should this be done?

Answer: Seefigure5.3.

ROM RAM

Startup
Transfer

zrisi27.eps

Figure5.3 Operating Environment

1. Runaprogram residing in ROM.

2. Transfer to RAM asection that is part of the same program’s code.
185
HITACHI

When outputting SH-2 or SH-3 usage objects, rel ocatable load modules can be created if the
option to output position independent code (-pic=1) is designated, but this method cannot be used
with the SH-1. However, when always copying program code to a fixed addressin RAM, itisalso
possible to execute programsin RAM with the SH-1 by using the linker’s ROM conversion
support function in the same manner as with initialized data. It is not possible to decide the RAM
addresses and copy the program code during execution because addresses are resolved during
linkage.

Following is a program example for the kind of section configuration shown in figure 5.4 below.

Section name

VECT
INIT
INT

P
C

Address
0

Transferred
during
execution

OF000000
>

10000000

zrisi28.eps

Figure5.4 Section Configuration

186
HITACHI

C Language Section:

/**/

/* file name “init.c” */
R e R T /
/* Program section nane is made “IN T with the conpile option */
[R Rk kR KRRk kR Kk Rk Rk R Rk Rk Rk Kk kR Rk KRk kR ko
#i ncl ude "sanpl e. h" /* Include the Section 1 sampleh */
extern int *_B BG\ *_B END,

extern int * P BG\ [* P section start address */
extern int * X BN [* X section start address */
extern int * X END, [* X section final address */

extern void _|I NI TSCT(voi d);
extern void _INT();

extern void nain();

void _INT()
{
_INTSCT();
mai n();
for (5 ;)
}
voi d _I N TSCT(voi d)
{
int *p,*q;
for (p = _BBA\ p <BEND pt++)
*p=0;
[* Copy from P section to X section */
for (p=_XBA\, q=_PB& p<_XEND p++, g++)
*p = *q;
}

187
HITACHI

/**/

/* file name “main.c” */
R R R R TR /
/* Program section nane is made the default “P’ */

R L Ty
int a=1;
int b;
const int ¢ = 100;
voi d mai n(voi d)
}
/* Thisroutine is executed in the copy destination (RAM)*/
for (5 ;)

}

/**/

/* file name “int.c” */

/**/

#i ncl ude "sanpl e. h" /* Include the Section 1 sampleh */
extern int a; [* section D code */
extern int b; /* section B code */
extern const int c; [* section C code */

#pragna interrupt (1 RQ, inv_inst)

/**/

/* interrupt nodule | RQ */
/**/
extern void | RQ(voi d)

a = PBDR

PC DR = c;

/**/

/* interrupt nodul e inv_inst */

/**/

extern void inv_inst(void)

{

return;

188
HITACHI

Assembly L anguage Section:
/**/

/* file name “sct.src” */

/**/

. SECTI ON P, CCDE, ALI G\=4
. SECTI ON X, CCDE, ALI G\=4
. SECTI ON B, DATA ALl G\=4
. SECTI ON C, DATA ALI G\=4
__ P B&\ .DATA L (STARTCF P) ;P section start address
_ X B&\ .DATA L (STARTCF X) ;Start address of the P
sectionin RAM
_XEND .DATAL (STARTCF X) + (S| ZECF X) ;Final address of the P
sectionin RAM
B B&\: . DATA L (STARTCF B) :BBS section start address
__ B END . DATA L (STARTCF B) + (SIZECF B) ;BBS section final address
. EXPCRT P BN
. EXPCRT X BN
. EXPCRT X END
. EXPCRT B BAN
. EXPCRT __BEND
. END

/**/

/* file name “vect.src” */

/**/

. SECTI ON VECT, DATA, ALI G\F4
. | MPCRT _main

. | MPCRT _inv_inst
. | MPCRT _IRQ
.DATA L _main
.DATA L H FFFFFFC
. CORG H 0080

. DATA L _inv_inst
. ORG H 0100
.DATA L _IRQ

. END

189
HITACHI

Command Designation: Set the command lines as follows:

shc -debug -section=P=INT init.c
shc -debug -section=P=INT int.c
shc -debug main.c

asnsh sct. src-debug

asnsh vect.src -debug

I nk - sub=r om sub

Linker Option File:
/**/

/* file name “rom sub” */

[E ke ko k ok ko k ko ko
debug

i nput vect, sct, init, int, main

ROM (P, X ;:Resolve address so that P section is allocated to X
start VECT(0), N T, INT, P, C, D(10000000) , X(0f 000000)

:VECT, INIT, INT, P, C, D are stationed in ROM, X
is stationed in RAM

out put sanpl e. abs
print sanple. map
exit

Due to the above programming, the section P program is copied into section X and executed.
Because section INIT is the copying routine, it must be a separate section from the copied routine.
Through this, the main program (section P) is executed in the copy destination.

