SupeH RISC engine

SH-4

Programming Manual

HITACHI

ADE-602-156C

Rev. 4.0
03/2100
Hitachi, Ltd.

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’'s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained
this document. Hitachi bears no responsibility for problems that may arise with third party
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm th:
have received the latest product standards or specifications before final design, purchase
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi's sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may dire
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclea
power, combustion control, transportation, traffic, safety equipment or medical equipment
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitac
particularly for maximum rating, operating supply voltage range, heat radiation characteri
installation conditions and other characteristics. Hitachi bears no responsibility for failure
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges
consider normally foreseeable failure rates or failure modes in semiconductor devices an
employ systemic measures such as fail-safes, so that the equipment incorporating Hitach
product does not cause bodily injury, fire or other consequential damage due to operatior
the Hitachi product.

5. This product is not designed to be radiation resistant.
6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this docur
without written approval from Hitachi.

7. Contact Hitachi's sales office for any questions regarding this document or Hitachi
semiconductor products.

Preface

The SH-4 has been developed as the top-end model in the SuperH™* RISC engine family,
featuring a 128-bit graphic engine for multimedia applications and 360 MIPS performance.

The SH-4 CPU has a RISC type instruction set, and features upward-compatibility at the obj
code level with SH-1, SH-2, SH-3, and SH-3E microcomputers.

In addition to single- and double-precision floating-point operation capability, the on-chip FPL
has a 128-bit graphic engine that enables 32-bit floating-point data to be processed 128 bits
time. It also supports % 4 array operations and inner product operations.

A superscalar architecture is employed that enables simultaneous execution of two instructic
(including FPU instructions), providing performance of up to twice that of conventional
architectures at the same frequency.

This programming manual gives details of the SH-4 instructions. For hardware details, refer
relevant hardware manual.

Related Manual:
SH7750 Series Hardware Manual
SH7751 Hardware Manual

Please consult your Hitachi sales representative for information on development environmen
systems.

Note: * SuperH™ is a trademark of Hitachi, Ltd.

Rev. 4.0, 03/00, page v of 12
HITACHI

Contents

SECHON 1 OVEIVIEW.......oiiiiiieieeiee ettt
1.1 SH-4 FRAIUIES. ...ttt ettt e e e e e e e et et e e e ra bbb e e e e e e e s emananennes 1.
Section 2 Programming MOdEL.............cccoviiiiiiiiii e
P R D - = W o] 0 1 = PR 5.
2.2 Register CONfIQUIALION.........ciiiiiiiiiii ettt G....
2.2.1 Privileged Mode and Banks.............iiiiiiiiiiiiieen e,
A N € 1= =T = | =T oIS =]
2.2.3 Floating-Point REQISIEIS......ccoc i
224 CONIOI REGISIEIS .ottt et
2.2.5 SYStEM REQGISIEISuiiiiiieiiiiiie ettt
2.3 Memory-Mapped REGISIEIS.uuiiiiieiiiiiiie ettt e e e,
2.4 Data FOrmat in REQISIEIS.coiiiiiiiiieiie e e e e e e e e e e e e aaaeeaees 7....
2.5 Data FOrmats iN IMEMOIYcooiiiiiiiiie e e e s s e e e e e et et a e s e e e e e eeeeeeaeseaaanaans,
2.6 PrOCESSOI STALES ...coeviiiiiiiiie ettt e e e et e et e e e e e e e e e e eeeenba b s es 18....
2.7 ProCeSSOr MOUESooiiiiiiiieeeee e ittt ettt e et e e e e e e e e e e s s e s sa e s e e teeeeeeeee e s e ee 21...
Section 3 Memory Management Unit (MMU)..........c.ccooeeiriiiiieiicceceeee 2
T N O 11T 4= PP T TP U P P 23
0 O R = T= L E | (=T TP TP PRRPPPPPPPRIN
3.1.2 ROIE Of the MMUiiiiiiiiiiiie ettt
3.1.3 Register ConfigUuIatioN...........couiiiiiiiiiiiiiiiie et
R 00 - 1) o) o 1SRRI
3.2 ReQiSter DESCIIPUONS ...coutviiiee ettt e e e e 27....
G JC B Y/ =70t o] oY ARS o T- Tl T PP 30...
3.3.1 PhySiCal MEMOIY SPACE.....uuuiiii i e e e e eeeeeeeeie et e e e e e e e et e e e e e e e e e eeaereeannaans
3.3.2 EXternal MEmOIY SPACE.......cccciviiiiiiiiiiiiie i e e e et e e e e e e e e e e e e e
3.3.3 Virtual MEmOIY SPACE.......uuiiiiiiiiiiiiei ettt
3.3.4 ON-Chip RAM SPACEeeiiiiiiitiiiiie ettt e e
3.3.5 AdAress TransSIationcc.uuuviiiiiiiiiiiiii e
3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode |
3.3.7 Address Space ldentifier (ASID)ouuuiuiiiiiiiiiie e
34 TLB FUNCHONS ..ttt bbb e e 36...
3.4.1 Unified TLB (UTLB) CONfIQUIAtIONccoiiuuiiiiieiiiiiiiie et
3.4.2 Instruction TLB (ITLB) CoNfigUration.............cccouiuiieirieiiiiiieee e
3.4.3 Address Translation Method...............oooi oo,
3.5 MMU FUNCLIONS ..ottt e e e e e e e e e e e e e e me e 43...
3.5.1 MMU Hardware Management............uueiieieeeeeieiieeeieiiiiiesie s e e e e e eeeeeeeennnnnnn e e e
3.5.2 MMU Software Managementuuuuriiiiiieieeieie e e e e e e e e

Rev. 4.0, 03/00, page vii of 12
HITACHI

3.5.3 MMU INStruction (LDTLB).....cceviiiiiiiiie i

3.5.4 Hardware ITLB Miss Handlinguuuuiiiiiiiiiie e
3.5.5 Avoiding Synonym ProblemsSccooiiiiiiiiii e
3.6 MMU EXCEPLONS.eeiiieeeeiitieiee ettt ettt e e e e st e eeeeeaae 46......
3.6.1 Instruction TLB Multiple Hit EXCEPLON.......cccoiiiiiiiiiiiiiiiiie e
3.6.2 Instruction TLB MiSS EXCEPLON........uuuiiiiiiiee i
3.6.3 Instruction TLB Protection Violation EXCeptionccveeeeiiiiieeiierecceeiiiin,
3.6.4 Data TLB Multiple Hit EXCEPLIONccceeeiieiieeeeee e ee e
3.6.5 Data TLB MiSS EXCEPLION ..cciiiieiiiiieiiiiieie ettt
3.6.6 Data TLB Protection Violation EXCePLioN..........ccccviiiiiieiiiiiiiiiee e
3.6.7 Initial Page WIrite EXCEPLIONcoiiiiiiiie ittt
3.7 Memory-Mapped TLB Configuration..............ooovuiiiiiiiie e
3.7.1 ITLB AAArESS AITAYceeieeeiieiie i e et e ettt s s e e e e e e e e e et e e e st a s s e e e aeaeeaaeesennnns
3.7.2 ITLB DAta AITAY L...cooveiiiiieiiiiie ettt e et a et e e e e et e e e e e aa e e e e eann s
3.7.3 ITLB DAA AITAY 2. eieiiieiee ittt et r e e a e e e e e e e
3.7.4 UTLB AJArESS AITAY....cceiiitiiiiieeiiiiieit ettt ettt et e e st e e e e s sabaneeee s
3.7.5 UTLB DAta AITAY L ...ttt e e e e e
3.7.6 UTLB DAta AITAY 2 ..covviiiiieiiiiie ettt e s ettt s e e e et s e s e et s e e e et s e e e e ta e e e e eaann s
SECHON 4 CACNES. ...
I O 1V = = 59
411 FAIUIES .ottt a e e e e e s
4.1.2 Register CoNfiQUIratioN...........cociiiiiiiiiii ittt ee e e
4.2 Register DeSCHPLONSccviiiicii i e e e e e e e e e eeeeeasnrnnns] 60......
G B @ o 1= = [o N @F= Tod o L= TN (@ 103 1R SRR 3.
B T A @ o T [0 > o o PR
4.3.2 REA OPEIAtiON ...ccoiiviiiiee ettt e e
4.3.3 WIE OPEIALION .ottt ettt e e e e e s
4.3.4 WIIt€-BaCK BUFEIoeiiiiiiieieee e
4.3.5 Write-Through BUFEI.......ooooieee e e e e e e
4.3.6 RAM MOUE ... ittt s e e s
4.3.7 OC INAEX MOUE ...ttt ettt e e e
4.3.8 Coherency between Cache and External MEmMOrYccoocoiveieeiiiiiiiieee e,
4.3.9 PrefetCh OPErationcooooiiiiiiiiieiiiiiee et e,
4.4 INSrUCtion CaAChE (1€t 70.....
O A @7 T [0 > 1o o PSP
N =Y T I @ o= 1o ISP
4.4.3 IC INAEX MOUEoeeiiiiiiiiiiiit ettt e e s e e e
4.5 Memory-Mapped Cache ConfigUurationoocuiiiiiiiiiiiiiie e
A5 1 IC AUAIESS AITAY ..ceeieiiiitiiiiee ettt et e ettt e e e ettt e e e e et e e e e e eenees
4.5.2 IC DALA AITAY ...eiiiiiiieeeiie ettt ettt e e e e e e e e e e r et a e e e e e e
T B @ L O AV [0 [L =TT A 1 - |
N @ (O B - 1 r= N ¢ -\ VPPN

Rev. 4.0, 03/00, page viii of 12
HITACHI

4.6 SEOIE QUEUEScuitiiiiieiie ettt e et e et s e e e et e et et e et e et n e e e ee bt e e e e e st s e s s s 77..

4.6.1 SQ CONfIQUIALIONceiiiieiiie e e e e e e e e e e e e e e aa e,
4.6.2 SQ WIIES..uiieiiiiiiiiieie e ettt ettt e e e e e e e e e e s e e s e e ettt r e e e e e e aaaaaaeaaeas
4.6.3 Transfer to EXternal MEmOIY..........coiiiiiiiiiiiiee ittt
R S ST I o (o] (Yo o) o PSSP
SECHON 5 EXCEPLIONS. ..o
N N O 11T oY= TP P PP 81
B.1.1 FRAIUIES ...ttt ettt e e e e e e e e e e eaenen
5.1.2 Register ConfiQUIatioN...........coiiiiiiiiiiiiiiiiiii e
5.2 RegiSter DESCIIPLONSuuviiiieiiiiiii ittt e e e e e e 82...
5.3 Exception Handling FUNCHONS........ccooiiiiiiiee e
5.3.1 Exception HandliNng FIOWouuiiiiiiii s e e e e
5.3.2 Exception Handling Vector AAArE€SSEScuvuuviiiiiiiieeeeeeeeeeeieiese e e e e e e e eeeanaee,
5.4 Exception Types and PrOMESc.uuiiiiiiiiiiiiii e,
5.5 EXCEPUON FIOW ...cciiiiiiiiiiiiie ettt 81...
5.5.1 EXCEPUON FIOW ...cciiiiiiiiiiiiie ittt
5.5.2 EXCepPLion SOUICE ACCEPLANCE........ccciveeiiiiiiieiie e e e e e e e et s e s e e e e e e e e e eeaeraane,
5.5.3 Exception Requests and BL Bit..............coiiiiiiiiiiiiiiisis e,
5.5.4 Return from Exception Handlingccooooiiiiiiiiiiiii e
5.6 DeSCription Of EXCEPLIONSuiiiiiiiiiiiiii ettt ettt e e s seaaaeeee s
L T R o= £ R SPPPPRRN 0....
5.6.2 General EXCEPLIONSuuiiiiiiiiiiiiie ettt ettt e e
5.6.3 IO UPIS ettt 1.
5.6.4 Priority Order with Multiple EXCEPLIONSovvvviiiiiiiiieeeeeieeeeeeee e e e
5.7 USAQE NOLES ...ttt e et e et e e et s e e e et e e e e aab s e e s enannas 115..
5.8 RESIICHONS .ot e e et e e e e e e e eeeeeeeeee e e e e anmmnnnns 116
Section 6 Floating-Point UNit................ccoooiiiiiiiicccee e ;
B.1 OVBIVIBW ...ttt ettt ettt et e e e e e e e e e e e e e e e e e bbb b e et e e s e 117
6.2 DaAla FOIMALS... . e e e et et e e e e e e e e e e e e e e eere s 117.
6.2.1 Floating-Point FOrmMat.............ovuiiiiiiii e
6.2.2 NON-NUMDEIS (NAN) ...oiiiiiiiiiiiiei e
6.2.3 Denormalized NUMDEISccoiiiiieeee e e e e e e e aeees
8.3 REQISIEIS. .. ittt e e et s e 121
6.3.1 Floating-Point REQISIEIS.....cccic e e
6.3.2 Floating-Point Status/Control Register (FPSCR)..........cccoviviiiiiiiiiiiiiee e,
6.3.3 Floating-Point Communication Register (FPUL)ccooeviviiiiiiiiiisie e,
L Lo 10 oo [oo T PP PPPR 124
6.5 Floating-Point EXCEPLIONS......iiuueiiiieiiiiiiiet ettt ettt eee e 5....
6.6 Graphics SUPPOIt FUNCHONS........oiiiiiiiiiiiie et
6.6.1 Geometric Operation INSrUCLIONS..........cuuiiiiiiiii i,
6.6.2 Pair Single-Precision Data Transfer........cccooviiiiiiiiiiiiiicies e

Rev. 4.0, 03/00, page ix of 12
HITACHI

SecCtion 7 INSTIUCHION SEL.......cocooioiiiiiiieeee s 1
7.1 EXECULION ENVIFONMENT ...ttt ettt e e e e e e e e aeaaeaeeaeeaaanns
7.2 AJAreSSiNg MOUESoeiiiiiiiiiiiiie ettt e e s 131.....
A T 1 11 0T o o 1= PSSP 135
Section 8 PIPEIINING.......oiiiiiii e ;
8.1 PIPEINES... .o e emmm—— 149
8.2 Parallel-EXeCUtability............cooiiiiiiiee e 156.
8.3 Execution Cycles and Pipeling Stallingc.uueiiiiiiiiiiie e,
Section 9 INnstruction DeSCHPLIQNS..........ccocveiiiiiiceiceeee e 17
9.1 ADD ADD binary ...cccceeeeiiiiieeiiie e Arithmetic Instruction 1
9.2 ADDC ADD with Carryccccvvvviiiiiiiiieeeeeeeeeeians Arithmetic Instruction 1
9.3 ADDV ... ADD with (V flag) overflow check Arithmetic Instruction 19:
9.4 AND AND logicalcceevviiiiiiiiiiiie Logical Instruction 1
95 BF ... Branch if Falseccccooiiiiiiiiiiiiieeee Branch Instruction.................
96 BF/S Branch if False with delay Slot Branch Instruction.................
9.7 BRA BRANCH ..o Branch Instruction.................
9.8 BRAF BRANCh Far ... Branch Instruction.................
99 BSR............. Branch to SubRoutineccceciiiinnns Branch Instruction.................
9.10 BSRF Branch to SubRoutine Farccccccoe....... Branch Instruction.................
9.11 BT .cccoeennnnnnn. Branch if Trueevvvvveiiiiieieiiiiee Branch Instruction.................
9.12 BT/S Branch if True with delay Slot Branch Instruction................. |
9.13 CLRMACCleaR MAC registerccccevvvvvrvvvrvnnnnnnn. System Control Instruction.... 2
9.14 CLRS CleaR S hitocooeeeiiicc e, System Control Instruction....
9.15 CLRT CleaR T Dit .oovvvviiiiiiieee e, System Control Instruction....
9.16 CMP/cond ... CoMPare conditionallycccccovnnnneee. Arithmetic Instruction :
9.17 DIVOS DIVide (step 0) as Signedcccovvvveeeen. Arithmetic Instruction
9.18 DIVOU DIVide (step 0) as Unsigned Arithmetic Instruction Z
9.19 DIV1 DIVide L Step .uvvvveeeiiieeeeieieeeeee e Arithmetic Instruction Y
9.20 DMULS.L ... Double-length MULtiply as Signed Arithmetic Instruction 22
9.21 DMULUL.L .. Double-length MULtiply as Unsigned Arithmetic Instruction 22
9.22 DT .coeeeeenn. Decrement and TesSteeveveviiieeeeeeeennnnnn, Arithmetic Instruction
9.23 EXTS EXTend as Signedccccceeevvinieeeennninn Arithmetic Instruction
9.24 EXTU EXTend as Unsignedcccceeeeiiiiiennnn. Arithmetic Instruction :
9.25 FABS ... Floating-point ABSolute value Floating-Point Instruction z
9.26 FADD Floating-point ADDccccceeiiiieieeeiiieienns Floating-Point Instruction 2
9.27 FCMP Floating-point CoMParecccceeveens Floating-Point Instruction :
9.28 FCNVDS Floating-point CoNVert

Double to Single precisionccccvveee... Floating-Point Instruction 2.
9.29 FCNVSD Floating-point CoNVert

Single to Double precisionccceevveas Floating-Point Instruction 2:
9.30 FDIV Floating-point DIVidecccccceeeiiieneeennn. Floating-Point Instruction 2

Rev. 4.0, 03/00, page x of 12
HITACHI

9.31 FIPR Floating-point Inner PRoduct Floating-Point Instruction

9.32 FLDIO Floating-point LoaD Immediate 0.0 Floating-Point Instruction
9.33 FLDI1 Floating-point LoaD Immediate 1.0 Floating-Point Instruction
9.34 FLDS Floating-point LoaD to System register Floating-Point Instruction
9.35 FLOAT Floating-point convert from integer Floating-Point Instruction ‘
9.36 FMAC Floating-point Multiply and ACcumulate . Floating-Point Instruction 2
9.37 FMOV Floating-point MOVe ..., Floating-Point Instruction :
9.38 FMOV Floating-point MOVe extension Floating-Point Instruction |
9.39 FMUL Floating-point MULLIPlYccccoovviieeennns Floating-Point Instruction 2
9.40 FNEG Floating-point NEGate value Floating-Point Instruction
9.41 FRCHG FR-bit CHanGeccccooviiiiiii, Floating-Point Instruction
9.42 FSCHG Sz-bit CHanGeccoooeveveiiiiiiiiieie, Floating-Point Instruction
9.43 FSORT Floating-point SQuare RooTc......... Floating-Point Instruction
9.44 FSTS Floating-point STore System register Floating-Point Instruction
9.45 FSUB Floating-point SUBtractc.ccoccuveeeenne Floating-Point Instruction
9.46 FTRC Floating-point TRuncate and Convert to integer
.. Floating-Point Instruction
9.47 FTRV Floating-point TRansform Vector Floating-Point Instruction
9.48 JIMP JUMP Branch Instruction................
9.49 JSR Jump to SubRoutinecceee, Branch Instruction...............
9.50 LDC LoaD to Control registerccccovvveeeeennes System Control Instruction....
9.51 LDS LoaD to FPU System registerc....... System Control Instruction...
9.52 LDS LoaD to System registercccccevvuvneeenn. System Control Instruction...
9.53 LDTLB........ LoaD PTEH/PTEL/PTEAtO TLB System Control Instruction.... 2
9.54 MACL.LL Multiply and ACcumulate Long Arithmetic Instruction 2
9.55 MAC.W Multiply and ACcumulate Word Arithmetic Instruction 3
9.56 MOV MOVe dataccoccvvvviiiiiiiieieeee e Data Transfer Instruction.......
9.57 MOV MOVe constant valuecccccvvvvvveennnn. Data Transfer Instruction.......
9.58 MOV MOVe global datacccceveiiiiiiiiiennne Data Transfer Instruction.......
9.59 MOV MOVe structure datacccccceeeeeveiiiiinnnnns Data Transfer Instruction.......
9.60 MOVA MOVe effective Addressccccvvveveeeeeen. Data Transfer Instruction.......
9.61 MOVCA.L .. MOVe with Cache block Allocation Data Transfer Instruction....... 3
9.62 MOVT MOVE T bit .o Data Transfer Instruction.......
9.63 MUL.L MULLIPLY LONG e Arithmetic Instruction 3
9.64 MULS.W MULLiply as Signed Wordcccceeeeene Arithmetic Instruction............ K
9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction 3
9.66 NEG NEGALEovviiiiiiiiiiieeeeeee e Arithmetic Instruction
9.67 NEGC NEGate with Carrycccoccccviiiiiiiiineneeen, Arithmetic Instruction
9.68 NOP NO OPerationcccccevvvvvreeeeiiiiieee e, System Control Instruction...
9.69 NOT NOT-logical complementcccceeennene Logical Instruction
9.70 OCBI Operand Cache Block Invalidate Data Transfer Instruction......
9.71 OCBP Operand Cache Block Purge Data Transfer Instruction.....
9.72 OCBWSB Operand Cache Block Write Back Data Transfer Instruction.......

Rev. 4.0, 03/00, page xi of 12
HITACHI

9.73 OR ..ccoeennnnne. ORI logicalcccovvvvviiiiiiiie e, Logical Instruction

9.74 PREF PREFetch data to cachecccccceeeenneee. Data Transfer Instruction.....
9.75 ROTCL ROTate with Carry Leftccoociiieeinnnnn Shift Instruction..................... 3
9.76 ROTCR ROTate with Carry Rightccccoviinneee. Shift Instruction..................... :
9.77 ROTL ROTate Left ..o, Shift Instruction....................

9.78 ROTR ROTate Rightcccooviiiiiiiiie e, Shift Instruction.....................

9.79 RTE ReTurn from Exceptioncccocceeeeeneennn. System Control Instruction....

9.80 RTS ReTurn from Subroutinecccccceeees Branch Instruction..................
9.81 SETS SET S DIt oo System Control Instruction....
9.82 SETT SET T DIt v System Control Instruction....

9.83 SHAD SHift Arithmetic Dynamically Shift Instruction..................... 3
9.84 SHAL SHift Arithmetic Leftcccccoeiiiiiiineenns Shift Instruction..................... 3
9.85 SHAR SHift Arithmetic Right ..., Shift Instruction.................... 3
9.86 SHLD SHift Logical Dynamically Shift Instruction..................... 3
9.87 SHLL SHift Logical Leftccveveiiiiiiiiei, Shift Instruction..................... 3
9.88 SHLLn n bits SHift Logical Leftccccviineeenn. Shift Instruction..................... 3
9.89 SHLR SHift Logical Rightcccccooiviiiiinen Shift Instruction..................... :
9.90 SHLRn n bits SHift Logical Rightc............ Shift Instruction.................... 3
9.91 SLEEP SLEEP .o, System Control Instruction....
9.92 STC ... STore Control registercccceeeeveeeeeeeinennns System Control Instruction....
9.93 STS....ccceeeee. STore System registercccocceveeernnnnnn. System Control Instruction...
9.94 STScceee.e. STore from FPU System register System Control Instruction....
995 SUB SUBLtract binaryccccceeeiiiiiiiiieeeee Arithmetic Instruction :
9.96 SUBC SUBtract with Carryccoeevvvvvviviinnnnnnn. Arithmetic Instruction :
9.97 SUBV SUBtract with (V flag) underflow check.... Arithmetic Instruction 3¢
9.98 SWAP SWARP register halvescccceevieieeiiiiiinnnnns Data Transfer Instruction.......
9.99 TAS TeSt ANd Set ...oeeeviiiiiiiie Logical Instruction
9.100 TRAPA TRAP AIWAYS ...ovvviieiiiiiiiiiie e System Control Instruction.... .
9.101 TST ..covvennenn. TeST 10gicalcoeeviiiiiiiiiiiiiiiiieeieen Logical Instruction

9.102 XOR eXclusive OR logicalcccoeeeeeieieeiiinnnnnn, Logical Instruction :
9.103 XTRCT EXTRACT oo Data Transfer Instruction.......

Appendix A INStrUCION COUES...........ccooviieiieiicee e 3
A.1 Instruction Set by Addressing MOOE..........ccooiiiiiiiiiiii e
Appendix B Instruction Prefetch Side EffeCtS..........cccoooviiiii 395

Rev. 4.0, 03/00, page xii of 12
HITACHI

Section 1 Overview

1.1 SH-4 Features

The SH-4 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring obje
code upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. Its 16-bit fixe
length instruction set enables program code size to be reduced by almost 50% compared wi

bit instructions.

The features of the SH-4 are summarized in table 1.1.

Table 1.1 SH-4 Features

Item Features

Architecture .

Original Hitachi SH architecture

32-bit internal data bus

General register file:

O Sixteen 32-bit general registers (and eight 32-bit shadow registers)
0 Seven 32-bit control registers

O Four 32-bit system registers

RISC-type instruction set (upward-compatible with SH Series)
Fixed 16-bit instruction length for improved code efficiency
Load-store architecture

Delayed branch instructions

Conditional execution

O Ooo o

C-based instruction set

Superscalar architecture (providing simultaneous execution of two
instructions) including FPU

Instruction execution time: Maximum 2 instructions/cycle

Virtual address space: 4 Gbytes (448-Mbyte external memory space)
Space identifier ASIDs: 8 bits, 256 virtual address spaces

On-chip multiplier

Five-stage pipeline

Rev. 4.0, 03/00, page 1 of 395
HITACHI

Table 1.1 SH-4 Features (cont)

Item Features

FPU .

On-chip floating-point coprocessor

Supports single-precision (32 bits) and double-precision (64 bits)
Supports IEEE754-compliant data types and exceptions

Two rounding modes: Round to Nearest and Round to Zero

Handling of denormalized numbers: Truncation to zero or interrupt
generation for compliance with IEEE754

Floating-point registers: 32 bits x 16 words x 2 banks
(single-precision x 16 words or double-precision x 8 words) x 2 banks

32-bit CPU-FPU floating-point communication register (FPUL)

Supports FMAC (multiply-and-accumulate) instruction

Supports FDIV (divide) and FSQRT (square root) instructions

Supports FLDIO/FLDI1 (load constant 0/1) instructions

Instruction execution times

O Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8
cycles (double-precision)

O Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles
(double-precision)

Note: FMAC is supported for single-precision only.

3-D graphics instructions (single-precision only):

O 4-dimensional vector conversion and matrix operations (FTRV): 4
cycles (pitch), 7 cycles (latency)

O 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles
(latency)

Five-stage pipeline

Memory .
management
unit (MMU)

4-Gbyte address space, 256 address space identifiers (8-bit ASIDs)
Single virtual mode and multiple virtual memory mode

Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte
4-entry fully-associative TLB for instructions

64-entry fully-associative TLB for instructions and operands

Supports software-controlled replacement and random-counter
replacement algorithm

TLB contents can be accessed directly by address mapping

Rev. 4.0, 03/00, page 2 of 395

HITACHI

Table 1.1 SH-4 Features (cont)

ltem Features
Cache memory » Instruction cache (IC)
O 8 kbytes, direct mapping

O
g
O

256 entries, 32-byte block length
Normal mode (8-kbyte cache)

Index mode

» Operand cache (OC)

O 0OooooQgag

16 kbytes, direct mapping

512 entries, 32-byte block length
Normal mode (16-kbyte cache)
Index mode

RAM mode (8-kbyte cache + 8-kbyte RAM)
Choice of write method (copy-back or write-through)

» Single-stage copy-back buffer, single-stage write-through buffer

» Cache memory contents can be accessed directly by address mapping
(usable as on-chip memory)

» Store queue (32 bytes x 2 entries)

HITACHI

Rev. 4.0, 03/00, page 3 of 395

Section 2 Programming Model

2.1 Data Formats

The data formats handled by the SH-4 are shown in figure 2.1.

7 0
Byte (8 bits)
15 0
Word (16 bits)
31 0
Longword (32 bits)
3130 22 0
Single-precision floating-point (32 bits) s| exp fraction
63 62 51 0
Double-precision floating-point (64 bits) s| exp fraction

Figure 2.1 Data Formats

Rev. 4.0, 03/00, page 5 of 395
HITACHI

2.2 Register Configuration

221 Privileged Mode and Banks

Processor ModesThe SH-4 has two processor modes, user mode and privileged mode. The £
normally operates in user mode, and switches to privileged mode when an exception occurs ¢
interrupt is accepted. There are four kinds of registers—general registers, system registers, cc
registers, and floating-point registers—and the registers that can be accessed differ in the twa
processor modes.

General Registers:There are 16 general registers, designated RO to R15. General registers R
R7 are banked registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load
register (LDC) and store control register (STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 ge
registers RO_BANK1 to R7_BANK1 and non-banked general registers R8 to R15 can be acce
as general registers RO to R15. In this case, the eight registers comprising bank 0 general rec
RO_BANKO to R7_BANKO are accessed by the LDC/STC instructions. When the RB bit is O (t
is, when bank 0 is selected), the 16 registers comprising bank 0 general registers RO_BANKO
R7_BANKO and non-banked general registers R8 to R15 can be accessed as general registel
to R15. In this case, the eight registers comprising bank 1 general registers RO_BANK1 to
R7_BANK1 are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers RO_BANKO to R7_BANKO
non-banked general registers R8 to R15 can be accessed as general registers RO to R15. The
registers comprising bank 1 general registers RO_BANK1 to R7_BANK1 cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status regist
(SR), which can be accessed in both processor modes, and the saved status register (SSR), -
program counter (SPC), vector base register (VBR), saved general register 15 (SGR), and de
base register (DBR), which can only be accessed in privileged mode. Some bits of the status
register (such as the RB bit) can only be accessed in privileged mode.

System RegistersSystem registers comprise the multiply-and-accumulate registers
(MACH/MACL), the procedure register (PR), the program counter (PC), the floating-point
status/control register (FPSCR), and the floating-point communication register (FPUL). Acces
these registers does not depend on the processor mode.

Rev. 4.0, 03/00, page 6 of 395
HITACHI

Floating-Point Registers:There are thirty-two floating-point registers, FRO—FR15 and XFO—
XF15. FRO-FR15 and XFO—XF15 can be assigned to either of two banks (FPRO_BANKO-
FPR15_BANKO or FPRO_BANK1-FPR15_BANK1).

FRO-FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floatin
point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XFC
XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register mat
XMTRX.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Type Registers Initial Value*

General registers RO_BANKO-R7_BANKO, Undefined
RO_BANK1-R7_BANK1,

R8-R15
Control registers SR MD bit =1, RB bit = 1, BL bit=1, FD bit =0,
I13-10 = 1111 (H'F), reserved bits = 0, others
undefined
GBR, SSR, SPC, SGR, Undefined
DBR
VBR H'00000000
System registers MACH, MACL, PR, FPUL Undefined
PC H'A0000000
FPSCR H'00040001
Floating-point FRO-FR15, XFO—-XF15 Undefined

registers

Note: * Initialized by a power-on reset and manual reset.

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (|
in the status register.

Rev. 4.0, 03/00, page 7 of 395
HITACHI

31 31 0 31 0
RO_BANKO*1*2 RO_BANK1** RO_BANKO*1*¥
R1_BANKO*? R1_BANKI*® R1_BANKO*
R2_BANKO* R2_BANKI*® R2_BANKO*
R3_BANKO*? R3_BANK1*® R3_BANKO*
R4_BANKO*? R4_BANKI* R4_BANKO*
R5_BANKO*? R5_BANKI*® R5_BANKO*
R6_BANKO*? R6_BANK1*® R6_BANKO*
R7_BANKO* R7_BANKI* R7_BANKO*
R8 R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15
SR SR SR

SSR SSR
GBR GBR GBR
MACH MACH MACH
MACL MACL MACL
PR PR PR
VBR VBR
PC PC PC
SPC SPC
SGR SGR
DBR DBR
RO_BANKO*L*¥ RO_BANK1**3
R1_BANKO* R1_BANKI*®
R2_BANKO* R2_BANK1*3
R3_BANKO* R3_BANKI*3
R4_BANKO** R4_BANK1*3
R5_BANKO** R5_BANK1*3
R6_BANKO* R6_BANK1*3
R7_BANKO* R7_BANK1*3

(a) Register configuration
in user mode

(b) Register configuration in
privileged mode (RB = 1)

(c) Register configuration in
privileged mode (RB = 0)

Notes: 1. The RO register is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.

2. Banked registers
3. Banked registers

Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers

Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by

LDC/STC instructions when the RB bit is set to 1.

Figure 2.2 CPU Register Configuration in Each Processor Mode

Rev. 4.0, 03/00, page 8 of 395

HITACHI

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The !
has twenty-four 32-bit general registers (RO_BANKO-R7_BANKO, RO_BANK1-R7_BANK1,
and R8—-R15). However, only 16 of these can be accessed as general registers RO—R15 in o
processor mode. The SH-4 has two processor modes, user mode and privileged mode, in wi
RO—R7 are assigned as shown below.

« RO_BANKO-R7_BANKO
In user mode (SR.MD = 0), RO-R7 are always assigned to RO_BANKO-R7_BANKO.

In privileged mode (SR.MD = 1), RO-R7 are assigned to RO_BANKO-R7_BANKO only wt
SR.RB = 0.

« RO_BANK1-R7_BANK1
In user mode, RO_BANK1-R7_BANK1 cannot be accessed.
In privileged mode, RO-R7 are assigned to RO_BANK1-R7_BANK1 only when SR.RB =

Rev. 4.0, 03/00, page 9 of 395
HITACHI

SR.MD =0 or
(SR.MD =1, SR.RB =0) (SR.MD =1, SR.RB=1)
RO RO_BANKO RO_BANKO
R1 R1_BANKO R1_BANKO
R2 R2_BANKO R2_BANKO
R3 R3_BANKO R3_BANKO
R4 R4_BANKO R4_BANKO
R5 R5_BANKO R5_BANKO
R6 R6_BANKO R6_BANKO
R7 R7_BANKO R7_BANKO
RO_BANK1 RO_BANK1 RO
R1_BANK1 R1_BANK1 R1
R2_BANK1 R2_BANK1 R2
R3_BANK1 R3_BANK1 R3
R4 _BANK1 R4 _BANK1 R4
R5_BANK1 R5 BANK1 R5
R6_BANK1 R6_BANK1 R6
R7_BANK1 R7_BANK1 R7
R8 R8 R8
R9 R9 R9
R10 R10 R10
R11 R11 R11
R12 R12 R12
R13 R13 R13
R14 R14 R14
R15 R15 R15

Figure 2.3 General Registers

Programming Note: As the user's RO—R7 are assignhed to RO_BANKO-R7_BANKO, and after ¢
exception or interrupt RO—R7 are assigned to RO_BANK1-R7_BANK1, it is not necessary for
interrupt handler to save and restore the user's RO—R7 (RO_BANKO-R7_BANKO).

After a reset, the values of RO_BANKO—R7_BANKO, RO_BANK1-R7_BANK1, and R8-R15 at
undefined.

Rev. 4.0, 03/00, page 10 of 395
HITACHI

2.2.3 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registel
divided into two banks (FPRO_BANKO-FPR15_ BANKO and FPRO_BANK1-FPR15_BANK1)
These 32 registers are referenced as FRO-FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XFO—X
XDO0/2/4/6/8/10/12/14, or XMTRX. The correspondence between FPRn_BANKIi and the refer
name is determined by the FR bit in FPSCR (see figure 2.4).

Floating-point registers, FPRn_BANK:i (32 registers)

FPRO_BANKO, FPR1_BANKO, FPR2_BANKO, FPR3_BANKO, FPR4_BANKO,
FPR5_BANKO, FPR6_BANKO, FPR7_BANKO, FPR8 BANKO, FPR9_BANKO,
FPR10_BANKO, FPR11 BANKO, FPR12_BANKO, FPR13 BANKO, FPR14 BANKaO,
FPR15 BANKO

FPRO_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4_BANK1,
FPR5_BANK1, FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1,
FPR10_BANK1, FPR11_BANK1, FPR12_BANK1, FPR13_BANK1, FPR14_BANK1,
FPR15_BANK1

Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 are assigned to FPRO_BANKO-FPR15_BANKO.
When FPSCR.FR = 1, FRO-FR15 are assigned to FPRO_BANK1-FPR15 BANK1.

Double-precision floating-point registers or single-precision floating-point register pairs, D
(8 registers): A DR register comprises two FR registers.

DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},

DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

Single-precision floating-point vector registers, FVi (4 registers): An FV register comprise:
four FR registers

FVO = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},

FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO—XF15 are assigned to FPRO_BANK1-FPR15 BANK1.
When FPSCR.FR = 1, XFO—XF15 are assigned to FPRO_BANKO-FPR15_BANKO.

Single-precision floating-point extended register pairs, XDi (8 registers): An XD register
comprises two XF registers

XDO0 = {XFO0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},

XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Rev. 4.0, 03/00, page 11 of 395
HITACHI

e Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = | XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11 XF15

FPSCR.FR =0 FPSCR.FR=1
FVO DRO FRO FPRO_BANKO XFO XD0 XMTRX
FR1 FPR1_BANKO XF1
DR2 FR2 FPR2_BANKO XF2 XD2
FR3 FPR3_BANKO XF3

FV4 DR4 FR4 FPR4_BANKO XF4 XD4
FR5 FPR5_BANKO XF5
DR6 FR6 FPR6_BANKO XF6 XD6
FR7 FPR7_BANKO XF7
FV8 DRS8 FRS8 FPR8_BANKO XF8 XD8
FR9 FPR9_BANKO XF9
DR10 FR10 FPR10_BANKO XF10 XD10
FR11 FPR11_BANKO XF11
FV12 DR12 FR12 FPR12_BANKO XF12 XDi12
FR13 FPR13_BANKO XF13
DR14 FR14 FPR14_BANKO XF14 XD14
FR15 FPR15_BANKO XF15
XMTRX XDO XFO FPRO_BANK1 FRO DRO FVO
XF1 FPR1_BANK1 FR1
XD2 XF2 FPR2_BANK1 FR2 DR2
XF3 FPR3_BANK1 FR3
XD4 XF4 FPR4_BANK1 FR4 DR4 FV4
XF5 FPR5_BANK1 FR5
XD6 XF6 FPR6_BANK1 FR6 DR6
XF7 FPR7_BANK1 FR7
XD8 XF8 FPR8_BANK1 FR8 DR8 FV8
XF9 FPR9_BANK1 FR9
XD10 XF10 FPR10_BANK1 FR10 DRI10
XF11 FPR11_BANK1 FR11
XD12 XF12 FPR12_BANK1 FR12 DR12 FV12
XF13 FPR13_BANK1 FR13
XD14 XF14 FPR14_BANK1 FR14 DR14
XF15 FPR15 BANK1 FR15

Figure 2.4 Floating-Point Registers

Rev. 4.0, 03/00, page 12 of 395
HITACHI

Programming Note: After a reset, the values of FPRO_BANKO-FPR15_BANKO and
FPRO_BANK1-FPR15 BANKZ1 are undefined.

224 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000
00XX 1111 00XX (X: Undefined))

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0
[~ wo]re]at] - o] = [wlo] was | — [s]7]
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

« MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot
accessed)
MD = 1: Privileged mode

¢ RB: General register bank specifier in privileged mode (set to 1 by a reset, exception, or
interrupt)
RB = 0: RO_BANKO-R7_BANKO are accessed as general registers RO—R7. (RO_BANK1-
R7_BANK1 can be accessed using LDC/STC RO_BANK-R7_BANK instructions.)

RB = 1: RO_BANK1-R7_BANK1 are accessed as general registers RO-R7. (R0O_BANKO-
R7_BANKO can be accessed using LDC/STC RO_BANK-R7_BANK instructions.)

« BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If a general exception other than a user break occ
while BL = 1, the processor switches to the reset state.

« FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU instr
is in a delay slot, a slot FPU disable exception is generated. (FPU instructions: H'F***
instructions, LDC(.L)/STS(.L) instructions for FPUL/FPSCR)

« M, Q: Used by the DIVOS, DIVOU, and DIV1 instructions.

¢ IMASK: Interrupt mask level
External interrupts of a lower level than IMASK are masked.

S: Specifies a saturation operation for a MAC instruction.

T: True/false condition or carry/borrow bit

Rev. 4.0, 03/00, page 13 of 395
HITACHI

Saved status register, SSR (32 bits, privilege protection, initial value undefined)he current
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undefined}:he
address of an instruction at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undefined)BR is referenced as the base
address in a GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000¥BR is
referenced as the branch destination base address in the event of an exception or interrupt. F
details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined)he
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undefinedyVhen the
user break debug function is enabled (BRCR.UBDE = 1), DBR is referenced as the user breal
handler branch destination address instead of VBR.

225 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)

MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instructior
or MUL operation result.

Procedure register, PR (32 bits, initial value undefined)The return address is stored in PR in a
subroutine call using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutin
return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000)PC indicates the instruction fetch
address.

Rev. 4.0, 03/00, page 14 of 395
HITACHI

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause | Enable Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank

FR = 0: FPRO_BANKO-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1-
FPR15 BANK1 are assigned to XFO—XF15.

FR = 1: FPRO_BANKO-FPR15_BANKO are assigned to XFO—XF15; FPRO_BANK1—
FPR15_BANK1 are assigned to FRO-FR15.

e SZ: Transfer size mode
SZ = 0: The data size of the FMOV instruction is 32 bits.
SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

¢ PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the resul
instructions for which double-precision is not supported is undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

« DN: Denormalization mode
DN = 0: A denormalized number is treated as such.
DN = 1: A denormalized number is treated as zero.

e Cause: FPU exception cause field
« Enable: FPU exception enable field
¢ Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O)))
Cause FPU exception Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

Rev. 4.0, 03/00, page 15 of 395
HITACHI

When an FPU operation instruction is executed, the FPU exception cause field is cleared t
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag fiel
holds the status of the exception generated after the field was last cleared.

*« RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

* Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined)Data transfer
between FPU registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ =1 and big endian mode is selected, FMOV can be used for
double-precision floating-point load or store operations. In little endian mode, two 32-bit data ¢
moves must be executed, with SZ = 0, to load or store a double-precision floating-point numb

2.3 Memory-Mapped Registers

Appendix A shows the control registers mapped to memory. The control registers are double-
mapped to the following two memory areas. All registers have two addresses.

H'1F00 0000-H'1FFF FFFF
H'FFO0 0000-H'FFFF FFFF

These two areas are used as follows.

- H'1F00 0000-H'1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since external me
is defined as a 29-bit address space in the SH-4 architecture, the TLB’s physical page nun
do not cover a 32-bit address space. In address translation, the page numbers of this area
be set in the corresponding field of the TLB by accessing a memory-mapped register. The
numbers of this area should be used as the actual page numbers set in the TLB. When ad
translation is not performed, the operation of accesses to this area is undefined.

 H'FFO0 0000—H'FFFF FFFF
Access to area H'FF00 0000—H'FFFF FFFF in user mode will cause an address error. Mer

mapped registers can be referenced in user mode by means of access that involves addre
translation.

Rev. 4.0, 03/00, page 16 of 395
HITACHI

Note: Do not access undefined locations in either area The operation of an access to an
undefined location is undefined. Also, memory-mapped registers must be accessed u
fixed data size. The operation of an access using an invalid data size is undefined.

2.4 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (¢
or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
| Longword

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be acces
8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits in lengtt
sign-extended before being loaded into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte
address 2n), and a longword operand starting from a longword boundary (even address of a
unit: address 4n). An address error will result if this rule is not observed. A byte operand can
accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should
with the MD5 external pin in a power-on reset. Big endian is selected when the MD5 pin is lo
and little endian when high. The endian cannot be changed dynamically. Bit positions are
numbered left to right from most-significant to least-significant. Thus, in a 32-bit longword, th
leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0, is the least significan
bit.

The data format in memory is shown in figure 2.5.

Rev. 4.0, 03/00, page 17 of 395
HITACHI

A A+1 A+2 A+3 A+11 A+10 A+9 A+8
31 23 15 7 0 31 23 15 7 0
7 0|7 o7 of7 0 7 of7 0|7 0|7 0
Address A | Byte 0| Byte 1| Byte 2 | Byte 3 Byte 3|Byte 2| Byte 1 | Byte 0| Address A + 8
15 0|15 0 15 0[15 0
Address A + 4 Word 0 Word 1 Word 1 Word 0 Address A + 4
31 0 31 0
Address A + 8 Longword Longword Address A
Big endian Little endian

Figure 2.5 Data Formats In Memory

Note: The SH-4 does not support endian conversion for the 64-bit data format. Therefore, if
double-precision floating-point format (64-bit) access is performed in little endian mode
the upper and lower 32 bits will be reversed.

2.6 Processor States

The SH-4 has five processor states: the reset state, exception-handling state, bus-released st
program execution state, and power-down state.

Reset Stateln this state the CPU is reset. There are two kinds of reset state, power-on reset &
manual reset, defined as shown in table 2.6 according to the relevant external pin states.

Table 2.6 Reset State

Power-On Reset State Manual Reset State
SH7750 Series RESET =0and MRESET =1 RESET =0 and MRESET =0
SH7751 RESET =0 RESET =1 and MRESET =0

For more information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and registers ¢
chip peripheral modules other than the bus state controller (BSC) are initialized. Since the bu
state controller (BSC) is not initialized in the manual reset state, refreshing operations continu
Refer to the register configurations in the relevant sections for further details.

Rev. 4.0, 03/00, page 18 of 395
HITACHI

Exception-Handling State:This is a transient state during which the CPU'’s processor state flc
is altered by a reset, general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the u
coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents are saved
saved program counter (SPC), the status register (SR) contents are saved in the saved statt
register (SSR), and the R15 contents are saved in saved general register 15 (SGR). The CP
branches to the start address of the user-coded exception service routine found from the sur
contents of the vector base address and the vector offset. See section 5, Exceptions, for mol
information on resets, general exceptions, and interrupts.

Program Execution State:In this state the CPU executes program instructions in sequence.

Power-Down State:In the power-down state, CPU operation halts and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two
in the power-down state: sleep mode and standby mode. For details, see hardware manual,
Down Modes.

Bus-Released Statdn this state the CPU has released the bus to a device that requested it.

SH7750 Series state transitions are shown in figure 2.6, and SH7751 state transitions in figu

Rev. 4.0, 03/00, page 19 of 395
HITACHI

From any state when
RESET =0 and MRESET =1

From any state when .
RESET =0 and MRESET =0

RESET =0,
MRESET =1

;
'

Power-on reset state

'

'

:

Manual reset state

Reset state

RESET =1,
MRESET =1

RESET =1,
MRESET =0

Exception-handling state

1
Bus request
q Bus request
clearance
Interrupt Interrupt
Exception End of exception
Bus-released state _ interrupt transition
* processing
Bus request
clearance
request
4

Bus request
clearance

Bus request

SLEEP instruction
with STBY bit
cleared

; Sleep mode

Program execution state

SLEEP instruction
with STBY bit set

Standby mode ;

Power-down state

Figure 2.6 Processor State Transitions (SH7750 Series)

Rev. 4.0, 03/00, page 20 of 395
HITACHI

From any state when From any state when
RESET =0 RESET =1 and MRESET =0

..

Manual reset state

RESET =0

T
o
=
@
n
<)
=)
=
@
(%2
@
o
(%2}
@Q
o}
@

Reset state

RESET =1 RESET =1,
MRESET =1

Exception-handling state

Bus request
q Bus request

clearance
Interrupt Interrupt
Exception End of exception
Bus-released state interrupt transition

(TN \

processing

Bus request

clearance
request

A 4

Bus request
clearance

Bus request Program execution state

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

..

E Sleep mode Standby mode :

Power-down state

Figure 2.7 Processor State Transitions (SH7751)

2.7 Processor Modes

There are two processor modes: user mode and privileged mode. The processor mode is
determined by the processor mode bit (MD) in the status register (SR). User mode is selecte
when the MD bit is cleared to 0, and privileged mode when the MD bit is set to 1. When the r
state or exception state is entered, the MD bit is set to 1. When exception handling ends, the
bit is cleared to 0 and user mode is entered. There are certain registers and bits which can o
accessed in privileged mode.

Rev. 4.0, 03/00, page 21 of 395
HITACHI

Section 3 Memory Management Unit (MMU)

3.1 Overview

3.1.1 Features

The SH-4 can handle 29-bit external memory space from an 8-bit address space identifier ar
bit logical (virtual) address space. Address translation from virtual address to physical addre:
performed using the memory management unit (MMU) built into the SH-4. The MMU performn
high-speed address translation by caching user-created address translation table informatior
address translation buffer (translation lookaside buffer: TLB). The SH-4 has four instruction
(ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by
hardware. A paging system is used for address translation, with support for four page sizes (
and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and
implement storage protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown
figure 3.1, when a process is smaller in size than the physical memory, the entire process ca
mapped onto physical memory, but if the process increases in size to the point where it does
into physical memory, it becomes necessary to divide the process into smaller parts, and ma
parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this mappin
onto physical memory executed consciously by the process itself imposes a heavy burden o
process. The virtual memory system was devised as a means of handling all physical memo|
mapping to reduce this burden ((2)). With a virtual memory system, the size of the available
virtual memory is much larger than the actual physical memory, and processes are mapped
this virtual memory. Thus processes only have to consider their operation in virtual memory,
mapping from virtual memory to physical memory is handled by the MMU. The MMU is
normally managed by the OS, and physical memory switching is carried out so as to enable
virtual memory required by a task to be mapped smoothly onto physical memory. Physical
memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sh:
system (TSS) that allows a number of processes to run simultaneously ((3)). Running a num
processes in a TSS did not increase efficiency since each process had to take account of ph
memory mapping. Efficiency is improved and the load on each process reduced by the use c
virtual memory system ((4)). In this system, virtual memory is allocated to each process. The
of the MMU is to map a number of virtual memory areas onto physical memory in an efficient
manner. It is also provided with memory protection functions to prevent a process from
inadvertently accessing another process’s physical memory.

Rev. 4.0, 03/00, page 23 of 395
HITACHI

When address translation from virtual memory to physical memory is performed using the MV
it may happen that the translation information has not been recorded in the MMU, or the virtue
memory of a different process is accessed by mistake. In such cases, the MMU will generate
exception, change the physical memory mapping, and record the new address translation
information.

Although the functions of the MMU could be implemented by software alone, having address

translation performed by software each time a process accessed physical memory would be v
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer: Tl
is provided in hardware, and frequently used address translation information is placed here. T
TLB can be described as a cache for address translation information. However, unlike a cach
address translation fails—that is, if an exception occurs—switching of the address translation
information is normally performed by software. Thus memory management can be performed
flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physi
memory: the paging method, using fixed-length address translation, and the segment method
using variable-length address translation. With the paging method, the unit of translation is a
fixed-size address space called a page (usually from 1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH-4 is referred to as
virtual address space, and the address space in physical memory as physical address space.

Rev. 4.0, 03/00, page 24 of 395
HITACHI

‘ Virtual h
memory MMU Physical
- hvsical) Physical) Process1 _memory
Pmeyrzlga Process 1 memory -
ry
Process 1 i .
L y
&) L @
J/ N J/
4 N 4 : N
Physical Virtual
Process1 L amor Process1 memory
“MMU Physical
\ memory
Process 2 Process 2 i
Process 3/ / Process 3 a8
3 4
L @ J L @ J

Figure 3.1 Role of the MMU

HITACHI

Rev. 4.0, 03/00, page 25 of 395

3.1.3 Register Configuration

The MMU registers are shown in table 3.1.

Table 3.1 MMU Registers

Abbrevia- Initial P4 Area 7 Access
Name tion R/W Value*! Address*? Address*® Size
Page table entry high PTEH R/W Undefined H'FF00 0000 H'1F00 0000 32
register
Page table entry low PTEL R/W Undefined H'FFO0 0004 H'1F00 0004 32
register
Page table entry PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32
assistance register
Translation table base TTB R/W Undefined H'FFO0 0008 H'1F00 0008 32
register
TLB exception address TEA R/W Undefined H'FFO0 000C H'1F00 000C 32
register
MMU control register MMUCR R/W H'0000 0000 H'FFO0 0010 H'1F00 0010 32

Notes: 1.

The initial value is the value after a power-on reset or manual reset.

2. This is the address when using the virtual/physical address space P4 area. The area 7
address is the address used when making an access from physical address space area

7 using the TLB.

3.14 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is access

Rev. 4.0, 03/00, page 26 of 395

HITACHI

3.2 Register Descriptions

There are six MMU-related registers.

1. PTEH

31 109 8 7 0

VPN —|— ASID

2. PTEL

31 30 29 28 109 8 7 6 5 4 3 2 10

—|—|— PPN —|V|SZ| PR [SZ|C|D |SHWT
3. PTEA

31 4 3 2 0

TC SA

4. TTB

31 0

TTB

5. TEA

31

Virtual address at which MMU exception or address error occurred

6. MMUCR

31 26 25 24 23 18 17 16 15 109 8 7 6 5 4 3 2 10

LRUI —|— URB —|— URC ‘SV—————TI—AT
SQMD

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

Figure 3.2 MMU-Related Registers

Rev. 4.0, 03/00, page 27 of 395
HITACHI

1. Page table entry high register (PTEH)Longword access to PTEH can be performed from
H'FFO0 0000 in the P4 area and H'1LF00 0000 in area 7. PTEH consists of the virtual page nut
(VPN) and address space identifier (ASID). When an MMU exception or address error except
occurs, the VPN of the virtual address at which the exception occurred is set in the VPN field
hardware. VPN varies according to the page size, but the VPN set by hardware when an exce
occurs consists of the upper 22 bits of the virtual address which caused the exception. VPN s
can also be carried out by software. The number of the currently executing process is set in tt
ASID field by software. ASID is not updated by hardware. VPN and ASID are recorded in the
UTLB by means of the LDLTB instruction.

2. Page table entry low register (PTEL)Longword access to PTEL can be performed from

H'FF00 0004 in the P4 area and H'1F00 0004 in area 7. PTEL is used to hold the physical pag
number and page management information to be recorded in the UTLB by means of the LDTI
instruction. The contents of this register are not changed unless a software directive is issued

3. Page table entry assistance register (PTEA)ongword access to PTEA can be performed
from H'FFOO 0034 in the P4 area and H'1F00 0034 in area 7. PTEL is used to store assistanc
for PCMCIA access to the UTLB by means of the LDTLB instruction.

In the SH7750S and SH7751, when access to a PCMCIA interface area is performed from the
CPU with MMUCR.AT = 0, access is always performed using the values of the SA bitand TC
in this register.

