
SuperH RISC engine

SH-4

Programming Manual

ADE-602-156C

Rev. 4.0
03/21/00
Hitachi, Ltd.

Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document. Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics. Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges. Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.

Rev. 4.0, 03/00, page v of 12

Preface

The SH-4 has been developed as the top-end model in the SuperH™* RISC engine family,
featuring a 128-bit graphic engine for multimedia applications and 360 MIPS performance.

The SH-4 CPU has a RISC type instruction set, and features upward-compatibility at the object
code level with SH-1, SH-2, SH-3, and SH-3E microcomputers.

In addition to single- and double-precision floating-point operation capability, the on-chip FPU
has a 128-bit graphic engine that enables 32-bit floating-point data to be processed 128 bits at a
time. It also supports 4 × 4 array operations and inner product operations.

A superscalar architecture is employed that enables simultaneous execution of two instructions
(including FPU instructions), providing performance of up to twice that of conventional
architectures at the same frequency.

This programming manual gives details of the SH-4 instructions. For hardware details, refer to the
relevant hardware manual.

Related Manual:
SH7750 Series Hardware Manual
SH7751 Hardware Manual

Please consult your Hitachi sales representative for information on development environment
systems.

Note: * SuperH™ is a trademark of Hitachi, Ltd.

Rev. 4.0, 03/00, page vii of 12

Contents

Section 1 Overview... 1
1.1 SH-4 Features.. 1

Section 2 Programming Model.. 5
2.1 Data Formats... 5
2.2 Register Configuration..6

2.2.1 Privileged Mode and Banks... 6
2.2.2 General Registers... 9
2.2.3 Floating-Point Registers... 11
2.2.4 Control Registers ... 13
2.2.5 System Registers.. 14

2.3 Memory-Mapped Registers... 16
2.4 Data Format in Registers... 17
2.5 Data Formats in Memory .. 17
2.6 Processor States .. 18
2.7 Processor Modes ... 21

Section 3 Memory Management Unit (MMU)... 23
3.1 Overview... 23

3.1.1 Features.. 23
3.1.2 Role of the MMU... 23
3.1.3 Register Configuration... 26
3.1.4 Caution... 26

3.2 Register Descriptions .. 27
3.3 Memory Space .. 30

3.3.1 Physical Memory Space... 30
3.3.2 External Memory Space... 33
3.3.3 Virtual Memory Space... 34
3.3.4 On-Chip RAM Space... 35
3.3.5 Address Translation ... 35
3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode 36
3.3.7 Address Space Identifier (ASID) ... 36

3.4 TLB Functions .. 36
3.4.1 Unified TLB (UTLB) Configuration ... 36
3.4.2 Instruction TLB (ITLB) Configuration.. 40
3.4.3 Address Translation Method.. 40

3.5 MMU Functions.. 43
3.5.1 MMU Hardware Management ... 43
3.5.2 MMU Software Management .. 43

Rev. 4.0, 03/00, page viii of 12

3.5.3 MMU Instruction (LDTLB)... 43
3.5.4 Hardware ITLB Miss Handling ... 44
3.5.5 Avoiding Synonym Problems .. 45

3.6 MMU Exceptions..46
3.6.1 Instruction TLB Multiple Hit Exception.. 46
3.6.2 Instruction TLB Miss Exception.. 47
3.6.3 Instruction TLB Protection Violation Exception ... 48
3.6.4 Data TLB Multiple Hit Exception ... 49
3.6.5 Data TLB Miss Exception ... 49
3.6.6 Data TLB Protection Violation Exception... 50
3.6.7 Initial Page Write Exception.. 51

3.7 Memory-Mapped TLB Configuration... 52
3.7.1 ITLB Address Array .. 53
3.7.2 ITLB Data Array 1... 54
3.7.3 ITLB Data Array 2... 55
3.7.4 UTLB Address Array... 55
3.7.5 UTLB Data Array 1 ... 57
3.7.6 UTLB Data Array 2 ... 58

Section 4 Caches.. 59
4.1 Overview... 59

4.1.1 Features.. 59
4.1.2 Register Configuration... 60

4.2 Register Descriptions .. 60
4.3 Operand Cache (OC)... 63

4.3.1 Configuration... 63
4.3.2 Read Operation .. 64
4.3.3 Write Operation ... 65
4.3.4 Write-Back Buffer ... 67
4.3.5 Write-Through Buffer.. 67
4.3.6 RAM Mode.. 67
4.3.7 OC Index Mode ... 68
4.3.8 Coherency between Cache and External Memory ... 69
4.3.9 Prefetch Operation ... 69

4.4 Instruction Cache (IC)... 70
4.4.1 Configuration... 70
4.4.2 Read Operation .. 71
4.4.3 IC Index Mode... 72

4.5 Memory-Mapped Cache Configuration .. 72
4.5.1 IC Address Array ... 72
4.5.2 IC Data Array... 73
4.5.3 OC Address Array ... 74
4.5.4 OC Data Array ... 76

Rev. 4.0, 03/00, page ix of 12

4.6 Store Queues ... 77
4.6.1 SQ Configuration... 77
4.6.2 SQ Writes... 77
4.6.3 Transfer to External Memory... 77
4.6.4 SQ Protection... 79

Section 5 Exceptions.. 81
5.1 Overview... 81

5.1.1 Features.. 81
5.1.2 Register Configuration... 81

5.2 Register Descriptions .. 82
5.3 Exception Handling Functions.. 83

5.3.1 Exception Handling Flow .. 83
5.3.2 Exception Handling Vector Addresses .. 83

5.4 Exception Types and Priorities ... 84
5.5 Exception Flow ... 87

5.5.1 Exception Flow.. 87
5.5.2 Exception Source Acceptance.. 88
5.5.3 Exception Requests and BL Bit ... 90
5.5.4 Return from Exception Handling... 90

5.6 Description of Exceptions... 90
5.6.1 Resets... 90
5.6.2 General Exceptions .. 97
5.6.3 Interrupts.. 111
5.6.4 Priority Order with Multiple Exceptions ... 114

5.7 Usage Notes .. 115
5.8 Restrictions ... 116

Section 6 Floating-Point Unit.. 117
6.1 Overview... 117
6.2 Data Formats... 117

6.2.1 Floating-Point Format.. 117
6.2.2 Non-Numbers (NaN) ... 119
6.2.3 Denormalized Numbers ... 120

6.3 Registers.. 121
6.3.1 Floating-Point Registers... 121
6.3.2 Floating-Point Status/Control Register (FPSCR)... 123
6.3.3 Floating-Point Communication Register (FPUL) .. 124

6.4 Rounding... 124
6.5 Floating-Point Exceptions... 125
6.6 Graphics Support Functions.. 126

6.6.1 Geometric Operation Instructions.. 126
6.6.2 Pair Single-Precision Data Transfer... 128

Rev. 4.0, 03/00, page x of 12

Section 7 Instruction Set.. 129
7.1 Execution Environment .. 129
7.2 Addressing Modes ..131
7.3 Instruction Set ... 135

Section 8 Pipelining.. 149
8.1 Pipelines.. 149
8.2 Parallel-Executability.. 156
8.3 Execution Cycles and Pipeline Stalling .. 160