Caution: C source level debugging is not possible for programs copied from ROM to RAM.

5.17 Priority of Include Designations

Question: Thefact that there are avariety of options for including filesis confusing. What are the
purposes and priority rankings of the options?

Answer: Designation of include file reference pathsis performed by options or environment
variables.

Files enclosed within “<” and “>" are read in from the directory designated by the -include option,
and when multiple directories have been designated, they are referenced in the order of
designation. When files are not found in the directories designated by the -include option, each
directory designated by first the environment variable SHC_INC, and then the system directory,
(SHC _LIB) isreferenced in order.

190
HITACHI

Files enclosed within quotation marks (“ ") are referenced beginning from the current directory.
When thereis no current directory, referencing occurs in accordance with the rules noted above.

The include file reference path priority, ranked intuitively, is asfollows:
-inc > SHCINC > SHC LIB

Additionally, thereis a-preinclude option for the compulsory reading of filesit designatesin a
manner different from those noted above. When this option is designated, the files designated by it
are inserted at the head of the compiled files and compilation is performed.

If the contents of such items as #pragma or test data, which one wishes to read in on atemporary
basis, are read in as a separate file with this option, recompiling is possible without having to treat
the sourcefile.

518 Compilation Batch Files

Question: When there are many items designated with compile options, designating the same
items each time is bothersome. |sn't there a better way?

Answer: The -subcommand option (-subcommand=<file_name>) is used during compilation. This
option can be designated multiple times within acommand line. List command line argumentsin a
subcommand file delimited with spaces, returns or tabs. The contents of subcommand files are
developed in the command line argument subcommand designation position.

Note that the -subcommand option cannot be designated within subcommand files.
Example:
The example below is equivalent to inputting the following command line:

shc -optimze=1 -listfile -debug -cpu=sh2 -pic=1 -size -euc -endi an=big
test.c

Command Line:

shc -sub=test.sub test.c

191
HITACHI

Contents of test.c:

-optimze
-listfile
- debug

- cpu=sh2
- pic=1
-size
-euc

- endi an=bi g

5.19 Notation of Japanese within Programs

Question: Source files have been developed on both workstations and personal computers, but
management of those source filesis difficult because the Kanji character codes are different for
workstations and personal computers. Is there a good method for managing this?

Answer: When the Kanji character code notation is shift-JIS, use the compiler option -5 when
compiling on aworkstation (which uses EUC code). In the opposite case, when the notation isin
EUC code and compiling on a personal computer, designate the compiler option -euc and compile.
Even in aworkstation network environment where EUC and shift-JI S exist together, compiling
with either Kanji character code is possible through use of the compile option designation.
Compilation is possible with the Kanji character code used in the target (installed machine).

Table5.4 System and Kanji Character Code Correspondence

Host Default

SPARC EUC

HP9000/700 Shift-JIS

NEWS Character code indicated by the environment variable “LANG”
PC-9801 Shift-JIS

IBM-PC Shift-JIS

Example: When the source is written on aworkstation (SPARC) and the compiling isdone on a
personal computer (IBM-PC), if compilation is done with the -5 option added, there is no need to
be concerned about character conversions of Kanji character codes within character strings.

5.20 Data Allocation, “Endian” For mat

Question: s SH data allocation Big Endian or Little Endian?

192
HITACHI

Answer: The Hitachi SuperH RISC engine family is Big Endian. However, the SH-3 supports the
-endian=Big(L.ittle) option corresponding to the CPU Big/Little switching function. Compatibility
with Little Endian CPU isincreased through this.

Caution:

1. The-endian option can be combined with -cpu option suboptions at will (but Little Endian
object programs can only be executed with the SH-3).

2. Big Endian objects and Little Endian objects cannot be used together.
3. Program execution results will sometimes be affected by differencesin Endian.