In the SH7750, it is not possible to access a PCMCIA interface area with MMUCR.AT = 0.

In the SH-4, access to a PCMCIA interface area by the DMAC is always performed using the
DMAC’s CHCRN.SSAn and CHCRN.STCn values. See the DMAC section for details.

The contents of this register are not changed unless a software directive is issued.

4. Translation table base register (TTB).Longword access to TTB can be performed from
H'FFO00 0008 in the P4 area and H'1F00 0008 in area 7. TTB is used, for example, to hold the
address of the currently used page table. The contents of TTB are not changed unless a softv
directive is issued. This register can be freely used by software.

5. TLB exception address register (TEA)Longword access to TEA can be performed from
H'FFO0 000C in the P4 area and H'1F00 000C in area 7. After an MMU exception or address
exception occurs, the virtual address at which the exception occurred is set in TEA by hardwa
The contents of this register can be changed by software.

6. MMU control register (MMUCR): MMUCR contains the following bits:
LRUI: Least recently used ITLB

URB: UTLB replace boundary

URC: UTLB replace counter

SQMD: Store queue mode bit

Rev. 4.0, 03/00, page 28 of 395
HITACHI

SV: Single virtual mode bit
TI: TLB invalidate
AT: Address translation bit

Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and H'1FO
0010 in area 7. The individual bits perform MMU settings as shown below. Therefore, MMUC
rewriting should be performed by a program in the P1 or P2 area. After MMUCR is updated,
instruction that performs data access to the PO, P3, UO, or store queue area should be locate
least four instructions after the MMUCR update instruction. Also, a branch instruction to the |
P3, or U0 area should be located at least eight instructions after the MMUCR update instruct
MMUCR contents can be changed by software. The LRUI bits and URC bits may also be upt
by hardware.

¢ LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replac
in the event of an ITLB miss. The entry to be purged from the ITLB can be confirmed usir
the LRUI bits. LRUI is updated by means of the algorithm shown below. A dash in this tal
means that updating is not performed.

LRUI
5] (4] (3] (2] (1] 0]
When ITLB entry 0 is used 0 0 0 — — —
When ITLB entry 1 is used 1 — — 0 0 —
When ITLB entry 2 is used — 1 — 1 — 0
When ITLB entry 3 is used — — 1 — 1

Other than the above — — — — _ _

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated
an ITLB miss. An asterisk in this table means “don’t care”.

LRUI
(5] (4] (3] (2] (1] [0]
ITLB entry O is updated 1 1 1 * * *
ITLB entry 1 is updated 0 * * 1 1 *
ITLB entry 2 is updated * 0 * 0 *
ITLB entry 3 is updated * * 0 * 0 0
Other than the above Setting prohibited

Ensure that values for which “Setting prohibited” is indicated in the above table are not se
the discretion of software. After a power-on or manual reset the LRUI bits are initialized tc
and therefore a prohibited setting is never made by a hardware update.

Rev. 4.0, 03/00, page 29 of 395
HITACHI

« URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed.
Valid only when URB > 0.

¢ URC: Random counter for indicating the UTLB entry for which replacement is to be
performed with an LDTLB instruction. URC is incremented each time the UTLB is accesse
When URB > 0, URC is reset to 0 when the condition URC = URB occurs. Also note that, |
value is written to URC by software which results in the condition URC > URB, incrementir
is first performed in excess of URB until URC = H'3F. URC is not incremented by an LDTL
instruction.

« SQMD: Store queue mode bit. Specifies the right of access to the store queues.
0: User/privileged access possible
1: Privileged access possible (address error exception in case of user access)

e SV: Bit that switches between single virtual memory mode and multiple virtual memory mo
0: Multiple virtual memory mode
1. Single virtual memory mode
When this bit is changed, ensure that 1 is also written to the TI bit.

e TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always
returns O when read.

e AT: Specifies MMU enabling or disabling.
0: MMU disabled
1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does
use the MMU, therefore, the AT bit should be cleared to 0.

3.3 Memory Space

3.3.1 Physical Memory Space

The SH-4 supports a 32-bit physical memory space, and can access a 4-Gbyte address spac
When the MMUCRL.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as sh
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memon
space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Gbyte space from the PO area to the P4 .
can be accessed. In user mode, a 2-Gbyte space in the UO area can be accessed. Accessing
to P4 areas (except the store queue area) in user mode will cause an address error.

Rev. 4.0, 03/00, page 30 of 395
HITACHI

External

memory space
H'0000 0000 Area 0 | H'0000 0000
| Areal |
/| Area2 |}
‘| Area3 |t
PO area | Area4d | U0 area
Cacheable ‘[Areas | Cacheable
! | Areas |t
| Area 7 '
H'8000 0000 L L H'8000 0000
P1 area [.
Cacheable
H'A000 0000 P2 area
Non-cacheable |: v i
, [i Address error
H'C000 0000 P3 area ¥ \
Cacheable \
H'EO00 0000 \ H'EO00 0000
______ P4 aLea bl Store queue area H'E400 0000
H'FEEF FFEE Non-cacheable Address error H'EFEE FEFE

Privileged mode User mode

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)

In the SH7750, it is not possible to access a PCMCIA interface area from the CPU.

In the SH7750S and SH7751, when access to a PCMCIA interface area is performed from th
CPU, the SA and TC values set in the PTEA register are always used for the access.

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRN.SSAn and CHCRnN.STCn values. See the DMAC section for details.

PO, P1, P3, U0 AreasThe PO, P1, P3, and UO areas can be accessed using the cache. Whet
not the cache is used is determined by the cache control register (CCR). When the cache is
with the exception of the P1 area, switching between the copy-back method and the write-thi
method for write accesses is specified by the CCR.WT bit. For the P1 area, switching is spec
by the CCR.CB bit. Zeroizing the upper 3 bits of an address in these areas gives the corresp

external memory space address. However, since area 7 in the external memory space is a re
area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upg
bits of an address gives the corresponding external memory space address. However, since
in the external memory space is a reserved area, a reserved area also appears in this area.

Rev. 4.0, 03/00, page 31 of 395
HITACHI

P4 Area: The P4 area is mapped onto SH-4 on-chip I/O channels. This area cannot be acces:
using the cache. The P4 area is shown in detail in figure 3.4.

H'EO00 0000
Store queue

H'E400 0000

Reserved area
H'FO00 0000 Instruction cache address array
H'F100 0000 Instruction cache data array
H'F200 0000 Instruction TLB address array
H'F300 0000 Instruction TLB data arrays 1 and 2
H'F400 0000 Operand cache address array
H'F500 0000 Operand cache data array
H'F600 0000 Unified TLB address array
H'F700 0000 Unified TLB data arrays 1 and 2
H'F800 0000

Reserved area
H'FCO00 0000

Control register area

H'FFFF FFFF

Figure 3.4 P4 Area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store qu
(SQs). When the MMU is disabled (MMUCR.AT = 0), the SQ access right is specified by the
MMUCR.SQMD bit. For details, see section 4.6, Store Queues.

The area from H'FO00 0000 to H'FOFF FFFF is used for direct access to the instruction cache
address array. For details, see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache
array. For details, see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB

address array. For details, see section 3.7.1, ITLB Address Array.

Rev. 4.0, 03/00, page 32 of 395
HITACHI

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB date
arrays 1 and 2. For details, see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Arra

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache :
array. For details, see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache
array. For details, see section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the unified TLB add
array. For details, see section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FFFF is used for direct access to unified TLB data arr
and 2. For details, see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FC00 0000 to H'FFFF FFFF is the control register area.

3.3.2 External Memory Space

The SH-4 supports a 29-bit external memory space. The external memory space is divided ir
eight areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronc
DRAM, DRAM, and PCMCIA. Area 7 is a reserved area. For details, see section 13, Bus Sts
Controller (BSC), in the Hardware Manual.

H'0000 0000 Area O
H'0400 0000 Area 1
H'0800 0000 Area 2
H'0CO00 0000 Area 3
H'12000 0000 Area 4
H'1400 0000 Area 5
H'1800 0000 Area 6
:1;‘32 2'2?:?: Area 7 (reserved area)

Figure 3.5 External Memory Space

Rev. 4.0, 03/00, page 33 of 395
HITACHI

3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the PO, P3, and UO areas of the physical memory spe
the SH-4 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, pa
units. By using an 8-bit address space identifier, the PO, UO, P3, and store queue areas can b
increased to a maximum of 256. This is called the virtual memory space. Mapping from virtual
memory space to 29-bit external memory space is carried out using the TLB. Only when area
external memory space is accessed using virtual memory space, addresses H'1C00 0000 to t
FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area cont
register area in the physical memory space. Virtual memory space is illustrated in figure 3.6.

256 ; N External 256 S
ﬁ **._ memory space ﬁ
Area 0
Area 1
Area 2
PO area Area 3
U0 area
Cacheable Area 4 Cacheable
Addr ranslation ibl - .
ddress translation possible Area 5 Address translation possible
Area 6
Area 7
_-- ’ _--
P1 area ,”’/
Cacheable
Address translation not possible / ,,’
P2 area ; /
Non-cacheable ,"
Address translation not possible iR Address error
P3 area '
Cacheable
Address translation possible |}’
___________ P4area...._______] Store queue area
Non-cacheable
Address translation not possible Address error
Privileged mode User mode

Figure 3.6 Virtual Memory Space (MMUCR.AT = 1)

When areas PO, P3, and UO are mapped onto PCMCIA interface areas by the TLB in the cact
enabled state, it is necessary to specify 1 for the WT bit of that page, or to clear the C bit to 0.
Access is performed using the SA and TC values set for individual TLB pages.

It is not possible to access a PCMCIA interface area from the CPU by access to area P1, P2,

Rev. 4.0, 03/00, page 34 of 395
HITACHI

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRN.SSAn and CHCRnN.STCn values. See the DMAC section for details.

PO, P3, U0 AreasThe PO area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 aree
UO area allow access using the cache and address translation using the TLB. These areas ¢
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. Whe
CCR is in the cache-enabled state and the TLB enable bit (C bit) is 1, accesses can be perfc
using the cache. In write accesses to the cache, switching between the copy-back method a
write-through method is indicated by the TLB write-through bit (WT bit), and is specified in pe
units.

Only when the PO, P3, and UO areas are mapped onto external memory space by means of
TLB, addresses H'1F00 0000 to H'1FFF FFFF of area 7 in external memory space are alloce
the control register area. This enables control registers to be accessed from the U0 area in u
mode. In this case, the C bit for the corresponding page must be cleared to O.

P1, P2, P4 AreasAddress translation using the TLB cannot be performed for the P1, P2, or F
area (except for the store queue area). Accesses to these areas are the same as for physica
space. The store queue area can be mapped onto any external memory space by the MMU.
However, operation in the case of an exception differs from that for normal PO, U0, and P3 s
For details, see section 4.6, Store Queues.

3.34 On-Chip RAM Space

In the SH-4, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM
can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), PO area addresses H'7C(
0000 to H'7FFF FFFF are an on-chip RAM area. Data accesses (byte/word/longword/quadw
can be used in this area. This area can only be used in RAM mode.

3.35 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and

translation to physical addresses is carried out in these page units. The address translation t
external memory contains the physical addresses corresponding to virtual addresses and ad
information such as memory protection codes. Fast address translation is achieved by cachi
contents of the address translation table located in external memory into the TLB. In the SH-
basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In the e
of an access to an area other than the P4 area, the accessed virtual address is translated to
physical address. If the virtual address belongs to the P1 or P2 area, the physical address is
uniquely determined without accessing the TLB. If the virtual address belongs to the PO, UO,
area, the TLB is searched using the virtual address, and if the virtual address is recorded in-

Rev. 4.0, 03/00, page 35 of 395
HITACHI

TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the
accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception routine. In the TLB miss exception routine, the
address translation table in external memory is searched, and the corresponding physical adc
and page management information are recorded in the TLB. After the return from the exceptic
handling routine, the instruction which caused the TLB miss exception is re-executed.

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, eitl
of which can be selected with the MMUCR.SV bit. In the single virtual memory system, a num
of processes run simultaneously, using virtual address space on an exclusive basis, and the
physical address corresponding to a particular virtual address is uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multipls
virtual memory systems in terms of operation is in the TLB address comparison method (see
section 3.4.3, Address Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguis
between processes running simultaneously while sharing the virtual address space. Software
set the ASID of the currently executing process in PTEH in the MMU. The TLB does not have
be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes runr
simultaneously while using the virtual memory space on an exclusive basis.

34 TLB Functions

34.1 Unified TLB (UTLB) Configuration
The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As a table of address translation information to be recorded in the instruction TLB in the e\
of an ITLB miss

Rev. 4.0, 03/00, page 36 of 395
HITACHI

Information in the address translation table located in external memory is cached into the UT
The address translation table contains virtual page numbers and address space identifiers, &
corresponding physical page numbers and page management information. Figure 3.7 shows
overall configuration of the UTLB. The UTLB consists of 64 fully-associative type entries. Fig
3.8 shows the relationship between the address format and page size.

Entry0 |ASID [7:0] | VPN [31:10] | V| |PPN [28:10]|SZ [1:0] |SH|C|PR [1:0] | D|WT|SA [2:0] | TC
Entryl |ASID[7:0] | VPN [31:10] |V| |PPN [28:10]|SZ[1:0] |SH|C|PR [1:0]|D|WT|SA [2:0]| TC
Entry2 |ASID[7:0] | VPN [31:10] | V| |PPN [28:10]|SZ[1:0] |SH|C|PR [1:0]|D|WT|SA [2:0]| TC

Entry 63 |ASID [7:0] | V.PN [31:10] |v | |PPN [28:10] | SZ [1:0] |SH | c | PR [L:0] | D | WT|SA [2:0] |TC |

Figure 3.7 UTLB Configuration

* 1-kbyte page
Virtual address Physical address
31 10 9 0 28 10 9 0

VPN Offset — PPN Offset

» 4-kbyte page
Virtual address Physical address
31 12 11 0 28 12 11 0

VPN Offset —) PPN Offset

* 64-kbyte page
Virtual address Physical address
31 16 15 0 28 16 15 0

VPN Offset — PPN Offset

* 1-Mbyte page
Virtual address Physical address
31 2019 0 28 2019 0

VPN Offset — PPN Offset

Figure 3.8 Relationship between Page Size and Address Format

Rev. 4.0, 03/00, page 37 of 395
HITACHI

¢ VPN: Virtual page number
For 1-kbyte page: upper 22 bits of virtual address
For 4-kbyte page: upper 20 bits of virtual address
For 64-kbyte page: upper 16 bits of virtual address
For 1-Mbyte page: upper 12 bits of virtual address

¢ ASID: Address space identifier
Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the S
bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.

¢ SH: Share status bit
When 0, pages are not shared by processes.
When 1, pages are shared by processes.

e SZ: Page size bits
Specify the page size.
00: 1-kbyte page
01: 4-kbyte page
10: 64-kbyte page
11: 1-Mbyte page

e V: Validity bit
Indicates whether the entry is valid.
0: Invalid
1: Valid
Cleared to 0 by a power-on reset.
Not affected by a manual reset.

« PPN: Physical page number
Upper 22 bits of the physical address.
With a 1-kbyte page, PPN bits [28:10] are valid.
With a 4-kbyte page, PPN bits [28:12] are valid.
With a 64-kbyte page, PPN bits [28:16] are valid.
With a 1-Mbyte page, PPN bits [28:20] are valid.
The synonym problem must be taken into account when setting the PPN (see section 3.5.!
Avoiding Synonym Problems).

Rev. 4.0, 03/00, page 38 of 395
HITACHI

PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read only, in privileged mode

01: Can be read and written in privileged mode

10: Can be read only, in privileged or user mode

11: Can be read and written in privileged mode or user mode

C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

When performing PCMCIA space mapping in the cache enabled state, either clear this bi
or set the WT bit to 1.

D: Dirty bit

Indicates whether a write has been performed to a page.
0: Write has not been performed

1. Write has been performed

WT: Write-through bit

Specifies the cache write mode.
0: Copy-back mode

1: Write-through mode

When performing PCMCIA space mapping in the cache enabled state, either set this bit t
clear the C bit to 0.

SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.
000: Undefined

001: Variable-size 1/0 space (base size accordif@®16 signal)

010: 8-bit I/0 space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

Rev. 4.0, 03/00, page 39 of 395
HITACHI

e TC: Timing control bit
Used to select wait control register bits in the bus control unit for areas 5 and 6.
0: WCR2 (A5W2-A5W0) and PCR (ASPCW1-A5PCWO0, ASTED2-A5TEDO, ASTEH2—-
A5TEHO) are used

1: WCR2 (A6W2-A6W0) and PCR (A6PCW1-A6PCWO0, AGTED2-A6TEDO, A6TEH2—
AG6TEHO) are used

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figur
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 fully-associative type
entries.

Entry 0 |ASID [7:0] | VPN [31:10] PPN [28:10] | Sz [1:0] | SH

Vv PR [SA[2:0]|TC
Entry 1 |ASID [7:0] |VPN [31:10] | V| |PPN [28:10]|SZ [1:0] | SH

v

Vv

PR [SA[2:0]|TC
PR|SA[2:0]|TC
PR [SA[2:0]|TC

Entry 2 | ASID [7:0] | VPN [31:10] PPN [28:10] | SZ [1:0] | SH
Entry 3 | ASID [7:0] | VPN [31:10] PPN [28:10] |SZ [1:0] |SH

O|l0|0|0

Notes: 1. D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Figure 3.9 ITLB Configuration

3.4.3 Address Translation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.

Rev. 4.0, 03/00, page 40 of 395
HITACHI

C

Data access to virtual address (VA)

VA is
in P4 area

On-chip 1/0O access

VA is
in P2 area

VAis
in P1 area

VPNs match
andV=1

VPNs match
and ASIDs match and
v=1

VAis in PO, UO,
or P3 area

A 4

0 (User)

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB protection
violation exception

Cache access
in copy-back mode

Cache access

in write-through mode

>{ Memory access

(Non-cacheable)

Figure 3.10

HITACHI

Flowchart of Memory Access Using UTLB

Rev. 4.0, 03/00, page 41 of 395

(Instruction access to virtual address (VA)

VAis VAis
in P4 area

Access prohibited 0

in P2 area

VAis
in P1 area

VPNs match

No

and (MMUCR.SV =0 or

No
andV=1

VPNs match
and ASIDs match and

VA s in PO, UO,
or P3 area

V=1

Instruction TLB
miss exception

Record in ITLB

Hardware ITLB ;
miss handling

Only one
entry matches

Instruction TLB protection
violation exception

c=1

and CCR.CE=1

=I Cache access

1 (Privileged)

Instruction TLB
multiple hit exception

A

>i Memory access

(Non-cacheable)

Figure 3.1

Rev. 4.0, 03/00, page 42 of 395

1 Flowchart of Memory Access Using ITLB

HITACHI

35 MMU Functions

3.5.1 MMU Hardware Management
The SH-4 supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs addres:
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status on the basis of the page management
information read during address translation (C, WT, SA, and TC bits).

3. If address translation cannot be performed normally in a data access or instruction acces
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB, and if the necessary address translation information is recorde
the UTLB, the MMU copies this information into the ITLB in accordance with
MMUCR.LRUI.

3.5.2 MMU Software Management
Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTL
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped UTL
ITLB entries can only be recorded by writing directly to the memory-mapped ITLB. For
deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed bas
information set by hardware.

3.5.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH-4 copies the contents of PTEH, PTEL, and PTEA to the UTLB e
indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it
issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown ii
figure 3.12.

Rev. 4.0, 03/00, page 43 of 395
HITACHI

MMUCR

31 26 2524 23 18 17 16 15 109 8 7 3210
LRUI — URB — URC \S — T —|AT]
——\
Entry specification SQMD
PTEL
31 29 28 109 8 7 6 5 43210
— PPN —|[V|SZ| PR [SZ|C|D |SHWT]
PTEH
31 109 8 7 0
VPN — ASID PTEA
31 4 3 2 0
— TC| SA

v .w

Entry0 |ASID[7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] | SH| C |PR[1:0] | D | WT|SA[2:0] | TC

Entry1 [ASID[7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] | SH|C |PR[1:0] |D | WT|SA[2:0] | TC

Entry 2 |[ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] | SH| C |PR[1:0] | D | WT|SA[2:0] | TC

Entry 63 |ASID [7:0] | VPN [31:10] | V PPN [28:10] | SZ [1:0] | SH|C |PR[1:0] | D | WT|SA[2:0] | TC

UTLB
Figure 3.12 Operation of LDTLB Instruction
354 Hardware ITLB Miss Handling

In an instruction access, the SH-4 searches the ITLB. If it cannot find the necessary address
translation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware,
if the necessary address translation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address translation
information is not found in the UTLB search, an instruction TLB miss exception is generated a

processing passes to software.

Rev. 4.0, 03/00, page 44 of 395

HITACHI

3.55 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical addr
same physical address data is recorded in a number of cache entries, and it becomes impos
guarantee data integrity. This problem does not occur with the instruction TLB or instruction
cache . In the SH-4, entry specification is performed using bits [13:5] of the virtual address in
order to achieve fast operand cache operation. However, bits [13:10] of the virtual address ir
case of a 1-kbyte page, and bits [13:12] of the virtual address in the case of a 4-kbyte page,
subject to address translation. As a result, bits [13:10] of the physical address after translatic
differ from bits [13:10] of the virtual address.

Consequently, the following restrictions apply to the recording of address translation informa
in UTLB entries.

1. When address translation information whereby a number of 1-kbyte page UTLB entries a
translated into the same physical address is recorded in the UTLB, ensure that the VPN |
values are the same.

2. When address translation information whereby a number of 4-kbyte page UTLB entries a
translated into the same physical address is recorded in the UTLB, ensure that the VPN |
values are the same.

3. Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different
size.

4. Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different
size.

The above restrictions apply only when performing accesses using the cache. When cache i
mode is used, VPN [25] is used for the entry address instead of VPN [13], and therefore the
restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memo
provide for future SuperH RISC engine family expansion, ensure that the VPN [20:10
values are the same. Also, do not use the same physical address for address transla
information of different page sizes.

Rev. 4.0, 03/00, page 45 of 395
HITACHI

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these excepti
occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, a data TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherer
not guaranteed.

Hardware Processing:In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset RoutineThe ITLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

Rev. 4.0, 03/00, page 46 of 395
HITACHI

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtua
address to which an instruction access is made is not found in the UTLB entries by the hardv
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB r
exception.

Hardware Processing:In the event of an instruction TLB miss exception, hardware carries ou
the following processing:

Sets the VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'040 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurre
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address o
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at this time &
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bit in SR to 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, :
starts the instruction TLB miss exception handling routine.

oD PR

m

© o N

Software Processing (Instruction TLB Miss Exception Handling Routine)Software is
responsible for searching the external memory page table and assigning the necessary page
entry. Software should carry out the following processing in order to find and assign the nece
page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that va
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the T

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be iss|
at least one instruction after the LDTLB instruction.

Rev. 4.0, 03/00, page 47 of 395
HITACHI

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the P
The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing:In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0AO in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurrec
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time ar
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bitin SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, al

starts the instruction TLB protection violation exception handling routine.

Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return instruc
(RTE), terminate the exception handling routine, and return control to the normal flow. The RT
instruction should be issued at least one instruction after the LDTLB instruction.

Rev. 4.0, 03/00, page 48 of 395
HITACHI

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtue
address to which a data access has been made. A data TLB multiple hit exception is also ge
if multiple hits occur when the UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing:In the event of a data TLB multiple hit exception, hardware carries out
following processing:

1. Sets the virtual address at which the exception occurred in TEA.
2. Sets exception code H'140 in EXPEVT.
3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routinefhe UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in prc
debugging, and should not normally be generated.

3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual addre:
which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing:In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPE
(OCBP, OCBWSB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurre
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address o
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time ¢
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, :
starts the data TLB miss exception handling routine.

© o N o

Rev. 4.0, 03/00, page 49 of 395
HITACHI

Software Processing (Data TLB Miss Exception Handling Routine)Software is responsible

for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary r
table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values c
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that val
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issu
at least one instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made,
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown belo

Hardware Processing:In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.
2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0AO in the case of a read, or H'OCO in the case of a write, in EXPE)
(OCBP, OCBWSB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurrec
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time ar
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.
Sets the BL bit in SR to 1, and masks subsequent exception requests.
Sets the RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, al
starts the data TLB protection violation exception handling routine.

© ® N o

Rev. 4.0, 03/00, page 50 of 395
HITACHI

Software Processing (Data TLB Protection Violation Exception Handling Routine)Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing:In the event of an initial page write exception, hardware carries out the
following processing:

Sets the VPN of the virtual address at which the exception occurred in PTEH.
Sets the virtual address at which the exception occurred in TEA.
Sets exception code H'080 in EXPEVT.

Sets the PC value indicating the address of the instruction at which the exception occurre
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address o
delayed branch instruction in SPC.

Sets the SR contents at the time of the exception in SSR. The R15 contents at this time ¢
saved in SGR.

Sets the MD bit in SR to 1, and switches to privileged mode.

Sets the BL bit in SR to 1, and masks subsequent exception requests.

Sets the RB bitin SR to 1.

Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, :
starts the initial page write exception handling routine.

el A

o

© o N o

Rev. 4.0, 03/00, page 51 of 395
HITACHI

Software Processing (Initial Page Write Exception Handling Routine)The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.
2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table
entry recorded in external memory. If necessary, the values of the SA and TC bits should |
written to PTEA.

4. When the entry to be replaced in entry replacement is specified by software, write that valt
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issu
at least one instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and wri
by a P2 area program with a MOV instruction in privileged mode. Operation is not guaranteed
access is made from a program in another area. A branch to an area other than the P2 area s
be made at least 8 instructions after this MOV instruction. The ITLB and UTLB are allocated t
the P4 area in physical memory space. VPN, V, and ASID in the ITLB can be accessed as an
address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data array 2. \
D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, W1
SH as data array 1, and SA and TC as data array 2. V and D can be accessed from both the ¢
array side and the data array side. Only longword access is possible. Instruction fetches cann
performed in these areas. For reserved bits, a write value of 0 should be specified; their read
is undefined.

Rev. 4.0, 03/00, page 52 of 395
HITACHI

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 ar
address array access requires a 32-bit address field specification (when reading or writing) a
32-bit data field specification (when writing). Information for selecting the entry to be accesse
specified in the address field, and VPN, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits [31:24] have the value H'F2 indicating the ITLB address array, and t
entry is selected by bits [9:8]. As longword access is used, 0 should be specified for address
bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].
The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read
VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the er
set in the address field.

2. ITLB address array write
VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding t
the entry set in the address field.

31 2423 109 8 7 0
Address field |1 1[1]1]0]0]1]0] cvroreerererremmmmmiiiiiin E | cooveiiiiiiints
31 1098 7 0
Data field VPN -V ASID
VPN: Virtual page number ASID: Address space identifier
V: Validity bit --- . Reserved bits (0 write value, undefined
E: Entry read value)

Figure 3.13 Memory-Mapped ITLB Address Array

Rev. 4.0, 03/00, page 53 of 395
HITACHI

3.7.2 ITLB Data Array 1

ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A de
array access requires a 32-bit address field specification (when reading or writing) and a 32-b
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array &
specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the en
is selected by bits [9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit
[6], C by bit [3], and SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1. ITLB data array 1 read
PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding
the entry set in the address field.

2. ITLB data array 1 write
PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

31 2423 10987 0
Address field |1 1[1]1]0[0]1[1]0] -rereereremmmmimiiiiin, E | cooeereiiiiiiinns
31302928 109876543210
Data field | PPN ...|V ..l [Ccl-] |-
| / |
PPN: Physical page number PR: Protection key data PR SZ SH
V: Validity bit C: Cacheability bit
E: Entry SH: Share status bit
SZ: Page size bits ---- . Reserved bits (0 write value, undefined
read value)

Figure 3.14 Memory-Mapped ITLB Data Array 1

Rev. 4.0, 03/00, page 54 of 395
HITACHI

3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A c
array access requires a 32-bit address field specification (when reading or writing) and a 32-
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in th
field.

In the address field, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the e
is selected by bits [9:8].

In the data field, SA is indicated by bits [2:0], and TC by bit [3].
The following two kinds of operation can be used on ITLB data array 2:

1. ITLB data array 2 read

SA and TC are read into the data field from the ITLB entry corresponding to the entry set
the address field.

2. ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry corresponding to the er
set in the address field.

31 2423 10 9 8 7 0
Addressfield |11 [1]1[0]0]1|L]1] rorererreremmmmmmmmimiiiiin, E | cooeriiii
31 4320
Data field | oo SA
|
I
. . .) TC
TC: Timing control bit SA: Space attribute bits
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure 3.15 Memory-Mapped ITLB Data Array 2

3.74 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 al
address array access requires a 32-bit address field specification (when reading or writing) a
32-bit data field specification (when writing). Information for selecting the entry to be accesse
specified in the address field, and VPN, D, V, and ASID to be written to the address array ar
specified in the data field.

Rev. 4.0, 03/00, page 55 of 395
HITACHI

In the address field, bits [31:24] have the value H'F6 indicating the UTLB address array, and t
entry is selected by bits [13:8]. The address array bit [7] association bit (A bit) specifies wheth
or not address comparison is performed when writing to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits
[7:0].

The following three kinds of operation can be used on the UTLB address array:

1. UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless
whether the association bit specified in the address field is 1 or O.

2. UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry correspondin
to the entry set in the address field. The A bit in the address field should be cleared to 0.

3. UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and PTEH.ASID. The
usual address comparison rules are followed, but if a UTLB miss occurs, the result is no
operation, and an exception is not generated. If the comparison identifies a UTLB entry
corresponding to the VPN specified in the data field, D and V specified in the data field are
written to that entry. If there is more than one matching entry, a data TLB multiple hit
exception results. This associative operation is simultaneously carried out on the ITLB, anc
a matching entry is found in the ITLB, V is written to that entry. Even if the UTLB
comparison results in no operation, a write to the ITLB side only is performed as long as th
is an ITLB match. If there is a match in both the UTLB and ITLB, the UTLB information is
also written to the ITLB.

31 2423 1413 8 7 210
Address field [1[1[2]2]0[2]1]0] «c-oevreererremmmmmniinnnnn. E Al e
31302928 109 8 7 0
Data field VPN D|V ASID
VPN: Virtual page number ASID: Address space identifier
V: Validity bit A: Association bit
E: Entry ----: Reserved bits (0 write value, undefined
D: Dirty bit read value)

Figure 3.16 Memory-Mapped UTLB Address Array

Rev. 4.0, 03/00, page 56 of 395
HITACHI

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A
array access requires a 32-bit address field specification (when reading or writing) and a 32-
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the da
array are specified in the data field.

In the address field, bits [31:23] have the value H'F70 indicating UTLB data array 1, and the
is selected by bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit
[6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [O].

The following two kinds of operation can be used on UTLB data array 1:

1. UTLB data array 1 read
PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array 1 write
PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entl
corresponding to the entry set in the address field.

31 2423 1413 8 7 0
Addressfield |1[1[1]12]0]2[1]2]0] «-oeverreremeeeniniennnns E | oo
31302928 109876543210
Data field | PPN vl IPr| IclD
/ |
PPN: Physical page number PR: Protection key data \/ ‘
A S V4 H WT
V: Validity bit C: Cacheability bit S S
E: Entry SH: Share status bit
SZ: Page size bits WT: Write-through bit
D: Dirty bit -.... Reserved bits (0 write value, undefined
read value)

Figure 3.17 Memory-Mapped UTLB Data Array 1

Rev. 4.0, 03/00, page 57 of 395
HITACHI

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A ¢
array access requires a 32-bit address field specification (when reading or writing) and a 32-b
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the
field.

In the address field, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the e
is selected by bits [13:8].

In the data field, TC is indicated by bit [3], and SA by bits [2:0].
The following two kinds of operation can be used on UTLB data array 2:

1. UTLB data array 2 read

SA and TC are read into the data field from the UTLB entry corresponding to the entry set
the address field.

2. UTLB data array 2 write

SA and TC specified in the data field are written to the UTLB entry corresponding to the er
set in the address field.

31 2423 14 13 8 7 0
Addressfield [1[1|1]2l0l2]2]2]2] «-ooveveverereemeenenns E | e
31 432 0
)= 1= 11 1= (o [SA
TC: Timing control bit SA: Space attribute bits TC
E: Entry ----: Reserved bits (0 write value, undefined read
value)

Figure 3.18 Memory-Mapped UTLB Data Array 2

Rev. 4.0, 03/00, page 58 of 395
HITACHI

Section 4 Caches

4.1 Overview

41.1 Features

The SH-4 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operan
cache (OC) for data. Half of the memory of the operand cache (8 kbytes) can also be used a
chip RAM. The features of these caches are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache +
8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method Copy-back/write-through selectable

Item Store Queues

Capacity 2 x 32 hytes

Addresses H'E000 0000 to H'E3FF FFFF

Write Store instruction (1-cycle write)

Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD

MMU on: according to individual page PR

Rev. 4.0, 03/00, page 59 of 395
HITACHI

4.1.2 Register Configuration
Table 4.2 shows the cache control registers.

Table 4.2 Cache Control Registers

Initial P4 Area 7 Access
Name Abbreviation R/'W Value** Address* * Address* * Size
Cache control CCR R/W H'0000 0000 H'FF00 001C H'1F00001C 32
register
Queue address QACRO R/W Undefined H'FFO0 0038 H'1F00 0038 32
control register 0
Queue address QACR1 R/W Undefined H'FFO0 003C H'1F00 003C 32

control register 1

Notes: 1. The initial value is the value after a power-on or manual reset.