Section 9 Instruction Descriptions.. 177
9.1 ADD ADD binary ... Arithmetic Instruction 190
9.2 ADDC ADD with Carry .. Arithmetic Instruction 192
9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction 193
9.4 AND AND logical .. Logical Instruction 195
9.5 BF Branch if False .. Branch Instruction................. 197
9.6 BF/S Branch if False with delay Slot Branch Instruction................. 199
9.7 BRA BRAnch ... Branch Instruction................. 201
9.8 BRAF BRAnch Far ... Branch Instruction................. 203
9.9 BSR Branch to SubRoutine Branch Instruction................. 204
9.10 BSRF Branch to SubRoutine Far Branch Instruction................. 206
9.11 BT Branch if True ... Branch Instruction................. 208
9.12 BT/S Branch if True with delay Slot Branch Instruction................. 210
9.13 CLRMAC CleaR MAC register System Control Instruction.... 212
9.14 CLRS CleaR S bit .. System Control Instruction.... 213
9.15 CLRT CleaR T bit .. System Control Instruction.... 214
9.16 CMP/cond ... CoMPare conditionally Arithmetic Instruction 215
9.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction 219
9.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction 220
9.19 DIV1 DIVide 1 step .. Arithmetic Instruction 221
9.20 DMULS.L ... Double-length MULtiply as Signed Arithmetic Instruction 226
9.21 DMULU.L .. Double-length MULtiply as Unsigned Arithmetic Instruction 228
9.22 DT Decrement and Test Arithmetic Instruction 230
9.23 EXTS EXTend as Signed Arithmetic Instruction 231
9.24 EXTU EXTend as Unsigned Arithmetic Instruction 233
9.25 FABS Floating-point ABSolute value Floating-Point Instruction 234
9.26 FADD Floating-point ADD Floating-Point Instruction 235
9.27 FCMP Floating-point CoMPare Floating-Point Instruction 237
9.28 FCNVDS Floating-point CoNVert

Double to Single precision Floating-Point Instruction 240
9.29 FCNVSD Floating-point CoNVert

Single to Double precision Floating-Point Instruction 242
9.30 FDIV Floating-point DIVide Floating-Point Instruction 244

Rev. 4.0, 03/00, page xi of 12

9.31 FIPR Floating-point Inner PRoduct Floating-Point Instruction 248
9.32 FLDI0 Floating-point LoaD Immediate 0.0 Floating-Point Instruction 250
9.33 FLDI1 Floating-point LoaD Immediate 1.0 Floating-Point Instruction 251
9.34 FLDS Floating-point LoaD to System register Floating-Point Instruction 252
9.35 FLOAT Floating-point convert from integer Floating-Point Instruction 253
9.36 FMAC Floating-point Multiply and ACcumulate . Floating-Point Instruction 255
9.37 FMOV Floating-point MOVe Floating-Point Instruction 261
9.38 FMOV Floating-point MOVe extension Floating-Point Instruction 265
9.39 FMUL Floating-point MULtiply Floating-Point Instruction 268
9.40 FNEG Floating-point NEGate value Floating-Point Instruction 270
9.41 FRCHG FR-bit CHanGe .. Floating-Point Instruction 271
9.42 FSCHG Sz-bit CHanGe .. Floating-Point Instruction 272
9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction 273
9.44 FSTS Floating-point STore System register Floating-Point Instruction 276
9.45 FSUB Floating-point SUBtract Floating-Point Instruction 277
9.46 FTRC Floating-point TRuncate and Convert to integer

.. Floating-Point Instruction 279
9.47 FTRV Floating-point TRansform Vector Floating-Point Instruction 282
9.48 JMP JuMP ... Branch Instruction................. 285
9.49 JSR Jump to SubRoutine Branch Instruction................. 286
9.50 LDC LoaD to Control register System Control Instruction.... 288
9.51 LDS LoaD to FPU System register System Control Instruction.... 292
9.52 LDS LoaD to System register System Control Instruction.... 294
9.53 LDTLB LoaD PTEH/PTEL/PTEA to TLB System Control Instruction.... 296
9.54 MAC.L Multiply and ACcumulate Long Arithmetic Instruction 298
9.55 MAC.W Multiply and ACcumulate Word Arithmetic Instruction 302
9.56 MOV MOVe data .. Data Transfer Instruction....... 305
9.57 MOV MOVe constant value Data Transfer Instruction....... 310
9.58 MOV MOVe global data Data Transfer Instruction....... 313
9.59 MOV MOVe structure data Data Transfer Instruction....... 316
9.60 MOVA MOVe effective Address Data Transfer Instruction....... 319
9.61 MOVCA.L .. MOVe with Cache block Allocation Data Transfer Instruction....... 320
9.62 MOVT MOVe T bit ... Data Transfer Instruction....... 321
9.63 MUL.L MULtiply Long ... Arithmetic Instruction 322
9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction 323
9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction 324
9.66 NEG NEGate .. Arithmetic Instruction 325
9.67 NEGC NEGate with Carry Arithmetic Instruction 326
9.68 NOP No OPeration ... System Control Instruction.... 327
9.69 NOT NOT-logical complement Logical Instruction 328
9.70 OCBI Operand Cache Block Invalidate Data Transfer Instruction....... 329
9.71 OCBP Operand Cache Block Purge Data Transfer Instruction....... 330
9.72 OCBWB Operand Cache Block Write Back Data Transfer Instruction....... 331

Rev. 4.0, 03/00, page xii of 12

9.73 OR OR logical ... Logical Instruction 332
9.74 PREF PREFetch data to cache Data Transfer Instruction....... 334
9.75 ROTCL ROTate with Carry Left Shift Instruction..................... 335
9.76 ROTCR ROTate with Carry Right Shift Instruction..................... 336
9.77 ROTL ROTate Left ... Shift Instruction..................... 337
9.78 ROTR ROTate Right .. Shift Instruction..................... 338
9.79 RTE ReTurn from Exception System Control Instruction.... 339
9.80 RTS ReTurn from Subroutine Branch Instruction................. 341
9.81 SETS SET S bit ... System Control Instruction.... 343
9.82 SETT SET T bit ... System Control Instruction.... 344
9.83 SHAD SHift Arithmetic Dynamically Shift Instruction..................... 345
9.84 SHAL SHift Arithmetic Left Shift Instruction..................... 347
9.85 SHAR SHift Arithmetic Right Shift Instruction..................... 348
9.86 SHLD SHift Logical Dynamically Shift Instruction..................... 349
9.87 SHLL SHift Logical Left Shift Instruction..................... 351
9.88 SHLLn n bits SHift Logical Left Shift Instruction..................... 352
9.89 SHLR SHift Logical Right Shift Instruction..................... 354
9.90 SHLRn n bits SHift Logical Right Shift Instruction..................... 355
9.91 SLEEP SLEEP ... System Control Instruction.... 357
9.92 STC STore Control register System Control Instruction.... 358
9.93 STS STore System register System Control Instruction.... 363
9.94 STS STore from FPU System register System Control Instruction.... 365
9.95 SUB SUBtract binary ... Arithmetic Instruction 367
9.96 SUBC SUBtract with Carry Arithmetic Instruction 368
9.97 SUBV SUBtract with (V flag) underflow check.... Arithmetic Instruction 369
9.98 SWAP SWAP register halves Data Transfer Instruction....... 371
9.99 TAS Test And Set .. Logical Instruction 373
9.100 TRAPA TRAP Always .. System Control Instruction.... 375
9.101 TST TeST logical .. Logical Instruction 376
9.102 XOR eXclusive OR logical Logical Instruction 378
9.103 XTRCT eXTRaCT .. Data Transfer Instruction....... 380

Appendix A Instruction Codes.. 381
A.1 Instruction Set by Addressing Mode... 381

Appendix B Instruction Prefetch Side Effects.. 395

Rev. 4.0, 03/00, page 1 of 395

Section 1 Overview

1.1 SH-4 Features

The SH-4 is a 32-bit RISC (reduced instruction set computer) microprocessor, featuring object
code upward-compatibility with SH-1, SH-2, SH-3, and SH-3E microcomputers. Its 16-bit fixed-
length instruction set enables program code size to be reduced by almost 50% compared with 32-
bit instructions.

The features of the SH-4 are summarized in table 1.1.