Example: Coding for which differences in Endian format will have an effect:

FOA{
int a=0x12345678;

char *p;
p=((char*) (&a));

i f(*p==0x12){ (0] }
else{ (2) }
}

In this case, processing (1) is executed for Big Endian, but for Little Endian, *p is 0x78, so
processing (2) is executed. (Refer to the User Manual, Programming Edition, for details on data
alocation.) There are seven kinds of standard libraries, as listed below. Link the libraries shown in
table 5.5 by using combinations of the -cpu option, -pic option and -endian option.

e shclib.lib (SH-1 usage)

e shenpiclib - (SH-2 usage position independent code non-corresponding)

e shepiclib (SH-2 usage position independent code corresponding)

e shc3npb.lib (SH-3 usage position independent code non-corresponding, Big Endian)

e shc3pblib (SH-3 usage position independent code corresponding, Big Endian)

e shc3npllib (SH-3 usage position independent code non-corresponding, Little Endian)
e shc3pl.lib (SH-3 usage position independent code corresponding, Little Endian)

193
HITACHI

Table55 Relationship between Standard Librariesand Compile Options

Big Endian Little Endian
CPU pic=0 pic=1 pic=0 pic=1
SH-1 shclib.lib — — —
SH-2 shcnpic.lib shcepic.lib — —
SH-3 shc3npic.lib shc3pb.lib shc3npl.lib shc3pl.lib
194

HITACHI

Appendix A Compiler Options

Al Compiler Options

Table A.1 indicates the compiler option formats and abbreviated formats, and interpretation when
options are omitted. Characters with an underscore () indicate the abbreviated format, and bold
case characters (abc) are interpreted as being indicated when an item is omitted.

TableA.1 Compiler Options

Item Format Suboptions Contents of Designation
Optimizing optimize= 0 Unoptimized objects output
level 1 Optimized objects output
List content show= source | hosource Source list exists/doesn’t
and format* object | noobject Object list exists/doesn’t
statistics | nostatistics Statistical information exists/doesn’t
include | noinclude List after include development
exists/doesn’t
expansion | noexpansion List after macro development
exists/doesn’t
width=<numerical value>*2 Maximum number of characters per
line, numerical value: 0, 80 to 132
length=<numerical value>*2 Maximum number of characters per
page, numerical value: 0, 40 to 255
When abbrieviated: (w =132, | —
= 66)
List file listfile [=<listfile name>]*3 Output
nolistfile No output
Obiject file objectfile=<objectfile name> Output
Object format code= machincode Machine language program output
asmcode Assembly source program output
Debug debug — Output
information nodebug — No output

195
HITACHI

TableA.1 Compiler Options (cont)

Item Format Suboptions Contents of Designation
Macro name define= <macro name> <name> defined as <macro name>
definition =<name>
<macro name> <constant> defined as <macro name>
=<constant>
<macro name>*4 Assumed as defining a <macro name>
Include file include=<pathname>*° Designates the destination pathname

for include file inclusion (multiple
designations possible)

Section name section= program=<section Program area section name designation
name>
const=<section name> Constant area section name
designation
data=<section name> Initialized data area section name
designation
bss=<section name> Uninitialized data area section name
designation
When abbreviated: (p = —
P,c=C,d=D,b=B)
Help message help*6 — Output
CPU classification cpu= sh1*? SH-1 objects generated
sh2 SH-2 objects generated
sh3 SH-3 objects generated*8
Position pic= 0 Position independent code not
independent code generated
1 Position independent code generated*®
Character string string= const Output to constant section (C)
output area data Output to initializing data section (D)*10
Comment nesting comment= nest Allow comment nesting
nonest Do not allow comment nesting*11

196

HITACHI

TableA.1 Compiler Options (cont)

Item Format Suboptions Contents of Designation
Optimization method speed — Execution speed priority code
selection generation
nospeed — Implement optimization balancing
execution speed and size
size — Size priority code generation*12
Selection of Japanese euc*13 — Selects euc code
code in character strings sjis _ Selects sjis code
Subcommand file subcommand=<file name> Include command options from the
designation file designated by <file name>*14
Form of division division= cpu Use the CPU division instructions
peripheral Use the divider (with interrupt mask)
nomask Use the divider (without interrupt
mask)*15
Memory bit lineup endian= big Big Endian
order designation little Little Endian*16
Inline development inline — Designates whether or not to
specifications perform inline development
inline= <numerical Develop when performing inline
value> development
noinline — Designates the function size limit*17
Default header file preinclude=<file name> Include the contents of designated
designation file at the head of the compile unit
MACH, MACL register macsave= 0 Do not preserve MACH, MACL
preservation registers with a function call
1 Preserve MACH, MACL registers
with a function call*18
Notes: 1. The show option becomes effective when listfile is designated.