2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits

of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

CCR
31 161514 1211109 8 76 5432 1 0
... | ceseccsss coceee I ces | ces | CB/ |
[| [[1
11X ICI ICE OIX ORA OCI WT OCE
QACRO
31 54 210
... AREA
QACR1
31 54 210
... AREA

~~~~~~~~ indicates reserved bits: 0 must be specified in a write; the read value is undefined.

Figure 4.1 Cache and Store Queue Control Registers

Rev. 4.0, 03/00, page 60 of 395
HITACHI




@)

[IX:

ICI:

Cache Control Register (CCR)CCR contains the following bits:

IC index enable
IC invalidation

ICE: IC enable

OIX: OC index enable
ORA: OC RAM enable
OCI: OC invalidation

CB:

Copy-back enable

WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 O

are

a 7. The CCR bits are used for the cache settings described below. Consequently, CCR

modifications must only be made by a program in the non-cached P2 area. After CCR is upd

an
fou
uo

instruction that performs data access to the PO, P1, P3, or UO area should be located at |
r instructions after the CCR update instruction. Also, a branch instruction to the PO, P1, P
area should be located at least eight instructions after the CCR update instruction.

[IX: IC index enable bit
0: Address bits [12:5] used for IC entry selection
1: Address bits [25] and [11:5] used for IC entry selection

ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always ret
0 when read.

ICE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the
cannot be used unless the C bit in the page management information is also 1.

0: IC not used
1: IC used

OIX: OC index enable bit
0: Address bits [13:5] used for OC entry selection
1: Address bits [25] and [12:5] used for OC entry selection

ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entr
128 to entry 255 and from entry 384 to entry 511 of the OC are to be used as RAM. Whel
OC is not enabled (OCE = 0), the ORA bit should be cleared to 0.

0: 16 kbytes used as cache
1. 8 kbytes used as cache, and 8 kbytes as RAM

Rev. 4.0, 03/00, page 61 of 395
HITACHI



*« OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit alw
returns 0 when read.

« CB: Copy-back bit
Indicates the P1 area cache write mode.
0: Write-through mode
1. Copy-back mode

WT: Write-through bit
Indicates the PO, UO, and P3 area cache write mode. When address translation is perform
the value of the WT bit in the page management information has priority.
0: Copy-back mode
1: Write-through mode

¢ OCE: OC enable bit
Indicates whether or not the OC is to be used. When address translation is performed, the
cannot be used unless the C bit in the page management information is also 1.
0: OC not used
1. OC used

(2) Queue Address Control Register 0 (QACRO)ongword access to QACRO can be
performed from H'FFO0 0038 in the P4 area and H'LF00 0038 in area 7. QACRO specifies the
onto which store queue 0 (SQO0) is mapped when the MMU s off.

(3) Queue Address Control Register 1 (QACR1)-ongword access to QACR1 can be
performed from H'FFO0 003C in the P4 area and H'1F00 003C in area 7. QACRL1 specifies the
area onto which store queue 1 (SQ1) is mapped when the MMU s off.

Rev. 4.0, 03/00, page 62 of 395
HITACHI



4.3 Operand Cache (OC)

43.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

Effective address

31 26 25 131211109 543210
- N/ \/\
»| RAM area
determination
v A Y [11:5]
OIX —» =a—— ORA —» mm
(13]
22 -
9 Longword (LW) selection
Address array 3 Data array
= 0 Tag u|vV LWO | LW1 [LW2 | LW3 | LW4 [ LW5 [ LW6 | LW7
3
Q
[}
[2]
MMU 2
c
w >
19
511 19 bits 1 bit|1 bit 32 bits|32 bits|32 bits|32 hits|32 hits|32 bits|32 bits|32 bits
4 4 A A A A A 4
l v A4 A4 A4 A4 A4 A4 v
L»
Compare, l T
Read data Write data
Hit signal

Figure 4.2 Configuration of Operand Cache

Rev. 4.0, 03/00, page 63 of 395
HITACHI



The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, a
byte data.

Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cache
The tag is not initialized by a power-on or manual reset.

V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data i
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual rese
U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in cop!
back mode. That is, the U bit indicates a mismatch between the data in the cache line and
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section
Memory-Mapped Cache Configuration). The U bit is initialized to O by a power-on reset, bt
retains its value in a manual reset.

Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initiali:
by a power-on or manual reset.

4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address fi
cacheable area, the cache operates as follows:

1.
2.

The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:

The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

» If the tag matches and the V bitis 1 - (3a)
« If the tag matches and the V bitis 0 - (3b)
» If the tag does not match and the V bitis 0 - (3b)

« If the tag does not match, the V bit is 1, and the U bit is (3b)
« If the tag does not match, the V bit is 1, and the U bit is 1(3c)

Rev. 4.0, 03/00, page 64 of 395

HITACHI



3a. Cache hit

3b.

3c.

The data indexed by effective address bits [4:0] is read from the data field of the cache lir
indexed by effective address bits [13:5] in accordance with the access size
(quadword/longword/word/byte).

Cache miss (no write-back)

Data is read into the cache line from the external memory space corresponding to the eff
address. Data reading is performed, using the wraparound method, in order from the long
data corresponding to the effective address, and when the corresponding data arrives in
cache, the read data is returned to the CPU. While the remaining one cache line of data i
read, the CPU can execute the next processing. When reading of one line of data is com
the tag corresponding to the effective address is recorded in the cache, and 1 is written tc
bit.

Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved
write-back buffer. Then data is read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and whe
corresponding data arrives in the cache, the read data is returned to the CPU. While the
remaining one cache line of data is being read, the CPU can execute the next processing
reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, 1 is written to the V bit, and O to the U bit. The data in the write-ba
buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective addre:
cacheable area, the cache operates as follows:

1.
2.

The tag, V bit, and U bit are read from the cache line indexed by effective address bits [1.

The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

Copy-back  Write-through

» If the tag matches and the V bit is 1 - (3a) - (3b)
« If the tag matches and the V bitis 0 - (3¢) - (3d)
» If the tag does not match and the V bitis 0 - (3¢) - (3d)
« If the tag does not match, the V bit is 1, and the U bit is G3c) - (3d)
« If the tag does not match, the V bit is 1, and the U bit is 1(3e) - (3d)

Rev. 4.0, 03/00, page 65 of 395
HITACHI



3a. Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is perforn
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then 1 is set in the U bit.

3b. Cache hit (write-through)

3c.

3d.

3e.

A data write in accordance with the access size (quadword/longword/word/byte) is perform
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. A write is also performed to the corresponding
external memory using the specified access size.

Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is perform
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then, data is read into the cache line from the ext
memory space corresponding to the effective address. Data reading is performed, using th
wraparound method, in order from the longword data corresponding to the effective addres
and one cache line of data is read excluding the written data. During this time, the CPU ca
execute the next processing. When reading of one line of data is completed, the tag
corresponding to the effective address is recorded in the cache, and 1 is written to the V bi
U bit.

Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to
effective address. In this case, a write to cache is not performed.

Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first sa
in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits [4:0] of the effect
address of the data field of the cache line indexed by effective address bits [13:5]. Then, d
read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longv
data corresponding to the effective address, and one cache line of data is read excluding t
written data. During this time, the CPU can execute the next processing. When reading of
line of data is completed, the tag corresponding to the effective address is recorded in the
cache, and 1 is written to the V bit and U bit. The data in the write-back buffer is then writte
back to external memory.

Rev. 4.0, 03/00, page 66 of 395

HITACHI



4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4 has a
back buffer which holds the relevant cache entry when it becomes necessary to purge a dirty
entry into external memory as the result of a cache miss. The write-back buffer contains one
line of data and the physical address of the purge destination.

Physical address bits [28:5] | LWO | LW1 | LW2 | LW3 | LW4 | LW5 | LW6 | LW7

Figure 4.3 Configuration of Write-Back Buffer

4.3.5 Write-Through Buffer

The SH-4 has a 64-bit buffer for holding write data when writing data in write-through mode ¢
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as so«
the write to the write-through buffer is completed, without waiting for completion of the write t
external memory.

Physical address bits [28:0] | LWO | LwW1

Figure 4.4 Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The oper
cache entries used as RAM are entries 128 to 255 and 384 to 511 . Other entries can still be
as cache. RAM can be accessed using addresses H'7C00 0000 to H'7FFF FFFF. Byte-, wor
longword-, and quadword-size data reads and writes can be performed in the operand cache
area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 2!
are designated as RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM

Rev. 4.0, 03/00, page 67 of 395
HITACHI



When OC index mode is off (CCR.OIX = 0)

H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2
H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2
H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2F
can be used, for example.

When OC index mode is on (CCR.OIX = 1)

H'7C00 0000 to H'7C00 OFFF (4 kB): Corresponds to RAM area 1
H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1
H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

H'7DFF FOO0O to H'7DFF FFFF (4 kB): Corresponds to RAM area 1
H'7E00 0000 to H'7EO00 OFFF (4 kB): Corresponds to RAM area 2
H'7EO00 1000 to H'7E00 1FFF (4 kB): Corresponds to RAM area 2

H'7FFF FOO0O to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area fro
H'7DFF FOO0O to H'7E00 OFFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective
address. This is called OC index mode. In normal mode, with CCR.OIX cleared to 0, OC inde:
is performed using bits [13:5] of the effective address; therefore, when 16 kbytes or more of
consecutive data is handled, the OC is fully used by this data. This results in frequent cache
misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of eff
address bit [25], providing efficient use of the cache.

Rev. 4.0, 03/00, page 68 of 395

HITACHI



4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH-4
following four new instructions are supported for cache operations. For details of these
instructions, see section 9, Instruction Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)
Purge instruction: OCBP @Rn Cache invalidation (with write-back)
Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L RO,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH-4 supports a prefetch instruction to reduce the cache fill penalty incurred as the resu
cache miss. If it is known that a cache miss will result from a read or write operation, it is pos
to fill the cache with data beforehand by means of the prefetch instruction to prevent a cache
due to the read or write operation, and so improve software performance. If a prefetch instru
is executed for data already held in the cache, or if the prefetch address results in a UTLB m
a protection violation, the result is no operation, and an exception is not generated. For detai
the prefetch instruction, see section 9.74, PREF.

Prefetch instruction: PREF @Rn

Rev. 4.0, 03/00, page 69 of 395
HITACHI



4.4 Instruction Cache (IC)

441 Configuration

Figure 4.5 shows the configuration of the instruction cache.

Effective address

31 26 25 131211109 543210

0 N/ \/

<
<

[11:5]

A4
[IX —> =

22 Longword (LW) selection
8
Address array 3 Data array

= 0 Tag \Y LWO [ LW1 [ LW2 | LW3|LW4 | LW5 | LW6 | LW7

k3

@

(]

2]
MMU z

C

wl,
19

255 19 bits 1 bit 32 bits|32 bits| 32 hits|32 bits|32 bits|32 bits|32 bits|32 bits
A A A A A A A A
A A A A A A A A
Lo
\ 4
Compare l
Read data
Hit signal

Figure 4.5 Configuration of Instruction Cache

Rev. 4.0, 03/00, page 70 of 395
HITACHI




The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and
byte data (16 instructions).

e Tag
Stores the upper 19 bits of the 29-bit external address of the data line to be cached. The
not initialized by a power-on or manual reset.
eV bit (validity bit)
Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual res
e Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initial
by a power-on or manual reset.

4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of al
effective address from a cacheable area, the instruction cache operates as follows:

1. The tag and V bit are read from the cache line indexed by effective address bits [12:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

¢ If the tag matches and the V bitis 1 - (3a)

e If the tag matches and the V bitis 0 - (3b)

e If the tag does not match and the V bitis 0 - (3b)

¢ If the tag does not match and the V bitis 1 - (3b)
3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data fie
the cache line indexed by effective address bits [12:5].
3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the eff
address. Data reading is performed, using the wraparound method, in order from the long
data corresponding to the effective address, and when the corresponding data arrives in
cache, the read data is returned to the CPU as an instruction. When reading of one line o
is completed, the tag corresponding to the effective address is recorded in the cache, anc
written to the V bit.

Rev. 4.0, 03/00, page 71 of 395
HITACHI



4.4.3 IC Index Mode

Setting CCR.1IX to 1 enables IC indexing to be performed using bit [25] of the effective addres
This is called IC index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is
performed using bits [12:5] of the effective address; therefore, when 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program. This result
frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte areas b
means of effective address bit [25], providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

In the SH7750 Series, to enable the IC and OC to be managed by software, their contents cal
read and written by a P2 area program with a MOV instruction in privileged mode.

In privileged mode in the SH7751, the contents of OC can be read and written by a P1 or P2 «
program with a MOV instruction, and the contents of IC can be read and written by a P2 area
program with a MOV instruction.

Operation is not guaranteed if access is made from a program in another area. In this case, a
branch to the other area should be made at least 8 instructions after this MOV instruction. The
and OC are allocated to the P4 area in physical memory space. Only data accesses can be u
both the IC address array and data array and the OC address array and data array, and acce:
always longword-size. Instruction fetches cannot be performed in these areas. For reserved b
write value of 0 should be specified; their read value is undefined.

45.1 IC Address Array

The IC address array is allocated to addresses H'FO00 0000 to H'FOFF FFFF in the P4 area.
address array access requires a 32-bit address field specification (when reading or writing) ar
32-bit data field specification. The entry to be accessed is specified in the address field, and t
write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'FO indicating the IC address array, and the ¢
is specified by bits [12:5]. CCR.IIX has no effect on this entry specification. The address array
[3] association bit (A bit) specifies whether or not association is performed when writing to the
address array. As only longword access is used, 0 should be specified for address field bits [1

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which
association is not performed. Data field bits [31:29] are used for the virtual address specificati
only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

Rev. 4.0, 03/00, page 72 of 395
HITACHI



1.

IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry
the address field. In a read, associative operation is not performed regardless of whether
association bit specified in the address field is 1 or 0.

IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to th
entry set in the address field. The A bit in the address field should be cleared to 0.

IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If i
MMU is enabled at this time, comparison is performed after the virtual address specified |
data field bits [31:10] has been translated to a physical address using the ITLB. If the add
match and the V bit is 1, the V bit specified in the data field is written into the IC entry. Th
operation is used to invalidate a specific IC entry. If an ITLB miss occurs during address
translation, or the comparison shows a mismatch, no operation results and the write is nc
performed. If an instruction TLB multiple hit exception occurs during address translation,
processing switches to the instruction TLB multiple hit exception handling routine.

31 2423 1312 543210
Address field |1[1[1]12[0]0]0]0] - reerereermmmimiiiiin, Entry AL
31 109 10
Data field Tag address e \V
V @ Validity bit
A : Association bit
: Reserved bits (0 write value, undefined read value)

4,

Figure 4.6 Memory-Mapped IC Address Array

5.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A «
array access requires a 32-bit address field specification (when reading or writing) and a 32-
data field specification. The entry to be accessed is specified in the address field, and the lor
data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the ent
specified by bits [12:5]. CCR.IIX has no effect on this entry specification. Address field bits [4
are used for the longword data specification in the entry. As only longword access is used, 0
should be specified for address field bits [1:0].

Rev. 4.0, 03/00, page 73 of 395
HITACHI



The data field is used for the longword data specification.
The following two kinds of operation can be used on the IC data array:

1. IC data array read
Longword data is read into the data field from the data specified by the longword specifical
bits in the address field in the IC entry corresponding to the entry set in the address field.
2. IC data array write
The longword data specified in the data field is written for the data specified by the longwo
specification bits in the address field in the IC entry corresponding to the entry set in the
address field.

31 2423 1312 54 210
Address field [1[1[112101010] 2] -ccoveveererereimiiiis Entry L |-
31 0

Data field Longword data

L : Longword specification bits
... Reserved bits (0 write value, undefined read value)

Figure 4.7 Memory-Mapped IC Data Array

45.3 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4FF FFFF in the P4 area.
address array access requires a 32-bit address field specification (when reading or writing) ar
32-bit data field specification. The entry to be accessed is specified in the address field, and tl
write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the
entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry
specification. The address array bit [3] association bit (A bit) specifies whether or not associat
is performed when writing to the OC address array. As only longword access is used, 0 shouls
specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [O].
As the OC address array tag is 19 bits in length, data field bits [31:29] are not used in the cas
write in which association is not performed. Data field bits [31:29] are used for the virtual addr
specification only in the case of a write in which association is performed.

Rev. 4.0, 03/00, page 74 of 395
HITACHI



The following three kinds of operation can be used on the OC address array:

1. OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to tf
entry set in the address field. In a read, associative operation is not performed regardless
whether the association bit specified in the address field is 1 or 0.

2. OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry correspondi
the entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after w
back of that cache line, the tag, U bit, and V bit specified in the data field are written.

3. OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If tl
MMU is enabled at this time, comparison is performed after the virtual address specified |
data field bits [31:10] has been translated to a physical address using the UTLB. If the
addresses match and the V bit is 1, the U bit and V bit specified in the data field are writte
into the OC entry. This operation is used to invalidate a specific OC entry. If the OC entry
bit is 1, and 0 is written to the V bit or to the U bit, write-back is performed. If an UTLB mit
occurs during address translation, or the comparison shows a mismatch, no operation res
and the write is not performed. If a data TLB multiple hit exception occurs during address
translation, processing switches to the data TLB multiple hit exception handling routine.

31 2423 1413 543210
Address field |11 [1]2]0]2]0]0] - rerrerrememmmniiiiiiinns Entry O N R

31 109 210

Data field Tag e ulv

V : Validity bit

U : Dirty bit

A : Association bit

----: Reserved bits (0 write value, undefined read value)

Figure 4.8 Memory-Mapped OC Address Array

Rev. 4.0, 03/00, page 75 of 395
HITACHI



45.4 OC Data Array

The OC data array is allocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A «
array access requires a 32-bit address field specification (when reading or writing) and a 32-b
data field specification. The entry to be accessed is specified in the address field, and the lon
data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the ent
specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification.
Address field bits [4:2] are used for the longword data specification in the entry. As only longw
access is used, 0 should be specified for address field bits [1:0].

The data field is used for the longword data specification.
The following two kinds of operation can be used on the OC data array:

1. OC data array read
Longword data is read into the data field from the data specified by the longword specifica
bits in the address field in the OC entry corresponding to the entry set in the address field.
2. OC data array write
The longword data specified in the data field is written for the data specified by the longwo
specification bits in the address field in the OC entry corresponding the entry set in the ad
field. This write does not set the U bit to 1 on the address array side.

31 2423 1413 54 210
Address field |1 121121012102 ]-cvererereiemiiins Entry L feeeees
31 0

Data field Longword data

L : Longword specification bits
. Reserved bits (0 write value, undefined read value)

Figure 4.9 Memory-Mapped OC Data Array

Rev. 4.0, 03/00, page 76 of 395
HITACHI



4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external mer
In the SH7750S and SH7751, when not using the SQs, the low power dissipation power-dow
modes, in which SQ functions are stopped, can be used. The queue address control register
(QACRO and QACR1) cannot be accessed while SQ functions are stopped. See section 9, F
Down Modes, for the procedure for stopping SQ functions.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in figure 4.10. These two store
gueues can be set independently.

SQO | SQO[0] | SQO[1] | SQO[2] | SQO[3] | SQO[4] | SQO[5] | SQO[6] | SQO[7]

SQ1 | SQ1[0] | SQ1[1] | SQ1[2] | SQ1[3] | SQ1[4] | SQI[5] | SQ1[6] | SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure 4.10 Store Queue Configuration

4.6.2 SQ Writes

A write to the SQs can be performed using a store instruction on P4 area H'EO00 0000 to H'E
FFFC. A longword or quadword access size can be used. The meaning of the address bits is
follows:

[31:26]: 111000 Store queue specification

[25:6]: Don't care Used for external memory transfer/access right
[5]: 0/1 0: SQO specification 1: SQ1 specification
[4:2]: LW specification  Specifies longword position in SQ0/SQ1

[1:0] 00 Fixed at 0

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PRI
Issuing a PREF instruction for P4 area H'EO00 0000 to H'E3FF FFFC starts a transfer from t
SQs to external memory. The transfer length is fixed at 32 bytes, and the start address is alv
a 32-byte boundary. While the contents of one SQ are being transferred to external memory,
other SQ can be written to without a penalty cycle, but writing to the SQ involved in the trans
to external memory is deferred until the transfer is completed.

Rev. 4.0, 03/00, page 77 of 395
HITACHI



The SQ transfer destination external memory address bit [28:0] specification is as shown belo
according to whether the MMU is on or off.

¢ When MMU is on (MMUCR.AT = 1)

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer
destination external memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have t
same meaning as for normal address translation, but the C and WT bits have no meaning
regard to this page. It is not possible to perform data transfer to a PCMCIA interface area L
the SQs.

When a prefetch instruction is issued for the SQ area, address translation is performed ant
external memory address bits [28:10] are generated in accordance with the SZ bit specific:
For external memory address bits [9:5], the address prior to address translation is generat:
the same way as when the MMU is off. External memory address bits [4:0] are fixed at 0.
Transfer from the SQs to external memory is performed to this address.

«  When MMU is off (MMUCR.AT = 0)

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefet
performed. The meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification
[25:6]: Address External memory address bits [25:6]
[5]: 0/1 0: SQO specification
1. SQ1 specification and external memory address bit [5]
[4:2]: Don’t care No meaning in a prefetch
[1:0] 00 Fixed at O

External memory address bits [28:26], which cannot be generated from the above address
generated from the QACRO/1 registers.

QACRO [4:2]: External memory address bits [28:26] corresponding to SQO
QACRL1 [4:2]: External memory address bits [28:26] corresponding to SQ1

External memory address bits [4:0] are always fixed at 0 since burst transfer starts at a 32-
boundary.

In the SH7750, it is not possible to perform data transfer to a PCMCIA interface area using
SQs.

In the SH7750S and SH7751, data transfer to a PCMCIA interface area is always performe
using the values of the SA bit and TC bit in PTEA.

Rev. 4.0, 03/00, page 78 of 395
HITACHI



4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ \
violates the protection setting, an exception will be generated but the SQ contents will be
corrupted. If a transfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.

When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB
MMUCR.SQMD. Write type exception judgment is performed for writes to the SQs, and r
type for transfer from the SQs to external memory (PREF instruction), and a TLB miss
exception, protection violation exception, or initial page write exception is generated.
However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an addre
error will be flagged in user mode even if address translation is successful.

When MMU is off

Operation is in accordance with MMUCR.SQMD.
0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address ert
be flagged.

Rev. 4.0, 03/00, page 79 of 395
HITACHI



Section 5 Exceptions

51 Overview

51.1 Features

Exception handling is processing handled by a special routine, separate from normal prograr
processing, that is executed by the CPU in case of abnormal events. For example, if the exe
instruction ends abnormally, appropriate action must be taken in order to return to the origine
program sequence, or report the abnormality before terminating the processing. The process
generating an exception handling request in response to abnormal termination, and passing
to a user-written exception handling routine, in order to support such functions, is given the
generic name of exception handling.

SH-4 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Register Configuration
The registers used in exception handling are shown in table 5.1.

Table 5.1  Exception-Related Registers

Abbrevia- P4 Area 7 Access
Name tion R/W Initial Value* *  Address*®  Address*®  Size
TRAPA exception TRA R/W Undefined H'FFO0 0020 H'1F00 0020 32
register
Exception event EXPEVT R/W H'0000 0000/ H'FF00 0024 H'1F00 0024 32
register H'0000 0020*"
Interrupt event INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32
register

Notes: 1. H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.

2. This is the address when using the virtual/physical address space P4 area. When
making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 4.0, 03/00, page 81 of 395
HITACHI



5.2 Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and ¢
accessed hy specifying the P4 address or area 7 address.

1. The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains
bit exception code. The exception code set in EXPEVT is that for a reset or general except
event. The exception code is set automatically by hardware when an exception occurs.
EXPEVT can also be modified by software.

2. The interrupt event register (INTEVT) resides at P4 address H'FF00 0028, and contains a
bit (SH7750 Series) or 14-bit (SH7751) exception code. The exception code set in INTEVT
that for an interrupt request. The exception code is set automatically by hardware when an
exception occurs. INTEVT can also be modified by software.

3. The TRAPA exception register (TRA) resides at P4 address H'FF00 0020, and contains 8-
immediate data (imm) for the TRAPA instruction. TRA is set automatically by hardware wh
a TRAPA instruction is executed. TRA can also be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.

EXPEVT (SH7750 Series, SH7751), INTEVT (SH7750 Series)

31 12 11 0

0 0 Exception code

INTEVT (SH7751)

31 14 13 0

0 0 Exception code

TRA

31 10 9 210

0 0 imm 00
0: Reserved bits. These bits are always read as 0, and should only be written

with 0.
imm: 8-bit immediate data of the TRAPA instruction

Figure 5.1 Register Bit Configurations

Rev. 4.0, 03/00, page 82 of 395
HITACHI



5.3 Exception Handling Functions

53.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC), status register (SR), and R:
saved in the saved program counter (SPC), saved status register (SSR), and saved general
registerl5 (SGR), and the CPU starts execution of the appropriate exception handling routin
according to the vector address. An exception handling routine is a program written by the u
handle a specific exception. The exception handling routine is terminated and control returne
the original program by executing a return-from-exception instruction (RTE). This instruction
restores the PC and SR contents and returns control to the normal processing routine at the
which the exception occurred.

The SGR contents are not written back to R15 by an RTE instruction.

The basic processing flow is as follows. See section 2, Data Formats and Registers, for the
meaning of the individual SR bits.

The PC, SR, and R15 contents are saved in SPC, SSR, and SGR.

The block bit (BL) in SR is set to 1.

The mode bit (MD) in SR is setto 1.

The register bank bit (RB) in SR is set to 1.

In a reset, the FPU disable bit (FD) in SR is cleared to O.

The exception code is written to bits 11—-0 of the exception event register (EXPEVT): SH7
Series, bits 13-0 of the exception event register (EXPEVT): SH7751 or interrupt event re
(INTEVT).

7. The CPU branches to the determined exception handling vector address, and the except
handling routine begins.

ok wbdpE

5.3.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'/A000 0000. Exception and interrupt vector addresses «
determined by adding the offset for the specific event to the vector base address, which is se
software in the vector base register (VBR). In the case of the TLB miss exception, for examp
the offset is H'0000 0400, so if H'9C08 0000 is set in VBR, the exception handling vector adc
will be H'9C08 0400. If a further exception occurs at the exception handling vector address, :
duplicate exception will result, and recovery will be difficult; therefore, fixed physical address
(P1, P2) should be specified for vector addresses.

Rev. 4.0, 03/00, page 83 of 395
HITACHI



5.4 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.2  Exceptions

Exception Execution Priority  Priority Vector Exception
Category Mode Exception Level Order  Address Offset Code
Reset Abort type Power-on reset 1 1 H'A000 0000 — H'000
Manual reset 1 2 H'A000 0000 — H'020
Hitachi-UDI reset 1 1 H'A000 0000 — H'000
Instruction TLB multiple-hit 1 3 H'A000 0000 — H'140
exception
Data TLB multiple-hit exception 1 4 H'A000 0000 — H'140
General Re- User break before instruction 2 0 (VBR/DBR)  H'100/— H'1EO
exception execution execution**
type Instruction address error 2 1 (VBR) H'100 H'OEO
Instruction TLB miss exception 2 2 (VBR) H'400 H'040
Instruction TLB protection 2 3 (VBR) H'100 H'0AO
violation exception
General illegal instruction 2 4 (VBR) H'100 H'180
exception
Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0
General FPU disable exception 2 4 (VBR) H'100 H'800
Slot FPU disable exception 2 4 (VBR) H'100 H'820
Data address error (read) 2 5 (VBR) H'100 H'OEO
Data address error (write) 2 5 (VBR) H'100  H'100
Data TLB miss exception (read) 2 6 (VBR) H'400 H'040
Data TLB miss exception (write) 2 6 (VBR) H'400 H'060
Data TLB protection 2 7 (VBR) H'100 H'0A0
violation exception (read)
Data TLB protection 2 7 (VBR) H'100 H'0CO
violation exception (write)
FPU exception 2 8 (VBR) H'100 H'120
Initial page write exception 2 (VBR) H'100  H'080
Completion Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160
type User break after instruction 2 10 (VBR/DBR)  H'100/— H'1EO

execution**

Rev. 4.0, 03/00, page 84 of 395
HITACHI



Table 5.2  Exceptions (cont)

Exception Execution Priority Priority Vector Exception
Category Mode Exception Level Order Address Offset Code
Interrupt  Completion Nonmaskable interrupt 3 — (VBR) H'600 H'1CO
type External IRL3— 0 4 * (VBR) H600  H?200
interrupts  IRLO —1 —H'220
2 H240
3 H'260
4 H'280
5 H'2A0
6 H'2C0
7 H'2EOQ
8 H'300
9 H'320
A H'340
B H'360
C H'380
D H3A0
E H'3C0
Peripheral TMUO TUNIO 4 * (VBR) H'600 H'400
?Qfe?ruu'it TMUL TUNI1 H'420
(module/ TMU2 TUNI2 H'440
source) TICPI2 H'460
TMU3* TUNI3 H'BOO
TMU4* TUNI4 H'B80
RTC ATl H480
PRI Hap0
CuUl H'4CO
SCI ERI H'4EQ
RXI H'500
TXI H'520
TEI H'540
WDT  ITI H'560
REF RCMI H'580
ROVI H'5A0
H-UDI H-UDI H'600
GPIO GPIOI H'620

Rev. 4.0, 03/00, page 85 of 395
HITACHI



Table 5.2  Exceptions (cont)

Exception Execution Priority  Priority Vector Exception
Category Mode Exception Level Order  Address Offset  Code
Interrupt Completion Peripheral DMAC DMTEOQO 4 * (VBR) H'600 H'640
type module W W
interrupt - -
(module/ DMTE2 H'680
source) W W
DMAE H'6CO
SCIF  ERI H700
RXI H'720
BRI H'740
TXI H'760
PCIC* PCISERR H'A00
PCIERR H'AEO
PCIPWDWN H'ACO
PCIPWON H'AAOQ
PCIDMAO H'A80
PCIDMAL HAG0
PCIDMA2 H'A40
PCIDMA3 HA20

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest

number represents the highest priority).

Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in

other cases.

Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.
IRL: Interrupt request level (pins IRL3—IRLO).
Module/source: See the sections on the relevant peripheral modules.

Notes: 1. When BRCR.UBDE =1, PC = DBR. In other cases, PC = VBR + H'100.
2. The priority order of external interrupts and peripheral module interrupts can be set by

software.

3. SH7751 exceptions only. Not provided in the SH7750 Series.

Rev. 4.0, 03/00, page 86 of 395

HITACHI



5.5 Exception Flow

55.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instruction
executed sequentially, one by one. Figure 5.2 shows the relative priority order of the differen
kinds of exceptions (reset/general exception/interrupt). Register settings in the event of an
exception are shown only for SSR, SPC, SGR, EXPEVT/INTEVT, SR, and PC, but other reg
may be set automatically by hardware, depending on the exception. For details, see section
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, fo
exception handling during execution of a delayed branch instruction and a delay slot instruct
and in the case of instructions in which two data accesses are performed.

Yes

Reset
requested?

Execute next instruction

Is highest-
priority exception
re-exception

General
exception requested?

e? - - -
yp Cancel instruction execution
No result
Interrupt
requested?
Y Y
No SSR ~ SR EXPEVT ~ exception code
SPC ~ PC SR. {MD, RB, BL, FD, IMASK} ~ 11101111
SGR ~ R15 PC ~ H'A000 0000

EXPEVT/INTEVT ~ exception code

SR{MD,RB,BL} ~ 111

PC ~ (BRCR.UBDE=1 && User_Break?
DBR: (VBR + Offset))

A, A, A

Figure 5.2 Instruction Execution and Exception Handling

Rev. 4.0, 03/00, page 87 of 395
HITACHI



55.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—th
general illegal instruction exception, slot illegal instruction exception, general FPU disable
exception, slot FPU disable exception, and unconditional trap exception—are detected in the
process of instruction decoding, and do not occur simultaneously in the instruction pipeline. Tl
exceptions therefore all have the same priority. General exceptions are detected in the order
instruction execution. However, exception handling is performed in the order of instruction flov
(program order). Thus, an exception for an earlier instruction is accepted before that for a late
instruction. An example of the order of acceptance for general exceptions is shown in figure 5

Rev. 4.0, 03/00, page 88 of 395
HITACHI



Pipeline flow: V TLB miss (data access)

Instruction n IF | ID | EX | MA | WB
Instruction n+1 = ID | EX | MA | WB
i A General illegal instruction exception
V TLB miss (instruction access)
Instruction n+2 | IF ‘ ID ‘ EX ‘ MA ‘ WB |
IF: Instruction fetch
ID: Instruction decode
Instruction n+3 | IE ‘ ID ‘ EX ‘ MA ‘ WB | EX: Instruction execution

MA: Memory access
WB: Write-back

Order of detection:

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

i

TLB miss (instruction n)

Order of exception handling: Program order

TLB miss (instruction n)

1
Re-execution of instruction n
General illegal instruction exception
(instruction n+1)

2
Re-execution of instruction n+1
TLB miss (instruction n+2)

3
Re-execution of instruction n+2
Execution of instruction n+3 4

Figure 5.3 Example of General Exception Acceptance Order

Rev. 4.0, 03/00, page 89 of 395
HITACHI




5.5.3 Exception Requests and BL Bit
When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers and the registers of the other modules are set to their states following a man
reset, and the CPU branches to the same address as in a reset (H'A000 0000). For the opera
the event of a user break, see User Break Controller in the hardware manual. If an ordinary
interrupt occurs, the interrupt request is held pending and is accepted after the BL bit has bee
cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held pending or
accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

554 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU ret
from the exception handling routine by branching to the SPC address. If SPC and SSR were ¢
to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents and
issuing the RTE instruction.

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and processor operation when a transition is made.

5.6.1 Resets
(1) Power-On Reset

e Sources:

O SCK2 pin high level an®RESET pin low level (SH7750 SerieRESET pin low level
(SH7751)

O When the watchdog timer overflows while the WIThit is set to 1 and the RSTS bit is
cleared to 0 in WTCSR. For details, see Clock Oscillation Circuits in hardware manual.

e Transition address: H'A000 0000
e Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

Rev. 4.0, 03/00, page 90 of 395
HITACHI



In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10)
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the registe
descriptions in the relevant sections. For some CPU functionSR$iE pin andRESET pin
must be driven low. It is therefore essential to execute a power-on reset and dfiR§The

pin low when powering on.

If the SCK2 pin is changed to the low level while REESET pin is low, a manual reset may
occur after the power-on reset operation. Do not drive the SCK2 pin low during this interv
(see Electrical Characteristics in the hardware manual).

In the SH7750 Series, if ttCK2 pin is changed to the low level while tRESET pin is low,

a manual reset may occur after the power-on reset operation. Do not dS@Kh@in low
during this interval. For details, see Electrical Characteristics in the hardware manual.

In the SH7751, if th&®ESET pin is driven high before thRdRESET pin while both these pins
are low, a manual reset may occur after the power-on reset operati®EJEE pin must be
driven high at the same time as, or after, MRESET pin.

Power_on_reset()

{
EXPEVT = H'00000000;
VBR = H'00000000;
SR.MD =1,
SR.RB =1,
SR.BL = 1;
SR.(10-13) = B'1111;
SR.FD=0;
Initialize_CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

Rev. 4.0, 03/00, page 91 of 395
HITACHI



(2) Manual Reset

e Sources:
O SCK2 pin low level andRESET pin low level (SH7750 Serie3)RESET pin low level and
RESET pin high level (SH7751)
0 When a general exception other than a user break occurs while the BL bit is setto 1 in
0 When the watchdog timer overflows while the WIThit is set to 1 and the RSTS bit is set
to 1 in WTCSR. For details, see Clock Oscillation Circuits in the hardware manual.
¢ Transition address: H'A000 0000
e Transition operations:
Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.
In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) &
setto B'1111.
CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

Manual_reset()

{
EXPEVT = H'00000020;
VBR = H'00000000;
SR.MD =1;
SR.RB =1;
SR.BL=1;

SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

Rev. 4.0, 03/00, page 92 of 395
HITACHI



Table 5.3  Types of Reset (SH7750 Series)

Reset State Transition

Conditions Internal States
_ On-Chip Peripheral
Type SCK2 RESET CPU Modules
Power-on reset High Low Initialized See Register
Manual reset Low Low Initialized Configuration in

individual sections of
the hardware
manual

Table 5.4  Types of Reset (SH7751)

Reset State Transition

Conditions Internal States
On-Chip Peripheral
Type MRESET RESET CPU Modules
Power-on reset — Low Initialized See Register
Manual reset Low High Initialized Configuration in

individual sections of
the hardware
manual

HITACHI

Rev. 4.0, 03/00, page 93 of 395



(3) H-UDI Reset

e Source: SDIR.TI3-TI0 = B'0110 (negation) or B'0111 (assertion)
e Transition address: H'A000 0000
e Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) &
setto B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

H-UDI_reset()

{
EXPEVT = H'00000000;
VBR = H'00000000;
SR.MD = 1;
SR.RB =1,
SR.BL =1;
SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(PowerOn);
PC = H'A0000000;

Rev. 4.0, 03/00, page 94 of 395
HITACHI



(4) Instruction TLB Multiple-Hit Exception

e Source: Multiple ITLB address matches
e Transition address: H'A000 0000
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the

corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicat

the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10)

setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a me

reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER,;
EXPEVT = H'00000140;
VBR = H'00000000;
SR.MD =1,
SR.RB =1;
SR.BL = 1;
SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

HITACHI

Rev. 4.0, 03/00, page 95 of 395



(5) Operand TLB Multiple-Hit Exception

e Source: Multiple UTLB address matches
e Transition address: H'A000 0000
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicate

the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a

branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (13—10) &

setto B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a mat
reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER,;
EXPEVT = H'00000140;
VBR = H'00000000;
SR.MD =1,
SR.RB =1;
SR.BL = 1;
SR.(10-13) = B'1111;
SR.FD =0;
Initialize_CPU();
Initialize_Module(Manual);
PC = H'A0000000;

Rev. 4.0, 03/00, page 96 of 395

HITACHI



5.6.2 General Exceptions

(1) Data TLB Miss Exception

Source: Address mismatch in UTLB address comparison
Transition address: VBR + H'0000 0400
Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicat
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT.
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER,;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = read_access ? H'00000040 : H'00000060;
SR.MD =1;

SR.RB =1;

SR.BL=1;

PC = VBR + H'00000400;

Rev. 4.0, 03/00, page 97 of 395
HITACHI



(2) Instruction TLB Miss Exception

e Source: Address mismatch in ITLB address comparison
e Transition address: VBR + H'0000 0400
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicate
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in !
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

ITLB_miss_exception()
{
TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER,;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = H'00000040;
SR.MD =1;
SR.RB =1;
SR.BL=1;
PC = VBR + H'00000400;

Rev. 4.0, 03/00, page 98 of 395
HITACHI



(3) Initial Page Write Exception

Source: TLB is hit in a store access, but dirty bit D =0

Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicat
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'080 is setin EXPEVT. The BL, MD, and RB bits are setto 1 in SR, anc
branch is made to PC = VBR + H'0100.

Initial_write_exception()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000080;

SR.MD = 1;

SR.RB =1,

SR.BL =1,

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 99 of 395
HITACHI



(4) Data TLB Protection Violation Exception

e Source: The access does not accord with the UTLB protection information (PR bits) showr
below.
PR Privileged Mode User Mode
00 Only read access possible Access not possible
01 Read/write access possible Access not possible
10 Only read access possible Only read access possible
11 Read/write access possible Read/write access possible

* Transition address: VBR + H'0000 0100
e Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicate
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0OAOQ (for a read access) or H'0CO (for a write access) is set in EXPEVT."

BL

, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER,;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = read_access ? H'000000A0 : H'000000CO0;
SR.MD =1;

SR.RB =1;

SR.BL=1;

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 100 of 395

HITACHI



(5) Instruction TLB Protection Violation Exception

Source: The access does not accord with the ITLB protection information (PR bits) showr
below.

PR Privileged Mode User Mode
0 Access possible Access not possible
1 Access possible Access possible

Transition address: VBR + H'0000 0100
Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicat
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0AOQ is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, anc
branch is made to PC = VBR + H'0100.

ITLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;
PTEH.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'000000AO0;

SR.MD =1;

SR.RB =1;

SR.BL =1,

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 101 of 395
HITACHI



(6) Data Address Error

e Sources:
O Word data access from other than a word boundary (2n +1)
0 Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n

O Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +
+4,8n+5,8n+6,0r8n+7)

O Access to area H'8000 0000—H'FFFF FFFF in user mode
* Transition address: VBR + H'0000 0100
¢ Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicate
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in !
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEOQ (for a read access) or H'100 (for a write access) is set in EXPEVT. -
BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100. For
details, see section 3, Memory Management Unit (MMU).

Data_address_error()
{
TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = read_access? H'000000EOQ: H'00000100;
SR.MD =1,
SR.RB =1;
SR.BL =1;
PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 102 of 395
HITACHI



(7) Instruction Address Error

Sources:

O Instruction fetch from other than a word boundary (2n +1)

O Instruction fetch from area H'8000 0000—H'FFFF FFFF in user mode
Transition address: VBR + H'0000 0100

Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicat
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'OEQ is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, anc
branch is made to PC = VBR + H'0100. For details, see section 3, Memory Management
(MMU).

Instruction_address_error()

{

TEA = EXCEPTION_ADDRESS;
PTEN.VPN = PAGE_NUMBER;
SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'000000EO;

SR.MD = 1;

SR.RB =1,

SR.BL =1,

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 103 of 395
HITACHI



(8) Unconditional Trap

* Source: Execution of TRAPA instruction
* Transition address: VBR + H'0000 0100
e Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The values of SR and R15 when the
TRAPA instruction is executed are saved in SSR and SGR. The 8-bit immediate value in tl
TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'1
is setin EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC
VBR + H'0100.

TRAPA_exception()
{
SPC=PC + 2;
SSR = SR;
SGR = R15;
TRA = imm << 2;
EXPEVT = H'00000160;
SR.MD = 1;
SR.RB =1;
SR.BL =1;
PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 104 of 395
HITACHI



(9) General lllegal Instruction Exception

Sources:

O Decoding of an undefined instruction not in a delay slot
Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, E
Undefined instruction: H'FFFD

0 Decoding in user mode of a privileged instruction not in a delay slot
Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

Transition address: VBR + H'0000 0100

Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in

and SSR, and the contents of R15 are saved in SGR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, anc
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code
than H'FFFD is decoded.

General_illegal_instruction_exception()

{

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000180;
SR.MD = 1;

SR.RB=1;

SR.BL =1,