Table 1.1 SH-4 Features

Item Features

Architecture • Original Hitachi SH architecture

• 32-bit internal data bus

• General register file:

 Sixteen 32-bit general registers (and eight 32-bit shadow registers)

 Seven 32-bit control registers

 Four 32-bit system registers

• RISC-type instruction set (upward-compatible with SH Series)

 Fixed 16-bit instruction length for improved code efficiency

 Load-store architecture

 Delayed branch instructions

 Conditional execution

 C-based instruction set

• Superscalar architecture (providing simultaneous execution of two
instructions) including FPU

• Instruction execution time: Maximum 2 instructions/cycle

• Virtual address space: 4 Gbytes (448-Mbyte external memory space)

• Space identifier ASIDs: 8 bits, 256 virtual address spaces

• On-chip multiplier

• Five-stage pipeline

Rev. 4.0, 03/00, page 2 of 395

Table 1.1 SH-4 Features (cont)

Item Features

FPU • On-chip floating-point coprocessor

• Supports single-precision (32 bits) and double-precision (64 bits)

• Supports IEEE754-compliant data types and exceptions

• Two rounding modes: Round to Nearest and Round to Zero

• Handling of denormalized numbers: Truncation to zero or interrupt
generation for compliance with IEEE754

• Floating-point registers: 32 bits × 16 words × 2 banks
(single-precision × 16 words or double-precision × 8 words) × 2 banks

• 32-bit CPU-FPU floating-point communication register (FPUL)

• Supports FMAC (multiply-and-accumulate) instruction

• Supports FDIV (divide) and FSQRT (square root) instructions

• Supports FLDI0/FLDI1 (load constant 0/1) instructions

• Instruction execution times

 Latency (FMAC/FADD/FSUB/FMUL): 3 cycles (single-precision), 8
cycles (double-precision)

 Pitch (FMAC/FADD/FSUB/FMUL): 1 cycle (single-precision), 6 cycles
(double-precision)

Note: FMAC is supported for single-precision only.

• 3-D graphics instructions (single-precision only):

 4-dimensional vector conversion and matrix operations (FTRV): 4
cycles (pitch), 7 cycles (latency)

 4-dimensional vector (FIPR) inner product: 1 cycle (pitch), 4 cycles
(latency)

• Five-stage pipeline

Memory
management
unit (MMU)

• 4-Gbyte address space, 256 address space identifiers (8-bit ASIDs)

• Single virtual mode and multiple virtual memory mode

• Supports multiple page sizes: 1 kbyte, 4 kbytes, 64 kbytes, 1 Mbyte

• 4-entry fully-associative TLB for instructions

• 64-entry fully-associative TLB for instructions and operands

• Supports software-controlled replacement and random-counter
replacement algorithm

• TLB contents can be accessed directly by address mapping

Rev. 4.0, 03/00, page 3 of 395

Table 1.1 SH-4 Features (cont)

Item Features

Cache memory • Instruction cache (IC)

 8 kbytes, direct mapping

 256 entries, 32-byte block length

 Normal mode (8-kbyte cache)

 Index mode

• Operand cache (OC)

 16 kbytes, direct mapping

 512 entries, 32-byte block length

 Normal mode (16-kbyte cache)

 Index mode

 RAM mode (8-kbyte cache + 8-kbyte RAM)

 Choice of write method (copy-back or write-through)

• Single-stage copy-back buffer, single-stage write-through buffer

• Cache memory contents can be accessed directly by address mapping
(usable as on-chip memory)

• Store queue (32 bytes × 2 entries)

Rev. 4.0, 03/00, page 5 of 395

Section 2 Programming Model

2.1 Data Formats

The data formats handled by the SH-4 are shown in figure 2.1.

Byte (8 bits)

Word (16 bits)

Longword (32 bits)

Single-precision floating-point (32 bits)

Double-precision floating-point (64 bits)

07

015

031

031 30 22

fractionexps

063 62 51

exps fraction

Figure 2.1 Data Formats

Rev. 4.0, 03/00, page 6 of 395

2.2 Register Configuration

2.2.1 Privileged Mode and Banks

Processor Modes: The SH-4 has two processor modes, user mode and privileged mode. The SH-4
normally operates in user mode, and switches to privileged mode when an exception occurs or an
interrupt is accepted. There are four kinds of registers—general registers, system registers, control
registers, and floating-point registers—and the registers that can be accessed differ in the two
processor modes.

General Registers: There are 16 general registers, designated R0 to R15. General registers R0 to
R7 are banked registers which are switched by a processor mode change.

In privileged mode, the register bank bit (RB) in the status register (SR) defines which banked
register set is accessed as general registers, and which set is accessed only through the load control
register (LDC) and store control register (STC) instructions.

When the RB bit is 1 (that is, when bank 1 is selected), the 16 registers comprising bank 1 general
registers R0_BANK1 to R7_BANK1 and non-banked general registers R8 to R15 can be accessed
as general registers R0 to R15. In this case, the eight registers comprising bank 0 general registers
R0_BANK0 to R7_BANK0 are accessed by the LDC/STC instructions. When the RB bit is 0 (that
is, when bank 0 is selected), the 16 registers comprising bank 0 general registers R0_BANK0 to
R7_BANK0 and non-banked general registers R8 to R15 can be accessed as general registers R0
to R15. In this case, the eight registers comprising bank 1 general registers R0_BANK1 to
R7_BANK1 are accessed by the LDC/STC instructions.

In user mode, the 16 registers comprising bank 0 general registers R0_BANK0 to R7_BANK0 and
non-banked general registers R8 to R15 can be accessed as general registers R0 to R15. The eight
registers comprising bank 1 general registers R0_BANK1 to R7_BANK1 cannot be accessed.

Control Registers: Control registers comprise the global base register (GBR) and status register
(SR), which can be accessed in both processor modes, and the saved status register (SSR), saved
program counter (SPC), vector base register (VBR), saved general register 15 (SGR), and debug
base register (DBR), which can only be accessed in privileged mode. Some bits of the status
register (such as the RB bit) can only be accessed in privileged mode.

System Registers: System registers comprise the multiply-and-accumulate registers
(MACH/MACL), the procedure register (PR), the program counter (PC), the floating-point
status/control register (FPSCR), and the floating-point communication register (FPUL). Access to
these registers does not depend on the processor mode.

Rev. 4.0, 03/00, page 7 of 395

Floating-Point Registers: There are thirty-two floating-point registers, FR0–FR15 and XF0–
XF15. FR0–FR15 and XF0–XF15 can be assigned to either of two banks (FPR0_BANK0–
FPR15_BANK0 or FPR0_BANK1–FPR15_BANK1).

FR0–FR15 can be used as the eight registers DR0/2/4/6/8/10/12/14 (double-precision floating-
point registers, or pair registers) or the four registers FV0/4/8/12 (register vectors), while XF0–
XF15 can be used as the eight registers XD0/2/4/6/8/10/12/14 (register pairs) or register matrix
XMTRX.

Register values after a reset are shown in table 2.1.

Table 2.1 Initial Register Values

Type Registers Initial Value*

General registers R0_BANK0–R7_BANK0,
R0_BANK1–R7_BANK1,
R8–R15

Undefined

SR MD bit = 1, RB bit = 1, BL bit = 1, FD bit = 0,
I3–I0 = 1111 (H'F), reserved bits = 0, others
undefined

GBR, SSR, SPC, SGR,
DBR

Undefined

Control registers

VBR H'00000000

MACH, MACL, PR, FPUL Undefined

PC H'A0000000

System registers

FPSCR H'00040001

Floating-point
registers

FR0–FR15, XF0–XF15 Undefined

Note: * Initialized by a power-on reset and manual reset.

The register configuration in each processor is shown in figure 2.2.

Switching between user mode and privileged mode is controlled by the processor mode bit (MD)
in the status register.