2. When show=width=0 or show=length=0 are designated, they are interpreted as follows:
show=width=0: regarded as being 1 line until line return code is output.
show=length=0: maximum number of lines is not set; new pages are not carried out.

3. When file name designation has been omitted, files with standard expanders added are
generated with the same file name as the source file.

4. The specifications for macro names that can be designated by option are shown in
table A.2 below.

5. Refer to the User Manual Appendix A.1.13, Preprocessor Specifications, for the include
file referencing methods.

6. Other options become ineffective when this option is designated.

7. In Version 2.0, cpu=7000 designated the SH-1 and cpu=7600 designated the SH-2. In

order to preserve compatibility, these suboptions can also be designated.

197
HITACHI

198

10.

11.

12.

13.

14.

15.

The linked libraries will differ, depending on the cpu, pic, and endian options. Refer to
section 5.20, Data Allocation “Endian” Format, concerning the correspondence between
options and standard libraries, for details.

Cautions concerning the use of position independent code:

a. When pic=1 is designated, after linkage program sections can be placed in arbitrary
addresses and executed (data sections cannot be placed in addresses other than
those decided during linkage).

b. When executing as position independent code, function addresses cannot be
designated as initial values.

Example:
externint f();
int(*fp)()=f; ~ can be designated

c. When cpu=SH1 is designated, the pic=1 designation is ignored.

When string=const has been designated, the same character string can be jointly
owned.

Comment nesting example:
/* comrent
int i; [* nestl /* nest2 */ */

*/
When comment=nest is designated: the underlined section becomes a nested comment

When comment=nonest is designated: the comments are judged as ending with “nest2

/” and the following “/” causes an error.

Program execution speed will improve if the speed option is designated, but there are

cases where the size will increase.

Abbreviated characters differ depending on the host machine. Refer to section 5.19,

Notation of Japanese Within Programs, for details.

The subcommand option can be designated multiple times within a command line. List

command line arguments in a subcommand file delimited with spaces, returns, or tabs.

The subcommand option cannot be designated within subcommand files. Refer to

section 5.18, Compilation Batch Files, for details.

The execution routine for integer format division or remainder operations within the C

source is selected from among the three following items by the compiler option. This

option can be combined with the cpu option suboptions at will, but object programs with
peripheral or nomask designations can only be executed with the SH-2.

a. cpu: Selects an execution routine with DIV1 instructions.

b. peripheral: Selects an execution routine using the divider. Interrupts other than NMI
are prohibited during execution of this routine (15 is set in the interrupt
mask).

c. nomask: Selects an execution routine using the divider (the interrupt mask does
not change).

Be careful of the following points when peripheral or nomask are designated:

a. Zero division checks and errno setting are not performed.

b. Operation is not guaranteed if an interrupt occurs during divider operation and the

divider is used in the interrupt routine.

c. Overflow interrupts are not supported.

HITACHI

d. There are cases when the operation results for zero division, overflow interrupts,
etc., in accordance with the divider specifications, will be different from when there
are cpu suboption designations.

16. This option can be combined with the cpu option suboptions at will, but Little Endian
object programs can only be executed with the SH-3.

17. This designates whether or not to perform automatic inline development of functions.
The suboption numerical value indicates the maximum size of the inline developed
function by the function’s node count (total number of argument, operator, etc.
expressions excepting the declaration section).

When the speed option is designated the default is inline=20. When the nospeed, size
options are designated, or when the optimize=0 option is designated the default is
noinline.

18. Functions compiled with macsave=0 cannot be called from functions compiled with
macsave=1. Conversely, functions compiled with macsave=1 can be called from
functions compiled with macsave=0.

TableA.2 MacroNames, Names, and Constants That Can Be Designated with the Define

Option
Item Explanation
Macro names Character strings beginning with an English character or an underline, then

followed by 0 or more English characters, underlines or numbers

Names Character strings beginning with an English character or an underline, then
followed by 0 or more English characters, underlines or numbers

Constants Character strings that are a repetition of one or more numbers (0 to 9), or a
repetition of one or more numbers followed by a period, and then followed by 0
or more numbers. Or else, hexadecimal numbers beginning with 0x.