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 105 of 395
HITACHI



(10) Slot lllegal Instruction Exception

e Sources:
O Decoding of an undefined instruction in a delay slot
Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BI
Undefined instruction: H'FFFD
0 Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+,SR

0 Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

0 Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot
e Transition address: VBR + H'0000 0100
e Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR ¢
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'1AQ is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code ¢
than H'FFFD is decoded.

Slot_illegal_instruction_exception()
{

SPC=PC-2;

SSR = SR;

SGR = R15;

EXPEVT = H'000001A0;

SR.MD = 1;

SR.RB =1;

SR.BL =1;

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 106 of 395
HITACHI



(11) General FPU Disable Exception

e Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1
e Transition address: VBR + H'0000 0100
e Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in
and SSR, and the contents of R15 are saved in SGR.

Exception code H'800 is setin EXPEVT. The BL, MD, and RB bits are setto 1 in SR, anc
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F
excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

General_fpu_disable_exception()
{

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000800;

SR.MD =1,

SR.RB =1;

SR.BL =1;

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 107 of 395
HITACHI



(12) Slot FPU Disable Exception

e Source: Decoding of an FPU instruction in a delay slot with SR.FD =1
e Transition address: VBR + H'0000 0100
e Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR ¢
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are setto 1 in SR, and
branch is made to PC = VBR + H'0100.

Slot_fpu_disable_exception()
{

SPC=PC-2;

SSR = SR;

SGR = R15;

EXPEVT = H'00000820;

SR.MD =1,

SR.RB =1;

SR.BL =1;

PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 108 of 395
HITACHI



(13) User Breakpoint Trap

Source: Fulfilling of a break condition set in the user break controller

Transition address: VBR + H'0000 0100, or DBR

Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution br
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR and R15 contents when the break occurred are saved in SSR and SGR. Exceptic
H'1EOQ is set in EXPEVT.

The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'010C
also possible to branch to PC = DBR.

For details of PC, etc., when a data break is set, see User Break Controller in the hardwa
manual.

User_break_exception()

{

SPC = (pre_execution break? PC : PC + 2);

SSR = SR;

SGR = R15;

EXPEVT = H'000001EOQ;

SR.MD =1;

SR.RB =1;

SR.BL=1;

PC = (BRCR.UBDE==1 ? DBR : VBR + H'00000100);

Rev. 4.0, 03/00, page 109 of 395
HITACHI



(14) FPU Exception

e Source: Exception due to execution of a floating-point operation
e Transition address: VBR + H'0000 0100
e Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in ¢
and SSR, and the contents of R15 are saved in SGR. Exception code H'120 is set in EXPI
The BL, MD, and RB bits are setto 1 in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()
{
SPC = PC;
SSR = SR;
SGR = R15;
EXPEVT = H'00000120;
SR.MD = 1;
SR.RB =1;
SR.BL =1;
PC = VBR + H'00000100;

Rev. 4.0, 03/00, page 110 of 395
HITACHI



5.6.3 Interrupts

(1) NMmI

Source: NMI pin edge detection

Transition address: VBR + H'0000 0600

Transition operations:

The contents of PC and SR immediately after the instruction at which this interrupt was
accepted are saved in SPC and SSR, and the contents of R15 are saved in SGR.
Exception code H'1CO is set in INTEVT. The BL, MD, and RB bits are setto 1 in SR, and
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. Wh
BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. For details, see Interrupt Controller in the hardware manual.

NMI()

{

SPC = PC;

SSR = SR;

SGR = R15;

INTEVT = H'000001CO0;
SR.MD = 1;

SR.RB =1;

SR.BL =1,

PC = VBR + H'00000600;

Rev. 4.0, 03/00, page 111 of 395
HITACHI



(2) IRL Interrupts

e Source: The interrupt mask bit setting in SR is smaller than the IRL (3-0) level, and the BL
in SR is 0 (accepted at instruction boundary).

e Transition address: VBR + H'0000 0600
e Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are se
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the IRL (3-0) level is set in INTEVT. See table 19.5, Interrupt
Exception Handling Sources and Priority Order, for the corresponding codes. The BL, MD,
and RB bits are setto 1 in SR, and a branch is made to VBR + H'0600. The acceptance le
not set in the interrupt mask bits in SR. When the BL bit in SR is 1, the interrupt is masked
For details, see Interrupt Controller in the hardware manual.

IRL()
{
SPC = PC;
SSR = SR;
SGR = R15;
INTEVT = H'00000200 ~ H'000003CO0;
SR.MD = 1;
SR.RB =1;
SR.BL =1,
PC = VBR + H'00000600;

Rev. 4.0, 03/00, page 112 of 395
HITACHI



(3) Peripheral Module Interrupts

Source: The interrupt mask bit setting in SR is smaller than the peripheral module (H-UDI
GPIO, DMAC, PCIC*, TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bi
in SR is 0 (accepted at instruction boundary).

Note: * SH7751 only

Transition address: VBR + H'0000 0600

Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are s
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bit
are setto 1 in SR, and a branch is made to VBR + H'0600. The module interrupt levels st
be set as values between B’0000 and B'1111 in the interrupt priority registers (IPRA-IPR
the interrupt controller. For details, see Interrupt Controller in the hardware manual.

Module_interruption()

{

SPC = PC;

SSR = SR;

SGR = R15;

INTEVT = H'00000400 ~ H'00000760;
SR.MD = 1;

SR.RB=1;

SR.BL =1,

PC = VBR + H'00000600;

Rev. 4.0, 03/00, page 113 of 395
HITACHI



5.6.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from
normal order.

1.

Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will
detected for each of these data transfers. In these cases, therefore, the following order is
to determine priority.

a. Data address error in first data transfer

TLB miss in first data transfer

TLB protection violation in first data transfer

Initial page write exception in first data transfer
Data address error in second data transfer

TLB miss in second data transfer

TLB protection violation in second data transfer
Initial page write exception in second data transfer

Sae@ ™0 200

Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, the

are treated as a single instruction. Consequently, the priority order for exceptions that occt

these instructions differs from the usual priority order. The priority order shown below is for

the case where the delay slot instruction has only one data transfer.

a. The delayed branch instruction is checked for priority levels 1 and 2.

b. The delay slot instruction is checked for priority levels 1 and 2.

c. A check is performed for priority level 3 in the delayed branch instruction and priority
level 3 in the delay slot instruction. (There is no priority ranking between these two.)

d. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b

1 above.

If the accepted exception (the highest-priority exception) is a delay slot instruction re-

execution type exception, the branch instruction PR register write operation R

operation performed in BSR, BSRF, JSR) is inhibited.

Rev. 4.0, 03/00, page 114 of 395

HITACHI



5.7

Usage Notes

1. Return from exception handling

a.

Check the BL bit in SR with software. If SPC and SSR have been saved to external
memory, set the BL bit in SR to 1 before restoring them.

Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the
contents are set in SR, and branch is made to the SPC address to return from the exc
handling routine.

2. If an exception or interrupt occurs when SR.BL = 1

a.

Exception

When an exception other than a user break occurs, a manual reset is executed. The v
EXPEVT at this time is H'0000 0020; the value of the SPC and SSR registers is undef
Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted af
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software.
sleep or standby state, however, an interrupt is accepted even if the BL bit in SR is se

3. SPC when an exception occurs

a.

Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the
instruction is re-executed after returning from exception handling. If an exception occu
a delay slot instruction, however, the PC value for the delay slot instruction is saved in
regardless of whether or not the preceding delay slot instruction condition is satisfied.
Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set ir
SPC. If an exception occurs in a branch instruction with delay slot, however, the PC v
for the branch destination is saved in SPC.

4. An exception must not be generated in an RTE instruction delay slot, as the operation wil
undefined in this case.

Rev. 4.0, 03/00, page 115 of 395
HITACHI



5.8 Restrictions

1. Restrictions on first instruction of exception handling routine
¢ Do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at address VBR + H'100, VB
+ H'400, or VBR + H'600.

¢ When the UBDE bit in the BRCR register is set to 1 and the user break debug support
function* is used, do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at the addr

indicated by the DBR register.

Note: * See User Break Debug Support Function in the hardware manual.

Rev. 4.0, 03/00, page 116 of 395
HITACHI



Section 6 Floating-Point Unit

6.1 Overview
The floating-point unit (FPU) has the following features:

« Conforms to IEEE754 standard

« 32 single-precision floating-point registers (can also be referenced as 16 double-precisior
registers)

¢ Two rounding modes: Round to Nearest and Round to Zero

* Two denormalization modes: Flush to Zero and Treat Denormalized Number

* Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow
and Inexact

« Comprehensive instructions: Single-precision, double-precision, graphics support, systen
control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FF
instruction will cause an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point Format
A floating-point number consists of the following three fields:

e Sign (s)
e Exponent (e)
* Fraction (f)

The SH-4 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31 30 23 22 0

Figure 6.1 Format of Single-Precision Floating-Point Number

Rev. 4.0, 03/00, page 117 of 395
HITACHI



63 62 52 51 0

Figure 6.2 Format of Double-Precision Floating-Point Number
The exponent is expressed in biased form, as follows:
e = E + bias

The range of unbiased exponent E jsE1to E_ + 1. The two values F—1and E_+ 1 are
distinguished as follows. F— 1 indicates zero (both positive and negative sign) and a
denormalized number, ang =+ 1 indicates positive or negative infinity or a non-number (NaN).
Table 6.1 shows bias, | and E_ values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision
Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits
Fraction field 23 bits 52 bits
Precision 24 bits 53 bits

Bias +127 +1023

E.. +127 +1023

E -126 -1022

Floating-point number value v is determined as follows:

IfE=E,,+ 1andf 0, vis a non-number (NaN) irrespective of sign s
IfE=E,+1andf=0,v = (-1)infinity) [positive or negative infinity]
IfE, <E<E,, V= (-1)2° (1.f) [normalized number]

IfE=E,, —1andf 0, v=(-12"" (0.f) [denormalized number]
IfE=E, —1andf=0,v=(-1) [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Rev. 4.0, 03/00, page 118 of 395
HITACHI



Table 6.2

Type

Floating-Point Ranges

Single-Precision

Double-Precision

Signaling non-number

H'7FFFFFFF to H'7FC00000

H7FFFFFFF FFFFFFFF to
H'7FF80000 00000000

Quiet non-number

H'7FBFFFFF to H'7F800001

H'7FF7FFFF FFFFFFFF to
H'7FF00000 00000001

Positive infinity

H'7F800000

H'7FF00000 00000

Positive normalized
number

H'7F7FFFFF to H'00800000

H'7FEFFFFF FFFFFFFF to
H'00100000 00000000

Positive denormalized
number

H'007FFFFF to H'00000001

H'000FFFFF FFFFFFFF to
H'00000000 00000001

Positive zero

H'00000000

H'00000000 00000000

Negative zero

H'80000000

H'80000000 00000000

Negative denormalized
number

H'80000001 to H'807FFFFF

H'80000000 00000001 to
H'800FFFFF FFFFFFFF

Negative normalized
number

H'80800000 to H'FF7FFFFF

H'80100000 00000000 to
HFFEFFFFF FFFFFFFF

Negative infinity

H'FF800000

H'FFFO0000 00000000

Quiet non-number

H'FF800001 to H'FFBFFFFF

H'FFF00000 00000001 to
H'FFF7FFFF FFFFFFFF

Signaling non-number

H'FFC00000 to H'FFFFFFFF

H'FFF80000 00000000 to
H'FFFFFFFF FFFFFFFF

6.2.2

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case

e Sign bit: Don’t care

Non-Numbers (NaN)

« Exponent field: All bits are 1
* Fraction field: At least one bitis 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (gqN:

if the MSB is 0.

HITACHI

Rev. 4.0, 03/00, page 119 of 395



31 30 23 22 0

X 11111111 NXXXXXXXXXXXXXXXXXXXXKX

N = 1: sNaN
N =0:gNaN

Figure 6.3 Single-Precision NaN Bit Pattern

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a floating-pc
value.

« When the EN.V bit in the FPSCR register is 0, the operation result (output) is a qNaN.

¢ When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register are unchanged.

If a gNaN is input in an operation that generates a floating-point value, and an sNaN has not t
input in that operation, the output will always be a gNaN irrespective of the setting of the EN.V
in the FPSCR register. An exception will not be generated in this case.

The gNAN values generated by the SH-4 as operation results are as follows:

« Single-precision gNaN: H'7FBFFFFF
¢ Double-precision gNaN: H'7FF7FFFF FFFFFFFF

See section 9, Instruction Descriptions, for details of floating-point operations when a non-nun
(NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in the FPU'’s status register FPSCR is 1, a denormalized number (source op
or operation result) is always flushed to 0 in a floating-point operation that generates a value (
operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result)
processed as it is. See section 9, Description of Instructions, for details of floating-point opera
when a denormalized number is input.

Rev. 4.0, 03/00, page 120 of 395
HITACHI



6.3 Registers

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FRO—FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XFO
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

1.

Floating-point registers, FPRi_BANK] (32 registers)
FPRO_BANKO-FPR15_BANKO
FPRO_BANK1-FPR15_BANK1

Single-precision floating-point registers, FRi (16 registers)
When FPSCR.FR = 0, FRO-FR15 indicate FPRO_BANKO-FPR15_BANKO;
when FPSCR.FR = 1, FRO-FR15 indicate FPRO_BANK1-FPR15_BANK1.

Double-precision floating-point registers, DRI (8 registers): A DR register comprises two |
registers

DRO = {FRO, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DRS = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

Single-precision floating-point vector registers, FVi (4 registers): An FV register comprise
four FR registers

FVO = {FRO, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

Single-precision floating-point extended registers, XFi (16 registers)
When FPSCR.FR = 0, XFO—-XF15 indicate FPRO_BANK1-FPR15_ BANK1;
when FPSCR.FR =1, XFO-XF15 indicate FPRO_BANKO-FPR15 BANKaO.

Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers

XDO = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 1
XF registers

XMTRX = | XFO XF4 XF8 XF12
XF1 XF5 XF9 XF13
XF2 XF6 XF10 XF14
XF3 XF7 XF11  XF15

Rev. 4.0, 03/00, page 121 of 395
HITACHI



FPSCR.FR =0

FVO DRO

DR2

Fv4  DR4

DR6

Fv8 DR8

DR10

FV12 DR12

DR14

XMTRX XDO

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FRO
FR1
FR2
FR3
FR4
FRS
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

XFO
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FPRO_BANKO

FPR1_BANKO

FPR2_BANKO

FPR3_BANKO

FPR4_BANKO

FPR5_BANKO

FPR6_BANKO

FPR7_BANKO

FPR8_BANKO

FPR9_BANKO

FPR10_BANKO

FPR11_BANKO

FPR12_BANKO

FPR13_BANKO

FPR14_BANKO

FPR15_BANKO

FPRO_BANK1

FPR1_BANK1

FPR2_BANK1

FPR3_BANK1

FPR4_BANK1

FPR5_BANK1

FPR6_BANK1

FPR7_BANK1

FPR8_BANK1

FPR9_BANK1

FPR10_BANK1

FPR11_BANK1

FPR12_BANK1

FPR13_BANK1

FPR14_BANK1

FPR15_BANK1

FPSCR.FR =1
XFO XDO XMTRX
XF1
XF2 XD2
XF3
XF4 XD4
XF5
XF6 XD6
XF7
XF8 XD8
XF9
XF10 XD10
XF11
XF12 XD12
XF13
XF14 XD14
XF15
FRO DRO FVO
FR1
FR2 DR2
FR3
FR4 DR4 FV4
FRS
FR6 DR6
FR7
FR8 DR8 FV8
FR9
FR10 DRI10
FR11
FR12 DR12 FV12
FR13
FR14 DR14
FR15

Rev. 4.0, 03/00, page 122 of 395

Figure 6.4 Floating-Point Registers

HITACHI




6.3.2 Floating-Point Status/Control Register (FPSCR)

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0
— |FR |SZ |PR |DN | Cause | Enable Flag | RM |
Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

* FR: Floating-point register bank

FR = 0: FPRO_BANKO-FPR15_BANKO are assigned to FRO-FR15; FPRO_BANK1-
FPR15 BANK1 are assigned to XFO—XF15.

FR = 1: FPRO_BANKO-FPR15_BANKO are assigned to XFO—XF15; FPRO_BANK1-
FPR15_BANK1 are assigned to FRO-FR15.

e SZ: Transfer size mode
SZ = 0: The data size of the FMOV instruction is 32 bits.
SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

¢ PR: Precision mode
PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics
support instructions are undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.
[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

+« DN: Denormalization mode
DN = 0: A denormalized number is treated as such.
DN = 1: A denormalized number is treated as zero.

e Cause: FPU exception cause field
« Enable: FPU exception enable field
¢ Flag: FPU exception flag field

FPU Invalid Division Overflow Underflow Inexact
Error (E) Operation (V) by Zero (Z) (O) ) )
Cause  FPU exception Bit17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12
cause field
Enable FPU exception None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7
enable field
Flag FPU exception  None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2
flag field

Rev. 4.0, 03/00, page 123 of 395
HITACHI



When an FPU operation instruction is executed, the FPU exception cause field is cleared t
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag fiel
holds the status of the exception generated after the field was last cleared.

¢ RM: Rounding mode
RM = 00: Round to Nearest
RM = 01: Round to Zero
RM = 10: Reserved
RM = 11: Reserved

e Bits 22 to 31: Reserved
These bits are always read as 0, and should only be written with 0.

Notes: The following functions have been added to the FPU of the SH-4 (not provided in the |
of the SH7718):

1. The FR, SZ, and PR bits have been added.

2. Exception O (overflow), U (underflow), and | (inexact) bits have been added to the
cause, enable, and flag fields.

3. An exception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a single-preci
floating-point number, the processing flow is as follows:

R1 - (LDS instruction)» FPUL - (single-precision FLOAT instruction) FR1

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation resul
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRV, and FIPR will differ from the result when using a basic instruction such as FADD, FSU!
or FMUL. Rounding is performed once in FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

« RM =00: Round to Nearest
¢« RM =01: Round to Zero

Rev. 4.0, 03/00, page 124 of 395
HITACHI



Round to Nearest:The value is rounded to the nearest expressible value. If there are two nee
expressible values, the one with an LSB of 0 is selected.

If the unrounded value i$2* (2 — 2°) or more, the result will be infinity with the same sign as tr
unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-precisic
1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will
the maximum expressible absolute value.

6.5

Floating-Point Exceptions

FPU-related exceptions are as follows:

* General illegal instruction/slot illegal instruction exception
The exception occurs if an FPU instruction is executed when SR.FD = 1.

* FPU exceptions
The exception sources are as follows:

Ooo0oooogod

FPU error (E): When FPSCR.DN = 0 and a denormalized number is input
Invalid operation (V): In case of an invalid operation, such as NaN input
Division by zero (Z): Division with a zero divisor

Overflow (O): When the operation result overflows

Underflow (U): When the operation result underflows

Inexact exception (1): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V, Z, O, U,
I, and the FPSCR flag and enable fields contain bits corresponding to sources V, Z, O, U,
[, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause field is set to 1, anc
added to the corresponding bit in the flag field. When an exception source does not occut
corresponding bit in the cause field is cleared to 0, but the corresponding bit in the flag fie
remains unchanged.

¢ FPU exception handling
FPU exception occurs in the following cases:

O

U
g
U

FPU error (E): FPSCR.DN = 0 and a denormalized number is input
Invalid operation (V): FPSCR.EN.V = 1 and (instruction = FTRV or invalid operation)
Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor

Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result
overflow

Rev. 4.0, 03/00, page 125 of 395
HITACHI



O

O

Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result
underflow

Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operatic
result

These possibilities are shown in the individual instruction descriptions. All exception event:
that originate in the FPU are assigned as the same exception event. The meaning of an
exception is determined by software by reading system register FPSCR and interpreting tt
information it contains. If no bits are set in the cause field of FPSCR when one or more of |
O, U, I, and V (in case of FTRV only) are set in the enable field, this indicates that an actu:
FPU exception is not generated. Also, the destination register is not changed by any FPU
exception handling operation.

Except for the above, the bit corresponding to source V, Z, O, U, or | is set to 1, and a defz
value is generated as the operation result.

O
O
O

6.6

Invalid operation (V): gqNAN is generated as the result.
Division by zero (Z): Infinity with the same sign as the unrounded value is generated.
Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as tt
unrounded value, is generated.

When rounding mode = RN, infinity with the same sign as the unrounded value is
generated.

Underflow (U):

When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded vz
or zero with the same sign as the unrounded value, is generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.
Inexact exception (I): An inexact result is generated.

Graphics Support Functions

The supports two kinds of graphics functions: new instructions for geometric operations, and |
single-precision transfer instructions that enable high-speed data transfer.

6.6.1

Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-sg
computation with a minimum of hardware, the SH-4 ignores comparatively small values in the
partial computation results of four multiplications. Consequently, the error shown below is
produced in the result of the computation:

Maximum error = MAX (individual multiplication result x

2—MIN (number of multiplier significant digits—1, number of multiplicand significant d\glts—l)) + MAX (I’esu|t Value X 2—23 2—1A9)
1

Rev. 4.0, 03/00, page 126 of 395

HITACHI



The number of significant digits is 24 for a normalized number and 23 for a denormalized nui
(number of leading zeros in the fractional part).

In future version of SH series, the above error is guaranteed, but the same result as SH-4 is
guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12):Examples of the use of this instruction are shown below.

e Inner product (n¥ n):

This operation is generally used for surface/rear surface determination for polygon surfac
e Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (I) bit in the cause field and flag field is always set to 1 when an FIPR
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): Examples of the use of this instruction are shown below.

e Matrix (4 x 4) Cvector (4):
This operation is generally used for viewpoint changes, angle changes, or movements ca
vector transformations (4-dimensional). Since affine transformation processing for angle -
parallel movement basically requires & 4 matrix, the SH-4 supports 4-dimensional
operations.

e Matrix (4 x 4) x matrix (4x 4):
This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (1) bit in the cause field and flag field is always set to 1 when an FTRV
instruction is executed. Therefore, if the corresponding bit is set in the enable field, FPU exce
handling will be executed. For the same reason, it is not possible to check all data types in tf
registers beforehand when executing an FTRV instruction. If the V bit is set in the enable fiel
FPU exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instructior
executed, matrix elements must be set in an array in the background bank. However, to cree
actual elements of a translation matrix, it is easier to use registers in the foreground bank. W
the LDC instruction is used on FPSCR, this instruction expends 4 to 5 cycles in order to mait
the FPU state. With the FRCHG instruction, an FPSCR.FR bit modification can be performec
one cycle.

Rev. 4.0, 03/00, page 127 of 395
HITACHI



6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH-4 also supports high-
speed data transfer instructions.

When FPSCR.SZ = 1, the SH-4 can perform data transfer by means of pair single-precision d
transfer instructions.

* FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)
¢ FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precisior 8-bit) data items to be transferred; that is, the
transfer performance of these instructions is doubled.

e FSCHG
This instruction changes the value of the SZ bit in FPSCR, enabling fast switching betweel
use and non-use of pair single-precision data transfer.

Programming Note

When FPSCR.SZ = 1 and big-endian mode is used, FMOV can be used for a double-precisio
floating-point load or store. In little-endian mode, a double-precision floating-point load or stor
requires execution of two 32-bit data size operations with FPSCR.SZ = 0.

Rev. 4.0, 03/00, page 128 of 395
HITACHI



Section 7 Instruction Set

7.1 Execution Environment
PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH-4’s instruction set is implemented with 16-bit fixed-length
instructions. The SH-4 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword (¢
bit) data sizes for memory access. Single-precision floating-point data (32 bits) can be move
and from memory using longword or quadword size. Double-precision floating-point data (64
can be moved to and from memory using longword size. When a double-precision floating-p
operation is specified (FPSCR.PR = 1), the result of an operation using quadword access wil
undefined. When the SH-4 moves byte-size or word-size data from memory to a register, the
is sign-extended.

Load-Store Architecture: The SH-4 features a load-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as logical AN
that are executed directly in memory, operands in an operation that requires memory access
loaded into registers and the operation is executed between the registers.

Delayed BranchesExcept for the two branch instructions BF and BT, the SH-4's branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution slot following a
delayed branch is called a delay slot. For example, the BRA execution sequence is as follow

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, RO ADD R1, RO ADD in delay slot is executed before
next_2 target_instr branching to TARGET

Delay Slot: An illegal instruction exception may occur when a specific instruction is executed
delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for which the
branch is not taken is also a delay slot instruction.

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation,
is referenced by a conditional branch instruction. An example of the use of a conditional bran
instruction is shown below.

ADD #1, RO ; T bit is not changed by ADD operation
CMP/EQ R1, RO ; IfRO=R1, T bitissetto 1
BT TARGET ; Branchesto TARGET if T bit = 1 (RO = R1)

Rev. 4.0, 03/00, page 129 of 395
HITACHI



In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access,
MD bit is used before modification, and in data access, the MD bit is accessed after modificati
The other bits—S, T, M, Q, FD, BL, and RB—after modification are used for delay slot

instruction execution. The STC and STC.L SR instructions access all SR bits after modificatio

Constant Values:An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L  @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible
set 0.0 or 1.0 by using the FLDIO or FLDI1 instruction on a single-precision floating-point
register.

Rev. 4.0, 03/00, page 130 of 395
HITACHI



7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When
location in virtual memory space is accessed (MMUCR.AT = 1), the effective address is tran:
into a physical memory address. If multiple virtual memory space systems are selected
(MMUCR.SV = 0), the least significant bit of PTEH is also referenced as the access ASID. S
section 3, Memory Management Unit (MMU).

Table 7.1  Addressing Modes and Effective Addresses

Addressing  Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register Rn Effective address is register Rn. —
direct (Operand is register Rn contents.)
Register @Rn Effective address is register Rn contents. Rn - EA
indirect (EA: effective
“ address)
Register @Rn+ Effective address is register Rn contents. Rn - EA
indirect A constant is added to Rn after instruction After
with post- execution: 1 for a byte operand, 2 for a word instruction
increment operand, 4 for a longword operand, 8 for a execution
guadword operand. Byte:
Word:
+
Rn 1/2/4/8 Rn+2 - RN
Longword:
1/2/4/8 Rn+4 - Rn
Quadword:
Rn+8 - Rn
Register @-Rn Effective address is register Rn contents, Byte:
indirect decremented by a constant beforehand: Rn—-1 - Rn
with pre- 1 for a byte operand, 2 for a word operand, Word:
decrement 4 for a longword operand, 8 for a quadword Rn—2 . RN
operand.
Longword:
Rn Rn—-4 - Rn
‘Rn —1/2/4/8 _ Quadword:
S Rn — 1/2/4/8 Rn_8 - Rn
1/2/4/8 Rn - EA
(Instruction
executed
with Rn after
calculation)

Rev. 4.0, 03/00, page 131 of 395
HITACHI



Table 7.1  Addressing Modes and Effective Addresses (cont)
Addressing  Instruction Calculation
Mode Format Effective Address Calculation Method Formula
Register @(disp:4, Rn) Effective address is register Rn contents with Byte: Rn +
indirect with 4-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), Word: Rn +
or 4 (longword), according to the operand size. disp x 2 - EA
Longword:
: Rn + disp x 4
disp Rn + disp x 1/2/4 _ EA
(zero-extended)
Indexed @(RO, Rn) Effective address is sum of register Rn and RO Rn+ R0 - EA
register contents.
indirect
GBR indirect @(disp:8, Effective address is register GBR contents with Byte: GBR +
with GBR) 8-bit displacement disp added. After disp is disp - EA
displacement zero-extended, it is multiplied by 1 (byte), 2 (word), Word: GBR +
or 4 (longword), according to the operand size. dispx 2 — EA
Longword:
GBR +di
disp _GBR 4 . EA P
(zero-extended) + disp x 1/2/4
Indexed @(RO, GBR) Effective address is sum of register GBR and RO GBR + RO -
GBR indirect contents. EA

GBR + RO

Rev. 4.0, 03/00, page 132 of 395

HITACHI



Table 7.1  Addressing Modes and Effective Addresses (cont)

Addressing  Instruction Calculation
Mode Format Effective Address Calculation Method Formula
PC-relative @(disp:8, PC) Effective address is PC+4 with 8-bit displacement ~ Word: PC + 4
with disp added. After disp is zero-extended, it is +dispx2 -
displacement multiplied by 2 (word), or 4 (longword), according EA
to the operaqd size. With a longword operand, Longword:
the lower 2 bits of PC are masked. PC &
AL
+4 +disp x4
- EA
H'FFFFFFFC
PC + 4 + disp
x 2
orPC &
H'FFFFFFFC
(zero-extended) *4+dispx4
* With longword operand
PC-relative  disp:8 Effective address is PC+4 with 8-bit displacement ~ PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC + 4 + disp x 2

(sign-extended)

Rev. 4.0, 03/00, page 133 of 395
HITACHI



Table 7.1  Addressing Modes and Effective Addresses (cont)

Addressing  Instruction Calculation

Mode Format Effective Address Calculation Method Formula

PC-relative  disp:12 Effective address is PC+4 with 12-bit displacement PC + 4 + disp
disp added after being sign-extended and x 2 - Branch-
multiplied by 2. Target

PC +4 + disp x 2

(sign-extended)

Rn PC+4+Rn
- Branch-
Target
Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or —
XOR instruction is zero-extended.
#imm:8 8-bit immediate data imm of MOV, ADD, or —
CMP/EQ instruction is sign-extended.
#imm:8 8-bit immediate data imm of TRAPA instruction is —

zero-extended and multiplied by 4.

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions
in this manual show the value before scaling (x1, x2, or x4) is performed according to the
operand size. This is done to clarify the operation of the chip. Refer to the relevant
assembler notation rules for the actual assembler descriptions.

@ (disp:4, Rn) ; Register indirect with displacement
@ (disp:8, GBR) ; GBR indirect with displacement

@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

Rev. 4.0, 03/00, page 134 of 395
HITACHI



7.3 Instruction Set
Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2  Notation Used in Instruction List

ltem Format Description
Instruction OP.Sz SRC, DEST OFP: Operation code
mnemonic Sz: Size

SRC: Source
DEST: Source and/or destination operand

Summary of o, o« Transfer direction
operation (xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
O Logical exclusive-OR of individual bits

Logical NOT of individual bits
<<n, >>n n-bit shift

Instruction code MSB ~ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: RO, FRO
0001: R1, FR1

1111: R15, FR15

mmm:  Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DRO, XD0O, RO_BANK

001: DR2, XD2, R1_BANK

111: DR14, XD14, R7_BANK

mm: Register number (FVm)
nn: Register number (FVn)
00: FVO

01: Fv4

10: Fv8

11: FV12

iiii: Immediate data
dddd: Displacement

Privileged mode “Privileged” means the instruction can only be executed
in privileged mode.
T bit Value of T bit after ~—: No change

instruction execution

Note: Scaling (x1, x2, x4, or x8) is executed according to the size of the instruction operand(s).

Rev. 4.0, 03/00, page 135 of 395
HITACHI



Table 7.3

Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm - sign extension - Rn 1110nnnniiiiiiii — —

MOV.W  @(disp,PC),Rn (disp x 2 + PC + 4) - sign 1001nnnndddddddd  — —
extension - Rn

MOV.L @(disp,PC),Rn (disp x4 + PC & HFFFFFFFC  1101nnnndddddddd  — —
+4) - Rn

MOV Rm,Rn Rm - Rn 0110nnnnmmmmO0011 — —

MOV.B Rm,@Rn Rm - (Rn) 0010nnNnnmmmmO000 — —

MOV.W  Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 — —

MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmmmO0010 — —

MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO000 — —

MOV.W  @Rm,Rn (Rm) - sign extension - Rn  0110nnnnmmmmO001 — —

MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO0010 — —

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmmO0100 — —

MOV.W  Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmmmO0101 — —

MOV.L Rm,@-Rn Rn-4 . Rn, Rm - (Rn) 0010nnnnmmmmO0110 — —

MOV.B @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmmO0100 — —
Rm+1 - Rm

MOV.W  @Rm+,Rn (Rm) - sign extension - Rn,  0110nnnnmmmmO0101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) -~ Rn,Rm+4 - Rm 0110nnnnmmmmO0110 — —

MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd ~ — —

MOV.W  RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd  — —

MOV.L Rm,@(disp,Rn) Rm - (disp x4 + Rn) 0001nnnnmmmmdddd — —

MOV.B @(disp,Rm),R0O (disp + Rm) - sign extension ~ 10000100mmmmdddd — —
- RO

MOV.W  @(disp,Rm),R0 (disp x 2 + Rm) - sign 10000101mmmmdddd — —
extension - RO

MOV.L @(disp,Rm),Rn (disp x4+ Rm) - Rn 0101lnnnnmmmmdddd — —

MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNNMmMmmO100 — —

MOV.W  Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNnMmmmO101 — —

MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNnNMmmmO110 — —

MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nNnNNMmMmMm31100 — —
- Rn

MOV.W  @(RO,Rm),Rn (RO + Rm) - sign extension 0000nnNnNnmmmm1101 — —
- Rn

MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000nnNnNnmmmm1110 — —

Rev. 4.0, 03/00, page 136 of 395

HITACHI



Table 7.3

Fixed-Point Transfer Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd ~ — —

MOV.W  RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd ~ — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd ~ — —

MOV.B @(disp,GBR),R0  (disp + GBR) - 11000100dddddddd ~ — —
sign extension - RO

MOV.W  @(disp,GBR),R0 (disp x 2 + GBR) - 11000101dddddddd  — —
sign extension - RO

MOV.L @(disp,GBR),R0  (disp x 4 + GBR) - RO 11000110dddddddd ~ — —

MOVA @(disp,PC),R0O disp x4 + PC & H'FFFFFFFC  11000111dddddddd  — —
+4 - RO

MOVT Rn T - Rn 0000nnnNn00101001  — —

SWAP.B  Rm,Rn Rm - swap lower 2 bytes 0110nnnnmmmm31000 — —
- Rn

SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnmmmm31001 — —
words - Rn

XTRCT Rm,Rn Rm:Rn middle 32 bits -~ Rn 0010nnnnmmmm31101 — —

Rev. 4.0, 03/00, page 137 of 395

HITACHI



Table 7.4

Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm21100 — —

ADD #imm,Rn Rn +imm - Rn 0111nnnniiiiiiii — —

ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 001lnnnnmmmm1110 — Carry

ADDV Rm,Rn Rn + Rm - Rn, overflow - T 001lnnnnmmmm11l1ll — Overflow

CMP/EQ  #imm,RO When RO =imm,1 - T 10001000iiiiiii — Comparison
Otherwise, 0 - T result

CMP/EQ Rm,Rn WhenRn=Rm, 1 - T 0011nnnnmmmmO000 — Comparison
Otherwise, 0 - T result

CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmmmO0010 — Comparison
1-T result
Otherwise, 0 - T

CMP/GE  Rm,Rn When Rn = Rm (signed), 1 -~ T 0011nnnnmmmmO0011 — Comparison
Otherwise, 0 - T result

CMP/HI Rm,Rn When Rn > Rm (unsigned), 0011nnnnmmmmO0110 — Comparison
1-T result
Otherwise, 0 - T

CMP/GT Rm,Rn When Rn > Rm (signed), 1 - T 001lnnnnmmmmO0111 — Comparison
Otherwise, 0 - T result

CMP/PZ Rn WhenRn=20,1 - T 0100nnnn00010001  — Comparison
Otherwise, 0 - T result

CMP/PL  Rn WhenRNn>0,1-T 0100nnnn00010101  — Comparison
Otherwise, 0 - T result

CMP/STR Rm,Rn When any bytes are equal, 0010nnnnmmmm31100 — Comparison
1-T result
Otherwise, 0 - T

DIV1 Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmmmO0100 — Calculation

result

DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmmO0111 — Calculation
MSB of Rm - M, M"Q - T result

DIVOU 0 -~ M/QIT 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 0011nnnnmmmm1101 — —
32 x 32 - 64 bits

DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnnnmmmmO0101 — —
32 x 32 - 64 bits

DT Rn Rn -1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1-T result
WhenRN#0,0 - T

EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmm1110 — —

byte - Rn

Rev. 4.0, 03/00, page 138 of 395

HITACHI



Table 7.4  Arithmetic Operation Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmm1111 — —
word - Rn

EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmm21100 — —
byte - Rn

EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmmm21101 — —
word - Rn

MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - 0000nnnnmmmm1111 — —
MAC

Rn+4 - Rn,Rm+4 - Rm
32 x 32+ 64 - 64 bits

MAC.W @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC -~ 0100nnnnmmmm1111 — —
MAC
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 — 64 bits

MUL.L Rm,Rn Rn xRm - MACL 0000nNnNnnmmmmO111 — —

32 x 32 - 32 bits
MULS.W  Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmm1111 — —

16 x 16 — 32 bits
MULU.W  Rm,Rn Unsigned, Rn x Rm - MACL  0010nnnnmmmm1110 — —

16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 — —
NEGC Rm,Rn O0—-Rm-T - Rn, borrow - T 0110nnnnmmmm21010 — Borrow
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm1000 — —
SUBC Rm,Rn Rn—Rm—-T - Rn, borrow - T 0011lnnnnmmmm1010 — Borrow
SUBV Rm,Rn Rn —Rm - Rn, underflow - T 001lnnnnmmmml1011 — Underflow

Rev. 4.0, 03/00, page 139 of 395
HITACHI



Table 7.5

Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm1001 — —

AND #imm,R0O RO & imm - RO 1100100 Liiiiiiii — —

AND.B #imm,@(R0,GBR) (RO + GBR) & imm - (RO + 1100110diiiiiiii — —
GBR)

NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 — —

OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 — —

OR #imm,R0O RO | imm - RO 1100101 ZLiiiiiiii — —

OR.B #imm,@(RO,GBR) (RO + GBR)|imm - (RO + 11001211 Liiiiiiii —
GBR)

TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 -~ MSB of (Rn)

TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnmmmm1000 — Test result
1-T
Otherwise, 0 - T

TST #imm,R0O RO & imm; when result = 0, 110021000iiiiiiii — Test result
1-T
Otherwise, 0 - T

TST.B #mm,@(R0,GBR) (RO + GBR) & imm; when result 11001100iiiiiii — Test result
=0,1-T
Otherwise, 0 - T

XOR Rm,Rn RnORmM - Rn 0010nnnnmmmm1010 — —

XOR #imm,R0O RO Oimm - RO 1100101 iiiiiii — —

XOR.B #imm,@(R0,GBR) (RO + GBR) imm - (RO + 11001211 iiiiiiii — —

GBR)

Rev. 4.0, 03/00, page 140 of 395

HITACHI



Table 7.6  Shift Instructions

Instruction Operation Instruction Code Privileged T Bit
ROTL Rn T « Rn -« MSB 0100nnnn00000100  — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101  — LSB
ROTCL Rn T<Rn T 0100nnnn00100100  — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101  — LSB
SHAD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmmm1100 — —

When Rn <0, Rn >>Rm -

[MSB - Rn]
SHAL Rn T<Rn~0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001  — LSB
SHLD Rm,Rn When Rn 20, Rn<<Rm - Rn 0100nnnnmmmm1101 — —

When Rn <0, Rn >>Rm -

[0 - Rn]
SHLL Rn T<Rn<0 0100nnnn00000000  — MSB
SHLR Rn O-Rn-T 0100nnnn00000001  — LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000  — —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001  — —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLRS8 Rn Rn>>8 - Rn 0100nnnn00011001  — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —

Rev. 4.0, 03/00, page 141 of 395
HITACHI



Table 7.7  Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BF label When T =0, dispx2+PC + 10001011dddddddd  — —
4 - PC
When T =1, nop

BF/S label Delayed branch; when T = 0, 10001111dddddddd  — —
dispx2+PC+4 - PC
When T =1, nop

BT label When T =1, dispx2+PC+ 10001001dddddddd  — —
4 . PC
When T =0, nop

BT/S label Delayed branch; when T = 1, 10001101dddddddd  — —
dispx2+PC+4 - PC
When T =0, nop

BRA label Delayed branch, disp x 2 + 1010dddddddddddd ~ — —
PC+4 - PC

BRAF Rn Rn+PC+4 - PC 0000nnnNn00100011  — —

BSR label Delayed branch, PC + 4 - PR, 1011dddddddddddd — —
dispx2+PC+4 - PC

BSRF Rn Delayed branch, PC + 4 . PR, 0000nnnn00000011 — —
Rn+PC+4 - PC

JMP @RnN Delayed branch, Rn - PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 . PR, 0100nnnn00001011 — —
Rn - PC

RTS Delayed branch, PR - PC 0000000000001011 — —

Rev. 4.0, 03/00, page 142 of 395

HITACHI



Table 7.8  System Control Instructions

Instruction Operation Instruction Code Privileged T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDC Rm,SR Rm - SR 0100mmmmO00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mmmmO00011110 — —
LDC Rm,VBR Rm - VBR 0100mmmmO00101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmmmO00111110 Privileged —
LDC Rm,SPC Rm - SPC 0100mmmmO01001110 Privileged —
LDC Rm,DBR Rm - DBR 0100mmmm311111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to 7) 0100mmmm1nnnl1110 Privileged —
LDC.L @RmM+,SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm +4 - Rm 0100mmmmO00010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 - Rm 0100mmmmO00100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm +4 - Rm 0100mmmmO00110111 Privileged ——
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 - Rm 0100mmmmO01000111 Privileged —
LDC.L @Rm+,DBR (Rm) - DBR,Rm +4 - Rm 0100mmmm311110110 Privileged ——
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100mmmm1nnn0111 Privileged —
Rm+4 - Rm
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 — —
LDS Rm,MACL Rm - MACL 0100mmmmO00011010 — —
LDS Rm,PR Rm - PR 0100mmmm00101010 — —
LDS.L @Rm+,MACH (Rm) -~ MACH, Rm+4 - Rm 0100mmmmO00000110 — —
LDS.L @Rm+,MACL (Rm) -~ MACL,Rm+4 -~ Rm 0100mmmmO00010110 — —_
LDS.L @Rm+,PR (Rm) - PR,Rm+4 - Rm 0100mmmm00100110 — —
LDTLB PTEH/PTEL - TLB 0000000000111000 Privileged ——
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnNnn11000011 — —
cache block)
NOP No operation 0000000000001001 — —
ocCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —
OCBP @Rn Writes back and invalidates 0000nNNn10100011  — —
operand cache block
OCBWB @Rn Writes back operand cache 0000nnNnn10110011 — —
block
PREF @RnN (Rn) - operand cache 0000nnnn10000011 — —
RTE Delayed branch, SSR/SPC -  0000000000101011  Privileged —
SR/PC

Rev. 4.0, 03/00, page 143 of 395
HITACHI



Table 7.8  System Control Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit
SETS 1-5S 0000000001011000 — —
SETT 1T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011  Privileged —
STC SR,Rn SR - Rn 0000nnNNN00000010  Privileged —
STC GBR,Rn GBR - Rn 0000nnnNn00010010  — —
STC VBR,Rn VBR - Rn 0000nnNNn00100010  Privileged —
STC SSR,Rn SSR - Rn 0000nnnNn00110010 Privileged —
STC SPC,Rn SPC - Rn 0000nnNNn01000010  Privileged ——
STC SGR,Rn SGR - Rn 0000nnnn00111010 Privileged —
STC DBR,Rn DBR - Rn 0000nnNnNn11111010  Privileged —
STC Rm_BANK,Rn Rm_BANK - Rn(m=0to7) 0000nnnnlmmmO010 Privileged —
STC.L SR,@-Rn Rn—-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn—-4 - Rn, GBR - (Rn) 0100nnnn00010011 — —
STC.L VBR,@-Rn Rn—-4 - Rn, VBR - (Rn) 0100nnnn00100011 Privileged —
STC.L SSR,@-Rn Rn—-4 - Rn, SSR - (Rn) 0100nnnn00110011  Privileged —
STC.L SPC,@-Rn Rn—-4 - Rn, SPC - (Rn) 0100nnnn01000011 Privileged —
STC.L SGR,@-Rn Rn—-4 - Rn, SGR - (Rn) 0100nnnn00110010  Privileged —
STC.L DBR,@-Rn Rn—-4 - Rn, DBR - (Rn) 0100nnnn11110010 Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnnn1mmmO0011 Privileged —

Rm_BANK - (Rn) (m=0to7)

STS MACH,Rn MACH - Rn 0000nnNn00001010  — —
STS MACL,Rn MACL - Rn 0000nnNnn00011010 — —
STS PR,Rn PR - Rn 0000nnNn00101010 — —
STS.L MACH,@-Rn Rn—-4 - Rn, MACH - (Rn) 0100nnnn00000010  — —
STS.L MACL,@-Rn Rn -4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn—-4 - Rn, PR - (Rn) 0100nnnn00100010 — —
TRAPA  #imm PC+2 - SPC, SR - SSR, 1100001 Liiiiiiii —_ —_

#imm << 2 - TRA,
H'160 — EXPEVT,
VBR + H'0100 - PC

Rev. 4.0, 03/00, page 144 of 395

HITACHI



Table 7.9

Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 — —
FLDI1 FRn H'3F800000 - FRn 1111nnnn10011101 — —
FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 — —
FMOV.S @Rm,FRn (Rm) - FRn 1111nnnnmmmm1000 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) - FRn 1111nnnnmmmmO0110 — —
FMOV.S @Rm+,FRn (Rm) - FRn, Rm+4 - Rm 111lnnnnmmmm1001 — —
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmmm1011 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnmmmmo0111 — —
FMOV DRm,DRn DRm - DRn 1111nnnOmMmmO01100 — —
FMOV @Rm,DRn (Rm) - DRn 1111nnnOMmMmMm1000 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOMmMmMmO110 — —
FMOV @Rm+,DRn (Rm) - DRn, Rm+8 - Rm 1111nnnOmmmm1001 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmm01010 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1111nnnnmmmO01011 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnmmmO00111 — —
FLDS FRm,FPUL FRm - FPUL 1112mmmmO00011101 — —
FSTS FPUL,FRN FPUL - FRn 1111nnnn00001101 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FADD FRm,FRn FRn + FRm - FRn 1112nnnnmmmmO0000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1111nnnnmmmmO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn>FRm,1 - T 1111nnnnmmmmO0101 — Comparison
Otherwise, 0 - T result

FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmmmO011 — —
FLOAT FPUL,FRN (float) FPUL - FRn 1111nnnn00101101 — —
FMAC FRO,FRm,FRn  FRO*FRm + FRn - FRn 1111lnnnnmmmm1110 — —
FMUL FRm,FRn FRnN*FRm - FRn 1112nnnnmmmmO0010 — —
FNEG FRn FRn OH'80000000 - FRn  1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FSuB FRm,FRn FRn —FRm - FRn 1111nnnnmmmmO001 — —
FTRC FRm,FPUL (long) FRm - FPUL 1111mmmmO00111101 — —

Rev. 4.0, 03/00, page 145 of 395

HITACHI



Table 7.10 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF - DRn
FADD DRm,DRn DRn + DRm - DRn 1111nnnOmMmmO0000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1111nnnOMmMmMO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1112nnnOmMmmO00101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOmMmmO0011 — —
FCNVDS DRm,FPUL  double_to_ floatfDRm] - FPUL 1111mmm010111101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] - DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL — DRn 1111nnn000101101 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnOMmmO0010 — —
FNEG DRn DRn ~ H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn VvDRn - DRn 1111nnn001101101 — —
FSUB DRm,DRn DRn - DRm - DRn 1112nnnOmMmmO0001 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111mmm000111101 — —

Table 7.11 Floating-Point Control Instructions

Instruction Operation Instruction Code Privileged T Bit

LDS Rm,FPSCR Rm - FPSCR 0100mmmmO01101010 — —
LDS Rm,FPUL Rm - FPUL 0100mmmm01011010 — —
LDS.L @Rm+,FPSCR (Rm) -» FPSCR, Rm+4 -~ Rm 0100mmmm01100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 -~ Rm 0100mmmm01010110 — —
STS FPSCR,Rn FPSCR - Rn 0000nnNnNn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnNn01011010 — —
STS.L FPSCR,@-Rn Rn -4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn -4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

Rev. 4.0, 03/00, page 146 of 395

HITACHI



Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit
FMOV DRm,XDn DRm - XDn 1111nnn1mmm01100 — —
FMOV  XDm,DRn XDm - DRn 1111nnnOmMmm11100 — —
FMOV  XDm,XDn XDm - XDn 1111nnn1mmm11100 — —
FMOV @Rm,XDn (Rm) - XDn 1111nnnImmmm1000 — —
FMOV @Rm+,XDn (Rm) - XDn, Rm +8 - Rm 1111nnnImmmm1001 — —
FMOV @(RO,Rm),DRn (RO + Rm) - DRn 1111nnn1mmmmO0110 — —
FMQOV XDm,@Rn XDm - (Rn) 1111nnnnmmm11010 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmmm11011 — —
FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 1111nnnnmmm10111 — —
FIPR FVm,FVn inner_product [FVm, FVn] - 1111nnmm11101101 — —
FR[n+3]
FTRV  XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —
- FVn
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SZ 11110011111211101 — —

Rev. 4.0, 03/00, page 147 of 395
HITACHI



Section 8 Pipelining

The SH-4 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel. The exec
cycles depend on the implementation of a processor. Definitions in this section may not be
applicable to SH-4 Series models other than the SH-4.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages: instri
fetch (1), decode and register read (D), execution (EX/SX/FO/F1/F2/F3), data access (NA/MA
and write-back (S/FS). An instruction is executed as a combination of basic pipelines. Figure
shows the instruction execution patterns.

Rev. 4.0, 03/00, page 149 of 395
HITACHI



1. General Pipeline

| D EX NA S
« Instruction fetch < Instruction * Operation « Non-memory  Write-back
decode data access

«Issue

* Register read

« Destination address calculation
for PC-relative branch

2. General Load/Store Pipeline

| D EX MA S
« Instruction fetch < Instruction « Address « Memory data « Write-back
decode calculation access

* Issue
« Register read

3. Special Pipeline

| D SX NA S
« Instruction fetch Instruction * Operation * Non-memory » Write-back