Rev. 4.0, 03/00, page 8 of 395

31 0
R0_BANK0*1,*2

R1_BANK0*2

R2_BANK0*2

R3_BANK0*2

R4_BANK0*2

R5_BANK0*2

R6_BANK0*2

R7_BANK0*2

R8
R9

R10
R11
R12
R13
R14
R15

SR

GBR
MACH
MACL

PR

PC

(a) Register configuration
in user mode

31 0
R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9

R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(b) Register configuration in
 privileged mode (RB = 1)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

31 0

R0_BANK1*1,*3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9

R10
R11
R12
R13
R14
R15

R0_BANK0*1,*4

R1_BANK0*4

R2_BANK0*4

R3_BANK0*4

R4_BANK0*4

R5_BANK0*4

R6_BANK0*4

R7_BANK0*4

(c) Register configuration in
privileged mode (RB = 0)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

SGR

DBR

SGR

DBR

Notes: 1. The R0 register is used as the index register in indexed register-indirect addressing mode and
indexed GBR indirect addressing mode.

 2. Banked registers
 3. Banked registers

Accessed as general registers when the RB bit is set to 1 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is cleared to 0.

4. Banked registers
Accessed as general registers when the RB bit is cleared to 0 in the SR register. Accessed only by
LDC/STC instructions when the RB bit is set to 1.

Figure 2.2 CPU Register Configuration in Each Processor Mode

Rev. 4.0, 03/00, page 9 of 395

2.2.2 General Registers

Figure 2.3 shows the relationship between the processor modes and general registers. The SH-4
has twenty-four 32-bit general registers (R0_BANK0–R7_BANK0, R0_BANK1–R7_BANK1,
and R8–R15). However, only 16 of these can be accessed as general registers R0–R15 in one
processor mode. The SH-4 has two processor modes, user mode and privileged mode, in which
R0–R7 are assigned as shown below.

• R0_BANK0–R7_BANK0

In user mode (SR.MD = 0), R0–R7 are always assigned to R0_BANK0–R7_BANK0.

In privileged mode (SR.MD = 1), R0–R7 are assigned to R0_BANK0–R7_BANK0 only when
SR.RB = 0.

• R0_BANK1–R7_BANK1

In user mode, R0_BANK1–R7_BANK1 cannot be accessed.

In privileged mode, R0–R7 are assigned to R0_BANK1–R7_BANK1 only when SR.RB = 1.

Rev. 4.0, 03/00, page 10 of 395

SR.MD = 0 or
(SR.MD = 1, SR.RB = 0)

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK0
R1_BANK0
R2_BANK0
R3_BANK0
R4_BANK0
R5_BANK0
R6_BANK0
R7_BANK0

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0_BANK1
R1_BANK1
R2_BANK1
R3_BANK1
R4_BANK1
R5_BANK1
R6_BANK1
R7_BANK1

R0
R1
R2
R3
R4
R5
R6
R7

R0
R1
R2
R3
R4
R5
R6
R7

R8
R9

R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

R8
R9

R10
R11
R12
R13
R14
R15

(SR.MD = 1, SR.RB = 1)

Figure 2.3 General Registers

Programming Note: As the user’s R0–R7 are assigned to R0_BANK0–R7_BANK0, and after an
exception or interrupt R0–R7 are assigned to R0_BANK1–R7_BANK1, it is not necessary for the
interrupt handler to save and restore the user’s R0–R7 (R0_BANK0–R7_BANK0).

After a reset, the values of R0_BANK0–R7_BANK0, R0_BANK1–R7_BANK1, and R8–R15 are
undefined.

Rev. 4.0, 03/00, page 11 of 395

2.2.3 Floating-Point Registers

Figure 2.4 shows the floating-point registers. There are thirty-two 32-bit floating-point registers,
divided into two banks (FPR0_BANK0–FPR15_BANK0 and FPR0_BANK1–FPR15_BANK1).
These 32 registers are referenced as FR0–FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0–XF15,
XD0/2/4/6/8/10/12/14, or XMTRX. The correspondence between FPRn_BANKi and the reference
name is determined by the FR bit in FPSCR (see figure 2.4).

• Floating-point registers, FPRn_BANKi (32 registers)

FPR0_BANK0, FPR1_BANK0, FPR2_BANK0, FPR3_BANK0, FPR4_BANK0,
FPR5_BANK0, FPR6_BANK0, FPR7_BANK0, FPR8_BANK0, FPR9_BANK0,
FPR10_BANK0, FPR11_BANK0, FPR12_BANK0, FPR13_BANK0, FPR14_BANK0,
FPR15_BANK0

FPR0_BANK1, FPR1_BANK1, FPR2_BANK1, FPR3_BANK1, FPR4_BANK1,
FPR5_BANK1, FPR6_BANK1, FPR7_BANK1, FPR8_BANK1, FPR9_BANK1,
FPR10_BANK1, FPR11_BANK1, FPR12_BANK1, FPR13_BANK1, FPR14_BANK1,
FPR15_BANK1

• Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0–FR15 are assigned to FPR0_BANK0–FPR15_BANK0.

When FPSCR.FR = 1, FR0–FR15 are assigned to FPR0_BANK1–FPR15_BANK1.

• Double-precision floating-point registers or single-precision floating-point register pairs, DRi
(8 registers): A DR register comprises two FR registers.

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

• Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

• Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0–XF15 are assigned to FPR0_BANK1–FPR15_BANK1.

When FPSCR.FR = 1, XF0–XF15 are assigned to FPR0_BANK0–FPR15_BANK0.

• Single-precision floating-point extended register pairs, XDi (8 registers): An XD register
comprises two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

Rev. 4.0, 03/00, page 12 of 395

• Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = XF0 XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15

FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0

FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1

FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

Figure 2.4 Floating-Point Registers

Rev. 4.0, 03/00, page 13 of 395

Programming Note: After a reset, the values of FPR0_BANK0–FPR15_BANK0 and
FPR0_BANK1–FPR15_BANK1 are undefined.

2.2.4 Control Registers

Status register, SR (32 bits, privilege protection, initial value = 0111 0000 0000 0000 0000
00XX 1111 00XX (X: Undefined))

31 30 29 28 27 16 15 14 10 9 8 7 4 3 2 1 0

— MD RB BL — FD — M Q IMASK — S T

Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

• MD: Processor mode

MD = 0: User mode (some instructions cannot be executed, and some resources cannot be
accessed)

MD = 1: Privileged mode

• RB: General register bank specifier in privileged mode (set to 1 by a reset, exception, or
interrupt)

RB = 0: R0_BANK0–R7_BANK0 are accessed as general registers R0–R7. (R0_BANK1–
R7_BANK1 can be accessed using LDC/STC R0_BANK–R7_BANK instructions.)

RB = 1: R0_BANK1–R7_BANK1 are accessed as general registers R0–R7. (R0_BANK0–
R7_BANK0 can be accessed using LDC/STC R0_BANK–R7_BANK instructions.)

• BL: Exception/interrupt block bit (set to 1 by a reset, exception, or interrupt)

BL = 1: Interrupt requests are masked. If a general exception other than a user break occurs
while BL = 1, the processor switches to the reset state.

• FD: FPU disable bit (cleared to 0 by a reset)

FD = 1: An FPU instruction causes a general FPU disable exception, and if the FPU instruction
is in a delay slot, a slot FPU disable exception is generated. (FPU instructions: H'F***
instructions, LDC(.L)/STS(.L) instructions for FPUL/FPSCR)

• M, Q: Used by the DIV0S, DIV0U, and DIV1 instructions.

• IMASK: Interrupt mask level

External interrupts of a lower level than IMASK are masked.

• S: Specifies a saturation operation for a MAC instruction.

• T: True/false condition or carry/borrow bit

Rev. 4.0, 03/00, page 14 of 395

Saved status register, SSR (32 bits, privilege protection, initial value undefined): The current
contents of SR are saved to SSR in the event of an exception or interrupt.

Saved program counter, SPC (32 bits, privilege protection, initial value undefined): The
address of an instruction at which an interrupt or exception occurs is saved to SPC.

Global base register, GBR (32 bits, initial value undefined): GBR is referenced as the base
address in a GBR-referencing MOV instruction.

Vector base register, VBR (32 bits, privilege protection, initial value = H'0000 0000): VBR is
referenced as the branch destination base address in the event of an exception or interrupt. For
details, see section 5, Exceptions.