199
HITACHI

Appendix B Changesin Version 3.0
This section describes the changes from Version 2.0 to Version 3.0 of the SH Series C Compiler.

B.1 Additions and I mprovements
A summary of the functions added to the SHC Compiler Version 3.0 is given below.
B.1.1 Optimization Strengthened

The Version 3.0 optimization has two options for giving importance to speed (-speed option) or to
size (-size option), and each of these optimizing functions has been strengthened. For the purpose
of speed, strengthening of loop optimization and support of inline development have been
realized. Concerning size, such strengthening as size importance instruction generation and the
joining of redundant processes have been realized.

B.1.2 SH-3 Support

In addition to the SH-1 and SH-2, SH-3 object generation can be designated (-cpu=sh3 option).
The following are supported as SH-3 usage functions:

1. The-endian option (-endian=big or -endian=little) corresponding to the function for setting bit
order in memory is supported.

2. The extended intrinsic function prefetch for generating cache prefetch instructions (PREF) is
supported.

B.1.3 Compiler Limit Value Extension
The compiler limit values have been extended for the itemsin table B.1.

TableB.1 Compiler Limit Values

Item Version 2.0 Version 3.0
Source programs that can be compiled at a time 16 files No limit
Source lines per one file 32,767 lines 65,535 lines
Source lines per one total compile unit 32,767 lines No limit
#include nest levels 8 levels 30 levels

B.1.4 Support of Japanese Language Codein Character Strings

Shift-JI'S and EUC Japanese language codes can be written into programs as character string data.
When the input code is shift-JIS (-gis option) the output code is also shift-JI'S, and when the input
code is EUC (-euc option) the output code is also EUC. However, the GUI does not handle
Japanese code data display at present.
200

HITACHI

B.1.5 Option Designation by File

By designating file names with the -subcommand option, it is now possible to include options
from within files. This eliminates the need to designate a complex group of options each time with
acommand line.

B.1.6 Useof the SH-2 Divider
The -division option is supported to allow use of the SH-2 divider.
B.1.7 Inline Expansion of C Functions

If the -speed option is designated, the compiler automatically performs the inline expansion of
small functions. This option can, through use of the -inline option, change the size conditions for
functionsto be inline devel oped. The object functions for inline devel opment can be clearly stated
with #pragma designations.

Example (Inline Development of C Functions):

#pragna inline (func)
int func(int a, int b)

{

return (a+b)/2;

}

mai n()

{

i =func(10, 20); [* Expanded into i = (10+20)/2 */
}

B.1.8 Inline Assembler Functions

#pragmainline_asm designates the inline assembler notation for user functions. However, when
performing inline embedding with #pragma inline_asm, make the compiler output assembler
source (-code=asmcode option).

201
HITACHI

Example (Inline Assembler Function):

#pragna inline_asn(rotl)
int rotl(int a)

{
ROTL R4
MV R4, R0
}
mai n()
{
i=rotl(i); [* variablei isset in register R4 and the rotl
function code is used */
}

B.1.9 Useof the Short Address Designation (2-Byte Address Variables)

#pragma abs16(<variable name>|<function name>,...) can designate that variables or functions be
allocated to the address range (—32,768 to 32,767) that can be designated in 2 bytes. This
designation enables areduction in the size of objects referencing such variables or functions.

B.1.10 Useof GBR Relative Addressing

#pragma gbr_base(<variable name>,...) can designate that variables be allowed to be referenced
using the GBR relative addressing mode. This designation not only enables areduction in the size
of objects referencing variables, but also allows use of memory bit manipulation instructions
unique to the GBR relative addressing mode.

B.1.11 Register Save/Restore Control

#pragma noregsave(<function name>,...) can designate the suppression of register saves and
restores at the entrances and exits of functions. This can be used to create high speed, compact
functions without register saves and restores. Functions with a#pragma noregsave designation
cannot be called from ordinary functions, but they can be called from C language functions
(#pragma regsave) that are clearly designated to call #pragma noregsave. Program size can be
decreased and execution speed improved by designating #pragma noregsave for frequently
executed functions.

B.1.12 Improvement of Differenceswith ANSI Specifications

1. The standard header file <errno.h> is supported.

2. Pointer values to void format can now be designated in theinitial values of pointer format data
to other than void format.