decode data access

* Issue
* Register read

4. Special Load/Store Pipeline

| D SX MA S
« Instruction fetch « Instruction « Address * Memory data « Write-back
decode calculation access

« Issue
* Register read

5. Floating-Point Pipeline

| D F1 F2 FS
« Instruction fetch e Instruction « Computation 1 » Computation 2« Computation 3
decode « Write-back

* Issue
* Register read

6. Floating-Point Extended Pipeline

| D FO F1 F2 FS
« Instruction fetch < Instruction « Computation 0 « Computation1  + Computation 2 + Computation 3
decode » Write-back

« Issue
« Register read

7. FDIVIFSQRT Pipeline

Computation: Takes several cycles

Figure 8.1 Basic Pipelines

Rev. 4.0, 03/00, page 150 of 395
HITACHI




. 1-step operation: 1 issue cycle

EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,

LDS to FPUL, STS from FPUL/FPSCR, FLDIO, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

[ T o [ ex | Nna | s |

. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

[T T o T ex | ma ] s |

. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

[ 17 [ o [ sx | ma | s |

. JMP, RTS, BRAF: 2 issue cycles

[ 1 T o EX NA s
D EX NA s |

. TST.B: 3 issue cycles

[ 7 ] o SX MA s
D SX NA S
D SX NA s |

. AND.B, OR.B, XOR.B: 4 issue cycles

[ 1 ] o SX MA S
D SX NA s
D SX NA s
D || sX MA s |

. TAS.B: 5 issue cycles

[ 1 [ o EX MA S
D EX MA S
D EX NA s
D EX NA s
D || EX MA s |
. RTE: 5 issue cycles
[ 1 | b EX NA s
D EX NA S
D EX NA s
D EX NA s
D || EX NA s |
. SLEEP: 4 issue cycles
[ 1+ | b EX NA s
D EX NA S
D EX NA S
D | EX NA s |

Figure 8.2 Instruction Execution Patterns

Rev. 4.0, 03/00, page 151 of 395
HITACHI




10

. OCBI: 1 issue cycle

[T T o [ Ex | ma s |
MA
11. OCBP, OCBWSB: 1 issue cycle
[0 [ o | ex | ma s |
L_mA
MA
MA
MA
12. MOVCA.L: 1 issue cycle
[T T o [ Ex | ma s |
MA
MA
MA
MA
MA
MA
13. TRAPA: 7 issue cycles
[ 1 T b EX NA s
D EX NA S
D EX NA S
D EX NA S
D EX NA S
D EX NA s
D EX NA
14. LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR: 1 issue cycle
L+ [ b [ Ex Na [ s |
[Csx
|| SX
15. LDC to GBR: 3 issue cycles
[T T o EX NA [ s ]
D SX
D || SX
16. LDC to SR: 4 issue cycles
[T T o EX NA [ s ]
D SX
D SX
D [l sx
17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle
[ 17 T b [ ex vMA [ s |
SX
[ sx
18. LDC.L to GBR: 3 issue cycles
[ T b EX MA | s |
D SX
D | SX
Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 152 of 395

HITACHI




19

20

21

22

23

24

25

26

27

28.

29

. LDC.L to SR: 4 issue cycles

[T T o EX MA | s
D SX
D SX
D I sx
. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
[ 7 T o SX NA S
D SX NA s |
. STC.L from SGR: 3 issue cycles
[ 1+ [ D SX NA s
D SX NA S
D SX NA s |
. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
) SX NA s
D SX MA s |
. STC.L from SGR: 3 issue cycles
[ 1 T o SX NA s
D SX NA S
D SX MA s |
. LDS to PR, JSR, BSRF: 2 issue cycles
[T T b EX NA | s
o SX
[ sx
. LDS.L to PR: 2 issue cycles
[ 7 T b EX MA | s
[ o SX
L_SX
. STS from PR: 2 issue cycles
[+ [ D SX NA s
D sX NA s |
. STS.L from PR: 2 issue cycles
[ 1+ ] o SX NA s
D SX MA s |
CLRMAC, LDS to MACH/L: 1 issue cycle
[+ [ b [ Ex NA | S
F1
[ A F2_ [ FS |
. LDS.L to MACHI/L: 1 issue cycle
[+ [ o [ ex MA | S
F1
[ k1 F2 [ FS |
30. STS from MACHJ/L: 1 issue cycle
[+ [ o [ ex [ na [ s

Figure 8.2 Instruction Execution Patterns (cont)

HITACHI

Rev. 4.0, 03/00, page 153 of 395




31.

32.

33.

34.

35.

36.

37.

38.

39.

STS.L from MACHY/L: 1 issue cycle

17 [ o [ ex [ ma [ s |
LDS to FPSCR: 1 issue cycle
[+ [ b | ex NA [ s ]
F1
F1
F1
LDS.L to FPSCR: 1 issue cycle
[T [ o | ex MA | s |
[L_F1
F1
F1
Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W
[ 1 ] o EX NA (CPU)
D EX NA s |
f1 (FPU)
f1
fl
f1 [ F2 | Fs ]
MAC.W, MAC.L: 2 issue cycles
[ 7 ] b EX MA s (CPU)
D EX MA s |
fl (FPU)
f1
f1
il [ F2 [ Fs ]

Single-precision floating-point computation: 1 issue cycle

FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

[T T o [ Fr [ r

| Fs

Single-precision FDIV/SQRT: 1 issue cycle

[+ [ D FL | r2 | Fs | ..
F3
[ R F2 | Fs |
Double-precision floating-point computation 1: 1 issue cycle
FCNVDS, FCNVSD, FLOAT, FTRC
[ 1 | b F1 F2 FS
d F1 F2 Fs |
Double-precision floating-point computation 2: 1 issue cycle
FADD, FMUL, FSUB
) F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
d F1 F2 FS
F1 F2 FS

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 154 of 395

HITACHI




40. Double-precision FCMP: 2 issue cycles

FCMP/EQ,FCMP/GT

[+ [ b F1 F2 FS
D F1 F2 Fs |
41. Double-precision FDIV/SQRT: 1 issue cycle
FDIV, FSQRT
[ 1+ [ b F1 F2 Fs
d F1 F2 |
F3
[ kA1 F2 FS
F1 F2 FS
) F1 F2 Fs |
42. FIPR: 1 issue cycle
L+ T b | Fo F1 F2 Fs |
43. FTRV: 1 issue cycle
L+ [ o FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 FS
d FO F1 F2 Fs |
Notes: . Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.
: Locks D-stage
[ d__|: Register read only
|| ?2? . Locks, but no operation is executed.
: Can overlap another 1, but not another F1.

Figure 8.2

Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 155 of 395

HITACHI




8.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of instructions in terms ¢
groups. For example, ADD in the EX group and BRA in the BR group can be executed in pare

Table 8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn
CMP/EQ #imm,R0 CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,RO
CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn
2. EX Group

ADD #imm,Rn MOVT Rn SHLL2 Rn
ADD Rm,Rn NEG Rm,Rn SHLLS8 Rn
ADDC Rm,Rn NEGC Rm,Rn SHLR Rn
ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn
AND #imm,R0O OR #imm,R0O SHLR2 Rn
AND Rm,Rn OR Rm,Rn SHLRS8 Rn
DIVOS Rm,Rn ROTCL Rn SUB Rm,Rn
DIVOU ROTCR Rn SUBC Rm,Rn
DIVl Rm,Rn ROTL Rn SUBV Rm,Rn
DT Rn ROTR Rn SWAP.B Rm,Rn
EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn
EXTS.W Rm,Rn SHAL Rn XOR #imm,R0
EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn
EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn
MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 [SHLL16 RN

3. BR Group

BF disp BRA disp BT disp
BF/S disp BSR disp BT/S disp

Rev. 4.0, 03/00, page 156 of 395
HITACHI



Table 8.1

Instruction Groups (cont)

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L RO,@(disp,GBR)
FABS FRN FMOV.S FRm,@(RO,Rn) |MOV.L Rm,@(disp,Rn)
FLDIO FRn FMOV.S FRm,@-Rn MOV.L Rm,@(RO,Rn)
FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn
FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn
FMOV @(RO,RmM),DRn |FNEG FRn MOV.W @(disp,GBR),R0O
FMOV @(RO,Rm),XDn |FSTS FPUL,FRn MOV.W @(disp,PC),Rn
FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0
FMOV @Rm,XDn MOV.B @(disp,GBR),R0 |MOV.W @(RO,Rm),Rn
FMOV @Rm+,DRn MOV.B @(disp,Rm),RO  |MOV.W @RmM,Rn
FMOV @Rm+,XDn MOV.B @(RO,Rm),Rn MOV.W @Rm+,Rn
FMOV DRm,@(RO,Rn) |[MOV.B @Rm,Rn MOV.W RO,@(disp,GBR)
FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W RO,@(disp,Rn)
FMOV DRm,@Rn MOV.B RO,@(disp,GBR) |MOV.W Rm,@(RO,Rn)
FMOV DRm,DRn MOV.B RO,@(disp,Rn) MOV.W Rm,@-Rn
FMOV DRm,XDn MOV.B Rm,@(RO,Rn) MOV.W Rm,@Rn
FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L RO,@Rn

FMOV XDm,@(RO,Rn) [MOV.B Rm,@Rn OCBI @RnN

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 |OCBP @Rn

FMOV XDm,@Rn MOV.L @(disp,PC),Rn  |OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn |PREF @RnN

FMOV XDm,XDn MOV.L @(RO,Rm),Rn STS FPUL,Rn
FMOV.S @(RO,RmM),FRn |MOV.L @RmM,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

HITACHI

Rev. 4.0, 03/00, page 157 of 395




Table 8.1

Instruction Groups (cont)

5. FE Group

FADD DRm,DRn FIPR FVm,Fvn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn
FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn
FCMP/GT FRm,FRn FMAC FRO,FRm,FRn |[FSUB FRm,FRn
FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL
FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL
FDIV DRm,DRn FRCHG FTRV XMTRX,FVn
FDIV FRm,FRn FSCHG

Rev. 4.0, 03/00, page 158 of 395

HITACHI




Table 8.1 Instruction Groups (cont)

6. CO Group

AND.B #imm,@(R0,GBR) |LDS Rm,FPSCR STC SR,Rn

BRAF Rn LDS Rm,MACH STC SSR,Rn

BSRF Rn LDS Rm,MACL STC VBR,Rn
CLRMAC LDS Rm,PR STC.L DBR,@-Rn
CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn
DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn
DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn
FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn
FCMP/GT  DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @RnN LDTLB STC.L SSR,@-Rn
JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn
LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn
LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) [STS.L FPSCR,@-Rn
LDC Rm,SSR RTE STS.L FPUL,@-Rn
LDC Rm,VBR RTS STS.L MACH,@-Rn
LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn
LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn
LDC.L @Rm+,Rp_BANK |STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @RmM+,SR STC Rp_BANK,Rn TST.B #imm,@(R0,GBR)
LDC.L @RmM+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)
LDC.L @Rm+,VBR STC SPC,Rn

Rev. 4.0, 03/00, page 159 of 395
HITACHI



Table 8.2  Parallel-Executability

2nd Instruction
MT EX BR LS FE Cco
1st MT O O O O o X
Instruction EX o X o o o X
BR o o X o o X
LS O O O X o X
FE O o ] o X X
CcOo X X X X X X

O: Can be executed in parallel
X: Cannot be executed in parallel

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardwa
unit operates on one of these clocks, as follows:

* |-clock: CPU, FPU, MMU, caches
* B-clock: External bus controller
¢ P-clock: Peripheral units

The frequency ratios of the three clocks are determined with the frequency control register
(FRQCR). In this section, machine cycles are based on the I-clock unless otherwise specified
details of FRQCR, see Clock Oscillation Circuits in the hardware manual.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stal
freeze are not considered in this table.

¢ Issue rate: Interval between the issue of an instruction and that of the next instruction

« Latency: Interval between the issue of an instruction and the generation of its result
(completion)

¢ Instruction execution pattern (see figure 8.2)

* Locked pipeline stages

« Interval between the issue of an instruction and the start of locking

¢ Lock time: Period of locking in machine cycle units

Rev. 4.0, 03/00, page 160 of 395
HITACHI



The instruction execution sequence is expressed as a combination of the execution patterns
in figure 8.2. One instruction is separated from the next by the number of machine cycles for
issue rate. Normally, execution, data access, and write-back stages cannot be overlapped ol
same stages of another instruction; the only exception is when two instructions are executed
parallel under parallel-executability conditions. Refer to (a) through (d) in figure 8.3 for some
simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interve
between the execution of two instructions with an interdependent relationship. When there is
interdependency between two instructions fetched simultaneously, the latter of the two is sta
for the following number of cycles:

¢ (Latency) cycles when there is flow dependency (read-after-write)

e (Latency — 1) or (latency — 2) cycles when there is output dependency (write-after-write)
O Single/double-precision FDIV, FSQRT is the preceding instruction (latency — 1) cycles
O The other FE group is the preceding instruction (latency — 2) cycles

« 5 o0r 2 cycles when there is anti-flow dependency (write-after-read), as in the following ca:
O FTRV is the preceding instruction (5 cycle)
O A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depel
on the combination of sequential instructions (figure 8.3 (e)).

* When a floating-point (FPU) computation is followed by an FPU register store, the latency
the floating-point computation may be decreased by 1 cycle.

« If there is a load of the shift amount immediately before an SHAD/SHLD instruction, the
latency of the load is increased by 1 cycle.

« If an instruction with a latency of less than 2 cycles, including write-back to an FPU regist
followed by a double-precision FPU instruction, FIPR, or FTRV, the latency of the first
instruction is increased to 2 cycles.

The number of cycles in a pipeline stall due to flow dependency will vary depending on the
combination of interdependent instructions or the fetch timing (see figure 8.3. (e)).

Output dependency occurs when the destination operands are the same in a preceding FE ¢
instruction and a following LS group instruction.

For the stall cycles of an instruction with output dependency, the longest latency to the last w
back among all the destination operands must be applied instead of “latency” (see figure 8.3
A stall due to output dependency with respect to FPSCR, which reflects the result of a floatin
point operation, never occurs. For example, when FADD follows FDIV with no dependency
between FPU registers, FADD is not stalled even if both instructions update the cause field c
FPSCR.

Rev. 4.0, 03/00, page 161 of 395
HITACHI



Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL,
FSUB, or FTRV and a following FMOV, FLDIO, FLDI1, FABS, FNEG, or FSTS. See figure 8.3

(9).

If an executing instruction locks any resource—i.e. a function block that performs a basic
operation—a following instruction that attempts to use the locked resource must be stalled (fic
8.3 (h)). This kind of stall can be compensated by inserting one or more instructions independ
of the locked resource to separate the interfering instructions. For example, when a load
instruction and an ADD instruction that references the loaded value are consecutive, the 2-cyc
stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

¢ Instruction TLB miss

« Instruction access to external memory (instruction cache miss, etc.)
« Data access to external memory (operand cache miss, etc.)

« Data access to a memory-mapped control register

During the penalty cycles of an instruction TLB miss or external instruction access, no instruct
is issued, but execution of instructions that have already been issued continues. The penalty
data access is a pipeline freeze: that is, the execution of uncompleted instructions is interrupt:
until the arrival of the requested data. The number of penalty cycles for instruction and data
accesses is largely dependent on the user's memory subsystems.

Rev. 4.0, 03/00, page 162 of 395
HITACHI



(a) Serial execution: non-parallel-executable instructions

<+— lissue cycle

SHAD RO,R1 | D EX NA S EX-group SHAD and EX-group ADD
ADD R2,R3 | D EX NA s | cannot be executed in parallel. Therefore,
next «—» 1stall cycle SHAI? is issued_ first, e_md the following
ADD is recombined with the next
instruction.
(b) Parallel execution: parallel-executable and no dependency
<+— 1lissue cycle
ADD R2,R1 | D EX NA S EX-group ADD and LS-group MOV.L can
MOV.L @R4,R5 | D EX MA S be executed in parallel. Overlapping of

stages in the 2nd instruction is possible.

(c) Issue rate: multi-step instruction

< » 4 issue cycles AND.B and MOV are fetched

AND.B#1,@(R0,GBR) | | | D SX MA S simultaneousl_y, but MOV is stal!ed due to
D SX NA S resource locking. After the lock is released,

MOV is refetched together with the next
D SX NA S

instruction.
D SX MA S
i D E A s |

MOV  R1,R2 |I|

next o
4 stall cycles —
(d) Branch
BT/S L_far | D EX NA S No stall occurs if the branch is not taken.
ADD RO,R1 | D EX NA S
SUB R2,R3 I D | EX| NA| s |
<«—— 2-cycle latency for I-stage of branch destination
BT/S L_far | D EX NA S If the branch is taken, the |-stage of the
ADD RO,R1 | D EX NA S branch destination is stalled for the period
<—» 1stallcycle of latency. This stall can be covered with a
L far delay slot instruction which is not parallel-
- executable with the branch instruction.
BT L_skip I D | Ex[ Na] s | Even if the BT/BF branch is taken, the I-
ADD #1,R0 | D — — — stage of the branch destination is not
L_skip: | D |.. stalled if the displacement is zero.

No stall

Figure 8.3 Examples of Pipelined Execution

Rev. 4.0, 03/00, page 163 of 395
HITACHI




(e) Flow dependency

MOV
ADD

ADD
MOV.L
next

MOV.L
ADD
next

MOV.L
SHAD
next

FADD

STS

FADD

FMOV
FMOV

RO,R1
R2,R1

R2,R1
@R1,R1

@R1,R1
RO,R1

@R1,R1
R1,R2

FR1,FR2
FPUL,R1
FPSCR,R2

DRO0,DR2

FR3,FR5
FR2,FR4

Zero-cycle latency

D EX NA S

“Ex [ Nna] s

w)

<— 1-cycle latency

EX NA S

D EX MA

S

<>

—|-|o

1 stall

cycle

D EX MA S

<+——» 2-cycle latency

I | p [+ >AEX

NA

[ s |

| 1 stall cycle

D EX [ MA] s

2-cycle latency
<«—>» l-cycle increase

| D |\ d

[ Ex

[ Na ]

S

2 stall cycles

D F1 F2 FS

The following instruction, ADD, is not
stalled when executed after an instruction
with zero-cycle latency, even if there is
dependency.

ADD and MOV.L are not executed in
parallel, since MOV.L references the result
of ADD as its destination address.

Because MOV.L and ADD are not fetched
simultaneously in this example, ADD is
stalled for only 1 cycle even though the
latency of MOV.L is 2 cycles.

Due to the flow dependency between the
load and the SHAD/SHLD shift amount,
the latency of the load is increased to 3
cycles.

4-cycle latency for FPSCR

» 7-cycle latency for lower FR

» 8-cycle latency for upper FR

I D | EX| NAY S
™ »UD | ex[ Nna[ s |
2 stall cycles
[T T ol FrmJ[r]EFs
d FL [ F2 | Fs
d F1 | F2 | Es
d F1 [ F2 | Fs
d F1 F2 ES. | FR3 write
F1

F2 N, FS \|FR2 write

D [EXY NA] s

D [EX[ Nna[ s |

<+———p 3-cycle latency for upper/lower FR

FLOAT FPULDRO | |

FMOV.S FRO,@-R15

FLDI1
FIPR

FMOV
FTRV

FR3
FV0,Fv4

@R1,XD14
XMTRX,FVO

[ o [ FLt [ Fr2] Fs | FR1write
d F1 E2 Es || FRO write
| D EXY MA] s |

Zero-cycle latency

D EX [ Na| s

<+— > 3-cycle increase

D d

<«————» 3stallcycles

<——» 2-cycle latency

[ D [ Ex[ ma] s
D

3 stall cycles

[FoT m [ Fr] Fs]
<«—» 1-cycle increase
d Fo [ A | F2 [ Fs
d FO | FL | F2 | Fs
d Fo [ Fa | F2 | Fs
d FO| FL | F2 | Fs |

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 4.0, 03/00, page 164 of 395

HITACHI




(e) Flow dependency (cont)

-—> Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

ips RofpuL L1 | D [ EXJ NA| s
FLOAT FPUL,FRO ! D [*F1 | F2 | FS
LDS  R1,FPUL I D EX{| NA | S
FLOAT FPUL,R1 | D F1 | F2 Fs |
| | D F1 E2 FS |<— Effectively 1-cycle latency for consecutive
ggc EES’I'_: :gl_ | D EX NA s FTRC/STS instructions
FTRC FR1,FPUL I D Fl1 | F2 | FS
STS  FPULR1 I D | EX | NA XS ]
(f) Output dependency
< » 11-cycle latency
FSQRT FR4 Lt [ p]rm[r[F]
F3
L FL]l 2] Fs
FMOV FROFR4 [ | | D |« F1 | F2 | Fs |
10 stall cycles = latency (11) - 1 The registers are written-back
in program order.
< » 7-cycle latency for lower FR
FADD DRO,DR2 < » 8-cycle latency for upper FR
L i I o]l ] k] EFs
[ d F1 [ Fr2 | Fs
d F1 | F2 | FS
d F1 | F2 FS
d F1 F2 FS | FR3 write
F1 E2 Es | FR2 write
FMOV FROFR3 || | D | > Ex | NA| s |
6 stall cycles = longest latency (8) - 2
(g) Anti-flow dependency
FTRV xMTRX,Fvo I [ D [ FOo] Fi [ F2 | Fs
FO | F1 | F2 | Fs
d FO | F1 | F2 | Fs
d FO | F1 | F2 | FS
FMOV @R1L,xD0 | 1 | D |« > EX [ ma | s |
5 stall cycles
FADD DRODR2 L I | DI Fi[ F2| Fs
F1 | F2 | FS
d F1 | F2 | FS
d F1 | F2 FS
d F1 | F2 | FS
F1 | F2 Fs |
FMOV FR4FrL |1 | D | EX| NA| S
2 stall cycles

Figure 8.3 Examples of Pipelined Execution (cont)

HITACHI

Rev. 4.0, 03/00, page 165 of 395




(h) Resource conflict

#1 #2 #3

#9 #10 #11

<«— 1cycleflissue

Latency

FDIV  FR6,FR7 [ [T o I F1 ] F2 [ Fs ] <— F1 stage locked for 1 cycle
F3
F1 F2 FS
FMAC FRO,FR8,FRO r T o[ RJ] rR[EF]
FMAC FRO,FR10,FR11 [T ] o ] r2] Fs]
FMAC FRO,FR12,FR13 [T [ o |~—[Ff [ 2] 5]
1 stall cycle (F1 stage resource conflict)
FIPR FV8,FV0 [t opJr]Fr][Fr]F]
FADD FR15FR4 LT oDl TFrFrs]
1 stall cycle
LDS.L @R15+PR [ ] [ Ex [ ma] Fs |
D || sX
SX
STC  GBRR2 [ [ ] [ sx[ na] s ]
< » D [ sx [ Nna| s |
3 stall cycles
FADD DRO,DR2 [+ T ol Fr[Fr]Es
[ d F1 [ F2 [ FS
d F1 | F2 | FS
d F1 | F2 | Fs
d FL | F2 | FS
Fi1 | 2 | Fs |
MAC.W @R1+@R2+ [T Dl EX | MA| s |
5 stall cycles 1
D || Ex[ mA] s |
f1
f1 [ F2 | Fs |
f1 F2 | Fs
MACW @R1+@R2+[ | | D EX MA] s | f1 stage can overlap preceding f1,
1 but F1 cannot overlap f1.
D | EX[ Ma[ s |
f1
f1 F2 | Fs
f1 F2 | Fs |
MACW @R1+@R2+ [ | |« D [ EX| MA[ s
1 stall f1
cycle D || EX[ ma] s |
f1
f1 | F2 ] Fs
[ 1 F2 | Fs
FADD DR4,DR6 ™ > D le » F1 | F2 | Fs
3 stall cycles 2 stall cycles d F1 F2 FS
d FL | F2 | Fs
d F1 | F2 | FS
d [ A [ r2] Fs |
F1

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 4.0, 03/00, page 166 of 395

HITACHI




Table 8.3  Execution Cycles

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Data 1 EXTS.B Rm,Rn EX 1 1 #1 — — —
tansfer 5 TTENTSW RmyRn EX 1 1 #1 - - —
instructions
3 EXTU.B Rm,Rn EX 1 1 #1 — — —
4 EXTUW Rm,Rn EX 1 1 #1 — — —
5 MOV Rm,Rn MT 1 0 #1 — — —
6 MOV #imm,Rn EX 1 1 #1 — — —
7  MOVA @(disp,PC),R0O EX 1 1 #1 — S —
8 MOV.W  @(disp,PC),Rn LS 1 2 #2 — S —
9  MOV.L @(disp,PC),Rn LS 1 2 #2 — S —
10 MOV.B @Rm,Rn LS 1 2 #2 — — —
11 MOV.W @Rm,Rn LS 1 2 #2 — — —
12 MOV.L @Rm,Rn LS 1 2 #2 — — —
13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —
14  MOV.W @Rm+,Rn LS 1 1/2 #2 —_ —_ —
15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —
16 MOV.B  @(disp,Rm),R0 LS 1 2 #2 — S —
17 MOV.W  @(disp,Rm),R0 LS 1 2 #2 — - =
18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — S —
19 MOV.B @(RO,Rm),Rn LS 1 2 #2 — — —
20 MOV.W @(RO,Rm),Rn LS 1 2 #2 — — —
21 MOV.L @(RO,Rm),Rn LS 1 2 #2 — — —
22 MOV.B  @(disp,GBR),R0O LS 1 2 #3 — S —
23 MOV.W  @(disp,GBR),R0O LS 1 2 #3 — S —
24 MOV.L @(disp,GBR),R0 LS 1 2 #3 — S —
25 MOV.B Rm,@Rn LS 1 1 #2 — — —
26 MOV.W Rm,@Rn LS 1 1 #2 — — —
27 MOV.L Rm,@Rn LS 1 1 #2 — — —
28 MOV.B Rm,@-Rn LS 1 1/1 #2 — — —
29 MOV.W Rm,@-Rn LS 1 1/1 #2 — — —
30 MOV.L Rm,@-Rn LS 1 1/1 #2 — — —
31 MOV.B RO,@(disp,Rn) LS 1 1 #2 — — —

Rev. 4.0, 03/00, page 167 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Data 32 MOV.W  RO,@(disp,Rn) LS 1 1 #2 — S —
:;i?j;rions 33 MOV.L Rm@(isp,Rn) LS 1 1 #2 — - =
34 MOV.B Rm,@(R0O,Rn) LS 1 1 #2 — — —
35 MOV.W Rm,@(R0O,Rn) LS 1 1 #2 — — —
36 MOV.L Rm,@(R0O,Rn) LS 1 1 #2 — — —
37 MOV.B  RO,@(disp,GBR) LS 1 1 #3 — S —
38 MOV.W RO,@(disp,GBR) LS 1 1 #3 — S —
39 MOV.L RO,@(disp,GBR) LS 1 1 #3 — S —
40 MOVCA.L RO,@Rn LS 1 3-7 #12 MA 4 3-7
41 MOVT Rn EX 1 1 #1 — — —
42  OCBI @RnN LS 1 1-2 #10 MA 4 1-2
43  OCBP @Rn LS 1 1-5 #11 MA 4 1-5
44 OCBWB @Rn LS 1 1-5 #11 MA 4 1-5
45 PREF @Rn LS 1 1 #2 — — —
46 SWAP.B Rm,Rn EX 1 1 #1 — — —
47  SWAP.W Rm,Rn EX 1 1 #1 — — —
48 XTRCT Rm,Rn EX 1 1 #1 — — —
Fixed-point 49  ADD Rm,Rn EX 1 1 #1 — — —
;T#L”cfit(i;s 50 ADD #mm,Rn EX 1 1 # - - =
51 ADDC Rm,Rn EX 1 1 #1 — — —
52 ADDV Rm,Rn EX 1 1 #1 — — —
53 CMP/EQ #imm,RO MT 1 1 #1 — — —
54 CMP/EQ Rm,Rn MT 1 1 #1 — — —
55 CMP/GE Rm,Rn MT 1 1 #1 — — —
56 CMP/GT Rm,Rn MT 1 1 #1 — — —
57 CMP/HI Rm,Rn MT 1 1 #1 — — —
58 CMP/HS Rm,Rn MT 1 1 #1 — — —
59 CMP/PL Rn MT 1 1 #1 — — —
60 CMP/PZ Rn MT 1 1 #1 — — —
61 CMP/STR Rm,Rn MT 1 1 #1 — — —
62 DIVOS Rm,Rn EX 1 1 #1 — — —

Rev. 4.0, 03/00, page 168 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Fixed-point 63 DIVOU EX 1 1 #1 — — —
;TSE%%%S 64 DIV1 Rm,Rn EX 1 1 #1 - - -
65 DMULS.L Rm,Rn CcO 2 4/4 #34 F1 4 2
66 DMULU.L Rm,Rn cO 2 4/4 #34 F1 4 2
67 DT Rn EX 1 1 #1 — — —
68 MAC.L @RmM+,@Rn+ Cco 2 2/2/414  #35 F1 4 2
69 MAC.W @RmM+,@Rn+ CcOo 2 2/2/4/14  #35 F1 4 2
70 MUL.L Rm,Rn CcO 2 4/4 #34 F1 4 2
71 MULS.W  Rm,Rn cO 2 4/4 #34 F1 4 2
72 MULU.W  Rm,Rn CcO 2 4/4 #34 F1 4 2
73 NEG Rm,Rn EX 1 1 #1 — — —
74 NEGC Rm,Rn EX 1 1 #1 — — —
75 SUB Rm,Rn EX 1 1 #1 — — —
76  SUBC Rm,Rn EX 1 1 #1 — — —
77  SUBV Rm,Rn EX 1 1 #1 — — —
Logical 78 AND Rm,Rn EX 1 1 #1 — — —
instructions 9™ ANp #imm,RO EX 1 1 #1 — - =
80 AND.B #imm,@(R0,GBR) CO 4 4 #6 — — —
81 NOT Rm,Rn EX 1 1 #1 — — —
82 OR Rm,Rn EX 1 1 #1 — — —
83 OR #imm,R0O EX 1 1 #1 — — —
84 OR.B #imm,@(R0,GBR) CO 4 4 #6 — — —
85 TASB @RnN CcO 5 5 #7 — — —
86 TST Rm,Rn MT 1 1 #1 — — —
87 TST #imm,R0O MT 1 1 #1 — — —
88 TST.B #imm,@(R0,GBR) CO 3 3 #5 — S —
89 XOR Rm,Rn EX 1 1 #1 — — —
90 XOR #imm,R0O EX 1 1 #1 — — —
91 XOR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

Rev. 4.0, 03/00, page 169 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Shift 92 ROTL Rn EX 1 1 #1 — — —
instructions 53" poTR  Rn EX 1 1 # - - _
94 ROTCL Rn EX 1 1 #1 — — —
95 ROTCR Rn EX 1 1 #1 — — —
96 SHAD Rm,Rn EX 1 1 #1 — — —
97 SHAL Rn EX 1 1 #1 — — —
98 SHAR Rn EX 1 1 #1 — — —
99 SHLD Rm,Rn EX 1 1 #1 — — —
100 SHLL Rn EX 1 1 #1 — — —
101 SHLL2 Rn EX 1 1 #1 — — —
102 SHLLS8 Rn EX 1 1 #1 — — —
103 SHLL16 Rn EX 1 1 #1 — — —
104 SHLR Rn EX 1 1 #1 — — —
105 SHLR2 Rn EX 1 1 #1 — — —
106 SHLR8 Rn EX 1 1 #1 — — —
107 SHLR16 Rn EX 1 1 #1 — — —
Branch 108 BF disp BR 1 2(0rl) #1 — — —
instructions 7169~ BF/s disp BR 1  2(orl) #  — — —
110 BT disp BR 1 2(or1) #1 — S —
111 BT/S disp BR 1 2(r1) #l — S —
112 BRA disp BR 1 2 #1 — — —
113 BRAF Rn CcoO 2 3 #4 — — —
114 BSR disp BR 1 2 #14 SX 3 2
115 BSRF Rn cO 2 3 #24 SX 3 2
116 JMP @Rn CcO 2 3 #4 — — —
117 JSR @Rn Cco 2 3 #24 SX 3 2
118 RTS CcO 2 3 #4 — — —

Rev. 4.0, 03/00, page 170 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 119 NOP MT 1 0 #1 — — —
fn"srt‘:Lc(’:'tions 120 CLRMAC co 1 3 #28 F1 3 2
121 CLRS CcO 1 1 #1 — — —
122 CLRT MT 1 1 #1 — — —
123 SETS CcO 1 1 #1 — — —
124 SETT MT 1 1 #1 — — —
125 TRAPA #imm coO 7 7 #13 — — —
126 RTE CcO 5 5 #8 — — —
127 SLEEP CcO 4 4 #9 — — —
128 LDTLB CcoO 1 1 #2 — — —
129 LDC Rm,DBR coO 1 3 #14 SX 3 2
130 LDC Rm,GBR CcO 3 3 #15 SX 3 2
131 LDC Rm,Rp_BANK CcO 1 3 #14 SX 3 2
132 LDC Rm,SR CcO 4 4 #16 SX 3 2
133 LDC Rm,SSR CcO 1 3 #14 SX 3 2
134 LDC Rm,SPC CcO 1 3 #14 SX 3 2
135 LDC Rm,VBR CcO 1 3 #14 SX 3 2
136 LDC.L @Rm+,DBR CcO 1 1/3 #17 SX 3 2
137 LDC.L @Rm+,GBR CcO 3 3/3 #18 SX 3 2
138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2
139 LDC.L @Rm+,SR CcO 4 4/4 #19 SX 3 2
140 LDC.L @Rm+,SSR Cco 1 1/3 #17 SX 3 2
141 LDC.L @Rm+,SPC CcO 1 1/3 #17 SX 3 2
142 LDC.L @Rm+,VBR Cco 1 1/3 #17 SX 3 2
143 LDS Rm,MACH CcO 1 3 #28 F1 3 2
144 LDS Rm,MACL CcO 1 3 #28 F1 3 2
145 LDS Rm,PR CcO 2 3 #24 SX 3 2
146 LDS.L @Rm+,MACH Cco 1 1/3 #29 F1 3 2
147 LDS.L @Rm+,MACL CcO 1 1/3 #29 F1 3 2
148 LDS.L @Rm+,PR Cco 2 2/3 #25 SX 3 2
149 STC DBR,RnN cO 2 2 #20 — — —
150 STC SGR,Rn CcO 3 3 #21 — — —

Rev. 4.0, 03/00, page 171 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
System 151 STC GBR,Rn CcO 2 2 #20 — — —
control 55T srC Rp_BANK,Rn co 2 2 w0 - - —
instructions
153 STC SR,Rn CcO 2 2 #20 — — —
154 STC SSR,Rn CcO 2 2 #20 — — —
155 STC SPC,Rn CcO 2 2 #20 — — —
156 STC VBR,RnN cO 2 2 #20 — — —
157 STC.L DBR,@-Rn cO 2 2/2 #22 — — —
158 STC.L SGR,@-Rn CcOo 3 3/3 #23 — — —
159 STC.L GBR,@-Rn cO 2 2/2 #22 — — —
160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —
161 STC.L SR,@-Rn CcO 2 2/2 #22 — — —
162 STC.L SSR,@-Rn CcO 2 2/2 #22 — — —
163 STC.L SPC,@-Rn cO 2 2/2 #22 — — —
164 STC.L VBR,@-Rn CcO 2 2/2 #22 — — —
165 STS MACH,Rn Cco 1 3 #30 — — —
166 STS MACL,Rn CcO 1 3 #30 — — —
167 STS PR,Rn CcO 2 2 #26 — — —
168 STS.L MACH,@-Rn coO 1 1/1 #31 — — —
169 STS.L MACL,@-Rn CcoO 1 1/1 #31 — — —
170 STS.L PR,@-Rn coO 2 2/2 #27 — — —
Single- 171 FLDIO FRn LS 1 0 #1 — — —
ﬁg:ig’;oim 172 FLDI1 FRn LS 1 #1 - - =
instructions 173 FMOV FRm,FRn LS 1 #1 — — —
174 FMOV.S @Rm,FRn LS 1 #2 — — —
175 FMOV.S @Rm+,FRn LS 1 1/2 #2 —_ —_ —
176 FMOV.S @(RO,Rm),FRn LS 1 2 #2 — — —
177 FMOV.S FRm,@Rn LS 1 1 #2 — — —
178 FMOV.S FRm,@-Rn LS 1 1/1 #2 — — —
179 FMOV.S FRm,@(RO,Rn) LS 1 1 #2 — — —
180 FLDS FRm,FPUL LS 1 0 #1 — — —
181 FSTS FPUL,FRn LS 1 #1 — — —

Rev. 4.0, 03/00, page 172 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion

Category No. Instruction Group Rate Latency Pattern Stage Start Cycles

Single- 182 FABS FRn LS 1 0 #1 — — —

ﬁgﬂi&oim FADD  FRm,FRn FE 1 3/4 #36 -  —  —

instructions 184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —

185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —

186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 — — —

188 FMAC FRO,FRm,FRn FE 1 3/4 #36 — — —

189 FMUL FRmM,FRn FE 1 3/4 #36 — — —

190 FNEG FRn LS 1 0 #1 — — —

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1

192 FSUB FRmM,FRn FE 1 3/4 #36 — — —

193 FTRC FRm,FPUL FE 1 3/4 #36 — — —

194 FMOV DRm,DRn LS 1 0 #1 — — —

195 FMOV @Rm,DRn LS 1 2 #2 — — —

196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —

197 FMOV @(RO,Rm),DRn LS 1 2 #2 — — —

198 FMOV DRm,@Rn LS 1 1 #2 — — —

199 FMOV DRm,@-Rn LS 1 1/1 #2 — — —

200 FMOV DRm,@(RO,Rn) LS 1 1 #2 — S —

Double- 201 FABS DRn LS 1 0 #1 — — —

zgz‘iiiig’_goimzoz FADD DRm,DRn FE 1 (7,8)/9 #39 F1 2 6

instructions 203 FCMP/EQ DRm,DRn coO 2 3/5 #40 F1 2 2

204 FCMP/GT DRm,DRn CcO 2 3/5 #40 F1 2 2

205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

207 FDIV DRm,DRn FE 1 (24, 25)/ #41 F3 2 23

26 F1 22 3

F1 2 2

208 FLOAT FPUL,DRn FE 1 (3,4)/5 #38 F1 2 2

209 FMUL DRm,DRn FE 1 (7,8)9 #39 F1 2 6

Rev. 4.0, 03/00, page 173 of 395
HITACHI



Table 8.3  Execution Cycles (cont)

Instruc- Execu- Lock
Functional tion Issue tion
Category No. Instruction Group Rate Latency Pattern Stage Start Cycles
Double- 210 FNEG DRn LS 1 0 #1 - - =
ﬁgﬂi&oim FSQRT  DRn FE 1 (2253 24) #41  F3 2 22
instructions F1 21 3
Fl 2 2
212 FSUB DRm,DRn FE 1 (7,809 #39  F1 2 6
213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2
FPU system 214 LDS Rm,FPUL LS 1 1 #1 - -
f&?:gtions 215 LDS Rm,FPSCR co 1 4 #32 F1 3 3
216 LDS.L  @Rm+FPUL co 1 12 #2 -
217 LDSL  @Rm+FPSCR  CO 1 14 #33 F1 3 3
218 STS FPUL,Rn LS 1 3 #1 - -
219 STS FPSCR,Rn co 1 3 #1 - - —
220 STSL  FPUL,@-Rn co 1 11 #2 - - =
221 STSL  FPSCR,@-Rn co 1 11 #2 - - =
Graphics 222 FMOV ~ DRm,XDn LS 1 0 #1 - - -
;csctf&iﬁztfs” 223 FMOV  XDm,DRn LS 1 0 # - - =
224 FMOV  XDm,XDn LS 1 0 #1 - - -
225 FMOV  @Rm,XDn LS 1 2 #2 - - =
226 FMOV  @Rm+XDn LS 1 12 #2 - - -
227 FMOV  @(RO,Rm),XDn LS 1 2 #2 -
228 FMOV  XDm,@Rn LS 1 1 #2 - - =
229 FMOV  XDm,@-Rm LS 1 11 #2 - - —
230 FMOV  XDm,@(RO,Rn) LS 1 1 #2 - - =
231 FIPR FVm,FVn FE 1 4/5 #2 F1 3 1
232 FRCHG FE 1 14 #36 - — —
233 FSCHG FE 1 1/4 #36 - - —
234 FTRV XMTRX,FVn FE 1 (5,56, #43  FO 2 4
7)i8 F—

Notes: 1. See table 8.1 for the instruction groups.

2. Latency “L1/L2...": Latency corresponding to a write to each register, including
MACH/MACL/FPSCR.

Example: MOV.B @Rm+, Rn “1/2": The latency for Rm is 1 cycle, and the latency for
Rn is 2 cycles.

3. Branch latency: Interval until the branch destination instruction is fetched

Rev. 4.0, 03/00, page 174 of 395
HITACHI



9.

Conditional branch latency “2 (or 1)”: The latency is 2 for a nonzero displacement, and
1 for a zero displacement.

Double-precision floating-point instruction latency “(L1, L2)/L3": L1 is the latency for FR
[n+1], L2 that for FR [n], and L3 that for FPSCR.

FTRV latency “(L1, L2, L3, L4)/L5": L1 is the latency for FR [n], L2 that for FR [n+1], L3
that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for Rm, L2
that for Rn, L3 that for MACH, and L4 that for MACL.

Latency “L1/L2” of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L instructions:
L1 is the latency for MACH, and L2 that for MACL.

Execution pattern: The instruction execution pattern number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:

1.

When a floating-point computation instruction is followed by an FMOV store, an STS
FPUL, Rn instruction, or an STS.L FPUL, @-Rn instruction, the latency of the floating-
point computation is decreased by 1 cycle.

. When the preceding instruction loads the shift amount of the following SHAD/SHLD, the

latency of the load is increased by 1 cycle.

When an LS group instruction with a latency of less than 3 cycles is followed by a

double-precision floating-point instruction, FIPR, or FTRV, the latency of the first

instruction is increased to 3 cycles.

Example: In the case of FMOV FR4,FRO and FIPR FVO0,FV4, FIPR is stalled for 2
cycles.

When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction, the latency

of MAC*/MUL*/DMUL* is 5 cycles.

In the case of consecutive executions of MAC*/MUL*/DMUL*, the latency is decreased

to 2 cycles.

When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the latency of

the LDS to MAC* is 4 cycles.

When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the LDS to

MAC* is 1 cycle.

When an FSCHG or FRCHG instruction is followed by an LS group instruction that

reads or writes to a floating-point register, the aforementioned LS group instruction[s]

cannot be executed in parallel.

When a single-precision FTRC instruction is followed by an STS FPUL, Rn instruction,

the latency of the single-precision FTRC instruction is 1 cycle.

Rev. 4.0, 03/00, page 175 of 395
HITACHI



Section 9 Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for th
instruction descriptions.

Instruction Name  Full Name Instruction Type
Function (Indication of delayed branch
instruction or interrupt-disabling
instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
The assembler input Summarizes the operation Shown in MSB — - Theno-  Shows the
format is shown. imm  of the instruction. LSB order. wait value T bit value
and disp are numeric is shown. after
values, expressions, execution
or symbols. of the
instruction.
Description

Describes the operation of the instruction.

Notes

Identifies points to be noted when using the instruction.
Operation

Shows the operation in C. This is given as reference material to help understand the operatic
the instruction. Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)
double  double-precision floating point number(64 bits)
These are data types.

Rev. 4.0, 03/00, page 177 of 395
HITACHI



unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);
unsigned short Write_Word(unsigned long Addr, unsigned long Data);
unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n ad
or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);

Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;
unsigned long MACH,MACL,PR;
unsigned long PC;

Registers

struct SRO {
unsigned long dummy0:22;
unsigned long  MO0:1;
unsigned long  QO0:1;
unsigned long  10:4;
unsigned long dummy1:2;
unsigned long  S0:1;
unsigned long  TO:1;

3

SR structure definitions

define M ((*(struct SRO *)(&SR)).MO0)

#define Q ((*(struct SRO *)(&SR)).Q0)
#define S ((*(struct SRO *)(&SR)).S0)
#define T ((*(struct SRO *)(&SR)).TO)
Definitions of bits in SR

Rev. 4.0, 03/00, page 178 of 395

HITACHI



Error( char *er);
Error display function

These are floating-point number definition statements.
#define PZERO 0
#define NZERO 1
#define DENORM 2
#define NORM 3
#define PINF 4
#define NINF 5
#define gNaN 6
#define sNaN 7
#define EQ 0
#define GT 1
#define LT 2
#define UO 3
#define INVALID 4
#define FADD 0
#define FSUB 1

#define CAUSE  0x0003f000 /* FPSCR(bit17-12) */
#define SET_E  0x00020000 /* FPSCR(bit17) */
#define SET V. 0x00010040 /* FPSCR(bit16,6) */
#define SET_Z  0x00008020 /* FPSCR(bit15,5) */
#define SET_ O 0x00004010 /* FPSCR(bit14,4) */
#define SET_U  0x00002008 /* FPSCR(bit13,3) */
#define SET | 0x00001004 /* FPSCR(bit12,2) */
#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */
#define ENABLE_V  0x00000800 /* FPSCR(bit11) */
#define ENABLE_Z  0x00000400 /* FPSCR(bit10) */
#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */
#define ENABLE_|  0x00000080 /* FPSCR(bit7) */
#define FLAG ~ 0x0000007C /* FPSCR(bit6-2) */

#define FPSCR_FR FPSCR>>21&1

#define FPSCR_PR FPSCR>>19&1
#define FPSCR_DN FPSCR>>18&1

HITACHI

Rev. 4.0, 03/00, page 179 of 395



#define FPSCR_I FPSCR>>12&1
#define FPSCR_RM FPSCR&1
#define FR_HEX  frf.l FPSCR_FR]
#define FR frf.fl FPSCR_FR]
#define DR frf.d[ FPSCR_FR]
#define XF_HEX  frf.I[~FPSCR_FR]
#define XF frf.f[~FPSCR_FR]
#define XD frf.d[~FPSCR_FR]

union {
int 1[2][16];
float f[2][16];
double d[2][8];

} frf;

int FPSCR,;

int sign_of(int n)
{
return(FR_HEX[n]>>31);
}
int data_type_of(int n) {
int abs;
abs = FR_HEX[n] & Ox7fffffff;
if(FPSCR_PR ==0) { /* Single-precisiort/
if(abs < 0x00800000){
if(FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}
else {zero(n, 1); return(NZERO);}
}
else return(DENORM);
}
else if(abs < 0x7f800000) return(NORM);
else if(abs == 0x7f800000) {
if(sign_of(n) == 0)  return(PINF);
else return(NINF);

}
else if(abs < 0x7fc00000) return(gNaN);

Rev. 4.0, 03/00, page 180 of 395
HITACHI



else return(sNaN);
}
else{ [/* Double-precisiort/
if(abs < 0x00100000){
if(FPSCR_DN ==1) ||
((abs == 0x00000000) && (FR_HEX[n+1] == 0x00000000)){
if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}
else {zero(n, 1); return(NZERO);}
}
else return(DENORM));
}
else if(abs < 0x7ff00000) return(NORM);
else if((abs == 0x7ff00000) &&
(FR_HEX[n+1] == 0x00000000)) {
if(sign_of(n) == 0) return(PINF);
else return(NINF);
}
else if(abs < 0x7ff80000) return(gNaN);
else return(sNaN);

}
void register_copy(int m,n)
{
FR[n] =FR[m];
if(FPSCR_PR ==1) FR[n+1] = FR[m+1];
}
void normal_faddsub(int m,n,type)
{
union {
float f;
intl;
}  dstf,srcf;
union {
long d;
int 1[2];
} dstd,srcd;

union { I* “long double” format: */

Rev. 4.0, 03/00, page 181 of 395
HITACHI



long double x; /* 1-bitsign */
int 1[4]; I* 15-bit exponent*/
}  dstx; 1* 112-bit mantissa*/
if(FPSCR_PR ==0) {
if(type == FADD)  srcf.f = FR[m];
else srcf.f = -FR[m];
dstd.d = FR[n]; /* Conversion from single-precision to double-precigibn
dstd.d += srcf.f;
if(((dstd.d == FR[n]) && (srcf.f 1= 0.0)) ||
((dstd.d == srcf.f) && (FR[n] != 0.0))) {
set_I();
if(sign_of(m)" sign_of(n)) {
dstd.l[1] -=1;
if(dstd.I[1] == Oxffffffff) dstd.l[0] -= 1;

}
if(dstd.I[1] & OxAfffffff) set_I();
dstf.f += srcf.f; /* Round to nearest
if(FPSCR_RM == 1) {
dstd.l[1] &= 0xe0000000; /* Round to zerd/
dstf.f = dstd.d;
}
check_single_exception(&FR[n],dstf.f);
}else {
if(type == FADD) srcd.d = DR[m>>1];
else srcd.d = -DR[m>>1];
dstx.x = DR[n>>1];
I* Conversion from double-precision to extended double-prectsion
dstx.x += srcd.d;
if(((dstx.x == DR[n>>1]) && (srcd.d !=0.0)) ||
((dstx.x == srcd.d) && (DR[n>>1] I= 0.0)) ) {
set_I();
if(sign_of(m)" sign_of(n)) {
dstx.[3] -= 1;
if(dstx.I[3] == Oxffffffff) {dstx.l[2] -= 1;
if(dstx.I[2] == Oxffffffff) {dstx.l[1] -= 1;
if(dstx.I[1] == Oxffffffff) {dstx.l[0] -= 1;}}}

Rev. 4.0, 03/00, page 182 of 395
HITACHI



}
if((dstx.I[2] & OXOfff) || dstx.I[3]) set_I():

dst.d += srcd.d; /* Round to nearest
if(FPSCR_RM == 1) {
dstx.I[2] &= 0xf0O000000; /* Round to zerd/
dstx.I[3] = 0x00000000;
dst.d = dstx.x;

}
check_double_exception(&DR[n>>1] ,dst.d);

}

void normal_fmul(int m,n)
{
union {
float f;
intl;
} tmpf;
union {
double d;
int 1[2];
} tmpd;
union {
long double x;
int 1[4];
} tmpx;
if(FPSCR_PR == 0) {
tmpd.d = FR[n]; /* Single-precision to double-precisith
tmpd.d *= FR[m]; /* Precise creatioty
tmpf.f *= FR[m]; /* Round to nearest
if(tmpf.f = tmpd.d) set_I();
if((tmpf.f > tmpd.d) && (FPSCR_RM == 1)) {
tmpf.l -=1; /* Round to zerd/
}
check_single_exception(&FR[n],tmpf.f);
}else {

tmpx.x = DR[n>>1]; /* Single-precision to double-precisith

Rev. 4.0, 03/00, page 183 of 395
HITACHI



tmpx.x *= DR[m>>1]; /* Precise creatio®y
tmpd.d *= DR[m>>1]; /* Round to nearest
if(tmpd.d = tmpx.x) set_I();
if(tmpd.d > tmpx.x) && (FPSCR_RM == 1)) {
tmpd.I[1] -= 1; /* Round to zerd/
if(tmpd.I[1] == Oxffffffff) tmpd.I[0] -= 1;
}
check_double_exception(&DR[n>>1], tmpd.d);

}
void fipr(int m,n)
{
union {
double d;
int I[2];
}oomit4];
float dstf;
if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||
(data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||
(data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||
(data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||
(check_product_invalid(m,n)) ||
(check_product_invalid(m+1,n+1)) ||
(check_product_invalid(m+2,n+2)) ||
(check_product_invalid(m+3,n+3)) ) invalid(n+3);
else if((data_type_of(m) == gNaN)|| (data_type_of(n) == gNaN)||
(data_type_of(m+1) == gNaN) || (data_type_of(n+1) == gNaN) ||
(data_type_of(m+2) == gNaN) || (data_type_of(n+2) == gNaN) ||

(data_type_of(m+3) == gNaN) || (data_type_of(n+3) == gNaN))
gnan(n+3);

else if (check_ positive_infinity() &&
(check_ negative_infinity()) invalid(n+3);
else if (check_ positive_infinity()) inf(n+3,0);
else if (check_ negative_infinity()) inf(n+3,1);
else {
for(i=0;i<4;i++) {
1* If FPSCR_DN == 1, zeroiz¥
if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;
Rev. 4.0, 03/00, page 184 of 395
HITACHI



else if(data_type_of(m+i) == NZERO) FR[m+i] =-0.0;
if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;
else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;
mit[i].d = FR[m+i];

mit[i].d *= FR[n+i];

1* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description
is simplified, and differs from the hardwareé.
milt[i].I[1] &= 0xff000000;
mlt[i].I[1] |= 0x00800000;
}
mit[0].d += mlt[1].d + mit[2].d + mlt[3].d;
mlt[0].I[1] &= Oxff800000;
dstf = mit[0].d;
set_I();
check_single_exception(&FR[n+3],dstf);

}
}
void check_single_exception(float *dst,result)
{
union {
float f;
intl;
} o tmp;
float abs;
if(result < 0.0) tmp.l = 0xff800000; /* — infinity */
else tmp.l = 0x7f800000; /* + infinity */
if(result == tmp.f) {
set_O(); set_I();
if(FPSCR_RM == 1) {
tmp.l -= 1; /* Maximum value of normalized numb#r
result = tmp.f;
}
}
if(result < 0.0) abs = -result;
else abs = result;
tmp.l = 0x00800000; /* Minimum value of normalized numb&t

Rev. 4.0, 03/00, page 185 of 395
HITACHI



if(abs < tmp.f) {
if(FPSCR_DN == 1) && (abs != 0.0)) {

set_1();
if(result < 0.0) result = -0.0; /* Zeroize denormalized numb#r
else result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;
}
void check_double_exception(double *dst,result)
{
union {
double d;
int 1[2];
}otmp;
double abs;
if(result < 0.0) tmp.I[0] = Oxfff00000; /* — infinity */
else tmp.I[0] = Ox7ff00000; /* + infinity */

tmp.I[1] = 0x00000000;
if(result == tmp.d)
set_O(); set_I();
if(FPSCR_RM ==1){
tmp.I[0] -=1;
tmp.I[1] = Oxffffffff;

result = tmp.d; /* Maximum value of normalized numb#r

}
if(result < 0.0) abs = -result;
else abs = result;
tmp.I[0] = 0x00100000; /* Minimum value of normalized numbef
tmp.I[1] = 0x00000000;
if(abs < tmp.d) {
if((FPSCR_DN == 1) && (abs != 0.0)) {
set_I();
if(result < 0.0) result = -0.0;

Rev. 4.0, 03/00, page 186 of 395
HITACHI



[* Zeroize denormalized numb#r

else result = 0.0;
}
if(FPSCR_I == 1) set_U();
}
if(FPSCR & ENABLE_OUI) fpu_exception_trap();
else *dst = result;

}

int check_product_invalid(int m,n)

{
return(check_product_infinity(m,n) &&

((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||
(data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));

}

int check_ product_infinity(int m,n)

{

return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||
(data_type_of(m) == NINF) || (data_type_of(n) == NINF));

}
int check_ positive_infinity(int m,n)
{

return(((check_ product_infinity(m,n) && (~sign_of(m)"
sign_of(n))) ||

((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)"
sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)"
sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)*
sign_of(n+3))));
}

int check_ negative_infinity(int m,n)

{

return(((check_ product_infinity(m,n) && (sign_of(m)" sign_of(n))) ||

((check_ product_infinity(m+1,n+1) && (sign_of(m+1)"
sign_of(n+1))) ||

((check_ product_infinity(m+2,n+2) && (sign_of(m+2)"
sign_of(n+2))) ||

((check_ product_infinity(m+3,n+3) && (sign_of(m+3)*
sign_of(n+3))));

HITACHI

Rev. 4.0, 03/00, page 187 of 395



}
void clear_cause () {FPSCR &= ~CAUSE;}

void set_E() {FPSCR |= SET_E; fpu_exception_trap();}
void set_V() {FPSCR |= SET_V;}
void set_Z() {FPSCR |= SET_Z;}
void set_O() {FPSCR |= SET_O;}
void set_U() {FPSCR |= SET_U;}
void set_I() {FPSCR |= SET_I}}
void invalid(int n)
{
set_V();
if(FPSCR & ENABLE_V) == 0 gnan(n);
else fpu_exception_trap();

void dz(int n,sign)

{
set_Z();
if(FPSCR & ENABLE_Z) == 0 inf(n,sign);
else fpu_exception_trap();
}
void zero(int n,sign)
{
if(sign == 0) FR_HEX[n] = 0x00000000;
else FR_HEX [n] = 0x80000000;
if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;
}

void inf(int n,sign) {
if (FPSCR_PR==0) {
if(sign == 0) FR_HEX [n] = 0x7f800000;

else FR_HEX [n] = 0xff800000;
}else {

if(sign == 0) FR_HEX [n] = 0x7ff00000;

else FR_HEX [n] = 0xfff00000;

FR_HEX [n+1] = 0x00000000;

}

Rev. 4.0, 03/00, page 188 of 395
HITACHI



void gnan(int n)

{
if (FPSCR_PR==0) FR[n] = Ox7fbfffff;
else { FR[n] = OX7ff7ffff;
FR[n+1] = Oxffffffff;
}
}
Example

An example is shown using assembler mnemonics, indicating the states before and after exe
of the instruction.

Italics (e.qg.,.align) indicate an assembler control instruction. The meaning of the assembler
control instructions is given below. For details, refer to the Cross-Assembler User's Manual.

.org Location counter setting

.data.w Word integer data allocation
.data.l Longword integer data allocation
.Sdata String data allocation

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment

.align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepeat 32 32-times repeat expansion

.aendr Count-specification repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler funct

Rev. 4.0, 03/00, page 189 of 395
HITACHI



9.1 ADD ADD binary Arithmetic Instruction
Binary Addition

Execution
Format Summary of Operation Instruction Code States T Bit
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm1100 1 —
ADD #imm,Rn Rn+imm - Rn 011 1nnnniiiiiiii 1 —

Description

This instruction adds together the contents of general registers Rn and Rm and stores the res
Rn.

8-bit immediate data can also be added to the contents of general register Rn.
8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.
Operation

ADD(long m, long n) /* ADD Rm,Rn */
{

R[n]+=R[m];

PC+=2;

ADDI(long i, long n) /* ADD #imm,Rn */
{
if ((180x80)==0)
R[n]+=(0x000000FF & (long)i);
else R[n]+=(0xFFFFFFOO | (long)i);
PC+=2;

Rev. 4.0, 03/00, page 190 of 395
HITACHI



Example
Before execution RO = H'7FFFFFFF, R1 = H'00000001

ADD RO,R1 ;
; After execution R1 = H'80000000
ADD #H'01,R2 ;. Before execution R2 = H'00000000
; After execution R2 = H'00000001
ADD #H'FE,R3 ;. Before execution R3 = H'00000001

; After execution R3 = H'FFFFFFFF

Rev. 4.0, 03/00, page 191 of 395
HITACHI



9.2 ADDC ADD with Carry Arithmetic Instruction
Binary Addition

with Carry
Execution
Format Summary of Operation Instruction Code States T Bit
ADDC Rm,Rn Rn+Rm+T - Rn, carry - T 0011lnnnnmmmm1110 1 Carry
Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and
the result in Rn. A carry resulting from the operation is reflected in the T bit. This instruction is
used for additions exceeding 32 bits.

Operation

ADDC(long m, long n) /* ADDC Rm,Rn */

{
unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];
tmpO=R[n];
R[n]=tmp1+T;
if (tmp0>tmp1) T=1;
else T=0;
if tmp1>R[n]) T=1,;
PC+=2;

}

Example

CLRT ;RO:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)

ADDC R3,R1 ; Before execution T =0, R1 =H'00000001, R3 = H'FFFFFFFF
; After execution T =1, R1 =H'00000000

ADDC R2,RO ; Before execution T =1, RO = H'00000000, R2 = H'00000000
; After execution T =0, RO =H'00000001

Rev. 4.0, 03/00, page 192 of 395
HITACHI



9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
Binary Addition
with Overflow Check

Execution
Format Summary of Operation Instruction Code States T Bit
ADDV Rm,Rn Rn+Rm - Rn, 0011lnnnnmmmm111l 1 Overflow

overflow - T

Description

This instruction adds together the contents of general registers Rn and Rm and stores the re
Rn. If overflow occurs, the T bit is set.

Operation

ADDV(long m, long n) /* ADDV Rm,Rn */
{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n]+=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==0 || src==2) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;

Rev. 4.0, 03/00, page 193 of 395
HITACHI



Example

Before execution RO = H'00000001, R1 = H'7FFFFFFE, T=0
; After execution R1 = H'7FFFFFFF, T=0

Before execution RO = H'00000002, R1 = H'7FFFFFFE, T=0
; After execution R1 = H'80000000, T=1

ADDV RO,R1 ;

ADDV RO,R1 ;

Rev. 4.0, 03/00, page 194 of 395
HITACHI



9.4 AND AND logical Logical Instruction

Logical AND
Execution
Format Summary of Operation Instruction Code States T Bit
AND Rm,Rn Rm & Rm - Rn 0010nnnnmmmm1001 1 —
AND  #imm,R0O RO & imm - RO 1100100iiiiiiii 1 —
AND.B #imm,@(R0,GBR) (R0+GBR) & imm — 11001101iiiiiiii 4 —
(RO+GBR)
Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in R

This instruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-k
immediate data.

Notes
With AND #imm,RO0, the upper 24 bits of RO are always cleared as a result of the operation.
Operation

AND(long m, long n) /* AND Rm,Rn */
{

R[n]&=R[m];

PC+=2;

ANDI(long i) /* AND #mm,R0 */

{
R[0]&=(0x000000FF & (long)i);
PC+=2;

ANDM(long i) /* AND.B #mm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

Rev. 4.0, 03/00, page 195 of 395
HITACHI



temp&=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

Example

AND RO,R1 ;
AND #H'OF,RO ;

AND.B #H'80,@(R0O,GBR) ;

Rev. 4.0, 03/00, page 196 of 395

Before execution RO = H'AAAAAAAA, R1=H'55555555

After execution R1 = H'00000000
Before execution RO = H'FFFFFFFF
After execution RO = H'0000000F
Before execution (RO,GBR) = H'A5

After execution (R0O,GBR) =H'80

HITACHI



95 BF Branch if False Branch Instruction
Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BF label fT=0 10001011dddddddd 1 —
PC+4+dispx2 - PC
If T=1, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0,
not taken if T = 1. The branch destination is address (PC + 4 + displace®)efithe PC source
value is the BF instruction address. As the 8-bit displacement is multiplied by two after sign-
extension, the branch destination can be located in the range from —256 to +254 bytes from
instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in
combination with a BRA or JMP instruction, for example.

Operation

BF(intd) /*BF disp */

{
int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);
else disp=(0xFFFFFFOO | d);
if (T==0)
PC=PC+4+(disp<<1);
else PC+=2;

Rev. 4.0, 03/00, page 197 of 395
HITACHI



Example

CLRT ; Normally T=0
BT TRGET_T ; T =0, so branch is not taken.
BF TRGET_F ; T =0, so branch to TRGET_F.
NOP ;
NOP ;
TRGET_F: ; « BF instruction branch destination

Rev. 4.0, 03/00, page 198 of 395
HITACHI



9.6 BF/S Branch if False with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BF/S label IfT=0 10001111dddddddd 1 —
PC+4 +dispx2 - PC
If T=1, nop
Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next
instruction is executed and the branch is not taken. If T = 0, the branch is taken after executi
the next instruction.

The branch destination is address (PC + 4 + displacex@nfThe PC source value is the BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the b
destination can be located in the range from —256 to +254 bytes from the BF/S instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.
If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instructic
is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in
combination with a BF, BRA, or JMP instruction, for example.

Rev. 4.0, 03/00, page 199 of 395
HITACHI



Operation

BFS(intd) /*BFS disp */
{

int disp;

unsigned int temp;

temp=PC;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFFOO | d);

if (T==0)
PC=PC+4+(disp<<1);

else PC+=4;
Delay_Slot(temp+2);

}

Example

CLRT ; Normally T=0
BT/S TRGET_T ; T =0, so branch is not taken.
NOP ;
BF/S TRGET_F ; T =0, so branch to TRGET.
ADD RO,R1 ; Executed before branch.
NOP ;

TRGET_F: . « BF/S instruction branch destination

Rev. 4.0, 03/00, page 200 of 395
HITACHI



9.7 BRA BRAnNch Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRA label PC+4+dispx2 —» PC 1010dddddddddddd 1 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 +
displacemenk 2). The PC source value is the BRA instruction address. As the 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located
range from —4096 to +4094 bytes from the BRA instruction. If the branch destination cannot |
reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed b
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the follow