Saved general register 15, SGR (32 bits, privilege protection, initial value undefined): The
contents of R15 are saved to SGR in the event of an exception or interrupt.

Debug base register, DBR (32 bits, privilege protection, initial value undefined): When the
user break debug function is enabled (BRCR.UBDE = 1), DBR is referenced as the user break
handler branch destination address instead of VBR.

2.2.5 System Registers

Multiply-and-accumulate register high, MACH (32 bits, initial value undefined)
Multiply-and-accumulate register low, MACL (32 bits, initial value undefined)
MACH/MACL is used for the added value in a MAC instruction, and to store a MAC instruction
or MUL operation result.

Procedure register, PR (32 bits, initial value undefined): The return address is stored in PR in a
subroutine call using a BSR, BSRF, or JSR instruction, and PR is referenced by the subroutine
return instruction (RTS).

Program counter, PC (32 bits, initial value = H'A000 0000): PC indicates the instruction fetch
address.

Rev. 4.0, 03/00, page 15 of 395

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0

— FR SZ PR DN Cause Enable Flag RM

Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

• FR: Floating-point register bank

FR = 0: FPR0_BANK0–FPR15_BANK0 are assigned to FR0–FR15; FPR0_BANK1–
FPR15_BANK1 are assigned to XF0–XF15.

FR = 1: FPR0_BANK0–FPR15_BANK0 are assigned to XF0–XF15; FPR0_BANK1–
FPR15_BANK1 are assigned to FR0–FR15.

• SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

• PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (the result of
instructions for which double-precision is not supported is undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.

[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

• DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

• Cause: FPU exception cause field

• Enable: FPU exception enable field

• Flag: FPU exception flag field

FPU
Error (E)

Invalid
Operation (V)

Division
by Zero (Z)

Overflow
(O)

Underflow
(U)

Inexact
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Rev. 4.0, 03/00, page 16 of 395

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field
holds the status of the exception generated after the field was last cleared.

• RM: Rounding mode

RM = 00: Round to Nearest

RM = 01: Round to Zero

RM = 10: Reserved

RM = 11: Reserved

• Bits 22 to 31: Reserved

Floating-point communication register, FPUL (32 bits, initial value undefined): Data transfer
between FPU registers and CPU registers is carried out via the FPUL register.

Programming Note: When SZ = 1 and big endian mode is selected, FMOV can be used for
double-precision floating-point load or store operations. In little endian mode, two 32-bit data size
moves must be executed, with SZ = 0, to load or store a double-precision floating-point number.

2.3 Memory-Mapped Registers

Appendix A shows the control registers mapped to memory. The control registers are double-
mapped to the following two memory areas. All registers have two addresses.

H'1F00 0000–H'1FFF FFFF
H'FF00 0000–H'FFFF FFFF

These two areas are used as follows.

• H'1F00 0000–H'1FFF FFFF

This area must be accessed in address translation mode using the TLB. Since external memory
is defined as a 29-bit address space in the SH-4 architecture, the TLB’s physical page numbers
do not cover a 32-bit address space. In address translation, the page numbers of this area can
be set in the corresponding field of the TLB by accessing a memory-mapped register. The page
numbers of this area should be used as the actual page numbers set in the TLB. When address
translation is not performed, the operation of accesses to this area is undefined.

• H'FF00 0000–H'FFFF FFFF

Access to area H'FF00 0000–H'FFFF FFFF in user mode will cause an address error. Memory-
mapped registers can be referenced in user mode by means of access that involves address
translation.

Rev. 4.0, 03/00, page 17 of 395

Note: Do not access undefined locations in either area The operation of an access to an
undefined location is undefined. Also, memory-mapped registers must be accessed using a
fixed data size. The operation of an access using an invalid data size is undefined.

2.4 Data Format in Registers

Register operands are always longwords (32 bits). When a memory operand is only a byte (8 bits)
or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

2.5 Data Formats in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
8-bit byte, 16-bit word, or 32-bit longword form. A memory operand less than 32 bits in length is
sign-extended before being loaded into a register.

A word operand must be accessed starting from a word boundary (even address of a 2-byte unit:
address 2n), and a longword operand starting from a longword boundary (even address of a 4-byte
unit: address 4n). An address error will result if this rule is not observed. A byte operand can be
accessed from any address.

Big endian or little endian byte order can be selected for the data format. The endian should be set
with the MD5 external pin in a power-on reset. Big endian is selected when the MD5 pin is low,
and little endian when high. The endian cannot be changed dynamically. Bit positions are
numbered left to right from most-significant to least-significant. Thus, in a 32-bit longword, the
leftmost bit, bit 31, is the most significant bit and the rightmost bit, bit 0, is the least significant
bit.

The data format in memory is shown in figure 2.5.

Rev. 4.0, 03/00, page 18 of 395

Address A

A

7 0 7 0 7 0 7 0

31

15 0 15 0

31 0

15 0

31 0

23 15 7 0

A + 1 A + 2 A + 3

Byte 0

Word 0

Longword

Word 1

Byte 1 Byte 2 Byte 3

A + 11

7 0 7 0 7 0 7 0

31

15 0

23 15 7 0

A + 10 A + 9 A + 8

Byte 3

Word 1

Longword

Word 0

Byte 2 Byte 1 Byte 0

Address A + 4

Address A + 8

Address A + 8

Address A + 4

Address A

Big endian Little endian

Figure 2.5 Data Formats In Memory

Note: The SH-4 does not support endian conversion for the 64-bit data format. Therefore, if
double-precision floating-point format (64-bit) access is performed in little endian mode,
the upper and lower 32 bits will be reversed.

2.6 Processor States

The SH-4 has five processor states: the reset state, exception-handling state, bus-released state,
program execution state, and power-down state.

Reset State: In this state the CPU is reset. There are two kinds of reset state, power-on reset and
manual reset, defined as shown in table 2.6 according to the relevant external pin states.

Table 2.6 Reset State

Power-On Reset State Manual Reset State

SH7750 Series 5(6(7 = 0 and 05(6(7 = 1 5(6(7 = 0 and 05(6(7 = 0

SH7751 5(6(7 = 0 5(6(7 = 1 and 05(6(7 = 0

For more information on resets, see section 5, Exceptions.

In the power-on reset state, the internal state of the CPU and the on-chip peripheral module
registers are initialized. In the manual reset state, the internal state of the CPU and registers of on-
chip peripheral modules other than the bus state controller (BSC) are initialized. Since the bus
state controller (BSC) is not initialized in the manual reset state, refreshing operations continue.
Refer to the register configurations in the relevant sections for further details.

Rev. 4.0, 03/00, page 19 of 395

Exception-Handling State: This is a transient state during which the CPU’s processor state flow
is altered by a reset, general exception, or interrupt exception handling source.

In the case of a reset, the CPU branches to address H'A000 0000 and starts executing the user-
coded exception handling program.

In the case of a general exception or interrupt, the program counter (PC) contents are saved in the
saved program counter (SPC), the status register (SR) contents are saved in the saved status
register (SSR), and the R15 contents are saved in saved general register 15 (SGR). The CPU
branches to the start address of the user-coded exception service routine found from the sum of the
contents of the vector base address and the vector offset. See section 5, Exceptions, for more
information on resets, general exceptions, and interrupts.

Program Execution State: In this state the CPU executes program instructions in sequence.

Power-Down State: In the power-down state, CPU operation halts and power consumption is
reduced. The power-down state is entered by executing a SLEEP instruction. There are two modes
in the power-down state: sleep mode and standby mode. For details, see hardware manual, Power-
Down Modes.

Bus-Released State: In this state the CPU has released the bus to a device that requested it.

SH7750 Series state transitions are shown in figure 2.6, and SH7751 state transitions in figure 2.7.