3. When thereis no |eft parenthesis immediately following a macro name that has attached
arguments, processing is now possible as an ordinary name instead of as a macro name.

202
HITACHI

4. Evenif typedef names and struct tag names are within the same scope, no error due to name
conflict will result.

5. enum names can be designated as case labels, bit fields, or array sizes.

6. Comparison operations between two groups of void* format datawill no longer result in an
error.
7. When initializing character arrays with character strings, no error will result even if the
initialization is enclosed within {} .
8. The ANSI standard library function memmove has been added to the library functions.
#i ncl ude <string. h>
voi d *memmove(voi d *s1, const void *s2, size t n);
An area of n bytes from the address pointed to by s2 is copied to the area beginning at the
address pointed to by sl. In this case, the results are guaranteed even if the copy source area
and copy destination area overlap. FILE, size t, and ptrdiff_t, were defined as macros with the
#define, but they were modified to definition by typedef.

B.1.13 Referencing from Interrupt Functions

For functions declared as interrupt functions, referencing of functions within the same file was not
possible, but this limitation has been removed.

B.2 Additionsto the Compiler Options

Only additions to the compiler options are listed here. Refer to Appendix A, Compiler Options, for
details.

e SH-3 object generation

* Selection of Japanese language code in character strings

e Subcommand file designation

¢ Division method (use or not of an interrupt mask) designation
e Size priority code generation

* Memory bit order designation

¢ Inline development

» Default header file designation

e Preservation of MACH, MACL registers

203
HITACHI

Appendix C ASCII Codes

Upper 4 Bits

Lower
4 Bits

0

SP

DLE
DC1
DC2

NULL
SOH
STX

DC3
DC4
NAK
SYN
ETB

ETX

EOT
ENQ
ACK
BEL
BS
HT
LF
VT

%

CAN
EM

SuB

ESC
FS
GS

FF
CR

RS

SO
Sl

DEL

us

204

HITACHI

	Preface
	Contents SH RISC engine C Compiler
	1 Introduction
	1.1 Overview
	1.2 Features
	1.3 Installation Method
	1.4 Startup Method
	1.5 Program Development Procedures
	1.6 Sample Program Introduction

	2 Functions
	2.1 Interrupt Functions
	2.2 Intrinsic Functions
	2.3 Inline Expansion
	2.4 GBR Base Variable Designation
	2.5 Register Save/Restore Control
	2.6 2-Byte Address Variable Designation
	2.7 Section Name Designation
	2.8 Section Switching
	2.9 Position Independent Code
	2.10 Options

	3 Effective Programming Techniques
	3.1 Data Designation
	3.2 Function Calls
	3.3 Operation Methods
	3.4 Branching
	3.5 Inline Expansion
	3.6 Practical Use of the Global Base Register (GBR)
	3.7 Register Save/Restore Control
	3.8 2-Byte Address Designation
	3.9 Prefetch Instruction

	4 Relation to Assembly Language Programs and Cross Software
	4.1 Relation to Assembly Language Programs
	4.2 Relation to the Linkage Editor
	4.3 Relation to the Simulator/Debugger

	5 Questions and Answers
	5.1 const Declaration
	5.2 Reentrants and Standard Libraries
	5.3 Method of Correctly Judging 1-Bit Data
	5.4 Installation
	5.5 Specifications and Speeds for Execution Routines
	5.6 SH Series Object Compatibility
	5.7 Concerning Operating Host Machines and OS
	5.8 C Source Level Debugging Not Possible
	5.9 Warnings Appear during Inline Development
	5.10 “FUNCTION NOT OPTIMIZED” Appears during Compilation
	5.11 “COMPILER VERSION MISMATCH” Appears during Compilation
	5.12 “MEMORY OVERFLOW” Appears during Compilation
	5.13 “UNDEFINED SYMBOL” Appears during Linkage
	5.14 “RELOCATION SIZE OVERFLOW” Appears during Linkage
	5.15 “SECTION ATTRIBUTE MISMATCH” Appears during Linkage
	5.16 Executing the Transfer of Programs to RAM
	5.17 Priority of Include Designations
	5.18 Compilation Batch Files
	5.19 Notation of Japanese within Programs
	5.20 Data Allocation, “Endian” Format

	A Compiler Options
	B Changes in Version 3.0
	B.1 Additions and Improvements
	B.2 Additions to the Compiler Options

	C ASCII Codes