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRA(intd) /* BRA disp */
{

int disp;

unsigned int temp;

temp=PC;

if ((d&0x800)==0)
disp=(0x00000FFF & d);

else disp=(0xFFFFFO0O | d);

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

Rev. 4.0, 03/00, page 201 of 395
HITACHI



Example

BRA TRGET ; Branch to TRGET.
ADD RO,R1 ; ADD executed before branch.
NOP ;
TRGET: ; « BRA instruction branch destination

Rev. 4.0, 03/00, page 202 of 395
HITACHI



9.8 BRAF BRAnNch Far Branch Instruction

Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BRAF Rn PC+4+Rn - PC 0000nnnn00100011 2 —
Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn).
branch destination address is the result of adding 4 plus the 32-bit contents of general regist
to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed b
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the follow
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRAF(int n) /* BRAF Rn*/
{

unsigned int temp;

temp=PC,;
PC=PC+4+RI[n];
Delay_Slot(temp+2);

}
Example
MOV.L #(TRGET-BRAF_PC),R0 ; Set displacement.
BRAF RO ; Branch to TRGET.
ADD RO,R1 ; ADD executed before branch.
BRAF_PC: ;
NOP
TRGET: ; « BRAF instruction branch destination

Rev. 4.0, 03/00, page 203 of 395
HITACHI



9.9 BSR Branch to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSR label PC+4 - PR, 1011dddddddddddd 1 —

PC+4+dispx2 —» PC

Description

This instruction branches to address (PC + 4 + displacexi®ntand stores address (PC + 4) in
PR. The PC source value is the BSR instruction address. As the 12-bit displacement is multip
by two after sign-extension, the branch destination can be located in the range from —4096 to
+4094 bytes from the BSR instruction. If the branch destination cannot be reached, this branc
be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed be
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the followil
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSR(intd) /*BSR disp */
{

int disp;

unsigned int temp;

temp=PC;

if ((d&0x800)==0)
disp=(0x00000FFF & d);

else disp=(0xFFFFFO0O | d);

PR=PC+4,

PC=PC+4+(disp<<1);

Delay_Slot(temp+2);

Rev. 4.0, 03/00, page 204 of 395
HITACHI



Example

BSR TRGET ; Branch to TRGET.

MOV R3,R4 ; MOV executed before branch.

ADD RO,R1 ; Subroutine procedure return destination (contents of PR)
TRGET: ; « Entry to procedure

MOV R2,R3 ;

RTS ;  Return to above ADD instruction.

MOV #1,R0 ; MOV executed before branch.

Rev. 4.0, 03/00, page 205 of 395
HITACHI



9.10 BSRF Branch to SubRoutine Far Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BSRF Rn PC+4 - PR, 0000nnnn00000011 2 —

PC+4+Rn - PC

Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The F
source value is the BSRF instruction address. The branch destination address is the result of
adding the 32-bit contents of general register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed be
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the followil
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSRF(intn) /* BSRF Rn *
{

unsigned int temp;

temp=PC;
PR=PC+4;
PC=PC+4+R[n];
Delay_Slot(temp+2);

Rev. 4.0, 03/00, page 206 of 395
HITACHI



Example

MOV.L #(TRGET-BSRF_PC),R0 ; Set displacement.

BSRF RO ; Branch to TRGET.

MOV R3,R4 ; MOV executed before branch.
BSRF_PC: ;

ADD RO,R1 ;
TRGET: ;  « Entry to procedure

MOV R2,R3 ;

RTS : Return to above ADD instruction.

MOV  #1,R0 ; MOV executed before branch.

Rev. 4.0, 03/00, page 207 of 395
HITACHI



9.11 BT Branch if True Branch Instruction
Conditional Branch

Execution
Format Summary of Operation Instruction Code States T Bit
BT label fT=1 10001001dddddddd 1 —
PC+4+dispx2 - PC
If T=0, nop

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T =1, «
not taken if T = 0.

The branch destination is address (PC + 4 + displacex@®nfThe PC source value is the BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the bre
destination can be located in the range from —256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in
combination with a BRA or JMP instruction, for example.

Operation

BT(intd) /*BT disp */

{
int disp;

if ((d&0x80)==0)
disp=(0x000000FF & d);
else disp=(0xFFFFFFOO | d);
if (T==1)
PC=PC+4+(disp<<1);
else PC+=2;

Rev. 4.0, 03/00, page 208 of 395
HITACHI



Example

SETT ; Normaly T=1
BF TRGET_F ; T =1, so branch is not taken.
BT TRGET_T ; T =1, so branch to TRGET _T.
NOP ;
NOP ;
TRGET_T: ; « BT instruction branch destination

Rev. 4.0, 03/00, page 209 of 395
HITACHI



9.12 BT/S Branch if True with delay Slot Branch Instruction

Conditional Branch with Delay Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
BT/S label fT=1 10001101dddddddd 1 —
PC+4+dispx2 - PC
If T=0, nop
Description

This is a conditional branch instruction that references the T bit. The branch is taken if T =1, «
not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied b
two after sign-extension, the branch destination can be located in the range from —256 to +25.
bytes from the BT/S instruction. If the branch destination cannot be reached, the branch must
handled by using BT/S in combination with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

Rev. 4.0, 03/00, page 210 of 395
HITACHI



Operation

BTS(intd) /*BTS disp */
{

int disp;

unsigned temp;

temp=PC;

if ((d&0x80)==0)
disp=(0x000000FF & d);

else disp=(0xFFFFFFOO | d);

if (T==1)
PC=PC+4+(disp<<1);

else PC+=4;

Delay_Slot(temp+2);

}

Example

SETT ; Normally T=1
BF/S TRGET_F ;T =1, so branch is not taken.
NOP
BT/S TRGET_T ; T=1,sobranchto TRGET_T.
ADD RO,R1 ; Executed before branch.
NOP ;

TRGET_T: . « BT/S instruction branch destination

Rev. 4.0, 03/00, page 211 of 395
HITACHI



9.13 CLRMAC CleaR MAC register System Control Instruction
MAC Register Clear

Execution
Format Summary of Operation Instruction Code States T Bit
CLRMAC 0 - MACH, MACL 0000000000101000 1 —

Description
This instruction clears the MACH and MACL registers.
Operation

CLRMAC() /* CLRMAC */
{

MACH=0;

MACL=0;

PC+=2;
}

Example

CLRMAC ; Clear MAC register to initialize.
MAC.W @RO+,@R1+ ;  Multiply-and-accumulate operation
MAC.W @RO+,@R1+ ;

Rev. 4.0, 03/00, page 212 of 395
HITACHI



9.14 CLRS CleaR S bit System Control Instruction
S Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRS 0-S 0000000001001000 1 —
Description

This instruction clears the S bit to 0.
Operation

CLRS() /*CLRS*

{
S=0;
PC+=2;
}

Example

CLRS :Before execution S=1
; After execution S =0

Rev. 4.0, 03/00, page 213 of 395

HITACHI



9.15 CLRT CleaR T bit

System Control Instruction

T Bit Clear
Execution
Format Summary of Operation Instruction Code States T Bit
CLRT 0-T 0000000000001000 1 0
Description

This instruction clears the T bit.
Operation

CLRT() /*CLRT*

{
T=0;
PC+=2,
}

Example

CLRT :Before execution T=1
; After execution T=0

Rev. 4.0, 03/00, page 214 of 395

HITACHI



9.16 CMP/cond CoMPare conditionally Arithmetic Instruction

Compare
Execution
Format Summary of Operation Instruction Code States T Bit
CMP/EQ Rm[Rn IfRn=Rm,1-T 0011nnnnmmmmO000 1 Result of
comparison
CMP/GE Rm,Rn IfRn=Rm,signed,1 - T  001lnnnnmmmmO0011 1 Result of
comparison
CMP/GT Rm,Rn IfRn>Rm,signed,1 - T  001lnnnnmmmmO0111 1 Result of
comparison
CMP/HI Rm,Rn  If Rn > Rm, unsigned, 1 - T 0011nnnnmmmmO0110 1 Result of
comparison
CMP/HS Rm,Rn If Rn=Rm, unsigned, 1 - T 0011nnnnmmmmO010 1 Result of
comparison
CMP/PL  Rn fRn>0,1-T 0100nnnn00010101 1 Result of
comparison
CMP/PZ Rn fRhn=0,1-T 0100nnnn00010001 1 Result of
comparison
CMP/STR Rm,Rn If any bytes are equal, 1 - T 0010nnnnmmmm21100 1 Result of
comparison
CMP/EQ #imm,RO IfRO=imm,1 - T 10001000iiiiiii 1 Result of
comparison
Description

This instruction compares general registers Rn and Rm, and sets the T bit if the specified co
(cond) is true. If the condition is false, the T bit is cleared. The contents of Rn are not change
Nine conditions can be specified. For the two conditions PZ and PL, Rn is compared with O.

With the EQ condition, sign-extended 8-bit immediate data can be compared with RO. The
contents of RO are not changed.

Rev. 4.0, 03/00, page 215 of 395
HITACHI



Mnemonic Description

CMP/EQ Rm,Rn IfRn=Rm, T=1

CMP/GE Rm,Rn If Rn = Rm as signed values, T =1
CMP/GT Rm,Rn If Rn > Rm as signed values, T=1
CMP/HI Rm,Rn If Rn > Rm as unsigned values, T =1
CMP/HS Rm,Rn If Rn = Rm as unsigned values, T =1
CMP/PL  Rn IfRn>0,T=1

CMP/PZ Rn fRn=0,T=1

CMP/STR Rm,Rn If any bytes are equal, T=1
CMP/EQ  #imm,RO fRO=imm, T=1

Operation

CMPEQ(long m, long n)

{

if (R[n]==R[m]) T=1,
else T=0;
PC+=2;

}

CMPGE(long m, long n)

{

/* CMP_EQ Rm,Rn */

/* CMP_GE Rm,Rn */

if ((long)R[n]>=(long)R[m]) T=1,
else T=0;
PC+=2;

CMPGT(long m, long n)

{

/* CMP_GT Rm,Rn */

if ((long)R[n]>(long)R[m]) T=1;
else T=0;
PC+=2;

CMPHI(long m, long n)

{

/* CMP_HI Rm,Rn */

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

Rev. 4.0, 03/00, page 216 of 395

HITACHI



PC+=2,

CMPHS(long m, long n) /* CMP_HS Rm,Rn */

{
if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1,;
else T=0;
PC+=2;

CMPPL(long n) /* CMP_PL Rn */
{

if ((long)R[n]>0) T=1,;

else T=0;

PC+=2;

CMPPZ(long n) /* CMP_PZ Rn*/
{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

CMPSTR(long m, long n) /* CMP_STR Rm,Rn */
{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]*R[m];
HH=(temp&O0xFF000000)>>24;
HL=(temp&0x00FF0000)>>16;
LH=(temp&0x0000FF00)>>8;
LL=temp&0x000000FF;
HH=HH&&HL&&LH&&LL;

if (HH==0) T=1,

else T=0;

HITACHI

Rev. 4.0, 03/00, page 217 of 395



PC+=2,

CMPIM(long i) /* CMP_EQ #imm,RO0 */
{

long imm;

if ((1&0x80)==0) imm=(0x000000FF & (long i));
else imm=(0xFFFFFFOO | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Example

CMP/GE RO,R1
BT TRGET_T

;RO = H7FFFFFFF, R1 = H'80000000
; T =0, so branch is not taken.
CMP/HS RO,R1 ;RO =H'7FFFFFFF, R1 = H'80000000
BT TRGET_T ; T =1, so branch is taken.
CMP/STR R2,R3 ; R2="ABCD", R3 ="XYCZ"
BT TRGET_T ; T =1, so branch is taken.

Rev. 4.0, 03/00, page 218 of 395
HITACHI



9.17 DIVOS DIVide (step 0) as Signed Arithmetic Instruction
Initialization for
Signed Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmmO0111 1 Result of
MSB of Rm - M, calculation

MAQ - T

Description

This instruction performs initial settings for signed division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are execu
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DIVOS(long m, long n)  /* DIVOS Rm,Rn */
{

if ((R[n] & 0x80000000)==0) Q=0;

else Q=1;

if ((R[m] & 0x80000000)==0) M=0;

else M=1;

T=(M==Q);

PC+=2;
}

Example

See the examples for the DIV1 instruction.

Rev. 4.0, 03/00, page 219 of 395
HITACHI



9.18 DIVOU DIVide (step 0) as Unsigned Arithmetic Instruction

Initialization for Unsigned Division

Execution
Format Summary of Operation Instruction Code States T Bit
DIVOU 0 - MIQIT 0000000000011001 1 0

Description

This instruction performs initial settings for unsigned division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are execut
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DIVOU()  /* DIVOU ¥/

{
M:Q:T:O;
PC+=2;

}

Example

See the examples for the DIV1 instruction.

Rev. 4.0, 03/00, page 220 of 395
HITACHI



9.19 DIVl DIVide 1 step Arithmetic Instruction

Division
Execution
Format Summary of Operation Instruction Code States T Bit
DIV1 Rm,Rn 1-step division 0011nnnnmmmmO100 1 Result of
(Rn +Rm) calculation
Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general
register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by repeated
execution of this instruction alone or in combination with other instructions. The specified
registers and the M, Q, and T bits must not be modified during these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, ar
the quotient bit is reflected in the Q bit according to whether the result is positive or negative

The remainder can be found as follows after first finding the quotient using the DIV1 instructi
(Remainder) = (dividend) — (divisor) x (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and over
division before executing the division. A remainder operation is not provided. Find the remair
by finding the product of the divisor and the obtained quotient, and subtracting this value fror
dividend.

Initial settings should first be made with the DIVOS or DIVOU instruction. DIV1 is executed or
for each bit of the divisor. If a quotient of more than 17 bits is required, place an ROTCL
instruction before the DIV1 instruction. See the examples for details of the division sequence

Operation

DIV1(long m, long n) /* DIV1 Rm,Rn*/
{

unsigned long tmp0, tmp2;

unsigned char old_g, tmp1;

old_g=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);
tmp2= R[m];

R[n]<<=1;

R[n]|=(unsigned long)T;

Rev. 4.0, 03/00, page 221 of 395
HITACHI



switch(old_q){
case 0:switch(M){
case 0:tmpO0=R[n];
R[n]-=tmp2;
tmp1=(R[n]>tmp0);
switch(Q){
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmpO0=R[n];
R[n]+=tmp2;
tmp1=(R[n]<tmpO0);
switch(Q){
case 0:Q=(unsigned char)(tmp1==0);
break;
case 1:Q=tmp1;

break;
}
break;
}
break;

case l:switch(M){
case 0:tmp0=R[n];
R[n]+=tmp2;
tmp1=(R[n]<tmp0);
switch(Q)X{
case 0:Q=tmp1;
break;
case 1:Q=(unsigned char)(tmp1==0);
break;
}
break;
case 1:tmp0=R[n];

Rev. 4.0, 03/00, page 222 of 395
HITACHI



R[n]-=tmp2;
tmpl=(R[n]>tmp0);
switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;
case 1:Q=tmp1;
break;

}

break;

}
break;
}
T=(Q==M);
PC+=2;
}

Example 1

SHLL16 RO

TST RO,RO

BT ZERO_DIV
CMP/HS RO,R1
BT OVER_DIV
DIVOU

.arepeat 16

DIVl RO,R1
.aendr

ROTCL R1
EXTU.W R1,R1

’

; R1 (32 bits) + RO (16 bits) = R1 (16 bits); unsigned
Set divisor in upper 16 bits, clear lower 16 bits to 0

Check for division by zero

Check for overflow

; Flag initialization

Repeat 16 times

R1 = quotient

HITACHI

Rev. 4.0, 03/00, page 223 of 395



Example 2

TST RO,RO

BT ZERO_DIV
CMP/HS RO,R1
BT OVER_DIV
DIvouU

.arepeat 32

ROTCL R2
DIV1 RO,R1
.aendr
ROTCL R2
Example 3
SHLL16 RO
EXTSW R1,R1
XOR R2,R2
MOV R1,R3
ROTCL R3
SUBC R2,R1
DIVOS RO,R1
.arepeat 16
DIV1 RO,R1
.aendr
EXTSW R1,R1
ROTCL R1

ADDC R2,R1
EXTSW R1,R1

1

)

1

)

l

1

; R1:R2 (64 bits) + RO (32 bits) = R2 (32 bits); unsigned
Check for division by zero

Check for overflow

; Flag initialization

Repeat 32 times

R2 = quotient

; R1 (16 bits) + RO (16 bits) = R1 (16 bits); signed
Set divisor in upper 16 bits, clear lower 16 bits to 0
Dividend sign-extended to 32 bits
R2=0

If dividend is negative, subtract 1

Flag initialization

Repeat 16 times

R1 = quotient (one’s complement notation)

If MSB of quotient is 1, add 1 to convert to two’s complement notation
R1 = quotient (two’s complement notation)

Rev. 4.0, 03/00, page 224 of 395

HITACHI



Example 4

; R2 (32 bits) + RO (32 bits) = R2 (32 bits); signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ; Dividend sign-extended to 64 bits (R1:R2)

XOR R3,R3 ; R3=0

SUBC R3,R2 ; If dividend is negative, subtract 1 to convert to one’s complement notat
DIVOS RO,R1 ; Flag initialization

.arepeat 32 ;

ROTCL R2 ; Repeat 32 times

DIVl RO,R1 ;

.aendr ;

ROTCL R2 i R2 = quotient (one’s complement notation)

ADDC R3,R2 ; If MSB of quotient is 1, add 1 to convert to two’s complement notation

; R2 = quotient (two’s complement notation)

Rev. 4.0, 03/00, page 225 of 395
HITACHI



9.20 DMULS.L Double-length

MULtiply as Signed Arithmetic Instruction
Signed Double-Length
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULS.L Rm,Rn Signed, 0011nnnnmmmm1101 2-5 —
Rn xRm -
MACH, MACL
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplicat
is performed as a signed arithmetic operation.

Operation

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)R[n];
tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[N]*"R[m])<0) fnLmL=-1;
else fnLmL=0;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;

Rev. 4.0, 03/00, page 226 of 395
HITACHI



tempO=RmL*RnL;
templ=RmH*RnL;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0;

Resl=templ+temp2;

if (Resl<templ) Res2+=0x00010000;
templ=(Res1<<16)&0xFFFF0000;
ResO=tempO+temp1,;

if (ResO<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<O0) {
Res2= "Res2;
if (Res0==0)
Res2++;
else
Res0=( "Res0)+1;
}
MACH=Res2;
MACL=ResO;
PC+=2;
}
Example
DMULS.L RO,R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution  MACH = H'FFFFFFFF, MACL = H'FFFF5556
STS MACH,RO Get operation result (upper)
STS MACL,R1 ;et operation result (lower)

Rev. 4.0, 03/00, page 227 of 395
HITACHI



9.21 DMULU.L Double-length MULtiply

as Unsigned Arithmetic Instruction
Unsigned Double-Length
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
DMULU.L Rm,Rn Unsigned, 0011nnnnmmmmO0101 2-5 —
Rn xRm -
MACH, MACL
Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplicat

is performed as an unsigned arithmetic operation.
Operation

DMULU(long m, long n) /* DMULU.L Rm,Rn */

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,templ,temp2,temp3;

RNL=R[n]&0X0000FFFF;
RnH=(R[n]>>16)&0x0000FFFF;

RmML=R[m]&0x0000FFFF;
RmH=(R[m]>>16)&0x0000FFFF;

tempO=RmL*RnL,;

templ=RmH*RnL;
temp2=RmL*RnH;
temp3=RmH*RnH;

Res2=0
Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF0000;

Rev. 4.0, 03/00, page 228 of 395
HITACHI



ResO=tempO+temp1;
if (ResO<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;

MACL=ResO0;

PC+=2;
}

Example
DMULU.L RO,R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution  MACH = H'00005554, MACL = H'FFFF5556

STS MACH,RO Get operation result (upper)
STS MACL,R1 ;Get operation result (lower)

Rev. 4.0, 03/00, page 229 of 395
HITACHI



9.22 DT Decrement and Test Arithmetic Instruction
Decrement and Test

Execution
Format Summary of Operation Instruction Code States T Bit
DT Rn Rn-1 - Rn; 0100nnnn00010000 1 Test
ifRn=0,1-T result

ifRN#0,0 - T

Description

This instruction decrements the contents of general register Rn by 1 and compares the result
zero. If the result is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

Operation

DT(long n)/* DT Rn */

{
R[n]--;
if (R[n]==0) T=1,
else T=0;
PC+=2;

}

Example

MOV  #4,R5 ; Set loop count

LOOP:
ADD RO,R1 ;
DT R5 ;  Decrement R5 value and check for 0.
BF LOOP ; If T =0, branch to LOOP (in this example, 4 loops are executed).

Rev. 4.0, 03/00, page 230 of 395
HITACHI



9.23 EXTS EXTend as Signed Arithmetic Instruction
Sign Extension

Execution
Format Summary of Operation Instruction Code States T Bit
EXTS.B Rm,Rn Rm sign-extended from 0110nnnnmmmm1110 1 —
byte - Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmm1111 1 —
word - Rn

Description
This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word
specification, the value of Rm bit 15 is transferred to Rn bits 16 to 31.

Operation

EXTSB(long m, longn) /* EXTS.B Rm,Rn */
{
RIn]=R[m];
if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;
PC+=2;

EXTSW(long m, longn) /* EXTS.W Rm,Rn */
{
R[n]=R[m];
if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFFO0000;
PC+=2;

Rev. 4.0, 03/00, page 231 of 395
HITACHI



Example

EXTS.B RO,R1 :  Before execution RO = H'00000080
. After execution R1 = H'FFFFFF80
EXTS.W RO,R1 ;. Before execution RO = H'00008000

. After execution R1 = H'FFFF8000

Rev. 4.0, 03/00, page 232 of 395
HITACHI



9.24 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension
Execution
Format Summary of Operation Instruction Code States T Bit
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmm1100 1 —
byte - Rn
EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmmm1101 1 —
word - Rn

Description

This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is
transferred to Rn bits 16 to 31.

Operation

EXTUB(long m, long n)  /* EXTU.B Rm,Rn */

{
R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

EXTUW(long m, long n) /* EXTU.W Rm,Rn */

{
R[n]=R[m];

R[N]&=0x0000FFFF;

PC+=2;
}

Example

EXTU.B RO,R1

EXTU.W RO,R1

Before execution RO = H'FFFFFF80
: After execution R1 = H'00000080

Before execution RO = H'FFFF8000
: After execution R1 = H'00008000

1

Rev. 4.0, 03/00, page 233 of 395
HITACHI



9.25 FABS Floating-point ABSolute value Floating-Point Instruction
Floating-Point
Absolute Value

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FABS FRn |FRn| - FRn 1111nnnn01011101 1 —
1 FABS DRn IDRn| - DRn 1111nnn001011101 1 —

Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DR
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

void FABS (int n){
FR[n] = FR[n] & OxTfffffff;
pc+=2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 4.0, 03/00, page 234 of 395
HITACHI



9.26 FADD Floating-point ADD Floating-Point Instruction
Floating-Point

Addition
Execution
PR Format Summary of Operation  Instruction Code States T Bit
0 FADD FRm,FRn FRn+FRm - FRn 1111nnNnnmmmm~O000 1 —
1 FADD DRm,DRn DRn+DRm - DRn 1111nnnOmMmmO0000 6 —
Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in
and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers ir
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whethel
an exception has occurred. When an exception occurs, correct exception information is refle
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc
therefore be performed by software.

Operation

void FADD (int m,n)
{
pc +=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m))}{
case NORM: switch (data_type_of(n))}{
case NORM: normal_faddsub(m,n,ADD); break;
case PZERO:
case NZERO:register_copy(m,n); break;
default: break;
} break;

Rev. 4.0, 03/00, page 235 of 395
HITACHI



case PZERO: switch (data_type_of(n)){
case NZERO: zero(n,0); break;
default: break;

} break;

case NZERO: break;

case PINF: switch (data_type_of(n))X{
case NINF: invalid(n); break;
default: inf(n,0); break;

} break;

case NINF: switch (data_type_of(n)){
case PINF: invalid(n); break;
default: inf(n,1); break;

} break;

}

FADD Special Cases

FRm,DRm FRn,DRnNn

NORM ‘ +0 \ 0 +INF

—INF

DENORM

gNaN

sNaN

NORM ADD
+0 +0

-0 0

—INF

+INF +INF

Invalid

—INF —INF \ Invalid

—INF

DENORM

Error

gNaN

gNaN

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

« Invalid operation
e Overflow

* Underflow

¢ Inexact

Rev. 4.0, 03/00, page 236 of 395
HITACHI




9.27 FCMP Floating-point CoMPare

Floating-Point

Floating-Point Instruction

Comparison
Execution

PR Format Summary of Operation Instruction Code States T Bit
0 1. FCMP/EQ FRm,FRn (FRn==FRm)?1:0 - T  1111nnnnmmmm02100 1 1/0

1 2. FCMP/EQ DRm,DRn (DRn==DRm)?1:0 -~ T  1111nnnOmmmO00100 1 1/0

0 3. FCMP/GT FRm,FRn (FRn>FRmM)?1:0 -~ T 1112nnnnmmmmO0101 2 1/0

1 4. FCMP/GT DRm,DRn (DRn>DRm)?1:0 - T 1111nnnOmmmO0101 2 1/0

Description

1. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or O otherwise.

3. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or O otherwise.

Operation

void FCMP_EQ(int m,n) /* FCMP/EQ FRm,FRn */
{
pc +=2;
clear_cause();
if(fcmp_chk (m,n) == INVALID) fcmp_invalid();
else if(fcmp_chk (m,n) == EQ) T =1;

else T=0;
}
void FCMP_GT(int m,n) /* FCMP/GT FRm,FRn */
{

pc +=2;

clear_cause();

if (fcmp_chk (m,n) == INVALID) ||
(femp_chk (m,n) == UO)) fcmp_invalid();

else if(fcmp_chk (m,n) == GT) T =1,

HITACHI

Rev. 4.0, 03/00, page 237 of 395



else T=0;
}
int fcmp_chk (int m,n)
{
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) return(INVALID);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN))  return(UO);
else switch(data_type_of(m)¥{
case NORM:  switch(data_type_of(n)){
case PINF :return(GT); break;
case NINF :return(LT); break;

default: break;
}  break;

case PZERO:

case NZERO: switch(data_type_of(n)){
case PZERO :
case NZERO :return(EQ); break;
default: break;
}  break;

case PINF : switch(data_type_of(n)){
case PINF :return(EQ); break;
default:return(LT); break;
}  break;

case NINF :  switch(data_type_of(n)){
case NINF :return(EQ); break;
default:return(GT); break;

}  break;
}
if(FPSCR_PR == 0) {
if(FR[N] == FR[m]) return(EQ);
else if(FR[N] > FR[m]) return(GT);
else return(LT);
else {

if(DR[N>>1] == DR[M>>1]) return(EQ);
else if(DR[n>>1] > DR[m>>1]) return(GT);

Rev. 4.0, 03/00, page 238 of 395
HITACHI



else return(LT);

}

void femp_invalid()

{
set_V(); if((FPSCR & ENABLE_V) ==0) T =0;
else fpu_exception_trap();

FCMP Special Cases

FCMP/EQ FRn,DRN
FRm,DRm| NORM \ DNORM \ +0 -0 +INF \ —INF \ gNaN | sNaN
NORM CMP
DNORM
+0 EQ
-0
+INF EQ
-INF EQ
gNaN IEQ
sNaN Invalid
Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT FRn,DRn
FRm,DRm| NORM ‘DENORM‘ +0 -0 +INF —INF gNaN | sNaN
NORM | CMP GT IGT
DENORM
+0 IGT
-0
+INF IGT IGT
—INF GT IGT
gNaN uo

sNaN Invalid
Note: When DN = 1, the value of a denormalized number is treated as O.
UO means unordered. Unordered is treated as false (IGT).

Possible Exceptions:
Invalid operation
Rev. 4.0, 03/00, page 239 of 395
HITACHI



9.28 FCNVDS Floating-point CoNVert

Double to Single precision  Floating-Point Instruction
Double-Precision
to Single-Precision

Conversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 — — — — —
1 FCNVDS DRm,FPUL (float)DRm - FPUL 1112mmm010111101 2 —
Description

When FPSCR.PR = 1: This instruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether
an exception has occurred. When an exception occurs, correct exception information is reflec
FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing should the
be performed by software.

Operation

void FCNVDS(int m, float *FPUL){
case((FPSCR.PR){
0: undefined_operation(); /* reserved */
1. fcnvds(m, *FPUL); break; /* FCNVDS */

}
void fenvds(int m, float *FPUL)

{

pc +=2;

clear_cause();

case(data_type_of(m, *FPUL)){
NORM :
PZERO :
NZERO : normal_ fcnvds(m, *FPUL); break;
DENORM : set_E();
PINF : *FPUL = 0x7f800000; break;
NINF :  *FPUL = 0xff800000; break;

Rev. 4.0, 03/00, page 240 of 395
HITACHI



gNaN : *FPUL = Ox7fbfffff; break;
sNaN : set_V();
if(FPSCR & ENABLE_V) == 0) *FPUL = Ox7fbfffff;

else fpu_exception_trap();

}

void normal_fcnvds(int m, float *FPUL)

{

int sign;

float abs;

union {
float f;
int[;

}  dstf,tmpf;

union {
double d;
int I[2];

}  dstd;

dstd.d = DR[m>>1];

if(dstd.I[1] & Ox1fffffff)) set_I();

break;

if(FPSCR_RM == 1) dstd.I[1] &= 0xe0000000; /* round toward zero*/

dstf.f = dstd.d;

check_single_exception(FPUL, dstf.f);

FCNVDS Special Cases

FRn

+NORM

—NORM

+0

-0

+INF

—INF

gNaN

sNaN

FCNVDS(FRn FPUL)

FCNVDS

FCNVDS

+0

-0

+INF

—INF

gNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

* FPU error

e Invalid operation

*« Overflow
* Underflow
¢ |nexact

HITACHI

Rev. 4.0, 03/00, page 241 of 395




9.29 FCNVSD Floating-point CoNVert
Single to Double precision  Floating-Point Instruction
Single-Precision
to Double-Precision
Conversion

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 — — — — —

1 FCNVSD FPUL, DRn (double) FPUL - DRn  1111nnn010101101 2 —

Description

When FPSCR.PR = 1: This instruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

Operation

void FCNVSD(int n, float *FPUL){
pc +=2;
clear_cause();
case((FPSCR_PR){
0: undefined_operation(); /* reserved */
1: fenvsd (n, *FPUL); break; /* FCNVSD */

}
}
void fenvsd(int n, float *FPUL)
{
case(fpul_type(FPUL)){
PZERO :
NZERO:
PINF :
NINF : DR[n>>1] = *FPUL; break;
DENORM : set_E(); break;
gNaN : gnan(n); break;
sNaN : invalid(n); break;
}
}

int fpul_type(int *FPUL)

Rev. 4.0, 03/00, page 242 of 395
HITACHI



{
int abs;
abs = *FPUL & OxTfffffff;
if(abs < 0x00800000){
if((FPSCR_DN == 1) || (abs == 0x00000000)){
if(sign_of(src) == 0) return(PZERO);
else return(NZERO);

}
else return(DENORM);

}

else if(abs < 0x7f800000) return(NORM);

else if(abs == 0x7f800000) {
if(sign_of(src) == 0) return(PINF);
else return(NINF);

}

else if(abs < 0x7fc00000) return(qNaN);

else return(sNaN);

}

FCNVSD Special Cases

FRn +NORM | —NORM +0 -0 +INF —INF gNaN | sNaN

FCNVSD(FPUL FRn) |[+NORM |-NORM +0 -0 +INF —INF gNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
* FPU error

« Invalid operation

Rev. 4.0, 03/00, page 243 of 395
HITACHI



9.30 FDIV Floating-point DIVide Floating-Point Instruction
Floating-Point

Division
Execution
PR Format Summary of Operation  Instruction Code States T Bit
0 FDIV FRm,FRn FRn/FRm - FRn 1111nnnnmmmmO0011 10 —
1 FDIV DRm,DRn DRn/DRm - DRn 1111nnnOmmmO0011 23 —
Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn
the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DR
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether
an exception has occurred. When an exception occurs, correct exception information is reflec
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shot
therefore be performed by software.

Operation

void FDIV(int m,n)  /* FDIV FRm,FRn */
{
pc +=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else switch (data_type_of(m))}{
case NORM: switch (data_type_of(n)){

case PINF:

case NINF: inf(n,sign_of(m)”sign_of(n));break;
case PZERO:

case NZERO: zero(n,sign_of(m)~sign_of(n));break;
case DENORM:set_E(); break;

default: normal_fdiv(m,n); break;

} break;

Rev. 4.0, 03/00, page 244 of 395
HITACHI



case PZERO: switch (data_type_of(n))X{
case PZERO:
case NZERO: invalid(n);break;
case PINF:
case NINF: break;
default:  dz(n,sign_of(m)~sign_of(n));break;
} break;
case NZERO: switch (data_type_of(n)){
case PZERO:
case NZERO: invalid(n); break;
case PINF: inf(n,1); break;
case NINF: inf(n,0); break;
default:  dz(FR[n],sign_of(m)"sign_of(n)); break;
} break;
case DENORM: set_E(); break;
case PINF :
case NINF : switch (data_type_of(n)){
case DENORM: set_E(); break;
case PINF:
case NINF: invalid(n);  break;
default: zero(n,sign_of(m)"sign_of(n));break
} break;

}
void normal_fdiv(int m,n)
{
union {
float f;
int[;
}  dstf,tmpf;
union {
double d;
int I[2];
}  dstd,tmpd;
union {
int double x;
int 1[4];

HITACHI

Rev. 4.0, 03/00, page 245 of 395



}

tmpx;
if(FPSCR_PR ==0) {

tmpf.f = FR[n]; /* save destination value */
dstf.f /= FR[m]; /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= FR[m];
if(tmpf.f = tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

dstf.l -= 1; /* round toward zero */
check_single_exception(&FR[n], dstf.f);

}else {

tmpd.d = DR[n>>1]; /* save destination value */
dstd.d /= DR[m>>1]; /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= DR[m>>1];
if(tmpd.d = tmpx.x) set_I();
if(tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
dstd.l[1] -= 1; /* round toward zero */
if(dstd.l[1] == Oxffffffff) dstd.I[0] -= 1;
}
check_double_exception(&DR[n>>1], dstd.d);

}
FDIV Special Cases
FRm,DRm FRn,DRnNn

NORM +0 -0 +INF —INF |DENORM| ¢gNaN sNaN

NORM DIV 0 INF Error

+0 Dz Invalid +INF —INF Dz

-0 —INF +INF

+INF 0 +0 -0 Invalid

—INF -0 +0
DENORM Error

gNaN gNaN

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 4.0, 03/00, page 246 of 395

HITACHI




Possible Exceptions:

FPU error
Invalid operation
Divide by zero
Overflow
Underflow
Inexact

HITACHI

Rev. 4.0, 03/00, page 247 of 395



9.31 FIPR Floating-point Inner

PRoduct Floating-Point Instruction
Floating-Point
Inner Product
Execution
PR Format Summary of Operation  Instruction Code States T Bit
0 FIPR FVm,FVn FVn [FVm - FR[n+3] 1111nnmm11101101 1 —

Notes: FVO = {FRO, FR1, FR2, FR3}

FV4 = {FR4, FR5, FR6, FR7}
FVv8 = {FR8, FR9, FR10, FR11}
FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional sing
precision floating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequence is as follows:

el A

Multiplies all terms. The results are 28 bits long.
Aligns these results, rounding them to fit within 30 bits.
Adds the aligned values.

Performs normalization and rounding.

Special processing is performed in the following cases:

If an input value is an sNaN, an invalid exception is generated.

If the input values to be multiplied include a combination of 0 and infinity, an invalid

exception is generated.

In cases other than the above, if the input values include a gNaN, the result will be a gNaN

In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

If the input values do not include an sNaN, gNaN, or infinity, processing is performed in the
normal way.

Rev. 4.0, 03/00, page 248 of 395

HITACHI



When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whethel
an exception has occurred. When an exception occurs, correct exception information is refle
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc
therefore be performed by software.

Operation

void FIPR(int m,n) /* FIPR FVm,FVn */
{
if(FPSCR_PR == 0) {
pc +=2;
clear_cause();
fipr(m,n);
}
else undefined_operation();

}

Possible Exceptions:
e Invalid operation

*« Overflow
* Underflow
¢ Inexact

Rev. 4.0, 03/00, page 249 of 395
HITACHI



9.32 FLDIO

Floating-point

LoaD Immediate 0.0 Floating-Point Instruction
0.0 Load
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FLDIO FRn 0x00000000 — FRn 1111nnnn10001101 1 —

Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

Operation

void FLDIO(int n)
{

FR[n] = 0x00000000;

pc += 2;
}

Possible Exceptions:

None

Rev. 4.0, 03/00, page 250 of 395

HITACHI



9.33 FLDI1 Floating-point LoaD

Immediate 1.0 Floating-Point Instruction
1.0 Load
Execution
Format Summary of Operation Instruction Code States T Bit
FLDI1 FRn 0x3F800000 - FRn 1111nnnn10011101 1 —
Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (Ox3F800000) into FRn.
Operation

void FLDI1(int n)

{
FR[n] = 0x3F800000;

pc += 2;
}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 251 of 395
HITACHI



9.34 FLDS Floating-point

LoaD to System register Floating-Point Instruction
Transfer to System

Register
Execution
Format Summary of Operation Instruction Code States T Bit
FLDS FRm,FPUL FRm - FPUL 1111mmmmO00011101 1 —
Description

This instruction loads the contents of floating-point register FRm into system register FPUL.
Operation

void FLDS(int m, float *FPUL)

{
*FPUL = FR[m];
pc +=2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 252 of 395
HITACHI



9.35 FLOAT Floating-point
convert from integer
Integer to Floating-Point

Conversion

Floating-Point Instruction

PR  Format

Execution

Summary of Operation Instruction Code States T Bit

0 FLOAT FPUL,FRn (float)FPUL - FRn

1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL - DRn 1111nnn000101101 2 —

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.l = 1, an FPU exception trap is generated regardless of whether or not
exception has occurred. When an exception occurs, correct exception information is reflecte
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc

therefore be performed by software.

HITACHI

Rev. 4.0, 03/00, page 253 of 395



Operation

void FLOAT(int n, float *FPUL)

{
union {
double d;
int 1[2];
} o tmp;
pc += 2;
clear_cause();
if(FPSCR.PR==0){
FR[n] = *FPUL; /* convert from integer to float */
tmp.d = *FPUL;
if(tmp.I[1] & Ox1fffffff) inexact();
}else {
DR[n>>1] = *FPUL; /* convert from integer to double */
}
}

Possible Exceptions:
Inexact: Not generated when FPSCR.PR = 1.

Rev. 4.0, 03/00, page 254 of 395
HITACHI



9.36 FMAC Floating-point Multiply
and ACcumulate Floating-Point Instruction

Floating-Point Multiply
and Accumulate

Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FMAC FRO,FRm,FRn FRO*FRm+FRn - FRn 111lnnnnmmmm31110 1 —
1 — — — — —

Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision floatil
point numbers in FRO and FRm, arithmetically adds the contents of FRn, and stores the resu

FRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whethel
an exception has occurred. When an exception occurs, correct exception information is refle
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc

therefore be performed by software.
Operation

void FMAC(int m,n)
{
pc +=2;
clear_cause();
if(FPSCR_PR == 1) undefined_operation();
else if((data_type_of(0) == sNaN) ||
(data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(0) == gNaN) ||
(data_type_of(m) == gNaN)) gnan(n);
else if((data_type_of(0) == DENORM) ||
(data_type_of(m) == DENORM)) set_E();
else switch (data_type_of(0)}{
case NORM: switch (data_type_of(m)){
case PZERO:
case NZERO: switch (data_type_of(n)){
case DENORM: set_E(); break;

Rev. 4.0, 03/00, page 255 of 395
HITACHI



case qNaN: gnan(n); break;
case PZERO:

case NZERO: zero(n,sign_of(0)" sign_of(m)"sign_of(n));
break;

default: break;
}
case PINF:
case NINF: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PINF:
case NINF: if(sign_of(0)" sign_of(m)~sign_of(n)) invalid(n);
else inf(n,sign_of(0)" sign_of(m)); break;
default: inf(n,sign_of(0)* sign_of(m)); break;
}
case NORM: switch (data_type_of(n){
case DENORM: set_E(); break;
case gdNaN: gnan(n); break;
case PINF:
case NINF: inf(n,sign_of(n)); break;
case PZERO:
case NZERO:
case NORM: normal_fmac(m,n); break;
}  break;
case PZERO:
case NZERO: switch (data_type_of(m)){
case PINF:
case NINF: invalid(n); break;
case PZERO:
case NZERO:
case NORM: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
case PZERO:
case NZERO: zero(n,sign_of(0)* sign_of(m)"sign_of(n)); break;
default: break;
} break;
}  break;

Rev. 4.0, 03/00, page 256 of 395
HITACHI



case PINF :
case NINF : switch (data_type_of(m)){
case PZERO:
case NZERO:invalid(n); break;
default: switch (data_type_of(n)){
case DENORM: set_E(); break;
case gNaN: gnan(n); break;
default: inf(n,sign_of(0)"sign_of(m)"sign_of(n));break
}  break;
}  break;

}

void normal_fmac(int m,n)
{
union {
int double x;
int 1[4];
}  dstx,tmpx;
float dstf,srcf;
if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))
srcf = 0.0; /* flush denormalized value */
else srcf = FR[n];
tmpx.x = FR[O]; /* convert single to int double */
tmpx.x *= FR[m]; /* exact product */
dstx.x = tmpx.x + srcf;
if(((dstx.x == srcf) && (tmpx.x 1= 0.0)) ||
((dstx.x == tmpx.x) && (srcf != 0.0))) {
set_I();
if(sign_of(0)" sign_of(m)" sign_of(n)) {
dstx.I[3] -= 1; /* correct result */
if(dstx.I[3] == Oxffffffff) dstx.l[2] -= 1;
if(dstx.I[2] == Oxffffffff) dstx.l[1] -= 1;
if(dstx.l[1] == Oxffffffff) dstx.l[0] -= 1;
}
else dstx.I[3] |=1;

}
if((dstx.I[1] & OxOffff) || dstx.I[2] || dstx.I[3]) set_I();

Rev. 4.0, 03/00, page 257 of 395
HITACHI



if(FPSCR_RM == 1) {
dstx.I[1] &= 0xfe000000; /* round toward zero */
dstx.l[2] = 0x00000000;
dstx.I[3] = 0x00000000;

}

dstf = dstx.x;

check_single_exception(&FR[n],dstf);

Rev. 4.0, 03/00, page 258 of 395
HITACHI



FMAC Special Cases

FRn FRO FRm
+Norm’—Norm’ +0 ’ -0 +INF —INF |Denorm| gNaN | sNaN
Norm | Norm | MAC INF
0 Invalid
INF INF Invalid INF
+0 Norm | MAC
0 +0 Invalid
INF INF Invalid INF
-0 +Norm | MAC +0 -0 +INF | —INF
—Norm -0 +0 —INF +INF
+0 +0 -0 +0 -0 Invalid
-0 -0 +0 -0 +0
INF INF Invalid INF
+INF | +Norm | +INF Invalid
—Norm +INF
0 Invalid
+INF Invalid +INF
—INF | Invalid | +INF +INF
—INF | +Norm | —INF ] ~INF
—Norm
0
+INF | Invalid Invalid —INF
-INF | —INF ‘—INF Invalid
Denorm| Norm
0 Invalid |
INF | Invalid
IsNaN |Denorm Error
gNaN 0 Invalid ‘
INF | Invalid
Norm
IsNaN | gNaN gNaN

All types| sNaN

SNaN |all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 4.0, 03/00, page 259 of 395
HITACHI



Possible Exceptions:

Rev. 4.0, 03/00, page 260 of 395

FPU error
Invalid operation
Overflow
Underflow
Inexact

HITACHI



9.37 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point

Transfer
Summary of Execution

SZ Format Operation Instruction Code States T Bit
0 1. FMOV FRm,FRn FRm - FRn 111Innnnmmmm1100 1 —
1 2. FMOV DRm,DRn DRm - DRn 1111nnnOmmmO01100 1 —
0 3.FMOV.S FRm,@Rn FRm - (Rn) 1112nnnnmmmm31010 1 —
1 4. FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmmO01010 1 —
0 5.FMOV.S @Rm,FRn (Rm) > FRn 1112nnnnmmmm21000 1 —
1 6. FMOV @Rm,DRn (Rm) - DRn 1111nnnOmMmmm21000 1 —
0 7.FMOV.S @Rm+,FRn (Rm) - FRn,Rm+=4 1111nnnnmmmm1001 1 —
1 8. FMOV @Rm+,DRn (Rm) - DRn,Rm+=8 1111nnnOmmmm31001 1 —
0 9. FMOV.S FRm,@-Rn Rn-=4,FRm - (Rn) 1111nnnnmmmm1011 1 —
1 10. FMOV DRm,@-Rn Rn-=8,DRm - (Rn) 1111nnnnmmmO01011 1 —
0 11. FMOV.S @(RO,Rm),FRn (RO+Rm) - FRn 1111nnnnmmmmO0110 1 —
1 12. FMOV @(RO,Rm),DRn (RO+Rm) - DRn 1112nnnOmMmmmO110 1 —
0 13. FMOV.S FRm, @(RO,Rn) FRm - (RO+Rn) 1111nnnnmmmmO0111 1 —
1 14. FMOV DRm, @(RO,Rn) DRm - (RO+Rn) 1112nnnnmmmO00111 1 —
Description
1. This instruction transfers FRm contents to FRn.
2. This instruction transfers DRm contents to DRn.
3. This instruction transfers FRm contents to memory at address indicated by Rn.
4. This instruction transfers DRm contents to memory at address indicated by Rn.
5. This instruction transfers contents of memory at address indicated by Rm to FRn.
6. This instruction transfers contents of memory at address indicated by Rm to DRn.
7. This instruction transfers contents of memory at address indicated by Rm to FRn, and ad

Rm.

8. This instruction transfers contents of memory at address indicated by Rm to DRn, and ad
to Rm.

9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. This instruction transfers contents of memory at address indicated by (RO + Rm) to FRn.

Rev. 4.0, 03/00, page 261 of 395
HITACHI



12. This instruction transfers contents of memory at address indicated by (RO + Rm) to DRn.
13. This instruction transfers FRm contents to memory at address indicated by (RO + Rn).
14. This instruction transfers DRm contents to memory at address indicated by (RO + Rn).

Operation

void FMOV(int m,n) /* FMOV FRm,FRn */
{
FR[n] = FR[m];
pc += 2;
}
void FMOV_DR(int m,n) /* FMOV DRm,DRn */
{
DR[n>>1] = DR[m>>1];
pc +=2;
}
void FMOV_STORE(int m,n) [* FMOV.S FRm,@Rn */
{
store_int(FR[m],R[n]);
pc += 2;
}
void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */
{
store_quad(DR[m>>1],R[n]);
pc +=2;
}
void FMOV_LOAD(int m,n) /* FMOV.S @Rm,FRn */
{
load_int(R[m],FR[n]);
pc += 2;
}
void FMOV_LOAD_DR(int m,n) /* FMOV @Rm,DRn */
{
load_quad(R[m],DR[n>>1]);
pc +=2;
}
void FMOV_RESTORE(int m,n)  /* FMOV.S @Rm+,FRn */

{

Rev. 4.0, 03/00, page 262 of 395
HITACHI



load_int(R[m],FR[n]);
R[m] += 4;
pc += 2;
}
void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */
{
load_quad(R[m],DR[n>>1]) ;
R[m] +=8;
pc += 2;
}
void FMOV_SAVE(int m,n) /* FMOV.S FRm,@—-Rn */
{
store_int(FR[m],R[n]-4);
R[] -= 4;
pc += 2;
}
void FMOV_SAVE_DR(int m,n) /* FMOV DRm,@-Rn */
{
store_quad(DR[m>>1],R[n]-8);
R[n] -= 8;
pc += 2;
}
void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */
{
load_int(R[0] + R[m],FR[n]);
pc +=2;
}
void FMOV_INDEX_LOAD_DR(int m,n) #FMOV @(R0,Rm),DRn */
{
load_quad(R[0] + R[m],DR[n>>1]);
pc += 2;
}
void FMOV_INDEX_STORE(int m,n) /*FMOV.S FRm,@(RO,Rn)*/
{
store_int(FR[m], R[O] + R[n]);
pc +=2;

Rev. 4.0, 03/00, page 263 of 395
HITACHI



void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/
{

store_quad(DR[m>>1], R[0] + R[n]);

pc +=2;
}

Possible Exceptions:
e Data TLB miss exception

« Data protection violation exception
¢ Initial write exception
* Address error

Rev. 4.0, 03/00, page 264 of 395
HITACHI



9.38 FMOV Floating-point

MOVe extension Floating-Point Instruction
Floating-Point
Transfer
Summary of Execution
PR Format Operation Instruction Code States T Bit
. FMOV XDm,@Rn XRm - (Rn) 1111nnnnmmm11010 1 —
. FMOV @Rm,XDn (Rm) - XDn 1111nnnImmmm31000 1 —

. FMOV @Rm+,XDn (Rm) - XDn,Rm+=8 1111nnn1mmmm21001 1 —
. FMOV XDm,@-Rn Rn-=8,XDm - (Rn) 111lnnnnmmm11011 1 —
. FMOV @(RO,Rm),XDn (RO+Rm) - XDn 1111nnnImmmmO0110 1 —
. FMOV XDm,@(R0O,Rn) XDm - (RO+Rn) 1112nnnnmmm10111 1 —

N T e e = = = T =
© O N O U A WN R

. FMOV XDm,XDn XDm - XDn 1111nnn1lmmm11100 1 —

. FMOV XDm,DRn XDm - DRn 1111nnnOmmm11100 1 —

. FMOV DRm,XDn DRm - XDn 1111nnn1mmmO01100 1 —
Description

1. This instruction transfers XDm contents to memory at address indicated by Rn.
2. This instruction transfers contents of memory at address indicated by Rm to XDn.

3. This instruction transfers contents of memory at address indicated by Rm to XDn, and ad
to Rm.

4. This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

This instruction transfers contents of memory at address indicated by (RO + Rm) to XDn.
This instruction transfers XDm contents to memory at address indicated by (RO + Rn).
This instruction transfers XDm contents to XDn.

This instruction transfers XDm contents to DRn.

This instruction transfers DRm contents to XDn.

© 0N oo,

Rev. 4.0, 03/00, page 265 of 395
HITACHI



Operation

void FMOV_STORE_XD(int m,n)  /* FMOV XDm,@Rn */
{
store_quad(XD[m>>1],R[n]);
pc +=2;
}
void FMOV_LOAD_XD(int m,n)  /* FMOV @Rm,XDn */
{
load_quad(R[m],XD[n>>1]);
pc += 2;
}
void FMOV_RESTORE_XD(int m,n) /* FMOV @Rm+,DBn */
{
load_quad(R[m],XD[n>>1]);
R[m] +=8;
pc += 2;
}
void FMOV_SAVE_XD(int m,n)  /* FMOV XDm,@-Rn */
{
store_quad(XD[m>>1],R[n]-8);
R[n] -= 8;
pc += 2;
}
void FMOV_INDEX_LOAD_XD(int m,n) * FMOV @(RO,Rm),XDn */
{
load_quad(R[0] + R[m],XD[n>>1]);
pc +=2;
}
void FMOV_INDEX_STORE_XD(int m,n) /* FMOV XDm,@(RO,Rn) */
{
store_quad(XD[m>>1], R[0] + R[n]);
pc += 2;
}
void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */
{
XD[n>>1] = XD[m>>1];
pc +=2;

Rev. 4.0, 03/00, page 266 of 395
HITACHI



}
void FMOV_XDDR(int m,n)  /* FMOV XDm,DRn */

{
DR[n>>1] = XD[m>>1];
pc += 2;
}
void FMOV_DRXD(int m,n)  /* FMOV DRm,XDn */
{
XD[n>>1] = DR[m>>1];
pc +=2;
}

Possible Exceptions:
e Data TLB miss exception

« Data protection violation exception
e Initial write exception
e Address error

Rev. 4.0, 03/00, page 267 of 395
HITACHI



9.39 FMUL Floating-point MULtiply Floating-Point Instruction
Floating-Point

Multiplication
Execution
PR Format Summary of Operation  Instruction Code States T Bit
0 FMUL FRm,FRn FRn*FRm - FRn 1111nnnnmmmmO0010 1 —
1 FMUL DRm,DRn DRn*DRm - DRn 1111nnnOmMmmO0010 6 —
Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point number
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whether
an exception has occurred. When an exception occurs, correct exception information is reflec
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shot
therefore be performed by software.

Operation

void FMUL(int m,n)
{
pc +=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m){
case NORM: switch (data_type_of(n)){
case PZERO:
case NZERO: zero(n,sign_of(m)~sign_of(n)); break;
case PINF:
case NINF: inf(n,sign_of(m)sign_of(n)); break;
default: normal_fmul(m,n); break;

Rev. 4.0, 03/00, page 268 of 395
HITACHI



}

}  break;
case PZERO:
case NZERO: switch (data_type_of(n)){
case PINF:
case NINF: invalid(n); break;
default:  zero(n,sign_of(m)"sign_of(n));break;

}  break;
case PINF :
case NINF : switch (data_type_of(n)){
case PZERO:
case NZERO: invalid(n); break;
default:  inf(n,sign_of(m)~sign_of(n));break
} break;
}

FMUL Special Cases

FRm,DRm FRn,DRnNn
NORM +0 -0 +INF —INF |DENORM| ¢gNaN sNaN
NORM MUL 0 INF
+0 0 +0 -0 Invalid
-0 -0 +0
+INF INF Invalid +INF —INF
—INF —INF +INF
DENORM Error
gNaN gNaN
sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

FPU error
Invalid operation
Overflow
Underflow
Inexact

Rev. 4.0, 03/00, page 269 of 395
HITACHI




9.40 FNEG Floating-point NEGate value Floating-Point Instruction
Floating-Point
Sign Inversion

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FNEG FRn -FRn - FRn 1111nnnn01001101 1 —
1 FNEG DRn -DRn - DRn 1111nnn001001101 1 —

Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point registe
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.
Operation

void FNEG (int n){
FR[n] = -FR[n];
pc += 2;

[* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 4.0, 03/00, page 270 of 395
HITACHI



9.41 FRCHG FR-bit CHanGe Floating-Point Instruction

FR Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FRCHG FPSCR.FR=~FPSCR.FR 1111101111111101 1 —
Description

This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSC
changed, FRO to FR15 in FPRO_BANKO to FPR15_BANKO and FPRO_BANK1 to

FPR15 BANK1 become XRO0 to XR15, and XR0 to XR15 become FRO to FR15. When
FPSCR.FR = 0, FPRO_BANKO to FPR15_BANKO correspond to FRO to FR15, and
FPRO_BANK1 to FPR15_BANKZ1 correspond to XR0 to XR15. When FPSCR.FR =1,
FPRO_BANK1 to FPR15_BANK1 correspond to FRO to FR15, and FPRO_BANKO to
FPR15_BANKO correspond to XRO0 to XR15.

Operation

void FRCHG() /* FRCHG */
{
if(FPSCR_PR == 0){
FPSCR #= 0x00200000; /* bit 21 */
PC +=2;
}

else undefined_operation();

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 271 of 395
HITACHI



9.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit
Inversion
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSCHG FPSCR.SZ=~FPSCR.SZ 1111001111111101 1 —
Description

This instruction inverts the SZ bit in floating-point register FPSCR. Changing the SZ bit in
FPSCR switches FMQV instruction data transfer between one single-precision data unit and &
pair. When FPSCR.SZ = 0, the FMOV instruction transfers one single-precision data unit. Wh
FPSCR.SZ = 1, the FMOV instruction transfers two single-precision data units as a pair.

Operation

void FSCHG() /* FSCHG */
{
if(FPSCR_PR == 0){
FPSCR "= 0x00100000; /* bit 20 */
PC += 2;
}

else undefined_operation();

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 272 of 395
HITACHI



9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
Floating-Point
Square Root

Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FSQRT FRn VFRn - FRn 1111nnnn01101101 9 —
1 FSQRT DRn  vDRn - DRn 1111nnnn01101101 22 —

Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-poin
number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-poi
number in DRn, and stores the result in DRn.

When FPSCR.enable.l is set, an FPU exception trap is generated regardless of whether or r
exception has occurred. When an exception occurs, correct exception information is reflecte
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc
therefore be performed by software.

Operation

void FSQRT(int n){
pc+=2;
clear_cause();
switch(data_type_of(n)){
case NORM : if(sign_of(n) == 0) normal_ fsqrt(n);
else invalid(n); break;
case DENORM: if(sign_of(n) == 0) set_E();
else invalid(n); break;

case PZERO :

case NZERO :

case PINF : break;

case NINF : invalid(n); break;

case gNaN : gnan(n); break;
case sNaN : invalid(n); break;

}

void normal_fsqgrt(int n)

Rev. 4.0, 03/00, page 273 of 395
HITACHI



{

union {
float f;
intl;

}  dstf,tmpf;

union {
double d;
int 1[2];

} dstd,tmpd;

union {
int double x;
int I[4];

} o tmpx;

if(FPSCR_PR == 0) {
tmpf.f = FR[n]; /* save destination value */
dstf.f = sqrt(FR[n]); /* round toward nearest or even */
tmpd.d = dstf.f; /* convert single to double */
tmpd.d *= dstf.f;
if(tmpf.f = tmpd.d) set_I();
if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))
dstf.l -= 1; /* round toward zero */
if(FPSCR & ENABLE_I) fpu_exception_trap();
else FR[n] = dstf.f;
}else {
tmpd.d = DR[n>>1]; /* save destination value */
dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */
tmpx.x = dstd.d; /* convert double to int double */
tmpx.x *= dstd.d;
if(tmpd.d = tmpx.x) set_I();
if(tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {
dstd.I[1] -= 1; /* round toward zero */
if(dstd.I[1] == Oxffffffff) dstd.l[0] -= 1;

}
if(FPSCR & ENABLE_I) fpu_exception_trap();
else DR[n>>1] = dstd.d;

}

Rev. 4.0, 03/00, page 274 of 395
HITACHI



FSQRT Special Cases

FRn +NORM —NORM +0 -0 +INF —INF gNaN sNaN
FSQRT(FRN) [SQRT Invalid +0 -0 +INF Invalid gNaN Invalid
Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:

e FPU error
« Invalid operation
¢ |nexact

Rev. 4.0, 03/00, page 275 of 395
HITACHI



9.44 FSTS Floating-point STore

System register Floating-Point Instruction
Transfer from
System Register

Execution
Format Summary of Operation Instruction Code States T Bit
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 1 —

Description
This instruction transfers the contents of system register FPUL to floating-point register FRn.
Operation

void FSTS(int n, float *FPUL)

{
FR[n] = *FPUL;
pc +=2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 276 of 395
HITACHI



9.45 FSUB Floating-point

SUBtract Floating-Point Instruction
Floating-Point
Subtraction
Execution
PR Format Summary of Operation  Instruction Code States T Bit
0 FSUB FRm,FRn FRn-FRm - FRn 1111nnnnmmmmO001 1 —
FSUB DRm,DRn DRnN-DRm - DRn 1111nnnOmmmO0001 6

Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in F