Rev. 4.0, 03/00, page 20 of 395

 = 0,
 = 1

 = 1,
 = 0

 = 1,
 = 1

Power-on reset state Manual reset state

Program execution state

Bus-released state

Exception-handling state

Interrupt Interrupt
End of exception
transition
processing

Bus request
clearance

Exception
interrupt

Bus request
 clearanceBus

request

Bus request
clearance

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

From any state when
 = 0 and = 1

From any state when
 = 0 and = 0

Reset state

Power-down state

Bus request

Bus request

Standby modeSleep mode

Figure 2.6 Processor State Transitions (SH7750 Series)

Rev. 4.0, 03/00, page 21 of 395

RESET = 0

RESET = 1,
MRESET = 1

RESET = 1

Power-on reset state Manual reset state

Program execution state

Bus-released state

Exception-handling state

Interrupt Interrupt
End of exception
transition
processing

Bus request
clearance

Exception
interrupt

Bus request
 clearanceBus

request

Bus request
clearance

SLEEP instruction
with STBY bit
cleared

SLEEP instruction
with STBY bit set

From any state when
RESET = 0

From any state when
RESET = 1 and MRESET = 0

Reset state

Power-down state

Bus request

Bus request

Standby modeSleep mode

Figure 2.7 Processor State Transitions (SH7751)

2.7 Processor Modes

There are two processor modes: user mode and privileged mode. The processor mode is
determined by the processor mode bit (MD) in the status register (SR). User mode is selected
when the MD bit is cleared to 0, and privileged mode when the MD bit is set to 1. When the reset
state or exception state is entered, the MD bit is set to 1. When exception handling ends, the MD
bit is cleared to 0 and user mode is entered. There are certain registers and bits which can only be
accessed in privileged mode.

Rev. 4.0, 03/00, page 23 of 395

Section 3 Memory Management Unit (MMU)

3.1 Overview

3.1.1 Features

The SH-4 can handle 29-bit external memory space from an 8-bit address space identifier and 32-
bit logical (virtual) address space. Address translation from virtual address to physical address is
performed using the memory management unit (MMU) built into the SH-4. The MMU performs
high-speed address translation by caching user-created address translation table information in an
address translation buffer (translation lookaside buffer: TLB). The SH-4 has four instruction TLB
(ITLB) entries and 64 unified TLB (UTLB) entries. UTLB copies are stored in the ITLB by
hardware. A paging system is used for address translation, with support for four page sizes (1, 4,
and 64 kbytes, and 1 Mbyte). It is possible to set the virtual address space access right and
implement storage protection independently for privileged mode and user mode.

3.1.2 Role of the MMU

The MMU was conceived as a means of making efficient use of physical memory. As shown in
figure 3.1, when a process is smaller in size than the physical memory, the entire process can be
mapped onto physical memory, but if the process increases in size to the point where it does not fit
into physical memory, it becomes necessary to divide the process into smaller parts, and map the
parts requiring execution onto physical memory on an ad hoc basis ((1)). Having this mapping
onto physical memory executed consciously by the process itself imposes a heavy burden on the
process. The virtual memory system was devised as a means of handling all physical memory
mapping to reduce this burden ((2)). With a virtual memory system, the size of the available
virtual memory is much larger than the actual physical memory, and processes are mapped onto
this virtual memory. Thus processes only have to consider their operation in virtual memory, and
mapping from virtual memory to physical memory is handled by the MMU. The MMU is
normally managed by the OS, and physical memory switching is carried out so as to enable the
virtual memory required by a task to be mapped smoothly onto physical memory. Physical
memory switching is performed via secondary storage, etc.

The virtual memory system that came into being in this way works to best effect in a time sharing
system (TSS) that allows a number of processes to run simultaneously ((3)). Running a number of
processes in a TSS did not increase efficiency since each process had to take account of physical
memory mapping. Efficiency is improved and the load on each process reduced by the use of a
virtual memory system ((4)). In this system, virtual memory is allocated to each process. The task
of the MMU is to map a number of virtual memory areas onto physical memory in an efficient
manner. It is also provided with memory protection functions to prevent a process from
inadvertently accessing another process’s physical memory.

Rev. 4.0, 03/00, page 24 of 395

When address translation from virtual memory to physical memory is performed using the MMU,
it may happen that the translation information has not been recorded in the MMU, or the virtual
memory of a different process is accessed by mistake. In such cases, the MMU will generate an
exception, change the physical memory mapping, and record the new address translation
information.

Although the functions of the MMU could be implemented by software alone, having address
translation performed by software each time a process accessed physical memory would be very
inefficient. For this reason, a buffer for address translation (the translation lookaside buffer: TLB)
is provided in hardware, and frequently used address translation information is placed here. The
TLB can be described as a cache for address translation information. However, unlike a cache, if
address translation fails—that is, if an exception occurs—switching of the address translation
information is normally performed by software. Thus memory management can be performed in a
flexible manner by software.

There are two methods by which the MMU can perform mapping from virtual memory to physical
memory: the paging method, using fixed-length address translation, and the segment method,
using variable-length address translation. With the paging method, the unit of translation is a
fixed-size address space called a page (usually from 1 to 64 kbytes in size).

In the following descriptions, the address space in virtual memory in the SH-4 is referred to as
virtual address space, and the address space in physical memory as physical address space.

Rev. 4.0, 03/00, page 25 of 395

(2)

Process 1

Process 1Physical
memory

Process 1

Process 2

Process 3

Virtual
memory

Process 1

Process 1

Process 2

Process 3

MMU

MMU

(4)(3)

(1)

Physical
memory

Physical
memory

Physical
memory

Physical
memory

Virtual
memory

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

��
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
�

�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

��
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

�
�

�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�

�
��

Figure 3.1 Role of the MMU

Rev. 4.0, 03/00, page 26 of 395

3.1.3 Register Configuration

The MMU registers are shown in table 3.1.

Table 3.1 MMU Registers

Name
Abbrevia-
tion R/W

Initial
Value* 1

P4
Address* 2

Area 7
Address* 2

Access
Size

Page table entry high
register

PTEH R/W Undefined H'FF00 0000 H'1F00 0000 32

Page table entry low
register

PTEL R/W Undefined H'FF00 0004 H'1F00 0004 32

Page table entry
assistance register

PTEA R/W Undefined H'FF00 0034 H'1F00 0034 32

Translation table base
register

TTB R/W Undefined H'FF00 0008 H'1F00 0008 32

TLB exception address
register

TEA R/W Undefined H'FF00 000C H'1F00 000C 32

MMU control register MMUCR R/W H'0000 0000 H'FF00 0010 H'1F00 0010 32

Notes: 1. The initial value is the value after a power-on reset or manual reset.
2. This is the address when using the virtual/physical address space P4 area. The area 7

address is the address used when making an access from physical address space area
7 using the TLB.

3.1.4 Caution

Operation is not guaranteed if an area designated as a reserved area in this manual is accessed.

Rev. 4.0, 03/00, page 27 of 395

3.2 Register Descriptions

There are six MMU-related registers.

31 10 9 8 7 0

VPN

PPN

— — ASID

1. PTEH

31 30 29 28 10 9 8 7 6 5 4 3 2 1 0

— — — — V SZ PR SZ C D SH WT

2. PTEL

31 4 3 2 0

TC SA

3. PTEA

31 0

TTB

4. TTB

31

Virtual address at which MMU exception or address error occurred

5. TEA

31 26 24 23 18 17 16 15 10 9 8 7 6 5 4 3 2 1 0

LRUI — — — — URC

SQMD

SV — — — — — TI — AT

6. MMUCR

— indicates a reserved bit: the write value must be 0, and a read will return an undefined value.