from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/l is set, an FPU exception trap is generated regardless of whethel
an exception has occurred. When an exception occurs, correct exception information is refle
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing shc
therefore be performed by software.

Operation

void FSUB (int m,n)
{
pc+=2;
clear_cause();
if((data_type_of(m) == sNaN) ||
(data_type_of(n) == sNaN)) invalid(n);
else if((data_type_of(m) == gNaN) ||
(data_type_of(n) == gNaN)) gnan(n);
else if((data_type_of(m) == DENORM) ||
(data_type_of(n) == DENORM)) set_E();
else switch (data_type_of(m))X{
case NORM: switch (data_type_of(n))}{
case NORM: normal_faddsub(m,n,SUB); break;
case PZERO:
case NZERO: register_copy(m,n); FR[n] = -FR[n];break;
default: break;

Rev. 4.0, 03/00, page 277 of 395
HITACHI



} break;

case PZERO: break;

case NZERO: switch (data_type_of(n)){
case NZERO: zero(n,0); break;
default: break;

} break;

case PINF: switch (data_type_of(n))X{
case PINF: invalid(n); break;
default: inf(n,1); break;

} break;

case NINF: switch (data_type_of(n)){
case NINF: invalid(n); break;
default: inf(n,0); break;

} break;

}

FSUB Special Cases

FRm,DRm FRn,DRnN

NORM ] +0 -0 +INF

—INF

DENORM

gNaN

sNaN

NORM SUB +INF
+0 -0
-0 +0
+INF —INF Invalid

—INF

—INF +INF

Invalid

DENORM

Error

gNaN

gNaN

sNaN

Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
e FPU error

¢ Invalid operation
¢ Overflow

e Underflow

¢ Inexact

Rev. 4.0, 03/00, page 278 of 395
HITACHI




9.46 FTRC Floating-point TRuncate

and Convert to integer Floating-Point Instruction
Conversion
to Integer
Execution
PR Format Summary of Operation Instruction Code States T Bit
0 FTRC FRm,FPUL (long)FRm - FPUL 1111mmmmO00111101 1 —

FTRC DRm,FPUL (long)DRm - FPUL 1111mmm000111101 2 —

Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bi
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-k
integer, and stores the result in FPUL.

The rounding mode is always truncation.
Operation

#define N_INT_SINGLE_RANGE 0xcf000000 & Ox7fffffff /+ -1.000000 * 231 %/
#define P_INT_SINGLE_RANGE Oxdeffffff /* 1.fffffe * 2730 */

#define N_INT_DOUBLE_RANGE 0xc1e0000000200000 & OX7ffffffffffffff

#define P_INT_DOUBLE_RANGE 0x41e0000000000000

void FTRC(int m, int *FPUL)
{
pc+=2;
clear_cause();
if(FPSCR.PR==0){
case(ftrc_single_ type_of(m)){
NORM: *FPUL = FR[m]; break;
PINF: ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;
}

}
else{ [* case FPSCR.PR=1 */

case(ftrc_double_type_of(m)){

Rev. 4.0, 03/00, page 279 of 395
HITACHI



NORM: *FPUL = DR[m>>1]; break;
PINF:  ftrc_invalid(0); break;
NINF: ftrc_invalid(1); break;

}

}
int ftrc_signle_type_of(int m)
{
if(sign_of(m) == 0}
if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */
else if(FR_HEX[m] > P_INT_SINGLE_RANGE)
return(PINF); /* out of range,+INF */
else return(NORM);  /* +0,+NORM */
}else {
if((FR_HEX[m] & Ox7fffffff) > N_INT_SINGLE_RANGE)
return(NINF); /* out of range ,+INF,NaN*/
else return(NORM); /*-0,-NORM */

}
int ftrc_double_type_of(int m)
{
if(sign_of(m) == 0}
if((FR_HEX[m] > 0x7{f00000) ||
((FR_HEX[m] == 0x7ff00000) &&
(FR_HEX[m+1] != 0x00000000))) return(NINF);  /* NaN */
else if(DR_HEX[m>>1] >= P_INT_DOUBLE_RANGE)
return(PINF); /* out of range,+INF */
else return(NORM);  /* +0,+NORM */
}else {
if(DR_HEX[m>>1] & Ox7fffffffffffff) >= N_INT_DOUBLE_RANGE)
return(NINF);  /* out of range ,+INF,NaN?*/
else return(NORM);  /*-0,-NORM */

}
void ftrc_invalid(int sign, int *FPUL)

{
set_V();

Rev. 4.0, 03/00, page 280 of 395
HITACHI



if((FPSCR & ENABLE_V) == 0){
if(sign == 0)  *FPUL = OxTfffffff;
else *FPUL = 0x80000000;
}

else fpu_exception_trap();

}

FTRC Special Cases

Positive | Negative
Outof | Out of

FRn,DRn NORM +0 -0 Range | Range +INF —INF gNaN sNaN
FTRC TRC 0 0 Invalid |Invalid |Invalid |Invalid |Invalid |Invalid
(FRn,DRn) +MAX  |-MAX +MAX  |[-MAX -MAX  |-MAX

Note: When DN =1, the value of a denormalized number is treated as 0.

Possible Exceptions:
e Invalid operation

Rev. 4.0, 03/00, page 281 of 395
HITACHI




9.47 FTRV Floating-point

TRansform Vector Floating-Point Instruction
Vector
Transformation
Execution
PR Format Summary of Operation Instruction Code States T Bit

0 FTRV XMTRX,FVn XMTRX*FVn - FVn 1111nn0111111101 4 —
1 - - — — —

Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XFO to XF
indicated by XMTRX as a 4-row 4-column matrix, takes the contents of floating-point registers
FR[n] to FR[n + 3] indicated by FVn as a 4-dimensional vector, multiplies the array by the vec
and stores the results in FV[n].

XMTRX FVn FVn
XF[0] XF[4] XF[8] XF[12] FR[N] FR[N]
XF[1] XF[5] XF[9] XF[13] | x | FR[n+1] | - | FR[N+1]
XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]
XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]

The FTRV instruction is intended for speed rather than accuracy, and therefore the results wil
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequence is as follows:

Multiplies all terms. The results are 30 bits long.
Aligns these results, rounding them to fit within 28 bits.
Adds the aligned values.

Performs normalization and rounding.

DR

Special processing is performed in the following cases:

1. If aninput value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of O and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a gNaN, the result will be a gNaN
4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

Rev. 4.0, 03/00, page 282 of 395
HITACHI



5. If the input values do not include an sNaN, gNaN, or infinity, processing is performed in tl

normal way.

When FPSCR.enable.V/O/U/l is set, an FPU exception trap is generated regardless of whett

not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FTRV (intn) /% FTRV FVn *

{

float saved_vec[4],result_vec[4];

int saved_fpscr;
int dst,i;
if(FPSCR_PR ==0) {

}

PC +=2;
clear_cause();
saved_fpscr = FPSCR,;
FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */
dst=12 - n; /* select other vector than FVn */
for(i=0;i<4;i++)saved_vec [i] = FR[dst+i];
for(i=0;i<4;i++){
for(j=0;j<4;j++) FR[dst+j] = XF[i+4]];
fipr(n,dst);
saved_fpscr |= FPSCR & (CAUSE|FLAG) ;
result_vec [i] = FR[dst+3];
}
for(i=0;i<4;i++)FR[dst+i] = saved_vec [i];
FPSCR = saved_fpscr;
if(FPSCR & ENABLE_VOUI) fpu_exception_trap();
else for(i=0;i<4;i++) FR[n+i] = result_vec [i];

else undefined_operation();

HITACHI

Rev. 4.0, 03/00, page 283 of 395



Possible Exceptions:
¢ Invalid operation

*« Overflow
* Underflow
¢ Inexact

Rev. 4.0, 03/00, page 284 of 395
HITACHI



9.48 JMP JuMP Branch Instruction
Unconditional Branch Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JMP @Rn Rn - PC 0100nnnn00101011 2 —
Description

Unconditionally makes a delayed branch to the address specified by Rn.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed b

the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the follow
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JMP(int n)/* IMP @Rn */
{

unsigned int temp;

temp=PC,;
PC=RIn];
Delay_Slot(temp+2);
}
Example
MOV.L JMP_TABLE,RO
JMP @RO
MOV RO,R1
.align 4
JMP_TABLE: . data.l TRGET
TRGET ADD #1,R1

;RO = TRGET address
Branch to TRGET.
:MOV executed before branch.

Jump table

: « Branch destination

Rev. 4.0, 03/00, page 285 of 395

HITACHI



9.49 JSR Jump to SubRoutine Branch Instruction

Branch to Subroutine Procedure Delayed Branch Instruction
Execution
Format Summary of Operation Instruction Code States T Bit
JSR @Rn PC+4 - PR,Rn - PC 0100nnnn00001011 2 —
Description

This instruction makes a delayed branch to the subroutine procedure at the specified address
execution of the following instruction. Return address (PC + 4) is saved in PR, and a branch i
made to the address indicated by general register Rn. JSR is used in combination with RTS f
subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed be
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the followil
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JSR(int n)/* JSR @Rn */
{

unsigned int temp;

temp=PC;
PR=PC+4;
PC=R[n];
Delay_Slot(temp+2);

Rev. 4.0, 03/00, page 286 of 395
HITACHI



Example

JSR_TABLE:
TRGET:

JSR_TABLE,RO

@RO

R1,R1

RO,R1

TRGET

R2,R3

#70,R1

;RO = TRGET address

Branch to TRGET.
: XOR executed before branch.

; — Procedure return destination (PR contents)

Jump table

;< Entry to procedure

:Return to above ADD instruction.
: MOV executed before RTS.

HITACHI

Rev. 4.0, 03/00, page 287 of 395



9.50 LDC LoaD to Control register ~ System Control Instruction
Load to Control

Register (Privileged Instruction)
Execution

Format Summary of Operation Instruction Code States T Bit
LDC Rm, SR Rm - SR 0100mmmmo00001110 4 LSB
LDC Rm, GBR Rm - GBR 0100mmmmO00011110 3 —
LDC Rm, VBR Rm - VBR 0100mmmm00101110 1 —
LDC Rm, SSR Rm - SSR 0100mmmmO00111110 1 —
LDC Rm, SPC Rm - SPC 0100mmmmO01001110 1

LDC Rm, DBR Rm - DBR 0100mmmm11111010 1 —
LDC Rm, RO_BANK Rm - RO_BANK 0100mmmm10001110 1 —
LDC Rm, R1_BANK Rm - R1_BANK 0100mmmm10011110 1 —
LDC Rm, R2_BANK Rm - R2_BANK 0100mmmm10101110 1 —
LDC Rm, R3_BANK Rm - R3_BANK 0100mmmm10111110 1 —
LDC Rm, R4_BANK Rm - R4_BANK 0100mmmm11001110 1 —
LDC Rm, R5_BANK Rm - R5_BANK 0100mmmm11011110 1 —
LDC Rm, R6_BANK Rm - R6_BANK 0100mmmm11101110 1 —
LDC Rm, R7_BANK Rm - R7_BANK 0100mmmm11111110 1 —
LDC.L @Rm+, SR (Rm) - SR, Rm+4 -~ Rm 0100mmmmO00000111 4 LSB
LDC.L @Rm+, GBR (Rm) - GBR, Rm+4 - Rm 0100mmmm00010111 3 —
LDC.L @Rm+, VBR (Rm) - VBR, Rm+4 - Rm 0100mmmmO00100111 1 —
LDC.L @Rm+, SSR (Rm) - SSR, Rm+4 - Rm 0100mmmmO00110111 1 —
LDC.L @Rm+, SPC (Rm) - SPC, Rm+4 - Rm 0100mmmm01000111 1 —
LDC.L @Rm+, DBR (Rm) - DBR, Rm+4 - Rm 0100mmmm11110110 1 —
LDC.L @Rm+, RO_BANK (Rm) —» RO_BANK, Rm+4 - Rm 0100mmmm10000111 1 —
LDC.L @Rm+, R1_BANK (Rm) - R1_BANK, Rm+4 -~ Rm 0100mmmm10010111 1 —
LDC.L @Rm+, R2_ BANK (Rm) - R2_BANK, Rm+4 . Rm 0100mmmm10100111 1 —
LDC.L @Rm+, R3_BANK (Rm) — R3_BANK, Rm+4 -~ Rm 0100mmmm10110111 1 —
LDC.L @Rm+, R4 BANK (Rm) — R4 _BANK, Rm+4 - Rm 0100mmmm11000111 1 —
LDC.L @Rm+, R5_BANK (Rm) - R5_BANK, Rm+4 . Rm 0100mmmm11010111 1 —
LDC.L @Rm+, R6_BANK (Rm) — R6_BANK, Rm+4 - Rm 0100mmmm11100111 1 —
LDC.L @Rm+, R7_BANK (Rm) - R7_BANK, Rm+4 - Rm 0100mmmm11110111 1 —

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC
DBR, or RO_BANK to R7_BANK.

Rev. 4.0, 03/00, page 288 of 395
HITACHI



Notes

With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L instructions ar
privileged instructions and can only be used in privileged mode. Use in user mode will cause
illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can also be us
in user mode.

With the LDC Rm, Rn_BANK and LDC.L @Rm, Rn_BANK instructions, Rn_BANKO is
accessed when the RB bit in the SR register is 1, and Rn_BANK1 is accessed when this bit |

Operation

LDCSR(intm)  /*LDC Rm,SR : Privileged */
{

SR=R[m]&0x700083F3;

PC+=2;
}

LDCGBR(intm) /* LDC Rm,GBR */
{

GBR=R[m];

PC+=2;
}

LDCVBR(intm)  /*LDC Rm,VBR : Privileged */
{

VBR=R[m];

PC+=2;
}

LDCSSR(intm)  /*LDC Rm,SSR : Privileged */
{

SSR=R[m],

PC+=2;
}

LDCSPC(intm)  /*LDC Rm,SPC : Privileged */

{
SPC=R[m];

Rev. 4.0, 03/00, page 289 of 395
HITACHI



PC+=2;

LDCDBR(intm)  /* LDC Rm,DBR : Privileged */
{

DBR=R[m];

PC+=2,
}

LDCRn_BANK(int m) /* LDC Rm,Rn_BANK : Privileged */
[*n=0-7*/
{
Rn_BANK=R[m];
PC+=2;
}

LDCMSR(intm) /*LDC.L @Rm+,SR : Privileged */
{

SR=Read_Long(R[m])&0x700083F3;

R[m]+=4;

PC+=2,
}

LDCMGBR(intm) /*LDC.L @Rm+,GBR */
{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

LDCMVBR(intm) /*LDC.L @Rm+,VBR : Privileged */
{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;
}

Rev. 4.0, 03/00, page 290 of 395
HITACHI



LDCMSSR(intm) /*LDC.L @Rm+,SSR : Privileged */

{
SSR=Read_Long(R[m]);
R[m]+=4;

PC+=2;

}

LDCMSPC(intm) /*LDC.L @Rm+,SPC : Privileged */

{
SPC=Read_Long(R[m]);
R[mM]+=4;

PC+=2;

}

LDCMDBR(intm) /* LDC.L @Rm+,DBR : Privileged */

{
DBR=Read_Long(R[m]);
R[m]+=4;

PC+=2;

}

LDCMRN_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */

/*n=0-7*/

{
Rn_BANK=Read_Long(R[m]);
R[m]+=4;

PC+=2,

}

Possible Exceptions:
General illegal instruction exception

lllegal slot instruction exception
Data TLB miss exception

Data TLB protection violation exception

Address error

HITACHI

Rev. 4.0, 03/00, page 291 of 395



9.51 LDS LoaD to FPU System

register System Control Instruction
Load to FPU
System Register

Execution
Format Summary of Operation Instruction Code States T Bit
LDS Rm,FPUL Rm - FPUL 0100mmmmO01011010 1 —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 . Rm 0100mmmm01010110 1 —
LDS Rm,FPSCR Rm - FPSCR 0100mmmm01101010 1 —

LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+4 - Rm 0100mmmm01100110 1 —

Description
This instruction loads the source operand into FPU system registers FPUL and FPSCR.
Operation

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int *FPUL) /* LDS Rm,FPUL */
{
*FPUL=R[m];
PC+=2,
}
LDSMFPUL(int m, int *FPUL) /*LDS.L @Rm+,FPUL */
{
*FPUL=Read_Long(R[m]);
R[m]+=4;
PC+=2;
}
LDSFPSCR(int m) /* LDS Rm,FPSCR */
{
FPSCR=R[m] & FPSCR_MASK;
PC+=2;
}
LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */

{
FPSCR=Read_Long(R[m]) & FPSCR_MASK;

Rev. 4.0, 03/00, page 292 of 395
HITACHI



R[m]+=4;
PC+=2;
}

Possible Exceptions:
e Data TLB miss exception

« Data access protection exception
e Address error

Rev. 4.0, 03/00, page 293 of 395
HITACHI



9.52 LDS LoaD to System register ~ System Control Instruction
Load to System

Register
Execution
Format Summary of Operation Instruction Code States T Bit
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 1 —
LDS Rm,MACL Rm - MACL 0100mmmmO00011010 1 —
LDS Rm,PR Rm- PR 0100mmmmO00101010 2 —

LDS.L @Rm+,MACH (Rm) - MACH, Rm +4 - Rm 0100mmmm00000110 1 —
LDS.L @Rm+,MACL  (Rm) - MACL, Rm +4 - Rm 0100mmmmO00010110 1 —
LDS.L @Rm+,PR (Rm) - PR,LRm+4 - Rm 0100mmmmO00100110 2 —

Description
Stores the source operand into the system registers MACH, MACL, or PR.
Operation

LDSMACH(int m)  /* LDS Rm,MACH */
{

MACH=R[m];

PC+=2;

LDSMACL(intm) /*LDS Rm,MACL */

{
MACL=R[m];
PC+=2;

LDSPR(intm)  /* LDS Rm,PR */

{
PR=R[m];
PC+=2;

LDSMMACH(int m)  /*LDS.L @Rm+,MACH */
{

Rev. 4.0, 03/00, page 294 of 395
HITACHI



MACH=Read_Long(R[m]);
R[m]+=4;
PC+=2,

LDSMMACL(intm) /*LDS.L @Rm+,MACL */
{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

LDSMPR(intm) /*LDS.L @Rm+,PR */

{
PR=Read_Long(R[m]);

R[m]+=4;
PC+=2;
}
Example
LDS RO,PR ; Before execution RO =H'12345678, PR = H'00000000
; After execution PR = H'12345678
LDS.L @R15+,MACL ;. Before execution R15 = H'10000000

; After execution R15 = H'10000004, MACL = (H'20000000)

Rev. 4.0, 03/00, page 295 of 395
HITACHI



9.53 LDTLB LoaD PTEH/PTEL/PTEA

to TLB System Control Instruction
Load to TLB (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
LDTLB PTEH/PTEL/PTEA - TLB  0000000000111000 1 —

Description

This instruction loads the contents of the PTEH/PTEL/PTEA registers into the TLB (translatior
lookaside buffer) specified by MMUCR.URC (random counter field in the MMC control registe

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

As this instruction loads the contents of the PTEH/PTEL/PTEA registers into a TLB, it should |
used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (se
section 3, Memory Management Unit, for details). After this instruction is issued, there must b
least one instruction between the LDTLB instruction and issuance of an instruction relating to

address to areas PO, UO, and P3 (i.e. BRAF, BSRF, JMP, JSR, RTS, or RTE).

Rev. 4.0, 03/00, page 296 of 395
HITACHI



Operation

LDTLB() /*LDTLB */

{
TLB[MMUCR. URC] .ASID=PTEH & 0x000000FF;
TLB[MMUCR. URC] .VPN=(PTEH & OXFFFFFC00)>>10;
TLB[MMUCR. URC] .PPN=(PTEH & Ox1FFFFC00)>>10;
TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |

(PTEL & 0x00000010)>>4;

TLB[MMUCR. URC] .SH=(PTEH & 0x00000002)>>1;
TLB[MMUCR. URC] .PR=(PTEH & 0x00000060)>>5;
TLB[MMUCR. URC] .WT=(PTEH & 0x00000001);
TLB[MMUCR. URC] .C=(PTEH & 0x00000008)>>3;
TLB[MMUCR. URC] .D=(PTEH & 0x00000004)>>2;
TLB[MMUCR. URC] .V=(PTEH & 0x00000100)>>8;
TLB[MMUCR. URC] .SA=(PTEA & 0x00000007);
TLB[MMUCR. URC] .TC=(PTEA & 0x00000008)>>3;

PC+=2;
}
Example
MOV @RO,R1 ; Load page table entry (upper) into R1
MOV R1,@R2 ; Load R1 into PTEH; R2 is PTEH address (H'FF000000)
LDTLB ; Load PTEH, PTEL, PTEA registers into TLB

Rev. 4.0, 03/00, page 297 of 395
HITACHI



954 MAC.L Multiply and ACcumulate

Long Arithmetic Instruction
Double-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.L @Rm+,@Rn+  Signed, 0000nNnnNnmmmm1111 2-5 —
(Rn) x (Rm) + MAC - MAC
Rn+4 - Rn,Rm+4 - Rm
Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are thi
contents of general registers Rm and Rn, adds the 64-bit result to the MAC register contents,
stores the result in the MAC register. Operands Rm and Rn are each incremented by 4 each t
they are read.

If the S bitis 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid, a
the result range is limited to H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFF
(maximum value).

Operation

MACL(long m, long n) /* MAC.L @Rm+,@Rn+ */

{
unsigned long RnL,RnH,RmML,RmH,Res0,Res1,Res2;
unsigned long temp0,temp1,temp2,temp3;
long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);
R[n]+=4;
tempm=(long)Read_Long(R[m]);
R[m]+=4;

if ((long)(tempn”~tempm)<0) fnLmL=-1,
else fnLmL=0;

Rev. 4.0, 03/00, page 298 of 395
HITACHI



if (tempn<0) tempn=0-tempn;
if (tempm<0) tempm=0-tempm;

templ=(unsigned long)tempn;
temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;
RnH=(temp1>>16)&0x0000FFFF;
RmL=temp2&0x0000FFFF;
RmH=(temp2>>16)&0x0000FFFF;
tempO=RmL*RnL;
templ=RmH*RnL,;
temp2=RmL*RnH,;
temp3=RmH*RnH;

Res2=0;

Resl=templ+temp2;
if (Resl<templ) Res2+=0x00010000;

templ=(Res1<<16)&0xFFFF00QO;
ResO=tempO+temp1,;
if (ResO<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLmL<0){
Res2= "Res2;
if (Res0==0) Res2++;
else ResO=( "Res0)+1;
}
if(S==1)
ResO=MACL+ResO0;
if (MACL>Res0) Res2++;
if (MACH&0x00008000);
else Res2+=MACH|0xFFFF0000;

HITACHI

Rev. 4.0, 03/00, page 299 of 395



Res2+=MACH&O0x00007FFF;

if(((long)Res2<0)&&(Res2<0xFFFF8000)){
Res2=0xFFFF8000;
Res0=0x00000000;

}

if((long)Res2>0)&&(Res2>0x00007FFF)){
Res2=0x00007FFF;
Res0=0xFFFFFFFF;

MACH=(Res2&0x0000FFFF)|(MACH&O0xFFFF0000);
MACL=ResO0;

else {
ResO=MACL+Res0;
if (MACL>Res0) Res2++;
Res2+=MACH;

MACH=Res2;
MACL=ResO0;

}
PC+=2;

Rev. 4.0, 03/00, page 300 of 395
HITACHI



Example

TBLM

TBLN

MOVA
MOV
MOVA
CLRMAC
MAC.L
MAC.L

TBLM,RO
RO,R1
TBLN,RO

@RO+,@R1+
@RO+,@R1+
MACL,RO

2
H'1234ABCD
H'5678EF01
H'0123ABCD
H'4567DEFO

Get table address
Get table address
MAC register initialization

:Get result in RO

Rev. 4.0, 03/00, page 301 of 395

HITACHI



955 MAC.W Multiply and
ACcumulate Word Arithmetic Instruction
Single-Precision
Multiply-and-Accumulate

Operation
Execution
Format Summary of Operation Instruction Code States T Bit
MAC.W @Rm+,@Rn+ Signed, 0100nnnnmmmm1111 2-5 —

MAC @Rm+ @Rn+ (Rn) x (Rm) + MAC - MAC
Rn+2 - Rn,Rm+2 - Rm

Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are thi
contents of general registers Rm and Rn, adds the 32-bit result to the MAC register contents,
stores the result in the MAC register. Operands Rm and Rn are each incremented by 2 each t
they are read.

If the S bitis 0, a 1& 16 + 64 64-bit multiply-and-accumulate operation is performed, and the
64-bit result is stored in the linked MACH and MACL registers.

If the S bitis 1, a 1& 16 + 32 32-bit multiply-and-accumulate operation is performed, and the
addition to the MAC register contents is a saturation operation. In a saturation operation, only
MACL register is valid, and the result range is limited to H'80000000 (minimum value) to
H'7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register is set to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflows in the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the
positive direction

Notes

If the S bitis 0, a 18 16 + 64— 64-bit multiply-and-accumulate operation is performed.

Rev. 4.0, 03/00, page 302 of 395
HITACHI



Operation

MACW(long m, long n) /* MAC.W @Rm+,@Rn+ */

{

long tempm,tempn,dest,src,ans;
unsigned long templ;
tempn=(long)Read_Word(R[n]);
R[n]+=2;
tempm=(long)Read_Word(R[m]);
R[m]+=2;
templ=MACL;
tempm=((long)(short)tempn*(long)(short)tempm);
if ((long)MACL>=0) dest=0;
else dest=1;
if ((long)tempm>=0) {

src=0;

tempn=0;
}
else {

src=1,

tempn=0xFFFFFFFF;
}
src+=dest;
MACL+=tempm;
if ((long)MACL>=0) ans=0;
else ans=1;
ans+=dest;
if (S==1) {

if (ans==1) {

if (src==0) MACL=0x7FFFFFFF;
if (src==2) MACL=0x80000000;

}
else {
MACH+=tempn;
if (templ>MACL) MACH+=1,

HITACHI

Rev. 4.0, 03/00, page 303 of 395



PC+=2,

Example

MOVA
MOV
MOVA
CLRMAC
MAC.W
MAC.W
STS

TBLM .data.w

TBLN .data.w

Rev. 4.0, 03/00, page 304 of 395

TBLM,RO Get table address
RO,R1 ;
TBLN,RO Get table address
MAC register initialization
@RO+,@R1+ ;
@RO+,@R1+ :
MACL,RO :Get result in RO

H'1234 ;
H'5678 ;
H'0123 ;
H'4567 ;

HITACHI



9.56 MOV MOVe data Data Transfer Instruction
Data Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOV Rm,Rn Rm - Rn 0110nnnnmmmmoO011 1 —
MOV.B Rm,@Rn Rm - (Rn) 0010nnnNnmmmmO000 1 —
MOV.W Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 1 —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmmmO010 1 —
MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmmO000 1 —
MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmmO001 1 —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO010 1 —
MOV.B Rm,@-Rn Rn-1 - Rn,Rm - (Rn) 0010nnnnmmmmO0100 1 —
MOV.W Rm,@-Rn Rn-2 - Rn,Rm - (Rn) 0010nnnnmmmmO0101 1 —
MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnmmmmO0110 1 —
MOV.B @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmmmO100 1 —
Rm+1 - Rm
MOV.W @Rm+,Rn (Rm) sign extension Rn, 0110nnnnmmmmO0101 1 —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn, Rm+4 - Rm 0110nnnnmmmmO0110 1 —
MOV.B Rm,@(RO,Rn) Rm - (RO+Rn) 0000NnNNNMmMmMmO100 1 —
MOV.W Rm,@(RO,Rn) Rm - (RO+Rn) 0000NNnNNmmmmO101 1 —
MOV.L Rm,@(RO,Rn) Rm - (RO+Rn) 0000nNNnNMmMmMmO110 1 —
MOV.B @(R0O,Rm),Rn (RO+Rm) sign extension Rn  0000nnnnmmmm21100 1 —
MOV.W @(R0O,Rm),Rn (RO+Rm) sign extension Rn  0000nnnnmmmm21101 1 —
MOV.L @(RO,Rm),Rn (RO+Rm) - Rn 0000NnNnnNmmmm1110 1 —
Description

This instruction transfers the source operand to the destination. When an operand is memon
data size can be specified as byte, word, or longword. When the source operand is memory,
loaded data is sign-extended to longword before being stored in the register.

Rev. 4.0, 03/00, page 305 of 395
HITACHI



Operation

MOV(long m, long n) /* MOV Rm,Rn */
{

R[n]=R[m];

PC+=2;

MOVBS(long m, long n) /* MOV.B Rm,@Rn */
{

Write_Byte(R[n],R[m]);

PC+=2;

MOVWS(long m, long n) /* MOV.W Rm,@Rn */
{

Write_Word(R[n],R[m]);

PC+=2;

MOVLS(long m, long n) /* MOV.L Rm,@Rn */
{

Write_Long(R[n],R[m]);

PC+=2;

MOVBL(long m, long n) /* MOV.B @Rm,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;
PC+=2;

MOVWL(long m, long n) /* MOV.W @Rm,Rn */
{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

Rev. 4.0, 03/00, page 306 of 395
HITACHI



else R[n]|=0xFFFF0000;
PC+=2;

MOVLL(long m, long n) /* MOV.L @Rm,Rn */
}

R[n]=Read_Long(R[m]);

PC+=2;

MOVBM(long m, long n) /* MOV.B Rm,@-Rn */
{

Write_Byte(R[n]-1,R[m]);

R[n]-=1;

PC+=2,

MOVWM(long m, long n) /* MOV.W Rm,@-Rn */
{

Write_Word(R[n]-2,R[m]);

R[n]-=2;

PC+=2;

MOVLM(long m, long n) /* MOV.L Rm,@-Rn */
{

Write_Long(R[n]-4,R[m]);

R[n]-=4;

PC+=2;

MOVBP(long m, long n) /* MOV.B @Rm+,Rn */
{
R[n]=(long)Read_Byte(R[m]);
if ((R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOQO;
if (n'=m) R[m]+=1;

HITACHI

Rev. 4.0, 03/00, page 307 of 395



PC+=2;
}
MOVWP(long m, long n) /* MOV.W @Rm+,Rn */
{
R[n]=(long)Read_Word(R[m]);
if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;
if (n!=m) R[m]+=2;
PC+=2;

MOVLP(long m, long n) /*MOV.L @Rm+,Rn */
{

R[n]=Read_Long(R[m]);

if (n'=m) R[m]+=4;

PC+=2;

MOVBSO0(long m, long n) /* MOV.B Rm,@(R0,Rn) */
{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

MOVWSO0(long m, long n) /* MOV.W Rm,@(RO,Rn) */
{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

MOVLSO(long m, long n) /* MOV.L Rm,@(RO,Rn) */
{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

MOVBLO(long m, long n) /* MOV.B @(R0,Rm),Rn */

Rev. 4.0, 03/00, page 308 of 395
HITACHI



R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&=0x000000FF;
else R[n]|=0xFFFFFFOO;

PC+=2;

MOVWLO(long m, long n) /* MOV.W @(RO,Rm),Rn */
{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFFO00Q0;

PC+=2;

MOVLLO(long m, long n) /* MOV.L @(RO,Rm),Rn */

{
R[n]=Read_Long(R[m]+R[0]);

PC+=2;
}
Example

MOV RO,R1 ;Before execution RO = H'FFFFFFFF, R1 = H'00000000
; After execution R1 = H'FFFFFFFF

MOV.W RO,@R1 Before execution RO = H'FFFF7F80
; After execution  (R1) = H'7F80

MOV.B @RO,R1 Before execution (RO) = H'80, R1 = H'00000000
; After execution R1 = H'FFFFFF80

MOV.W RO,@-R1 Before execution RO = H'AAAAAAAA, (R1) = H'FFFF7F80
; After execution R1 =H'FFFF7F7E, (R1) = HAAAA

MOV.L @RO+,R1 :Before execution RO = H'12345670
; After execution RO = H'12345674, R1 = (H'12345670)

MOV.B R1,@(RO,R2) ; Before execution R2 =H'00000004, RO = H'10000000
; After execution R1 = (H'20000004)

MOV.W @(RO,R2),R1 ; Before execution R2 =H'00000004, RO = H'10000000

; After execution R1 = (H'20000004)

Rev. 4.0, 03/00, page 309 of 395
HITACHI



9.57 MOV MOVe constant value Data Transfer Instruction
Immediate Data

Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV  #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —
MOV.W @(disp,PC),Rn (dispx2+PC+4) - sign 1001nnnndddddddd 1 —
extension Rn

MOV.L @(disp,PC),Rn (dispx4+PC+4) - Rn 1101nnnndddddddd 1 —
Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In t
case of word or longword data, the data is stored from memory address (PC + 4 + displaceme
2) or (PC + 4 + displacemertd).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the table is in the range up to PC + 4 + 510 bytes. The PC value is the
address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so tt
relative distance from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is
address of this instruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception
be generated.

Rev. 4.0, 03/00, page 310 of 395
HITACHI



Operation

MOVI(int i, int n) /* MOV #imm,Rn */

{
if ((i&0x80)==0) R[n]=(0x000000FF & i);
else R[n]=(0xFFFFFFOO | i);
PC+=2;

MOVWI(d, n) /* MOV.W @(disp,PC),Rn */
{

unsigned int disp;

disp=(unsigned int)(Ox000000FF & d);
R[n]=(int)Read_Word(PC+4+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;
else R[n]|=0xFFFF0000;

PC+=2;

MOVLI(int d, int n)/* MOV.L @(disp,PC),Rn */

unsigned int disp;

disp=(unsigned int)(0x000000FF & (int)d);

R[n]=Read_Long((PC&0OxFFFFFFFC)+4+(disp<<2));
PC+=2;

HITACHI

Rev. 4.0, 03/00, page 311 of 395



Example

Address
1000 MOV #H'80,R1 ; R1=HFFFFFF80
1002 MOV.W IMM,R2 ;R2 = HFFFF9ABC IMM means (PC + 4 + H'08)
1004 ADD #-1,R0 ;
1006 TST RO,RO ;
1008 MOV.L @(3,PC),R3 ; R3 =H'12345678
100A BRA NEXT Delayed branch instruction
100C NOP
100E IMM .data.w H'9ABC ;
1010 .data.w H'1234 ;
1012 NEXT JMP @R3 BRA branch instruction
1014 CMP/EQ #0,R0O ;
.align 4 ;
1018 .data.l H'12345678 ;
101C .data.l H'9QABCDEFO

Rev. 4.0, 03/00, page 312 of 395

HITACHI



9.58 MOV MOVe global data Data Transfer Instruction

Global Data
Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOV.B @(disp,GBR),R0  (disp+GBR) - sign 11000100dddddddd 1 —

extension RO

MOV.W @(disp,GBR), RO (dispx2+GBR) - sign 11000101dddddddd 1 —
extension RO

MOV.L @(disp,GBR),R0  (dispx4+GBR) -~ RO 11000110dddddddd
MOV.B RO,@(disp,GBR) RO - (disp+GBR) 11000000dddddddd
MOV.W RO,@(disp,GBR) RO — (dispx2+GBR)  11000001dddddddd
MOV.L RO,@(disp,GBR) RO - (dispx4+GBR)  11000010dddddddd

I

Description

This instruction transfers the source operand to the destination. Byte, word, or longword can
specified as the data size, but the register is always RO. If the transfer data is byte-size, the
displacement is only zero-extended, so a range up to +255 bytes can be specified. If the tran
data is word-size, the 8-bit displacement is multiplied by two after zero-extension, enabling a
range up to +510 bytes to be specified. With longword transfer data, the 8-bit displacement i
multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is signh-extended to longword before b
stored in the register.

Notes

When loading, the destination register is always RO.

Rev. 4.0, 03/00, page 313 of 395
HITACHI



Operation

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[0]=(int)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;

PC+=2;

MOVWLG(int d) /* MOV.W @(disp,GBR),RO0 */
{

unsigned int disp;

disp=(unsigned int)(0Ox000000FF & d);

R[0]=(int)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

PC+=2;

MOVLLG(int d) /* MOV.L @(disp,GBR),R0 */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[0]=Read_Long(GBR+(disp<<2));
PC+=2;

}

MOVBSG(int d) /* MOV.B RO,@(disp,GBR) */

{

unsigned int disp;

Rev. 4.0, 03/00, page 314 of 395
HITACHI



disp=(unsigned int)(0x000000FF & d);
Write_Byte(GBR+disp,R[0]);
PC+=2,

MOVWSG(int d) /* MOV.W R0,@(disp,GBR) */

{
unsigned int disp;
disp=(unsigned int)(OxO00000FF & d);
Write_Word(GBR+(disp<<1),R[0]);
PC+=2;

}

MOVLSG(int d) /* MOV.L RO,@(disp,GBR) */

{
unsigned int disp;
disp=(unsigned int)(0x000000FF & (long)d);
Write_Long(GBR+(disp<<2),R[0]);
PC+=2;
}
Example

MOV.L @(2,GBR),RO ; Before execution (GBR+8) = H'12345670
; After execution RO = (H'12345670)
MOV.B RO0,@(1,GBR) ; Before execution RO = H'FFFF7F80
; After execution  (GBR+1) = H'80

Rev. 4.0, 03/00, page 315 of 395
HITACHI



9.59 MOV MOVe structure data Data Transfer Instruction
Structure Data

Transfer
Execution
Format Summary of Operation  Instruction Code States T Bit
MOV.B RO,@(disp,Rn) RO - (disp+Rn) 10000000nnnndddd 1 —
MOV.W RO,@(disp,Rn) RO - (dispx2+Rn) 10000001nnnndddd 1 —
MOV.L Rm,@(disp,Rn) Rm - (dispx4+Rn) 0001nnnnmmmmdddd 1 —
MOV.B @(disp,Rm),RO  (disp+Rm) - sign 10000100mmmmdddd 1 —
extension RO
MOV.W @(disp,Rm),R0  (dispx2+Rm) - sign 10000101mmmmdddd 1 —
extension RO
MOV.L @(disp,Rm),Rn  (dispx4+Rm) - Rn 0101nnnnmmmmdddd 1 —
Description

This instruction transfers the source operand to the destination. It is ideal for accessing data i
a structure or stack. Byte, word, or longword can be specified as the data size, but with byte o
word data the register is always RO.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 byt
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero
extension, enabling a range up to +30 bytes to be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytes to be
specified. If a memory operand cannot be reached, the previously described @(R0,Rn) mode
be used.

When the source operand is memory, the loaded data is sign-extended to longword before be
stored in the register.

Notes

When loading byte or word data, the destination register is always RO. Therefore, if the followi
instruction attempts to reference RO, it is kept waiting until completion of the load instruction.
This allows optimization by changing the order of instructions.

MOV.B @(2,R1),R0 MOV.B @(2,R1),R0
AND  #80,RO ADD  #20,R1
ADD  #20,R1 AND  #80,RO

Rev. 4.0, 03/00, page 316 of 395
HITACHI



Operation

MOVBS4(long d, long n  /* MOV.B RO,@(disp,Rn) */
{
long disp;
disp=(0x0000000F & (long)d);
Write_Byte(R[n]+disp,R[0]);
PC+=2;

MOVWS4(long d, long n) /* MOV.W RO,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Word(R[n]+(disp<<1),R[0]);
PC+=2,

MOVLS4(long m, long d, long n) /* MOV.L Rm,@(disp,Rn) */

{
long disp;

disp=(0x0000000F & (long)d);
Write_Long(R[n]+(disp<<2),R[m]);
PC+=2;

MOVBL4(long m, long d) /* MOV.B @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;
else R[0]|=0xFFFFFFOO;

PC+=2,

Rev. 4.0, 03/00, page 317 of 395
HITACHI



MOVWL4(long m, long d) /* MOV.W @(disp,Rm),R0 */

{
long disp;

disp=(0x0000000F & (long)d);
R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;
else R[0]|=0xFFFF0000;

PC+=2;

MOVLL4(long m, long d, long n) /* MOV.L @(disp,Rm),Rn */

{
long disp;

disp=(0x0000000F & (long)d);
R[n]=Read_Long(R[m]+(disp<<2));

PC+=2,
}
Example
MOV.L @(2,R0),R1 ; Before execution (R0+8) = H'12345670
; After execution R1 = (H'12345670)
MOV.L RO,@(H'F,R1) ;  Before execution RO = H'FFFF7F80

; After execution (R1+60) = H'FFFF7F80

Rev. 4.0, 03/00, page 318 of 395
HITACHI



9.60 MOVA MOVe effective Address Data Transfer Instruction
Effective Address

Transfer
Execution
Format Summary of Operation Instruction Code States T Bit
MOVA @(disp,PC),R0 dispx4+PC+4 - RO 11000111dddddddd 1 —
Description

This instruction stores the source operand effective address in general register RO. The 8-bit
displacement is multiplied by four after zero-extension. The PC value is the address of this
instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes
If this instruction is executed in a delay slot, an illegal slot instruction exception will be gener:
Operation

MOVA(int d) /* MOVA @(disp,PC),R0 */
{

unsigned int disp;

disp=(unsigned int)(0x000000FF & d);
R[0]=(PC&OXFFFFFFFC)+4+(disp<<2):
PC+=2;

}

Example

Address .org  H'1006

1006 MOVA STR,RO ; STR address- RO

1008 MOV.B @RO,R1 ; R1="X" ~ Position after adjustment of lower 2 bits of PC

100A ADD R4,R5 ; ~ Original PC position in MOVA instruction address calculation
.align 4

100C STR:.sdata "XYZP12"

Rev. 4.0, 03/00, page 319 of 395
HITACHI



961 MOVCA.L MOVe with Cache

block Allocation Data Transfer Instruction
Cache Block Allocation

Execution
Format Summary of Operation Instruction Code States T Bit
MOVCA.L RO,@Rn RO - (Rn) 0000nnnNn11000011 1 —

Description

This instruction stores the contents of general register RO in the memory location indicated by
effective address Rn. This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block
be allocated but an RO data write will be performed to that cache block without performing a b
read. Other cache block contents are undefined.

Operation

MOVCAL(intn) /*MOVCA.L RO,@Rn */

{

if ((is_write_back_memory(R[n]))
&& (look_up_in_operand_cache(R[n]) == MISS))
allocate_operand_cache_block(R[n]);

Write_Long(R[n], R[0]);
PC+=2;

}

Possible Exceptions:
e Data TLB miss exception

« Data TLB protection violation exception
< Initial page write exception
* Address error

Rev. 4.0, 03/00, page 320 of 395
HITACHI



9.62 MOVT MOVe T bit Data Transfer Instruction
T Bit Transfer

Execution
Format Summary of Operation Instruction Code States T Bit
MOVT Rn T - Rn 0000nnnn00101001 1 —

Description

This instruction stores the T bit in general register Rn. When T=1, Rn=1; when T =0, Rn =

Operation
MOVT(long n) /* MOVT Rn */
{
R[n]=(0x00000001 & SR);
PC+=2;
}
Example
XOR R2,R2 ‘R2=0
CMP/PZ R2 T=1
MOVT RO RO =1
CLRT T=0
MOVT R1 Rl =0

Rev. 4.0, 03/00, page 321 of 395
HITACHI



9.63 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision

Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MUL.L Rm,Rn RnxRm - MACL 0000NnNnNnNnmmmmO111 2-5 —
Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm,
stores the lower 32 bits of the result in the MACL register. The contents of MACH are not
changed.

Operation

MULL(long m, long n) /* MUL.L Rm,Rn */

{
MACL=R[n]*R[m];
PC+=2;
}
Example
MUL.L RO,R1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
: After execution MACL = H'FFFF5556
STS MACL,R0O ;Get operation result

Rev. 4.0, 03/00, page 322 of 395
HITACHI



9.64 MULS.W MULtiply as Signed Word  Arithmetic Instruction

Signed
Multiplication
Execution
Format Summary of Operation Instruction Code States T Bit
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmm1111 2-5 —

MULS Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm
stores the 32-bit result in the MACL register. The multiplication is performed as a signed
arithmetic operation. The contents of MACH are not changed.

Operation

MULS(long m, long n) /* MULS Rm,Rn */

{
MACL=((long)(short)R[n]*(long)(short)R[m]);
PC+=2,
}
Example
MULS.W RO,R 1 ; Before execution RO = H'FFFFFFFE, R1 = H'00005555
; After execution MACL = H'FFFF5556
STS MACL,RO ;Get operation result

Rev. 4.0, 03/00, page 323 of 395
HITACHI



9.65 MULU.W  MULtiply as Unsigned Word  Arithmetic Instruction
Unsigned Multiplication

Execution
Format Summary of Operation Instruction Code States T Bit

MULU.W Rm,Rn Unsigned, Rn x Rm — MACL 0010nnnnmmmm1110 2-5 —
MULU Rm,Rn

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm,
stores the 32-bit result in the MACL register. The multiplication is performed as an unsigned
arithmetic operation. The contents of MACH are not changed.

Operation

MULU(long m, long n) /* MULU Rm,Rn */

{
MACL=((unsigned long)(unsigned short)R[n]*
(unsigned long)(unsigned short)R[m];
PC+=2;
}
Example
MULU.W RO,R1 ;Before execution RO = H'00000002, R1 = H'FFFFAAAA
; After execution  MACL = H'00015554
STS MACL,R0O ;Get operation result

Rev. 4.0, 03/00, page 324 of 395
HITACHI



9.66 NEG NEGate Arithmetic Instruction

Sign Inversion

Execution
Format Summary of Operation Instruction Code States T Bit
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm1011 1 —

Description

This instruction finds the two’s complement of the contents of general register Rm and stores
result in Rn. That is, it subtracts Rm from 0 and stores the result in Rn.

Operation

NEG(long m, long n) /* NEG Rm,Rn */
{

R[n]=0-R[m];

PC+=2,
}

Example

NEG RO,R1 ; Before execution RO =H'00000001
; After execution  R1 = H'FFFFFFFF

Rev. 4.0, 03/00, page 325 of 395
HITACHI



9.67 NEGC NEGate with Carry Arithmetic Instruction
Sign Inversion with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
NEGC Rm,Rn 0-Rm-T - Rn, 0110nnnnmmmm1010 1 Borrow

borrow - T

Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the r
in Rn. A borrow resulting from the operation is reflected in the T bit. The NEGC instruction is
used for sign inversion of a value exceeding 32 bits.

Operation

NEGC(long m, long n) /* NEGC Rm,Rn */

{
unsigned long temp;
temp=0-R[mM];
R[n]=temp-T,;
if (O<temp) T=1,
else T=0;
if (temp<R[n]) T=1,
PC+=2;
}
Example
CLRT ; Sign inversion of RO:R1 (64 bits)
NEGC R1,R1 :Before execution R1 =H'00000001, T=0
; After execution  R1 = H'FFFFFFFF, Tl=
NEGC RO,RO : Before execution RO = H'00000000, T=1

; After execution RO = H'FFFFFFFF, T=1

Rev. 4.0, 03/00, page 326 of 395
HITACHI



9.68 NOP No OPeration System Control Instruction
No Operation

Execution
Format Summary of Operation Instruction Code States T Bit
NOP No operation 0000000000001001 1 —

Description

This instruction simply increments the program counter (PC), advancing the processing flow
execution of the next instruction.

Operation

NOP( ) /* NOP */

{
PC+=2;

}
Example

NOP ;Time equivalent to one execution state elapses.

Rev. 4.0, 03/00, page 327 of 395
HITACHI



9.69 NOT NOT-logical complement Logical Instruction

Bit Inversion
Execution
Format Summary of Operation Instruction Code States T Bit
NOT Rm,Rn [(Rm - Rn 0110nnnnmmmmO0111 1 —
Description

This instruction finds the one’s complement of the contents of general register Rm and stores
result in Rn. That is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m, long n) /* NOT Rm,Rn */
{

R[n]= (R[m];

PC+=2,
}

Example

NOT RO,R1 ; Before execution RO = HAAAAAAAA
; After execution R1 = H'55555555

Rev. 4.0, 03/00, page 328 of 395
HITACHI



9.70 OCBI Operand Cache Block
Invalidate Data Transfer Instruction
Cache Block Invalidation

Execution
Format Summary of Operation Instruction Code States T Bit
OCBI @Rn Operand cache block 0000nnnn10010011 1 —

invalidation

Description

This instruction accesses data using the contents indicated by effective address Rn. In the ¢
hit in the cache, the corresponding cache block is invalidated (the V bit is cleared to 0). If the
unwritten information (U bit = 1), write-back is not performed even if write-back mode is sele
No operation is performed in the case of a cache miss or an access to a non-cache area.

Operation

OCBI(intn)  /* OCBI @Rn */

{
invalidate_operand_cache_block(R[n]);
PC+=2;

}

Possible Exceptions:
« Data TLB miss exception

« Data TLB protection violation exception
« Initial page write exception
e Address error

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 4.0, 03/00, page 329 of 395
HITACHI



9.71 OCBP Operand Cache Block
Purge Data Transfer Instruction
Cache Block Purge

Execution
Format Summary of Operation Instruction Code States T Bit
OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cac
hit and there is unwritten information (U bit = 1), the corresponding cache block is written bacl
external memory and that block is invalidated (the V bit is cleared to 0). If there is no unwritter
information (U bit = 0), the block is simply invalidated. No operation is performed in the case c
cache miss or an access to a non-cache area.

Operation

OCBP(int n) /* OCBP @Rn */

{
if(is_dirty_block(R[n])) write_back(R[n])
invalidate_operand_cache_block(R[n]);
PC+=2;

}

Possible Exceptions:
« Data TLB miss exception

« Data TLB protection violation exception
e Address error

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 4.0, 03/00, page 330 of 395
HITACHI



9.72 0OCBWB Operand Cache Block
Write Back Data Transfer Instruction
Cache Block Write-Back

Execution
Format Summary of Operation Instruction Code States T Bit
OCBWB @Rn Operand cache block write- 0000nnnn10110011 1 —

back

Description

This instruction accesses data using the contents indicated by effective address Rn. If the ce
hit and there is unwritten information (U bit = 1), the corresponding cache block is written bac
external memory and that block is cleaned (the U bit is cleared to 0). In other cases (i.e. in th
of a cache miss or an access to a hon-cache area, or if the block is already clean), no opera
performed.

Operation

OCBWSB(int n) /* OCBWB @Rn */
{
if(is_dirty_block(R[n])) write_back(R[n]);
PC+=2;
}

Possible Exceptions:
« Data TLB miss exception

« Data TLB protection violation exception
e Address error

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 4.0, 03/00, page 331 of 395
HITACHI



9.73 OR OR logical Logical Instruction

Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 1 —
OR #imm,R0 RO |imm - RO 1100101 Liiiiiiii 1 —
OR.B #imm,@(R0,GBR) (RO+GBR) | imm - 1100111 Ziiiiiiii 4 —
(RO+GBR)
Description

This instruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to OR general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit
immediate data.

Rev. 4.0, 03/00, page 332 of 395
HITACHI



Operation

OR(long m, long n) /* OR Rm,Rn */
{

R[n][=R[m];

PC+=2;

ORI(long i) /* OR #imm,R0 */

{
R[0]|=(0x000000FF & (long)i);
PC+=2;

ORM(long i) /* OR.B #imm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp|=(0x000000FF & (long)i);
Write_Byte(GBR+R[0],temp);
PC+=2;

}

Example
; Before execution RO = H'AAAA5555, R1 = H'55550000
; After execution  R1 = H'FFFF5555

OR #H'FO,RO ; Before execution RO = H'00000008
: After execution RO = H'000000F8

OR.B #H'50,@(R0,GBR) ; Before execution (R0,GBR)=H'A5
; After execution  (RO,GBR) = H'F5

OR RO,R1

Rev. 4.0, 03/00, page 333 of 395
HITACHI



9.74 PREF PREFetch data to cache Data Transfer Instruction
Prefetch to Data

Cache
Execution
Format Summary of Operation nstruction Code States T Bit
PREF @Rn Prefetch cache block 0000nnnNn10000011 1 —
Description

This instruction reads a 32-byte data block starting at a 32-byte boundary into the operand ca
The lower 5 bits of the address specified by Rn are masked to zero.

This instruction does not generate address-related errors. In the event of an error, the PREF
instruction is treated as an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

{
PC+=2;
}
Example

MOV.L #SOFT_PF,R1 ; R1 address is SOFT_PF
PREF @R1 Load SOFT_PF data into on-chip cache
.align 32

SOFT_PF: . data .| H'12345678
. data . | H'9QABCDEFO0
. data . | H'AAAA5555
. data . | H'5555AAAA
. data . | H'11111111
. data . | H'22222222
. data . | H'33333333
. data . | H'44444444

Rev. 4.0, 03/00, page 334 of 395
HITACHI



9.75 ROTCL ROTate with Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCL Rn T-RnT 0100nnnn00100100 1 MSB

Description

This instruction rotates the contents of general register Rn one bit to the left through the T bif
stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCL <

Operation

ROTCL(long n) /* ROTCL Rn */
{

long temp;

if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
if (tlemp==1) T=1;
else T=0;
PC+=2;
}

Example

ROTCL RO : Before execution RO =H'80000000, T=0
; After execution RO = H'00000000, T=1

Rev. 4.0, 03/00, page 335 of 395
HITACHI



9.76 ROTCR ROTate with Carry Right Shift Instruction
One-Bit Right Rotation
through T Bit

Execution
Format Summary of Operation Instruction Code States T Bit
ROTCR Rn T-Rn-T 0100nnnn00100101 1 LSB

Description

This instruction rotates the contents of general register Rn one bit to the right through the T bi
and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCR |—>

ROTCR(long n) /* ROTCR Rn */
{

Operation

long temp;

if ((R[n]&0x00000001)==0) temp=0;
else temp=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
if (temp==1) T=1;
else T=0;
PC+=2;
}

Example

ROTCR RO :Before execution RO = H'00000001, T=1
; After execution RO = H'80000000, T=1

Rev. 4.0, 03/00, page 336 of 395
HITACHI



9.77 ROTL ROTate Left Shift Instruction

One-Bit Left
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTL Rn T « Rn « MSB 0100nnnn00000100 1 MSB
Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the r
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTL <—|

ROTL(long n) /* ROTL Rn */

Operation

{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
RInj<<=1;
if (T==1) R[n]|=0x00000001;
else R[n]&=0xFFFFFFFE;
PC+=2;

}

Example
ROTL RO ; Before execution RO = H'80000000, T=0

;. After execution RO = H'00000001, T =1

Rev. 4.0, 03/00, page 337 of 395
HITACHI



9.78 ROTR ROTate Right Shift Instruction

One-Bit Right
Rotation
Execution
Format Summary of Operation Instruction Code States T Bit
ROTR Rn LSB - Rn - T 0100nnnn00000101 1 LSB
Description

This instruction rotates the contents of general register Rn one bit to the right, and stores the |
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTR |—>

ROTR(long n) /* ROTR Rn */

Operation

{
if ((R[n]&0x00000001)==0) T=0;
else T=1;
R[n]>>=1;
if (T==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example
ROTR RO ; Before execution RO = H'00000001, T=0

; After execution RO = H'80000000, T =1

Rev. 4.0, 03/00, page 338 of 395
HITACHI



9.79 RTE ReTurn from Exception System Control Instruction
Return from Exception Handling (Privileged Instruction)
Delayed Branch Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
RTE SSR - SR, SPC- PC 0000000000101011 5 —

Description

This instruction returns from an exception or interrupt handling routine by restoring the PC ar
SR values from SPC and SSR. Program execution continues from the address specified by t
restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instructi
user mode will cause an illegal instruction exception.

Notes

As this is a delayed branch instruction, the instruction following the RTE instruction is execut
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exceptic
must not be generated by the instruction in this instruction’s delay slot. If the following instruc
is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instructic
is identified as a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from S
the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetct
instruction in the RTE delay slot.

Rev. 4.0, 03/00, page 339 of 395
HITACHI



Operation

RTE() /* RTE */

{
unsigned int temp;
temp=PC;
SR=SSR;
PC=SPC;
Delay_Slot(temp+2);

}

Example
RTE ;Return to original routine.

ADD #8,R14 ; Executed before branch.

Note: In a delayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) is in fact performed in
delayed branch instruction delay slot instruction order. For example, even if the registe
holding the branch destination address is modified in the delay slot, the branch destine
address will still be the register contents prior to the modification.

Rev. 4.0, 03/00, page 340 of 395
HITACHI



9.80 RTS ReTurn from Subroutine Branch Instruction

Return from Subroutine Procedure Delayed Branch Instructior
Execution
Format Summary of Operation Instruction Code States T Bit
RTS PR - PC 0000000000001011 2 —
Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processini
continues from the address indicated by the restored PC value. This instruction can be used
return from a subroutine procedure called by a BSR or JSR instruction to the source of the c:

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed b
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the follow
instruction is a branch instruction, it is identified as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation

RTS() /* RTS */

{
unsigned int temp;
temp=PC;
PC=PR;
Delay_Slot(temp+2);
}

Rev. 4.0, 03/00, page 341 of 395
HITACHI



Example

TABLE: .data.l

TRGET: MOV

TABLE,R3

@R3

RO,R1

TRGET

R1,RO

#12,R0

Rev. 4.0, 03/00, page 342 of 395

: R3 = TRGET address
;Branch to TRGET.
‘NOP executed before branch.
; « Subroutine procedure return destination (PR contents)

; Jump table
;< Entry to procedure

;PR contents-> PC
; MOV executed before branch.

HITACHI



9.81 SETS SET S bit System Control Instruction
S Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETS 1-S 0000000001011000 1 —
Description

This instruction sets the S bit to 1.
Operation

SETS() /* SETS */

{
S=1;
PC+=2,
}

Example

SETS :Before execution S =0

; After execution

S=1

Rev. 4.0, 03/00, page 343 of 395

HITACHI



9.82 SETT SET T bit System Control Instruction

T Bit Setting
Execution
Format Summary of Operation Instruction Code States T Bit
SETT 1-T 0000000000011000 1 1
Description

This instruction sets the T bit to 1.
Operation

SETT() /* SETT*

{
T=1,
PC+=2;
}

Example

SETT : Before execution T =0
; After execution T=1

Rev. 4.0, 03/00, page 344 of 395
HITACHI



9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
Dynamic Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAD Rm, Rn When Rm =0, 0100nnnnmmmm1100 1 —
Rn << Rm - Rn
When Rm < 0,

Rn >>Rm - [MSB - Rn]

Description

This instruction arithmetically shifts the contents of general register Rn. General register Rm
specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right
negative. In a shift to the right, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm registe
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The
shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm <0 MSB LSB

MSB ————»

Rev. 4.0, 03/00, page 345 of 395
HITACHI



Operation

SHAD(int m,n) /*SHAD Rm,Rn */
{
int sgn=R[m] & 0x80000000;
if (sgn==0)
R[n] <<= (R[m] & Ox1F);
else if (R[m] & Ox1F) == 0) {
if ((R[n] & 0x80000000) == 0)
R[n] = 0;
else
R[n] = OXFFFFFFFF;

}

else
R[n]=(long)R[n] >> ((~R[M] & Ox1F)+1);
PC+=2;
}

Example

:Before execution R1 = H'FFFFFFEC, R2 = H'80180000
; After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801
;Before execution R3 =H'00000014, R4 = H'FFFFF801
: After execution R3 =H'00000014, R4 = H'80100000

SHAD R1,R2

SHAD R3,R4

Rev. 4.0, 03/00, page 346 of 395
HITACHI



9.84 SHAL SHift Arithmetic Left Shift Instruction
One-Bit Left
Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAL Rn T~Rn<0 0100nnnn00100000 1 MSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the left, anc
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAL
- o

Operation

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{
if ((R[n]&0x80000000)==0) T=0;
else T=1;
R[n]<<=1;
PC+=2;

}

Example
SHAL RO ; Before execution RO = H'80000001, T=0

;. After execution RO = H'00000002, T =1

Rev. 4.0, 03/00, page 347 of 395
HITACHI