URB

25

Figure 3.2 MMU-Related Registers

Rev. 4.0, 03/00, page 28 of 395

1. Page table entry high register (PTEH): Longword access to PTEH can be performed from
H'FF00 0000 in the P4 area and H'1F00 0000 in area 7. PTEH consists of the virtual page number
(VPN) and address space identifier (ASID). When an MMU exception or address error exception
occurs, the VPN of the virtual address at which the exception occurred is set in the VPN field by
hardware. VPN varies according to the page size, but the VPN set by hardware when an exception
occurs consists of the upper 22 bits of the virtual address which caused the exception. VPN setting
can also be carried out by software. The number of the currently executing process is set in the
ASID field by software. ASID is not updated by hardware. VPN and ASID are recorded in the
UTLB by means of the LDLTB instruction.

2. Page table entry low register (PTEL): Longword access to PTEL can be performed from
H'FF00 0004 in the P4 area and H'1F00 0004 in area 7. PTEL is used to hold the physical page
number and page management information to be recorded in the UTLB by means of the LDTLB
instruction. The contents of this register are not changed unless a software directive is issued.

3. Page table entry assistance register (PTEA): Longword access to PTEA can be performed
from H'FF00 0034 in the P4 area and H'1F00 0034 in area 7. PTEL is used to store assistance bits
for PCMCIA access to the UTLB by means of the LDTLB instruction.

In the SH7750S and SH7751, when access to a PCMCIA interface area is performed from the
CPU with MMUCR.AT = 0, access is always performed using the values of the SA bit and TC bit
in this register.

In the SH7750, it is not possible to access a PCMCIA interface area with MMUCR.AT = 0.

In the SH-4, access to a PCMCIA interface area by the DMAC is always performed using the
DMAC’s CHCRn.SSAn and CHCRn.STCn values. See the DMAC section for details.

The contents of this register are not changed unless a software directive is issued.

4. Translation table base register (TTB): Longword access to TTB can be performed from
H'FF00 0008 in the P4 area and H'1F00 0008 in area 7. TTB is used, for example, to hold the base
address of the currently used page table. The contents of TTB are not changed unless a software
directive is issued. This register can be freely used by software.

5. TLB exception address register (TEA): Longword access to TEA can be performed from
H'FF00 000C in the P4 area and H'1F00 000C in area 7. After an MMU exception or address error
exception occurs, the virtual address at which the exception occurred is set in TEA by hardware.
The contents of this register can be changed by software.

6. MMU control register (MMUCR): MMUCR contains the following bits:
LRUI: Least recently used ITLB
URB: UTLB replace boundary
URC: UTLB replace counter
SQMD: Store queue mode bit

Rev. 4.0, 03/00, page 29 of 395

SV: Single virtual mode bit
TI: TLB invalidate
AT: Address translation bit

Longword access to MMUCR can be performed from H'FF00 0010 in the P4 area and H'1F00
0010 in area 7. The individual bits perform MMU settings as shown below. Therefore, MMUCR
rewriting should be performed by a program in the P1 or P2 area. After MMUCR is updated, an
instruction that performs data access to the P0, P3, U0, or store queue area should be located at
least four instructions after the MMUCR update instruction. Also, a branch instruction to the P0,
P3, or U0 area should be located at least eight instructions after the MMUCR update instruction.
MMUCR contents can be changed by software. The LRUI bits and URC bits may also be updated
by hardware.

• LRUI: The LRU (least recently used) method is used to decide the ITLB entry to be replaced
in the event of an ITLB miss. The entry to be purged from the ITLB can be confirmed using
the LRUI bits. LRUI is updated by means of the algorithm shown below. A dash in this table
means that updating is not performed.

LRUI

[5] [4] [3] [2] [1] [0]

When ITLB entry 0 is used 0 0 0 — — —

When ITLB entry 1 is used 1 — — 0 0 —

When ITLB entry 2 is used — 1 — 1 — 0

When ITLB entry 3 is used — — 1 — 1 1

Other than the above — — — — — —

When the LRUI bit settings are as shown below, the corresponding ITLB entry is updated by
an ITLB miss. An asterisk in this table means “don’t care”.

LRUI

[5] [4] [3] [2] [1] [0]

ITLB entry 0 is updated 1 1 1 * * *

ITLB entry 1 is updated 0 * * 1 1 *

ITLB entry 2 is updated * 0 * 0 * 1

ITLB entry 3 is updated * * 0 * 0 0

Other than the above Setting prohibited

Ensure that values for which “Setting prohibited” is indicated in the above table are not set at
the discretion of software. After a power-on or manual reset the LRUI bits are initialized to 0,
and therefore a prohibited setting is never made by a hardware update.

Rev. 4.0, 03/00, page 30 of 395

• URB: Bits that indicate the UTLB entry boundary at which replacement is to be performed.
Valid only when URB > 0.

• URC: Random counter for indicating the UTLB entry for which replacement is to be
performed with an LDTLB instruction. URC is incremented each time the UTLB is accessed.
When URB > 0, URC is reset to 0 when the condition URC = URB occurs. Also note that, if a
value is written to URC by software which results in the condition URC > URB, incrementing
is first performed in excess of URB until URC = H'3F. URC is not incremented by an LDTLB
instruction.

• SQMD: Store queue mode bit. Specifies the right of access to the store queues.

0: User/privileged access possible

1: Privileged access possible (address error exception in case of user access)

• SV: Bit that switches between single virtual memory mode and multiple virtual memory mode.

0: Multiple virtual memory mode

1: Single virtual memory mode

When this bit is changed, ensure that 1 is also written to the TI bit.

• TI: Writing 1 to this bit invalidates (clears to 0) all valid UTLB/ITLB bits. This bit always
returns 0 when read.

• AT: Specifies MMU enabling or disabling.

0: MMU disabled

1: MMU enabled

MMU exceptions are not generated when the AT bit is 0. In the case of software that does not
use the MMU, therefore, the AT bit should be cleared to 0.

3.3 Memory Space

3.3.1 Physical Memory Space

The SH-4 supports a 32-bit physical memory space, and can access a 4-Gbyte address space.
When the MMUCR.AT bit is cleared to 0 and the MMU is disabled, the address space is this
physical memory space. The physical memory space is divided into a number of areas, as shown
in figure 3.3. The physical memory space is permanently mapped onto 29-bit external memory
space; this correspondence can be implemented by ignoring the upper 3 bits of the physical
memory space addresses. In privileged mode, the 4-Gbyte space from the P0 area to the P4 area
can be accessed. In user mode, a 2-Gbyte space in the U0 area can be accessed. Accessing the P1
to P4 areas (except the store queue area) in user mode will cause an address error.

Rev. 4.0, 03/00, page 31 of 395

Area 0
Area 1
Area 2
Area 3
Area 4
Area 5
Area 6
Area 7

External
memory space

Address error

Address error

Store queue area

User modePrivileged mode

P1 area
Cacheable

P0 area
Cacheable

P2 area
Non-cacheable

P3 area
Cacheable

U0 area
Cacheable

H'0000 0000

H'8000 0000

H'E000 0000
H'E400 0000

H'FFFF FFFF

H'0000 0000

H'8000 0000

H'FFFF FFFF

H'A000 0000

H'C000 0000

H'E000 0000 P4 area
Non-cacheable

Figure 3.3 Physical Memory Space (MMUCR.AT = 0)

In the SH7750, it is not possible to access a PCMCIA interface area from the CPU.

In the SH7750S and SH7751, when access to a PCMCIA interface area is performed from the
CPU, the SA and TC values set in the PTEA register are always used for the access.

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRn.SSAn and CHCRn.STCn values. See the DMAC section for details.

P0, P1, P3, U0 Areas: The P0, P1, P3, and U0 areas can be accessed using the cache. Whether or
not the cache is used is determined by the cache control register (CCR). When the cache is used,
with the exception of the P1 area, switching between the copy-back method and the write-through
method for write accesses is specified by the CCR.WT bit. For the P1 area, switching is specified
by the CCR.CB bit. Zeroizing the upper 3 bits of an address in these areas gives the corresponding
external memory space address. However, since area 7 in the external memory space is a reserved
area, a reserved area also appears in these areas.