9.85 SHAR SHift Arithmetic Right Shift Instruction
One-Bit Right
Arithmetic Shift

Execution
Format Summary of Operation Instruction Code States T Bit
SHAR Rn MSB - Rn - T 0100nnnn00100001 1 LSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the right, anc
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR .
]

Operation

SHAR(long n) /* SHAR Rn */

{
long temp;
if ((R[n]&0x00000001)==0) T=0;
else T=1;
if ((R[n]&0x80000000)==0) temp=0;
else temp=1;
R[n]>>=1;
if (temp==1) R[n]|=0x80000000;
else R[n]&=0x7FFFFFFF;
PC+=2;

}

Example
SHAR RO : Before execution RO =H'80000001, T=0

; After execution RO = H'C0000000, T=1

Rev. 4.0, 03/00, page 348 of 395
HITACHI



9.86 SHLD SHift Logical Dynamically Shift Instruction
Dynamic Logical

Shift
Execution

Format Summary of Operation Instruction Code States T Bit
SHLD Rm, Rn When Rm =0, 0100nnnnmmmm1101 1 —

Rn << Rm - Rn

When Rm < 0,

Rn>>Rm - [0 - Rn]
Description

This instruction logically shifts the contents of general register Rn. General register Rm spec
the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right
negative. In a shift to the right, Os are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm registe
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The
shift range is 0 to 31, and the right shift range, 1 to 32.

Rm=>0 MSB LSB

Rm <0 MSB LSB

Rev. 4.0, 03/00, page 349 of 395
HITACHI



Operation

SHLD(int m,n)/*SHLD Rm,Rn */
{
int sgn = R[m] & 0x80000000;
if (sgn == 0)
R[n] <<= (R[m] & Ox1F);
else if (R[m] & Ox1F) == 0)

R[n] =0;
else
R[n]=(unsigned)R[n] >> ((~R[m] & 0x1F)+1);
PC+=2;
}
Example
SHLD R1,R2 ; Before execution R1=HFFFFFFEC, R2 = H'80180000
; After execution R1 = H'FFFFFFEC, R2 = H'00000801
SHLD R3,R4 ; Before execution R3 = H'00000014, R4 = HFFFFF801

;. After execution R3 =H'00000014, R4 = H'80100000

Rev. 4.0, 03/00, page 350 of 395
HITACHI



9.87 SHLL SHift Logical Left Shift Instruction

One-Bit Left
Logical Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLL Rn T~Rn<0 0100nnnn00000000 1 MSB
Description

This instruction logically shifts the contents of general register Rn one bit to the left, and stor
result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

e

SHLL

Operation

SHLL(long n) /* SHLL Rn (Same as SHAL) */
{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;
}

Example

SHLL RO ; Before execution RO = H'80000001, T=0
;. After execution RO = H'00000002, T =1

Rev. 4.0, 03/00, page 351 of 395
HITACHI



9.88 SHLLn n bits SHift Logical Left Shift Instruction

n-Bit Left
Logical Shift
Execution

Format Summary of Operation Instruction Code States T Bit
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000 1 —
SHLL8 Rn Rn<<8 - Rn 0100nnnn00011000 1 —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 1 —
Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the left, ar
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLL2 MSB LSB

SHLLS8 MSB LSB

SHLL16 MSB LSB

Rev. 4.0, 03/00, page 352 of 395
HITACHI



Operation

SHLL2(long n) /* SHLL2 Rn */

{
R[n]<<=2;
PC+=2;

SHLL8(long n) /* SHLL8 Rn */

{
R[n]<<=8;
PC+=2;

SHLL16(long n) /* SHLL16 Rn */
{

R[n]<<=16;
PC+=2;
}
Example
SHLL2 RO . Before execution RO = H'12345678
. After execution RO = H'48D159E0
SHLL8 RO ; Before execution RO = H'12345678
: After execution RO = H'34567800
SHLL16 RO ; Before execution RO =H'12345678

: After execution RO = H'56780000

Rev. 4.0, 03/00, page 353 of 395
HITACHI



9.89 SHLR SHift Logical Right Shift Instruction

One-Bit Right
Logical Shift
Execution
Format Summary of Operation Instruction Code States T Bit
SHLR Rn 0-Rn-T 0100nnnn00000001 1 LSB
Description

This instruction logically shifts the contents of general register Rn one bit to the right, and stor
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

o

SHLR

Operation

SHLR(long n) /* SHLR Rn */
{
if (R[n]&0x00000001)==0) T=0;
else T=1;
R[n>>=1;
R[n]&=0x7FFFFFFF;
PC+=2;
}

Example

SHLR RO :Before execution RO = H'80000001, T=0
; After execution RO = H'40000000, T =1

Rev. 4.0, 03/00, page 354 of 395
HITACHI



990 SHLRn n bits SHift Logical Right Shift Instruction

n-Bit Right
Logical Shift
Execution

Format Summary of Operation Instruction Code States T Bit
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001 1 —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 1 —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 1 —
Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the right,
stores the result in Rn. The bits shifted out of the operand are discarded.

SHLR2 MSB LSB

SHLR8 MSB LSB

SHLR16 MSB LSB

Rev. 4.0, 03/00, page 355 of 395
HITACHI



Operation

SHLR2(long n) /* SHLR2 Rn */

{
R[n]>>=2;
R[n]&=0x3FFFFFFF;
PC+=2;

SHLR8(long n) /* SHLR8 Rn */

{
R[n]>>=8;
R[n]&=0x00FFFFFF;
PC+=2;

SHLR16(longn)  /* SHLR16 Rn */
{

R[n]>>=16;
R[n]&=0x0000FFFF;
PC+=2;
}
Example
SHLR2 RO
SHLR8 RO
SHLR16 RO

. Before execution RO =H'12345678
. After execution RO = H'048D159E
: Before execution RO =H'12345678
; After execution RO = H'00123456

. Before execution RO = H'12345678
; After execution RO = H'00001234

Rev. 4.0, 03/00, page 356 of 395

HITACHI



9.91 SLEEP SLEEP System Control Instruction

Transition to Power-Down Mode (Privileged Instruction)
Execution
Format Summary of Operation Instruction Code States T Bit
SLEEP Sleep 0000000000011011 4 —
Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPL
the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this instru
in user mode will cause an illegal instruction exception.

Notes

SLEEP performance depends on the standby control register (STBCR). See Power-Down M
in hardware manual, for details.

Operation

SLEEP() /* SLEEP */

{
Sleep_standby();

}
Example

SLEEP ; Transition to power-down mode

Rev. 4.0, 03/00, page 357 of 395
HITACHI



9.92

STC

STore Control register

Store from Control Register

System Control Instruction
(Privileged Instruction)

Execution
Format Summary of Operation Instruction Code States T Bit
STC SR, Rn SR - Rn 0000nnNnNN00000010 2 —
STC GBR,Rn GBR - Rn 0000nnNNN00010010 2 —
STC VBR,Rn VBR - Rn 0000nNNN00100010 2 —
STC SSR, Rn SSR - Rn 0000nnNnNn00110010 2 —
STC  SPC,Rn SPC - Rn 0000nnNNN01000010 2 —
STC SGR, Rn SGR - Rn 0000nNNN00111010 3 —
STC DBR, Rn DBR - Rn 0000nnNnNn11111010 2 —
STC  RO_BANK, Rn RO_BANK - Rn 0000nNNN10000010 2 —
STC R1_BANK, Rn R1_BANK - Rn 0000nnNnNn10010010 2 —
STC R2_BANK, Rn R2_BANK - Rn 0000nnNnNn10100010 2 —
STC R3_BANK, Rn R3_BANK - Rn 0000nnNnNn10110010 2 —
STC R4_BANK, Rn R4 _BANK - Rn 0000nnNNN11000010 2 —
STC R5_BANK, Rn R5 BANK - Rn 0000nnNnNn11010010 2 —
STC  R6_BANK, Rn R6_BANK - Rn 0000nNNN11100010 2 —
STC R7_BANK, Rn R7_BANK - Rn 0000nnNNn11110010 2 —
STC.L SR, @-Rn Rn-4 - Rn, SR - (Rn) 0100nnnn00000011 2 —
STC.L GBR, @-Rn Rn-4 - Rn, GBR - (Rn) 0100nnnNn00010011 2 —
STC.L VBR, @-Rn Rn-4 - Rn, VBR - (Rn) 0100nnnNn00100011 2 —
STC.L SSR, @-Rn Rn-4 - Rn, SSR - (Rn) 0100nnnn00110011 2 —
STC.L SPC, @-Rn Rn-4 - Rn, SPC - (Rn) 0100nnnNn01000011 2 —
STC.L SGR, @-Rn Rn-4 - Rn, SGR - (Rn) 0100nnnNn00110010 3 —
STC.L DBR, @-Rn Rn-4 - Rn, DBR - (Rn) 0100nnnn11110010 2 —
STC.L RO_BANK, @-Rn Rn-4 — Rn, RO_BANK - (Rn)  0100nnnn10000011 2 —
STC.L R1_BANK, @-Rn Rn-4 — Rn,R1_BANK - (Rn)  0100nnnn10010011 2 —
STC.L R2_BANK, @-Rn  Rn-4 - Rn, R2_BANK - (Rn) 0100nnnn10100011 2 —
STC.L R3_BANK, @-Rn  Rn-4 - Rn, R3_BANK - (Rn)  0100nnnn10110011 2 —
STC.L R4 BANK, @-Rn  Rn-4 - Rn, R4_BANK - (Rn)  0100nnnn11000011 2 —
STC.L R5_BANK, @-Rn  Rn-4 - Rn, R5_BANK - (Rn)  0100nnnn11010011 2 —
STC.L R6_BANK, @-Rn  Rn-4 — Rn, R6_BANK - (Rn)  0100nnnn11100011 2 —
STC.L R7_BANK, @-Rn  Rn-4 - Rn, R7_BANK - (Rn)  0100nnnn11110011 2 —

Rev. 4.0, 03/00, page 358 of 395

HITACHI



Description

This instruction stores control register SR, GBR, VBR, SSR, SPC, SGR, DBR or Rm_BANK
= 0-7) in the destination.

Rm_BANK operands are specified by the RB bit of the SR register:
when the RB bit is 1 Rm_BANKO is accessed,
when the RB bit is 0 Rm_BANK1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR, @-RI
Use of these instructions in user mode will cause illegal instruction exceptions.

Operation

STCSR(intn)  /* STC SR,Rn : Privileged */
{
R[n]=SR;
PC+=2;

STCGBR(intn) /*STC GBR,Rn*/
{
R[n]=SGR;
PC+=2;

STCVBR(intn) /*STC VBR,Rn : Privileged */
{
R[n]=VBR;
PC+=2;

STCSSR(intn) /* STC SSR,Rn : Privileged */
{
R[n]=SSR;
PC+=2;

Rev. 4.0, 03/00, page 359 of 395
HITACHI



STCSPC(intn) /*STC SPC,Rn : Privileged */
{
R[n]=SPC;
PC+=2;

STCSGR(intn) /* STC SGR,Rn : Privileged */
{
R[N]=SGR;
PC+=2;

STCDBR(intn) /* STC DBR,Rn : Privileged */
{
R[n]=DBR;
PC+=2;

STCRm_BANK(intn) /* STC Rm_BANK,Rn : Privileged */
[* m=0-7 */

R[n]=Rm_BANK;
PC+=2;

STCMSR(intn) /*STC.L SR,@-Rn : Privileged */
{
R[n}-=4;
Write_Long(R[n],SR);
PC+=2;

STCMGBR(intn) /* STC.L GBR,@-Rn */
{
RIn}-=4;
Write_Long(R[n],GBR);
PC+=2;

Rev. 4.0, 03/00, page 360 of 395
HITACHI



STCMVBR(intn) /* STC.L VBR,@-Rn : Privileged */
{
RIn}-=4;
Write_Long(R[n],VBR);
PC+=2;

STCMSSR(intn) /* STC.L SSR,@-Rn : Privileged */
{
R[n}-=4;
Write_Long(R[n],SSR);
PC+=2;

STCMSPC(intn) /* STC.L SPC,@-Rn : Privileged */
{
R[n]—=4;
Write_Long(R[n],SPC);
PC+=2;

STCMSGR(intn) /* STC.L SGR,@-Rn : Privileged */
{
R[n}-=4;
Write_Long(R[n],SGR);
PC+=2;

STCMDBR(intn) /* STC.L DBR,@-Rn : Privileged */
{
R[n]—=4;
Write_Long(R[n],DBRY);
PC+=2;

HITACHI

Rev. 4.0, 03/00, page 361 of 395



STCMRm_BANK(intn) /* STC.L Rm_BANK,@-Rn : Privileged */

/* m=0-7*/

R[n]—=4;
Write_Long(R[n],Rm_BANK);
PC+=2;

}

Possible Exceptions:

General illegal instruction exception
Slot illegal instruction exception

Data TLB miss exception

Data TLB protection violation exception
Address error

Rev. 4.0, 03/00, page 362 of 395

HITACHI



993 STS

Store from

STore System register

System Register

System Control Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
STS MACH,Rn MACH - Rn 0000nnnn00001010 1 —
STS MACL,Rn MACL - Rn 0000nnnn00011010 1 —
STS PR,Rn PR - Rn 0000nnnn00101010 1 —
STS.L MACH,@-Rn Rn-4 - Rn, MACH - (Rn) 0100nnnn00000010 1 —
STS.L MACL,@-Rn Rn-4 - Rn, MACL - (Rn) 0100nnnn00010010 1 —
STS.L PR,@-Rn Rn-4 - Rn, PR - (Rn) 0100nnnn00100010 1 —

Description

This instruction stores system register MACH, MACL, or PR in the destination.

Operation

STSMACH(int n)
{
R[N]=MACH;
PC+=2;

STSMACL(int n)

{
R[N]=MACL;
PC+=2;

STSPR(int n)

{
R[N]=PR;
PC+=2;

STSMMACH(int n)
{

/* STS MACH,Rn */

[* STS MACL,Rn */

/* STS PR,Rn */

[* STS.L MACH,@-Rn */

Rev. 4.0, 03/00, page 363 of 395

HITACHI



R[n]-=4;
Write_Long(R[n],MACH);
PC+=2,

STSMMACL(intn) /*STS.L MACL,@-Rn */

{
R[n]—=4;
Write_Long(R[n], MACL);
PC+=2;

STSMPR(intn) /* STS.L PR,@-Rn */

{
R[n]-=4;
Write_Long(R[n],PR);
PC+=2;

}

Possible Exceptions:
« Data TLB miss exception

« Data TLB protection violation exception
e Address error

Example

STS MACH,RO0 ;. Before execution
;. After execution
STS.L PR,@-R15 ;. Before execution

;. After execution

Rev. 4.0, 03/00, page 364 of 395

RO = H'FFFFFFFF, MACH = H00000000
RO = H'00000000

R15 = H'10000004

R15 = H'10000000, (R15) = PR

HITACHI



994 STS STore from FPU

System register System Control Instruction
Store from FPU
System Register

Execution
Format Summary of Operation Instruction Code States T Bit
STS FPUL,Rn FPUL - Rn 0000nnnn01011010 1 —

STS FPSCR,Rn FPSCR - Rn 0000nnnn01101010 1
STS.L FPUL,@-Rn Rn-4 - Rn, FPUL - (Rn)  0100nnnn01010010 1 —
STS.L FPSCR,@-Rn  Rn-4 - Rn, FPSCR - (Rn) 0100nnnn01100010 1

Description

This instruction stores FPU system register FPUL or FPSCR in the destination.

Operation
STS(int n, int *FPUL) /* STS FPUL,Rn */
{
R[n]= *FPUL;
PC+=2,
}
STS_SAVE(int n, int *FPUL)  /* STS.L FPUL,@-Rn */
{
R[n]-=4;
Write_Long(R[n],*FPUL) ;
PC+=2,
}
STS(int n) /* STS FPSCR,Rn */
{
R[N]=FPSCR&O0x003FFFFF;
PC+=2;
}
STS_RESTORE(int n) /* STS.L FPSCR,@-Rn */
{
Rn]-=4;

Write_Long(R[n],FPSCR&O0X003FFFFF)

Rev. 4.0, 03/00, page 365 of 395
HITACHI



PC+=2;
}

Possible Exceptions:

Data TLB miss exception
Data TLB protection violation exception
Address error

Examples

STS

Example 1:

MOV.L #H'12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13
; After executing the STS instruction:
; R13 = 12ABCDEF

Example 2:
STS FPSCR, R2
; After executing the STS instruction:
; The current content of FPSCR is stored in register R2

STS.L
Example 1:
MOV.L #H'0C700148, R7
STS.L FPUL, @-R7
; Before executing the STS.L instruction:
; R7 =0C700148
; After executing the STS.L instruction:
; R7 =0C700144, and the content of FPUL is saved at memory
; locatio\n 0C700144.

Example 2:
MOV.L #H'0C700154, R8
STS.L FPSCR, @-R8
; After executing the STS.L instruction:
; The content of FPSCR is saved at memory location 0C700150.

Rev. 4.0, 03/00, page 366 of 395

HITACHI



995 SUB SUBtract binary Arithmetic Instruction
Binary Subtraction

Execution
Format Summary of Operation Instruction Code States T Bit
SUB Rm,Rn Rn-Rm - Rn 0011nnnnmmmm1000 1 —

Description

This instruction subtracts the contents of general register Rm from the contents of general re
Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn should be use

Operation

SUB(long m, long n) /* SUB Rm,Rn */
{

R[n]-=R[m];

PC+=2;
}

Example

SuB RO,R1 ; Before execution RO = H'00000001, R1 = H'80000000
; After execution  R1 = H'7FFFFFFF

Rev. 4.0, 03/00, page 367 of 395
HITACHI



9.96 SUBC SUBtract with Carry Arithmetic Instruction
Binary Subtraction with Borrow

Execution
Format Summary of Operation Instruction Code States T Bit
SUBC Rm,Rn Rn-Rm-T - Rn, borrow - T 0011nnnnmmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents ¢
general register Rn, and stores the result in Rn. A borrow resulting from the operation is reflec
in the T bit. This instruction is used for subtractions exceeding 32 bits.

Operation

SUBC(long m, long n) /* SUBC Rm,Rn */

{
unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];
tmpO=R[n];
R[n]=tmpl-T;
if (tmpO<tmpl) T=1,;
else T=0;
if (tmp1<R[n]) T=1;
PC+=2;

}

Example

CLRT ;RO:R1(64 bits) — R2:R3(64 bits) = R0:R1(64 bits)

SUBC  R3,R1 ;Before execution T =0, R1 =H'00000000, R3 = H'00000001
; After execution T =1, R1 = H'FFFFFFFF

SUBC  R2,RO ;Before execution T =1, RO = H'00000000, R2 = H'00000000
; After execution T =1, RO = H'FFFFFFFF

Rev. 4.0, 03/00, page 368 of 395
HITACHI



9.97 SuUBV SUBtract with (V flag)

underflow check
Binary Subtraction
with Underflow Check

Arithmetic Instruction

Execution
Format Summary of Operation Instruction Code States T Bit
SUBV Rm,Rn Rn-Rm - Rn, underflow - T 0011nnnnmmmm1011 1 Underflow
Description

This instruction subtracts the contents of general register Rm from the contents of general re

Rn, and stores the result in Rn. If underflow occurs, the T bit is set.

Operation

SUBV(long m, long n) /* SUBV Rm,Rn */
{

long dest,src,ans;

if (long)R[n]>=0) dest=0;
else dest=1;
if ((long)R[m]>=0) src=0;
else src=1;
src+=dest;
R[n]-=R[m];
if ((long)R[n]>=0) ans=0;
else ans=1;
ans+=dest;
if (src==1) {
if (ans==1) T=1;
else T=0;
}
else T=0;
PC+=2;

HITACHI

Rev. 4.0, 03/00, page 369 of 395



Example
: Before execution RO = H'00000002, R1 = H'80000001

; After execution R1=H'7FFFFFFF, T=1
; Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution R3 =H'80000000, T=1

SUBV RO,R1

SUBV R2,R3

Rev. 4.0, 03/00, page 370 of 395
HITACHI



9.98 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half

Swap
Execution
Format Summary of Operation Instruction Code States T Bit
SWAP.B Rm,Rn Rm - lower-2-byte upper-/  0110nnnnmmmm21000 1 —
lower-byte swap - Rn
SWAP.W Rm,Rn Rm - upper-/lower-word 0110nnnnmmmm1001 1
swap - Rn
Description

This instruction swaps the upper and lower parts of the contents of general register Rm, and
the result in Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the
from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of a word specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with t
bits from bit 15 to bit O.

Operation

SWAPB(long m, longn)  /* SWAP.B Rm,Rn */
{

unsigned long temp0,temp1;

temp0=R[m]&0xFFFF0000;
temp1=(R[m]&0x000000FF)<<8;
R[Nn]=(R[M]&0X0000FF00)>>8;
R[n]=R[n]|temp1|tempO;

PC+=2;

SWAPW(long m, long n)  /* SWAP.W Rm,Rn */
{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;
R[n]=R[m]<<16;

Rev. 4.0, 03/00, page 371 of 395
HITACHI



R[n]|=temp;
PC+=2;
}

Example

; Before execution RO = H'12345678

;. After execution R1 =H'12347856
:Before execution RO = H'12345678
;. After execution R1 =H'56781234

SWAP.B RO,R1

SWAP.W RO,R1

Rev. 4.0, 03/00, page 372 of 395
HITACHI



9.99 TAS Test And Set Logical Instruction
Memory Test
and Bit Setting

Execution
Format Summary of Operation Instruction Code States T Bit
TAS.B @Rn f(RN)=0,1 - T,else0 - T 0100nnnn00011011 5 Test
1 - MSB of (Rn) result

Description

This instruction purges the cache block corresponding to the memory area specified by the
contents of general register Rn, reads the byte data indicated by that address, and sets the
if that data is zero, or clears the T bit to O if the data is nonzero. The instruction then sets bit
and writes to the same address. The bus is not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effec
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the con
of that cache block are written back to external memory, and the cache block is then invalida
(by clearing the V bit to 0). If there is a cache hit and the corresponding cache block is clean
= 0), the cache block is simply invalidated (by clearing the V bit to 0). A purge is not execute
the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is nc
executed between the two TAS.B accesses.

Operation

TAS(int n) /* TAS.B @Rn */
{

int temp;

temp=(int)Read_Byte(R[n]); /* Bus Lock */
if (temp==0) T=1,

else T=0;

temp|=0x00000080;
Write_Byte(R[n],temp);  /* Bus unlock */
PC+=2;

Rev. 4.0, 03/00, page 373 of 395
HITACHI



Possible Exceptions:
e Data TLB miss exception

« Data TLB protection violation exception
« Initial page write exception
e Address error

Exceptions are checked taking a data access by this instruction as a byte store.

Rev. 4.0, 03/00, page 374 of 395
HITACHI



9.100 TRAPA TRAP Always
Trap Exception

System Control Instruction

Handling
Execution

Format Summary of Operation Instruction Code States T Bit
TRAPA #mm imm - TRA, PC+2 - SPC, 1100001 1liiiiiiii 7 —

SR - SSR, R15 - SGR,

1 - SR.MD/BL/RB,

0x160 - EXPEVT,

VBR+H'00000100 - PC
Description

This instruction starts trap exception handling. The values of (PC + 2), SR, and R15 are save
SPC and SSR, and 8-bit immediate data is stored in the TRA register (bits 9 to 2). The proce
mode is switched to privileged mode (the MD bit in SR is set to 1), and the BL bit and RB bit
SR are set to 1. As a result, exception and interrupt requests are masked (not accepted), an
BANK1 registers (RO_BANK1 to R7_BANK1) are selected. Exception code 0x160 is written 1

the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100),
indicated by the sum of the VBR register contents and offset H'00000100.

Operation

TRAPA(int i) /* TRAPA #imm */
{

intimm;

imm=(0x000000FF & i);
TRA=IMmM<<2;
SSR=SR;

SPC=PC+2;

SGR=R15;

SR.MD=1;

SR.BL=1;

SR.RB=1;
EXPEVT=0x00000160;
PC=VBR+H'00000100;

HITACHI

Rev. 4.0, 03/00, page 375 of 395



9.101 TST TeST logical
AND Operation

Logical Instruction

T Bit Setting
Execution
Format Summary of Operation  Instruction Code States T Bit
TST Rm,Rn Rn & Rm; if result is 0, 0010nnnnmmmm1000 1 Test
1-T,else0 - T result
TST  #imm,R0O RO & imm; if result is O, 1100100C0iiiiiiii 1 Test
1-T,else0 > T result
TST.B #imm,@(R0,GBR) (RO + GBR) & imm; 110021100iiiiiiii 3 Test
ifresultis0,1 - T, result

else0 - T

Description

This instruction ANDs the contents of general registers Rn and Rm, and sets the T bit if the re
is zero. If the result is nonzero, the T bit is cleared. The contents of Rn are not changed.

This instruction can be used to AND general register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bi
immediate data. The contents of RO or the memory are not changed.

Operation

TST(long m, long n) /* TST Rm,Rn */
{

if (R[n]&R[m])==0) T=1,

else T=0;

PC+=2;

TSTl(long i) /* TST #imm,R0 */
{

long temp;

temp=R[0]&(0x000000FF & (long)i);
if (temp==0) T=1,
else T=0;
PC+=2;
}

Rev. 4.0, 03/00, page 376 of 395

HITACHI



TSTM(long i) /* TST.B #imm,@(R0,GBR) */
{

long temp;

temp=(long)Read_Byte(GBR+R[0]);
temp&=(0x000000FF & (long)i);
if (temp==0) T=1,

else T=0;
PC+=2;
}
Example
TST RO,RO ; Before execution RO = H'00000000
;. After execution T=1
TST #H'80,RO . Before execution RO = H'FFFFFF7F

;. After execution T=1
TST.B #H'A5@(RO,GBR) ; Before execution (R0,GBR)=H'A5
;. After execution T=0

Rev. 4.0, 03/00, page 377 of 395
HITACHI



9.102 XOR eXclusive OR logical Logical Instruction

Exclusive
Logical OR
Execution
Format Summary of Operation Instruction Code States T Bit
XOR Rm,Rn Rn”~"Rm - Rn 0010nnnnmmmm1010 1 —
XOR  #imm,RO RO~ imm - RO 11001010iiiiiiii 1 —
XOR.B #imm,@(R0,GBR) (RO+GBR)"imm - 110011 10iiiiiiii 4 —
(RO+GBR)

Description

This instruction exclusively ORs the contents of general registers Rn and Rm, and stores the |
in Rn.

This instruction can be used to exclusively OR register RO contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memor
with 8-bit immediate data.

Operation

XOR(long m, long n) /* XOR Rm,Rn */
{

R[nJ*=R[m];

PC+=2;

XORI(long i) /* XOR #mm,R0 */
{
R[0]"=(0x000000FF & (long)i);
PC+=2;

XORM(long i) /* XOR.B #imm,@(R0,GBR) */
{

int temp;

temp=(long)Read_Byte(GBR+R[0]);
temp”=(0x000000FF &(long)i);

Rev. 4.0, 03/00, page 378 of 395
HITACHI



Write_Byte(GBR+R[0],temp);
PC+=2;
}

Example
XOR  RO,R1 ; Before execution RO = HAAAAAAAA, R1 = H'55555555
; After execution  R1 = H'FFFFFFFF
XOR  #H'FO,RO : Before execution RO = H'FFFFFFFF
; After execution RO = H'FFFFFFOF

XOR.B #H'A5,@(R0O,GBR) ; Before execution (R0,GBR)=H'A5
; After execution  (RO,GBR) = H'00

Rev. 4.0, 03/00, page 379 of 395
HITACHI



9.103 XTRCT eXTRaCT Data Transfer Instruction
Middle Extraction
from Linked Registers

Execution
Format Summary of Operation Instruction Code States T Bit

XTRCT Rm,Rn  Middle 32 bits of Rm:Rn - Rn 0010nnnnmmmm1101 1 —

Description

This instruction extracts the middle 32 bits from the 64-bit contents of linked general registers
and Rn, and stores the result in Rn.

MSB LSB MSB LSB
Rm Rn

Rn

Operation

XTRCT(long m, long n) /* XTRCT Rm,Rn */
{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;
R[n]=(R[n]>>16)&0x0000FFFF;
R[n]|=temp;
PC+=2;

}

Example

XTRCT RO,R1 : Before execution RO = H'01234567, R1 = H'89ABCDEF
: After execution R1 =H'456789AB

Rev. 4.0, 03/00, page 380 of 395
HITACHI



Appendix A Instruction Codes

A.l Instruction Set by Addressing Mode

Table A.1 Instruction Set by Addressing Mode

Addressing Mode Category Sample Instruction Type
No operand — NOP 13
Register direct Destination operand only MOVT Rn 24
Source and destination ADD Rm,Rn 56
operands
Transfer to control register or LDC Rm,SR 16
system register
Transfer from control register or STS MACH,Rn 17
system register
Register indirect Destination operand only JMP @Rn 7
Register direct data transfer MOV.L Rm,@Rn 13
Register indirect with Multiply-and-accumulate MAC.W @Rm+,@Rn+ 2
post-increment operation
Direct data transfer from MOV.L @Rm+,Rn 6
register
Load to control register or LDC.L @Rm+SR 12
system register
Register indirect with Direct data transfer from MOV.L Rm,@-Rn 6
pre-decrement register
Store from control register or STC.L SR,@-Rn 13

system register

Register indirect with Register direct data transfer MOV.L Rm,@(disp,Rn) 6
displacement

Indexed register Register direct data transfer MOV.L Rm,@(RO,Rn) 12
indirect

GBR indirect with Register direct data transfer MOV.L RO,@(disp,GBR) 6
displacement

Indexed GBR indirect Immediate data transfer AND.B #imm,@(R0O,GBR) 4
PC relative with Direct data transfer to register MOV.L @(disp,PC),Rn
displacement

PC relative using Rn Branch instruction BRAF Rn 2
PC relative Branch instruction BRA label

Rev. 4.0, 03/00, page 381 of 395
HITACHI



Table A.1 Instruction Set by Addressing Mode (cont)

Addressing Mode Category Sample Instruction Type
Immediate Load to register FLDIO FRn 2
Register direct arithmetic/logic  ADD #imm,Rn 7
operation
Exception vector specification =~ TRAPA #imm 1
Total 234

(1) No Operand

Table A.2 No Operand

Instruction Operation Instruction Code Privileged T Bit

DIVOU 0 - M/IQIT 0000000000011001  — 0
RTS Delayed branch, PR - PC 0000000000001011  — —
CLRMAC 0 - MACH, MACL 0000000000101000 — —
CLRS 0-S 0000000001001000 — —
CLRT 0-T 0000000000001000 — 0
LDTLB PTEH/PTEL - TLB 0000000000111000 Privleged —
NOP No operation 0000000000001001 — —
RTE Delayed branch, SSR/SPC -  0000000000101011  Privileged —

SR/PC

SETS 1.8 0000000001011000 — —
SETT 1T 0000000000011000 — 1
SLEEP Sleep or standby 0000000000011011  Privileged —
FRCHG ~FPSCR.FR - FPSCR.FR 1111101111111101 — —
FSCHG ~FPSCR.SZ - FPSCR.SzZ 1111001111111101 — —

Rev. 4.0, 03/00, page 382 of 395

HITACHI



(2) Reqgister Direct

Table A.3 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit
MOVT Rn T - Rn 0000nnnn00101001  — —
CMP/PZ Rn WhenRN=20,1 - T 0100nnnn00010001  — Comparison
Otherwise, 0 - T result
CMP/PL  Rn WhenRn>0,1 - T 0100nnnn00010101  — Comparison
Otherwise, 0 - T result
DT Rn Rn -1 - Rn; when Rn =0, 0100nnnn00010000 — Comparison
1-T result
WhenRn#0,0 - T
ROTL Rn T <« Rn -« MSB 0100nnnn00000100  — MSB
ROTR Rn LSB - Rn - T 0100nnnn00000101  — LSB
ROTCL Rn T<Rn T 0100nnnn00100100 — MSB
ROTCR Rn T-Rn-T 0100nnnn00100101  — LSB
SHAL Rn T<Rn-0 0100nnnn00100000 — MSB
SHAR Rn MSB - Rn - T 0100nnnn00100001  — LSB
SHLL Rn T<Rn-0 0100nnnn00000000  — MSB
SHLR Rn 0-Rn-T 0100nnnNn00000001  — LSB
SHLL2 Rn Rn<<2 - Rn 0100nnnn00001000  — —
SHLR2 Rn Rn>>2 - Rn 0100nnnn00001001  — —
SHLLS8 Rn Rn<<8 - Rn 0100nnnn00011000 — —
SHLR8 Rn Rn>>8 - Rn 0100nnnn00011001 — —
SHLL16 Rn Rn<<16 - Rn 0100nnnn00101000 — —
SHLR16 Rn Rn>>16 - Rn 0100nnnn00101001 — —
FABS FRn FRn & H'7FFF FFFF - FRn 1111nnnn01011101 — —
FNEG FRn FRn OH'80000000 - FRn 1111nnnn01001101 — —
FSQRT FRn VFRn - FRn 1111nnnn01101101 — —
FABS DRn DRn & H'7FFF FFFF FFFF 1111nnn001011101 — —
FFFF - DRn
FNEG DRn DRn ~ H'8000 0000 0000 0000 1111nnn001001101 — —
- DRn
FSQRT DRn VvDRn - DRn 1111nnn001101101 — —

Rev. 4.0, 03/00, page 383 of 395
HITACHI



Table A.4  Source and Destination Operands

Instruction Operation Instruction Code Privileged T Bit
MOV Rm,Rn Rm - Rn 0110nnnnmmmmO0011 — —
SWAP.B  Rm,Rn Rm - swap lower 2 bytes 0110nnnnmmmm31000 — —
- Rn
SWAP.W Rm,Rn Rm - swap upper/lower 0110nnnnmmmm31001 — —
words - Rn
XTRCT Rm,Rn Rm:Rn middle 32 bits -~ Rn 0010nnnnmmmm21101 — —
ADD Rm,Rn Rn+Rm - Rn 0011nnnnmmmm21100 — —
ADDC Rm,Rn Rn+Rm+T - Rn,carry - T 001lnnnnmmmm1110 — Carry
ADDV Rm,Rn Rn+Rm - Rn, overflow - T 001lnnnnmmmm111ll — Overflow
CMP/EQ Rm,Rn WhenRn=Rm, 1 - T 0011nnnnmmmmO000 — Comparison
Otherwise, 0 - T result
CMP/HS Rm,Rn When Rn = Rm (unsigned), 0011nnnnmmmmO0010 — Comparison
1-T result
Otherwise, 0 - T
CMP/GE Rm,Rn When Rn = Rm (signed), 1 -~ T 0011nnnnmmmmO0011 — Comparison
Otherwise, 0 - T result
CMP/HI  Rm,Rn When Rn > Rm (unsigned), 0011nnnnmmmmO0110 — Comparison
1-T result
Otherwise, 0 - T
CMP/GT Rm,Rn When Rn > Rm (signed), 1 - T 0011nnnnmmmmO0111 — Comparison
Otherwise, 0 - T result
CMP/STR Rm,Rn When any bytes are equal, 0010nnnnmmmm31100 — Comparison
1-T result
Otherwise, 0 - T
DIVl Rm,Rn 1-step division (Rn + Rm) 0011nnnnmmmmO0100 — Calculation
result
DIVOS Rm,Rn MSB of Rn - Q, 0010nnnnmmmmO0111 — Calculation
MSB of Rm - M, M"Q - T result
DMULS.L Rm,Rn Signed, Rn x Rm - MAC, 0011nnnnmmmm1101 — —
32 x 32 - 64 bits
DMULU.L Rm,Rn Unsigned, Rn x Rm - MAC, 0011nnnnmmmmO0101 — —
32 x 32 - 64 bits
EXTS.B  Rm,Rn Rm sign-extended from 0110nnnnmmmm21110 — —
byte - Rn
EXTS.W Rm,Rn Rm sign-extended from 0110nnnnmmmm1111 — —
word - Rn
EXTU.B Rm,Rn Rm zero-extended from 0110nnnnmmmm21100 — —
byte - Rn
EXTUW Rm,Rn Rm zero-extended from 0110nnnnmmmm21101 — —

word - Rn

Rev. 4.0, 03/00, page 384 of 395

HITACHI



Table A.4  Source and Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit
MUL.L Rm,Rn Rn x Rm - MACL 0000nnnnmmmmO0111 — —
32 x 32 - 32 bits
MULS.W Rm,Rn Signed, Rn x Rm - MACL 0010nnnnmmmm1111 — —
16 x 16 — 32 bits
MULU.W Rm,Rn Unsigned, Rn x Rm - MACL  0010nnnnmmmm1110 — —
16 x 16 — 32 bits
NEG Rm,Rn 0-Rm - Rn 0110nnnnmmmm31011 — —
NEGC Rm,Rn O0—-RmMm-T - Rn, borrow - T 0110nnnnmmmm21010 — Borrow
SUB Rm,Rn Rn—-Rm - Rn 0011nnnnmmmm1000 — —
SUBC Rm,Rn Rn—-Rm-T - Rn, borrow - T 0011nnnnmmmm1010 — Borrow
SUBV Rm,Rn Rn - Rm - Rn, underflow - T 0011nnnnmmmm1011 — Underflow
AND Rm,Rn Rn & Rm - Rn 0010nnnnmmmm21001 — —
NOT Rm,Rn ~Rm - Rn 0110nnnnmmmmO0111 — —
OR Rm,Rn Rn|Rm - Rn 0010nnnnmmmm1011 — —
TST Rm,Rn Rn & Rm; when result = 0, 0010nnnnmmmm31000 — Test result
1-T
Otherwise, 0 - T
XOR Rm,Rn RnORm - Rn 0010nnnnmmmm31010 — —
SHAD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmmm1100 — —
When Rn <0, Rn>>Rm -
[MSB - Rn]
SHLD Rm,Rn When Rn =0, Rn << Rm - Rn 0100nnnnmmmm1101 — —
When Rn <0, Rn>>Rm -
[0 - Rn]
FMOV FRm,FRn FRm - FRn 1111nnnnmmmm1100 — —
FMOV DRm,DRnN DRm - DRn 1112nnnOmMmmO01100 — —
FADD FRm,FRn FRn + FRm - FRn 1111nnnnmmmmO000 — —
FCMP/EQ FRm,FRn When FRn=FRm,1 - T 1112nnnnmmmmO0100 — Comparison
Otherwise, 0 - T result
FCMP/GT FRm,FRn When FRn>FRm,1 - T 1111nnnnmmmmO0101 — Comparison
Otherwise, 0 - T result
FDIV FRm,FRn FRn/FRm - FRn 11121nnnnmmmmO0011 — —
FMAC FRO,FRm,FRn FRO*FRm + FRn - FRn 1111nnnnmmmm1110 — —
FMUL FRm,FRn FRN*FRm - FRn 1112nnnnmmmmO0010 — —
FSUB FRm,FRn FRn - FRm - FRn 1111nnnnmmmmO001 — —
FADD DRm,DRn DRn + DRm - DRn 1112nnnOMmmO0000 — —
FCMP/EQ DRm,DRn When DRn=DRm, 1 - T 1111nnnOMmMmMO0100 — Comparison
Otherwise, 0 - T result

Rev. 4.0, 03/00, page 385 of 395

HITACHI



Table A.4  Source and Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit
FCMP/GT DRm,DRn When DRn>DRm, 1 - T 1111nnnOmMmmO00101 — Comparison
Otherwise, 0 - T result
FDIV DRm,DRn DRn /DRm - DRn 1111nnnOmMmmO0011 — —
FMUL DRm,DRn DRn *DRm - DRn 1111nnnOmMmmO0010 — —
FSUB DRm,DRnN DRn—-DRm - DRn 1111nnnOMmMmMO0001 — —
FMOV DRm,XDn DRm - XDn 1111nnn1mmmo01100 — —
FMOV XDm,DRn XDm - DRn 1111nnnOmMmm11100 — —
FMOV XDm,XDn XDm - XDn 1111nnn1mmm11100 — —
FIPR FVm,Fvn inner_product [FVm, FVn] - 1111nnmm11101101 — —
FR[N+3]
FTRV XMTRX,FVn transform_vector [XMTRX, FVn] 1111nn0111111101 — —

- FVn

Table A.5 Transfer to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
LDC Rm,SR Rm - SR 0100mmmmO00001110 Privileged LSB
LDC Rm,GBR Rm - GBR 0100mmmmo00011110 — —
LDC Rm,VBR Rm - VBR 0100mmmmO00101110 Privileged —
LDC Rm,SSR Rm - SSR 0100mmmmO00111110 Privileged —
LDC Rm,SPC Rm - SPC 0100mmmmO01001110 Privileged —
LDC Rm,DBR Rm - DBR 0100mmmm11111010 Privileged —
LDC Rm,Rn_BANK Rm - Rn_BANK (n=0to7) 0100mmmm1nnn1110 Privileged —
LDS Rm,MACH Rm - MACH 0100mmmmO00001010 — —
LDS Rm,MACL Rm - MACL 0100mmmmO00011010 — —
LDS Rm,PR Rm - PR 0100mmmmO00101010 — —
FLDS FRm,FPUL FRm - FPUL 1111mmmmO00011101 — —
FTRC FRm,FPUL (long) FRm - FPUL 1111mmmmO00111101 — —
FCNVDS DRm,FPUL double_to_ floatiDRm] - FPUL 1111mmm010111101 — —
FTRC DRm,FPUL (long) DRm - FPUL 1111mmm000111101 — —
LDS Rm,FPSCR Rm - FPSCR 0100mmmmO01101010 — —
LDS Rm,FPUL Rm - FPUL 0100mmmm01011010 — —

Rev. 4.0, 03/00, page 386 of 395

HITACHI



Table A.6  Transfer from Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit

STC SR,Rn SR - Rn 0000nnnNn00000010  Privileged —
STC GBR,Rn GBR - Rn 0000nnnNn00010010  — —
STC VBR,Rn VBR - Rn 0000nnNN00100010 Privileged —
STC SSR,Rn SSR - Rn 0000nnnNn00110010  Privileged —
STC SPC,Rn SPC - Rn 0000nnNnNn01000010 Privileged —
STC SGR,Rn SGR - Rn 0000nnnNn00111010  Privileged —
STC DBR,Rn DBR - Rn 0000nnnn11111010 Privileged —
STC Rm_BANK,Rn  Rm_BANK - Rn(m=0to7) 0000nnnn1lmmmO0010 Privileged —
STS MACH,Rn MACH - Rn 0000nnnNn00001010  — —
STS MACL,Rn MACL - Rn 0000nnnNn00011010  — —
STS PR,Rn PR - Rn 0000nnnNn00101010 — —
FSTS FPUL,FRn FPUL - FRn 1111nnnn00001101 — —
FLOAT FPUL,FRn (float) FPUL - FRn 1111nnnn00101101 — —
FCNVSD FPUL,DRn float_to_ double [FPUL] - DRn 1111nnn010101101 — —
FLOAT FPUL,DRn (float)FPUL — DRn 1111nnn000101101 — —
STS FPSCR,Rn FPSCR - Rn 0000nnnNn01101010 — —
STS FPUL,Rn FPUL - Rn 0000nnnNn01011010 — —

(3) Register Indirect

Table A.7 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit

TAS.B @Rn When (Rn)=0,1 - T 0100nnnn00011011 — Test result
Otherwise, 0 - T
In both cases, 1 - MSB of (Rn)

JMP @RnN Delayed branch, Rn - PC 0100nnnn00101011  — —

JSR @Rn Delayed branch, PC + 4 . PR, 0100nnnn00001011 — —
Rn - PC

ocCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —

ocCBP @RnN Writes back and invalidates 0000nnnn10100011  — —
operand cache block

OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —

PREF @RnN (Rn) - operand cache 0000nnnNn10000011  — —

Rev. 4.0, 03/00, page 387 of 395
HITACHI



Table A.8 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit

MOV.B Rm,@Rn Rm - (Rn) 0010nnnnmmmmO000 — —
MOV.W  Rm,@Rn Rm - (Rn) 0010nnnnmmmmO001 — —
MOV.L Rm,@Rn Rm - (Rn) 0010nnnnmmmmO010 — —
MOV.B @Rm,Rn (Rm) - sign extension - Rn 0110nnnnmmmmO000 — —
MOV.W  @Rm,Rn (Rm) - sign extension - Rn  0110nnnnmmmmO001 — —
MOV.L @Rm,Rn (Rm) - Rn 0110nnnnmmmmO0010 — —
MOVCA.L RO,@Rn RO - (Rn) (without fetching 0000nnnn11000011 — —

cache block)

FMOV.S @Rm,FRn (Rm) - FRn 11121nnnnmmmm1000 — —
FMOV.S FRm,@Rn FRm - (Rn) 1111nnnnmmmm1010 — —
FMOV @Rm,DRn (Rm) - DRn 1112nnnOMmmm1000 — —
FMOV DRm,@Rn DRm - (Rn) 1111nnnnmmmO01010 — —
FMOV @Rm,XDn (Rm) - XDn 1111nnnImmmm1000 — —
FMOV XDm,@Rn XDm - (Rn) 1111nnnnmmm11010 — —

(4) Register Indirect with Post-Increment

Table A.9 Multiply-and-Accumulate Operation

Instruction Operation Instruction Code Privileged T Bit

MAC.L @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC - MAC 0000nnnnmmmm1111 — —
Rn+4 - Rn,Rm+4 - Rm
32 x 32 + 64 - 64 hits

MAC.W  @Rm+,@Rn+ Signed, (Rn) x (Rm) + MAC -~ MAC 0100nnnnmmmm1111 — —
Rn+2 - Rn,Rm+2 - Rm
16 x 16 + 64 — 64 hits

Table A.10 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B @Rm+,Rn (Rm) - sign extension - Rn, 0110nnnnmmmmO0100 — —
Rm+1 - Rm

MOV.W ~ @Rm+,Rn (Rm) - sign extension - Rn,  0110nnnnmmmmO0101 — —
Rm+2 - Rm

MOV.L @Rm+,Rn (Rm) - Rn,Rm+4 - Rm 0110nnnnmmmmO0110 — —

FMOV.S @Rm+,FRn (Rm) - FRn,Rm+4 - Rm 1111nnnnmmmm1001 — —

FMOV @Rm+,DRn (Rm) - DRn, Rm+8 - Rm 1111nnnOMmMmm1001 — —

FMOV @Rm+,XDn (Rm) - XDn, Rm +8 - Rm 1111nnnlmmmm1001 — —

Rev. 4.0, 03/00, page 388 of 395
HITACHI



Table A.11 Load to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit
LDC.L @Rm+,SR (Rm) - SR,Rm+4 - Rm 0100mmmmO00000111 Privileged LSB
LDC.L @Rm+,GBR (Rm) - GBR,Rm+4 - Rm 0100mmmmO00010111 — —
LDC.L @Rm+,VBR (Rm) - VBR,Rm+4 - Rm 0100mmmmO00100111 Privileged —
LDC.L @Rm+,SSR (Rm) - SSR,Rm+4 - Rm 0100mmmmO00110111 Privileged —
LDC.L @Rm+,SPC (Rm) - SPC,Rm+4 —~ Rm 0100mmmmO01000111 Privileged —
LDC.L @Rm+,DBR (Rm) - DBR,Rm+4 - Rm 0100mmmm11110110 Privileged —
LDC.L @Rm+,Rn_BANK (Rm) - Rn_BANK, 0100mmmm1lnnn0111 Privileged —
Rm+4 -~ Rm

LDS.L @Rm+,MACH (Rm) - MACH,Rm +4 - Rm 0100mmmmO00000110 — —
LDS.L @Rm+,MACL (Rm) - MACL,Rm+4 -~ Rm 0100mmmm00010110 — —
LDS.L @Rm+,PR (Rm) - PR,Rm+4 - Rm 0100mmmm00100110 — —
LDS.L @Rm+,FPSCR (Rm) - FPSCR, Rm+4 . Rm 0100mmmm01100110 — —
LDS.L @Rm+,FPUL (Rm) - FPUL, Rm+4 - Rm 0100mmmm01010110 — —

(5) Register Indirect with Pre-Decrement

Table A.12 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B Rm,@-Rn Rn-1 - Rn, Rm - (Rn) 0010nnnnmmmmO0100 — —
MOV.W Rm,@-Rn Rn-2 - Rn, Rm - (Rn) 0010nnnnmmmmO0101 — —
MOV.L Rm,@-Rn Rn-4 - Rn, Rm - (Rn) 0010nnnnmmmmO0110 — —
FMOV.S FRm,@-Rn Rn-4 - Rn, FRm - (Rn) 1111nnnnmmmm1011 — —
FMOV DRm,@-Rn Rn-8 - Rn, DRm - (Rn) 1111nnnnmmmO01011 — —
FMOV XDm,@-Rn Rn -8 - Rn, XDm - (Rn) 1111nnnnmmm11011 — —

Rev. 4.0, 03/00, page 389 of 395

HITACHI



Table A.13 Store from Control Register or System Register

Instruc Operation Instruction Code Privileged T Bit
tion

STC.L SR,@-Rn Rn—-4 - Rn, SR - (Rn) 0100nnnn00000011 Privileged —
STC.L GBR,@-Rn Rn -4 - Rn, GBR - (Rn) 0100nnnn00010011  — —
STC.L VBR,@-Rn Rn -4 - Rn, VBR - (Rn) 0100nnnn00100011  Privileged —
STC.L SSR,@-Rn Rn -4 - Rn, SSR - (Rn) 0100nnnn00110011 Privileged —
STC.L SPC,@-Rn Rn -4 - Rn, SPC - (Rn) 0100nnnn01000011  Privileged —
STC.L SGR,@-Rn Rn -4 - Rn, SGR - (Rn) 0100nnnn00110010 Privileged —
STC.L DBR,@-Rn Rn -4 - Rn,DBR - (Rn) 0100nnnn11110010  Privileged —
STC.L Rm_BANK,@-Rn Rn-4 - Rn, 0100nnNnn1mmmO011 Privileged —

Rm_BANK - (Rn) (m=0to7)

STS.L MACH,@-Rn Rn -4 - Rn, MACH - (Rn) 0100nnnn00000010  — —
STS.L MACL,@-Rn Rn -4 - Rn, MACL - (Rn) 0100nnnn00010010 — —
STS.L PR,@-Rn Rn—-4 - Rn, PR - (Rn) 0100nnnn00100010  — —
STS.L FPSCR,@-Rn Rn -4 - Rn, FPSCR - (Rn) 0100nnnn01100010 — —
STS.L FPUL,@-Rn Rn -4 - Rn, FPUL - (Rn) 0100nnnn01010010 — —

(6) Register Indirect with Displacement

Table A.14 Reqgister Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B RO,@(disp,Rn) RO - (disp + Rn) 10000000nnnndddd  ~ — —
MOV.W RO,@(disp,Rn) RO - (disp x 2 + Rn) 10000001nnnndddd  — —
MOV.L Rm,@(disp,Rn) Rm - (disp x 4 + Rn) 0001nnnnmmmmdddd — —
MOV.B @(disp,Rm),R0 (disp + Rm) - sign extension ~ 10000100mmmmdddd — —
- RO
MOV.W @(disp,Rm),R0 (disp x 2 + Rm) - sign 10000101mmmmdddd — —
extension — RO
MOV.L @(disp,Rm),Rn (disp x4 + Rm) - Rn 0101lnnnnmmmmdddd — —
Rev. 4.0, 03/00, page 390 of 395
HITACHI



(7) Indexed Register Indirect

Table A.15 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit
MOV.B Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNNNMmMmMmO100 — —
MOV.W Rm,@(RO,Rn) Rm - (RO + Rn) 0000nNnNnNnMmmmO101 — —
MOV.L Rm,@(RO,Rn) Rm - (RO + Rn) 0000nnNnNMmmmO110 — —
MOV.B @(RO,Rm),Rn (RO + Rm) - sign extension 0000nNNnNMmMmMm31100 — —
- Rn
MOV.W @(RO,Rm),Rn (RO + Rm) - sign extension 0000nNnNnNnmmmm1101 — —
- Rn
MOV.L @(RO,Rm),Rn (RO +Rm) - Rn 0000nNnNnNnmmmm1110 — —
FMOV.S @(RO,Rm),FRn (RO + Rm) — FRn 1111nnnnmmmmO0110 — —
FMOV.S FRm,@(RO,Rn) FRm - (RO + Rn) 1111nnnnmmmmo0111 — —
FMOV  @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnOMmMmMmO110 — —
FMOV DRm,@(RO,Rn) DRm - (RO + Rn) 1111nnnnmmmO00111 — —
FMOV  @(RO,Rm),DRn (RO + Rm) - DRn 1111nnnImmmmO0110 — —
FMOV XDm,@(RO,Rn) XDm - (RO+Rn) 1111nnnnmmm10111 — —

(8) GBR Indirect with Displacement

Table A.16 Register Direct Data Transfer

Instructi Operation Instruction Code Privileged T Bit

on

MOV.B RO,@(disp,GBR) RO - (disp + GBR) 11000000dddddddd ~ — —

MOV.W RO,@(disp,GBR) RO - (disp x 2 + GBR) 11000001dddddddd ~ — —

MOV.L RO,@(disp,GBR) RO - (disp x 4 + GBR) 11000010dddddddd  ~ — —

MOV.B  @(disp,GBR),R0 (disp + GBR) - 11000100dddddddd =~ — —
sign extension - RO

MOV.W @(disp,GBR),R0 (disp x 2 + GBR) - 11000101dddddddd  — —
sign extension - RO

MOV.L @(disp,GBR),R0O (disp x4 + GBR) - RO 11000110dddddddd ~ — —

Rev. 4.0, 03/00, page 391 of 395

HITACHI



(9) Indexed GBR Indirect

Table A.17 Immediate Data Transfer

Instructi Operation Instruction Code Privileged T Bit
on
AND.B #imm,@(RO,GBR) (RO + GBR) & imm - (RO + 1100110{iiiiiii — —
GBR)
ORB  #mm @(RO,GBR) (RO + GBR) |imm - (RO + 1100111 Liiiiiii —
GBR)

TST.B  #imm,@(R0,GBR) (RO + GBR) & imm; when result 11001100iiiiiii —
=0,1-T
Otherwise, 0 - T

Test result

XOR.B  #imm,@(RO,GBR) (RO + GBR) Oimm — (RO+  11001110iiiiii —
GBR)

(10) PC Relative with Displacement

Table A.18 Direct Data Transfer to Register

Instruction Operation Instruction Code Privileged T Bit

MOV.W @(disp,PC),Rn  (disp x2 + PC + 4) - sign 1001nnnndddddddd  —
extension —» Rn

MOV.L @(disp,PC),Rn (disp x 4 + PC & HFFFFFFFC  110innnndddddddd —
+4) 5 Rn

MOVA  @(disp,PC),R0 disp x 4 + PC & HFFFFFFFC ~ 11000111dddddddd  —
+4 - RO

(11) PC Relative Using Rn

Table A.19 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BRAF Rn Rn+PC+4 - PC 0000nnnNn00100011  — —
BSRF Rn Delayed branch, PC + 4 . PR, 0000nnnn00000011 — —

Rn+PC+4 - PC

Rev. 4.0, 03/00, page 392 of 395
HITACHI



(12) PC Relative

Table A.20 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit
BF label When T =0, dispx2+PC + 10001011dddddddd  — —
4 -, PC
When T =1, nop
BF/S label Delayed branch; when T = 0, 10001111dddddddd  — —
dispx2+PC+4 - PC
When T =1, nop
BT label When T =1, dispx2+PC + 10001001dddddddd  — —
4 - PC
When T =0, nop
BT/S label Delayed branch; when T = 1, 10001101dddddddd  — —
dispx2+PC+4 - PC
When T =0, nop
BRA label Delayed branch, disp x 2 + 1010dddddddddddd ~ — —
PC+4 - PC
BSR label Delayed branch, PC + 4 - PR, 1011ldddddddddddd — —
dispx2+PC+4 - PC
(13) Immediate
Table A.21 Load to Register
Instruction Operation Instruction Code Privileged T Bit
FLDIO FRn H'00000000 - FRn 1111nnnn10001101 —_ —
FLDI1 FRn H'3F800000 — FRn 1111nnnn10011101 — —
Table A.22 Register Direct Arithmetic/Logic Operation
Instruction Operation Instruction Code Privileged T Bit
MOV #imm,Rn imm - sign extension — Rn 1110nnnniiiiiiii — —
ADD #imm,Rn Rn +imm - Rn 0111nnnniiiiiiii — —
CMP/EQ #imm,RO When RO =imm,1 - T 10001000iiiiiiii — Comparison
Otherwise, 0 - T result
AND #imm,R0O RO & imm - RO 11001001iiiiiiii — —
OR #imm,RO RO | imm - RO 1100101 Liiiiiiii — —
TST #imm,R0O RO & imm; when result = 0, 11001000iiiiiii — Test result
1-T

Otherwise, 0 - T

XOR #imm,RO RO Oimm - RO 11001010iiiiiiii —

Rev. 4.0, 03/00, page 393 of 395

HITACHI



Table A.23 Exception Vector Specification

Instruction Operation Instruction Code Privileged T Bit

TRAPA  #imm PC+2 - SPC, SR - SSR, 1100001 Liiiiiiii — —
#imm << 2 - TRA,
H'160 —» EXPEVT,
VBR + H'0100 - PC

Rev. 4.0, 03/00, page 394 of 395
HITACHI



Appendix B Instruction Prefetch Side Effects

The SH-4 is provided with an internal buffer for holding pre-read instructions, and always
performs pre-reading. Therefore, program code must not be located in the last 20-byte area
memory space. If program code is located in these areas, the memory area will be exceedec
bus access for instruction pre-reading may be initiated. A case in which this is a problem is s
below.

Address :
H'03FFFFF8 ADD R1,R4 «—— PC (program counter)
H'O3FFFFFA JMP @R2
Area 0 H'O3FFFFFC NOP
H'O3FFFFFE NOP
Area 1 H'04000000
H'04000002 -« Instruction prefetch address

Figure B.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program cour
(PC) and the address H'0400002 instruction prefetch are executed simultaneously. It is also
assumed that the program branches to an area outside area 1 after executing the following .
instruction and delay slot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction prefetch) to are
may be initiated.

Instruction Prefetch Side Effects
1. Itis possible that an external bus access caused by an instruction prefetch may result in
misoperation of an external device, such as a FIFO, connected to the area concerned.

2. If there is no device to reply to an external bus request caused by an instruction prefetch,
hangup will occur.

Remedies
1. These illegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 20 bytes of any are

Rev. 4.0, 03/00, page 395 of 395
HITACHI



SH-4 Programming Manual

Publication Date: 1st Edition, August 1998
4th Edition, March 2000
Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits
Hitachi, Ltd.
Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.
Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.



	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1 SH-4 Features

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.2.1 Privileged Mode and Banks
	2.2.2 General Registers
	2.2.3 Floating-Point Registers
	2.2.4 Control Registers
	2.2.5 System Registers

	2.3 Memory-Mapped Registers
	2.4 Data Format in Registers
	2.5 Data Formats in Memory
	2.6 Processor States
	2.7 Processor Modes

	Section 3 Memory Management Unit (MMU)
	3.1 Overview
	3.1.1 Features
	3.1.2 Role of the MMU
	3.1.3 Register Configuration
	3.1.4 Caution

	3.2 Register Descriptions
	3.3 Memory Space
	3.3.1 Physical Memory Space
	3.3.2 External Memory Space
	3.3.3 Virtual Memory Space
	3.3.4 On-Chip RAM Space
	3.3.5 Address Translation
	3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode
	3.3.7 Address Space Identifier (ASID)

	3.4 TLB Functions
	3.4.1 Unified TLB (UTLB) Configuration
	3.4.2 Instruction TLB (ITLB) Configuration
	3.4.3 Address Translation Method

	3.5 MMU Functions
	3.5.1 MMU Hardware Management
	3.5.2 MMU Software Management
	3.5.3 MMU Instruction (LDTLB)
	3.5.4 Hardware ITLB Miss Handling
	3.5.5 Avoiding Synonym Problems

	3.6 MMU Exceptions
	3.6.1 Instruction TLB Multiple Hit Exception
	3.6.2 Instruction TLB Miss Exception
	3.6.3 Instruction TLB Protection Violation Exception
	3.6.4 Data TLB Multiple Hit Exception
	3.6.5 Data TLB Miss Exception
	3.6.6 Data TLB Protection Violation Exception
	3.6.7 Initial Page Write Exception

	3.7 Memory-Mapped TLB Configuration
	3.7.1 ITLB Address Array
	3.7.2 ITLB Data Array 1
	3.7.3 ITLB Data Array 2
	3.7.4 UTLB Address Array
	3.7.5 UTLB Data Array 1
	3.7.6 UTLB Data Array 2


	Section 4 Caches
	4.1 Overview
	4.1.1 Features
	4.1.2 Register Configuration

	4.2 Register Descriptions
	4.3 Operand Cache (OC)
	4.3.1 Configuration
	4.3.2 Read Operation
	4.3.3 Write Operation
	4.3.4 Write-Back Buffer
	4.3.5 Write-Through Buffer
	4.3.6 RAM Mode
	4.3.7 OC Index Mode
	4.3.8 Coherency between Cache and External Memory
	4.3.9 Prefetch Operation

	4.4 Instruction Cache (IC)
	4.4.1 Configuration
	4.4.2 Read Operation
	4.4.3 IC Index Mode

	4.5 Memory-Mapped Cache Configuration
	4.5.1 IC Address Array
	4.5.2 IC Data Array
	4.5.3 OC Address Array
	4.5.4 OC Data Array

	4.6 Store Queues
	4.6.1 SQ Configuration
	4.6.2 SQ Writes
	4.6.3 Transfer to External Memory
	4.6.4 SQ Protection


	Section 5 Exceptions
	5.1 Overview
	5.1.1 Features
	5.1.2 Register Configuration

	5.2 Register Descriptions
	5.3 Exception Handling Functions
	5.3.1 Exception Handling Flow
	5.3.2 Exception Handling Vector Addresses

	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.5.1 Exception Flow
	5.5.2 Exception Source Acceptance
	5.5.3 Exception Requests and BL Bit
	5.5.4 Return from Exception Handling

	5.6 Description of Exceptions
	5.6.1 Resets
	5.6.2 General Exceptions
	5.6.3 Interrupts
	5.6.4 Priority Order with Multiple Exceptions

	5.7 Usage Notes
	5.8 Restrictions

	Section 6 Floating-Point Unit
	6.1 Overview
	6.2 Data Formats
	6.2.1 Floating-Point Format
	6.2.2 Non-Numbers (NaN)
	6.2.3 Denormalized Numbers

	6.3 Registers
	6.3.1 Floating-Point Registers
	6.3.2 Floating-Point Status/Control Register (FPSCR)
	6.3.3 Floating-Point Communication Register (FPUL)

	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.6 Graphics Support Functions
	6.6.1 Geometric Operation Instructions
	6.6.2 Pair Single-Precision Data Transfer


	Section 7 Instruction Set
	7.1 Execution Environment
	7.2 Addressing Modes
	7.3 Instruction Set

	Section 8 Pipelining
	8.1 Pipelines
	8.2 Parallel-Executability
	8.3 Execution Cycles and Pipeline Stalling

	Section 9 Instruction Descriptions
	9.1 ADD ADD binary Arithmetic Instruction
	9.2 ADDC ADD with Carry Arithmetic Instruction
	9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
	9.4 AND AND logical Logical Instruction
	9.5 BF Branch if False Branch Instruction
	9.6 BF/S Branch if False with delay Slot Branch Instruction
	9.7 BRA BRAnch Branch Instruction
	9.8 BRAF BRAnch Far Branch Instruction
	9.9 BSR Branch to SubRoutine Branch Instruction
	9.10 BSRF Branch to SubRoutine Far Branch Instruction
	9.11 BT Branch if True Branch Instruction
	9.12 BT/S Branch if True with delay Slot Branch Instruction
	9.13 CLRMAC CleaR MAC register System Control Instruction
	9.14 CLRS CleaR S bit System Control Instruction
	9.15 CLRT CleaR T bit System Control Instruction
	9.16 CMP/cond CoMPare conditionally Arithmetic Instruction
	9.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
	9.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
	9.19 DIV1 DIVide 1 step Arithmetic Instruction
	9.20 DMULS.L Double-length
	9.21 DMULU.L Double-length MULtiply
	9.22 DT Decrement and Test Arithmetic Instruction
	9.23 EXTS EXTend as Signed Arithmetic Instruction
	9.24 EXTU EXTend as Unsigned Arithmetic Instruction
	9.25 FABS Floating-point ABSolute value Floating-Point Instruction
	9.26 FADD Floating-point ADD Floating-Point Instruction
	9.27 FCMP Floating-point CoMPare Floating-Point Instruction
	9.28 FCNVDS Floating-point CoNVert
	9.29 FCNVSD Floating-point CoNVert
	9.30 FDIV Floating-point DIVide Floating-Point Instruction
	9.31 FIPR Floating-point Inner
	9.32 FLDI0 Floating-point
	9.33 FLDI1 Floating-point LoaD
	9.34 FLDS Floating-point
	9.35 FLOAT Floating-point
	9.36 FMAC Floating-point Multiply
	9.37 FMOV Floating-point MOVe Floating-Point Instruction
	9.38 FMOV Floating-point
	9.39 FMUL Floating-point MULtiply Floating-Point Instruction
	9.40 FNEG Floating-point NEGate value Floating-Point Instruction
	9.41 FRCHG FR-bit CHanGe Floating-Point Instruction
	9.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
	9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
	9.44 FSTS Floating-point STore
	9.45 FSUB Floating-point
	9.46 FTRC Floating-point TRuncate
	9.47 FTRV Floating-point
	9.48 JMP JuMP Branch Instruction
	9.49 JSR Jump to SubRoutine Branch Instruction
	9.50 LDC LoaD to Control register System Control Instruction
	9.51 LDS LoaD to FPU System
	9.52 LDS LoaD to System register System Control Instruction
	9.53 LDTLB LoaD PTEH/PTEL/PTEA
	9.54 MAC.L Multiply and ACcumulate
	9.55 MAC.W Multiply and
	9.56 MOV MOVe data Data Transfer Instruction
	9.57 MOV MOVe constant value Data Transfer Instruction
	9.58 MOV MOVe global data Data Transfer Instruction
	9.59 MOV MOVe structure data Data Transfer Instruction
	9.60 MOVA MOVe effective Address Data Transfer Instruction
	9.61 MOVCA.L MOVe with Cache
	9.62 MOVT MOVe T bit Data Transfer Instruction
	9.63 MUL.L MULtiply Long Arithmetic Instruction
	9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
	9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
	9.66 NEG NEGate Arithmetic Instruction
	9.67 NEGC NEGate with Carry Arithmetic Instruction
	9.68 NOP No OPeration System Control Instruction
	9.69 NOT NOT-logical complement Logical Instruction
	9.70 OCBI Operand Cache Block
	9.71 OCBP Operand Cache Block
	9.72 OCBWB Operand Cache Block
	9.73 OR OR logical Logical Instruction
	9.74 PREF PREFetch data to cache Data Transfer Instruction
	9.75 ROTCL ROTate with Carry Left Shift Instruction
	9.76 ROTCR ROTate with Carry Right Shift Instruction
	9.77 ROTL ROTate Left Shift Instruction
	9.78 ROTR ROTate Right Shift Instruction
	9.79 RTE ReTurn from Exception System Control Instruction
	9.80 RTS ReTurn from Subroutine Branch Instruction
	9.81 SETS SET S bit System Control Instruction
	9.82 SETT SET T bit System Control Instruction
	9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
	9.84 SHAL SHift Arithmetic Left Shift Instruction
	9.85 SHAR SHift Arithmetic Right Shift Instruction
	9.86 SHLD SHift Logical Dynamically Shift Instruction
	9.87 SHLL SHift Logical Left Shift Instruction
	9.88 SHLLn n bits SHift Logical Left Shift Instruction
	9.89 SHLR SHift Logical Right Shift Instruction
	9.90 SHLRn n bits SHift Logical Right Shift Instruction
	9.91 SLEEP SLEEP System Control Instruction
	9.92 STC STore Control register System Control Instruction
	9.93 STS STore System register System Control Instruction
	9.94 STS STore from FPU
	9.95 SUB SUBtract binary Arithmetic Instruction
	9.96 SUBC SUBtract with Carry Arithmetic Instruction
	9.97 SUBV SUBtract with (V flag)
	9.98 SWAP SWAP register halves Data Transfer Instruction
	9.99 TAS Test And Set Logical Instruction
	9.100 TRAPA TRAP Always System Control Instruction
	9.101 TST TeST logical Logical Instruction
	9.102 XOR eXclusive OR logical Logical Instruction
	9.103 XTRCT eXTRaCT Data Transfer Instruction

	Appendix A Instruction Codes
	A.1 Instruction Set by Addressing Mode

	Appendix B Instruction Prefetch Side Effects
	Colophon