P2 Area: The P2 area cannot be accessed using the cache. In the P2 area, zeroizing the upper 3
bits of an address gives the corresponding external memory space address. However, since area 7
in the external memory space is a reserved area, a reserved area also appears in this area.

Rev. 4.0, 03/00, page 32 of 395

P4 Area: The P4 area is mapped onto SH-4 on-chip I/O channels. This area cannot be accessed
using the cache. The P4 area is shown in detail in figure 3.4.

H'E000 0000

H'E400 0000

H'F000 0000

H'F100 0000

H'F200 0000

H'F300 0000

H'F400 0000

H'F500 0000

H'F600 0000

H'F700 0000

H'F800 0000

H'FC00 0000

H'FFFF FFFF

Store queue

Reserved area

Instruction cache address array

Instruction cache data array

Instruction TLB address array

Instruction TLB data arrays 1 and 2

Operand cache address array

Operand cache data array

Unified TLB address array

Unified TLB data arrays 1 and 2

Reserved area

Control register area

Figure 3.4 P4 Area

The area from H'E000 0000 to H'E3FF FFFF comprises addresses for accessing the store queues
(SQs). When the MMU is disabled (MMUCR.AT = 0), the SQ access right is specified by the
MMUCR.SQMD bit. For details, see section 4.6, Store Queues.

The area from H'F000 0000 to H'F0FF FFFF is used for direct access to the instruction cache
address array. For details, see section 4.5.1, IC Address Array.

The area from H'F100 0000 to H'F1FF FFFF is used for direct access to the instruction cache data
array. For details, see section 4.5.2, IC Data Array.

The area from H'F200 0000 to H'F2FF FFFF is used for direct access to the instruction TLB
address array. For details, see section 3.7.1, ITLB Address Array.

Rev. 4.0, 03/00, page 33 of 395

The area from H'F300 0000 to H'F3FF FFFF is used for direct access to instruction TLB data
arrays 1 and 2. For details, see sections 3.7.2, ITLB Data Array 1, and 3.7.3, ITLB Data Array 2.

The area from H'F400 0000 to H'F4FF FFFF is used for direct access to the operand cache address
array. For details, see section 4.5.3, OC Address Array.

The area from H'F500 0000 to H'F5FF FFFF is used for direct access to the operand cache data
array. For details, see section 4.5.4, OC Data Array.

The area from H'F600 0000 to H'F6FF FFFF is used for direct access to the unified TLB address
array. For details, see section 3.7.4, UTLB Address Array.

The area from H'F700 0000 to H'F7FF FFFF is used for direct access to unified TLB data arrays 1
and 2. For details, see sections 3.7.5, UTLB Data Array 1, and 3.7.6, UTLB Data Array 2.

The area from H'FC00 0000 to H'FFFF FFFF is the control register area.

3.3.2 External Memory Space

The SH-4 supports a 29-bit external memory space. The external memory space is divided into
eight areas as shown in figure 3.5. Areas 0 to 6 relate to memory, such as SRAM, synchronous
DRAM, DRAM, and PCMCIA. Area 7 is a reserved area. For details, see section 13, Bus State
Controller (BSC), in the Hardware Manual.

H'0000 0000

H'0400 0000

H'0800 0000

H'0C00 0000

H'1000 0000

H'1400 0000

H'1800 0000

H'1C00 0000
H'1FFF FFFF

Area 0

Area 1

Area 2

Area 3

Area 4

Area 5

Area 6

Area 7 (reserved area)

Figure 3.5 External Memory Space

Rev. 4.0, 03/00, page 34 of 395

3.3.3 Virtual Memory Space

Setting the MMUCR.AT bit to 1 enables the P0, P3, and U0 areas of the physical memory space in
the SH-4 to be mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page
units. By using an 8-bit address space identifier, the P0, U0, P3, and store queue areas can be
increased to a maximum of 256. This is called the virtual memory space. Mapping from virtual
memory space to 29-bit external memory space is carried out using the TLB. Only when area 7 in
external memory space is accessed using virtual memory space, addresses H'1C00 0000 to H'1FFF
FFFF of area 7 are not designated as a reserved area, but are equivalent to the P4 area control
register area in the physical memory space. Virtual memory space is illustrated in figure 3.6.

Area 0

Area 1

 Area 2

 Area 3

 Area 4

 Area 5

 Area 6

 Area 7

External
memory space

256256

U0 area
Cacheable

Address translation possible

Address error

Address error

Store queue area

P0 area
Cacheable

Address translation possible

User modePrivileged mode

P1 area
Cacheable

Address translation not possible

P2 area
Non-cacheable

Address translation not possible

P3 area
Cacheable

Address translation possible

P4 area
Non-cacheable

Address translation not possible

Figure 3.6 Virtual Memory Space (MMUCR.AT = 1)

When areas P0, P3, and U0 are mapped onto PCMCIA interface areas by the TLB in the cache-
enabled state, it is necessary to specify 1 for the WT bit of that page, or to clear the C bit to 0.
Access is performed using the SA and TC values set for individual TLB pages.

It is not possible to access a PCMCIA interface area from the CPU by access to area P1, P2, or P4.

Rev. 4.0, 03/00, page 35 of 395

Access to a PCMCIA interface area by the DMAC is always performed using the DMAC’s
CHCRn.SSAn and CHCRn.STCn values. See the DMAC section for details.

P0, P3, U0 Areas: The P0 area (excluding addresses H'7C00 0000 to H'7FFF FFFF), P3 area, and
U0 area allow access using the cache and address translation using the TLB. These areas can be
mapped onto any external memory space in 1-, 4-, or 64-kbyte, or 1-Mbyte, page units. When
CCR is in the cache-enabled state and the TLB enable bit (C bit) is 1, accesses can be performed
using the cache. In write accesses to the cache, switching between the copy-back method and the
write-through method is indicated by the TLB write-through bit (WT bit), and is specified in page
units.

Only when the P0, P3, and U0 areas are mapped onto external memory space by means of the
TLB, addresses H'1F00 0000 to H'1FFF FFFF of area 7 in external memory space are allocated to
the control register area. This enables control registers to be accessed from the U0 area in user
mode. In this case, the C bit for the corresponding page must be cleared to 0.

P1, P2, P4 Areas: Address translation using the TLB cannot be performed for the P1, P2, or P4
area (except for the store queue area). Accesses to these areas are the same as for physical memory
space. The store queue area can be mapped onto any external memory space by the MMU.
However, operation in the case of an exception differs from that for normal P0, U0, and P3 spaces.
For details, see section 4.6, Store Queues.

3.3.4 On-Chip RAM Space

In the SH-4, half (8 kbytes) of the instruction cache (16 kbytes) can be used as on-chip RAM. This
can be done by changing the CCR settings.

When the operand cache is used as on-chip RAM (CCR.ORA = 1), P0 area addresses H'7C00
0000 to H'7FFF FFFF are an on-chip RAM area. Data accesses (byte/word/longword/quadword)
can be used in this area. This area can only be used in RAM mode.

 3.3.5 Address Translation

When the MMU is used, the virtual address space is divided into units called pages, and
translation to physical addresses is carried out in these page units. The address translation table in
external memory contains the physical addresses corresponding to virtual addresses and additional
information such as memory protection codes. Fast address translation is achieved by caching the
contents of the address translation table located in external memory into the TLB. In the SH-4,
basically, the ITLB is used for instruction accesses and the UTLB for data accesses. In the event
of an access to an area other than the P4 area, the accessed virtual address is translated to a
physical address. If the virtual address belongs to the P1 or P2 area, the physical address is
uniquely determined without accessing the TLB. If the virtual address belongs to the P0, U0, or P3
area, the TLB is searched using the virtual address, and if the virtual address is recorded in the

Rev. 4.0, 03/00, page 36 of 395

TLB, a TLB hit is made and the corresponding physical address is read from the TLB. If the
accessed virtual address is not recorded in the TLB, a TLB miss exception is generated and
processing switches to the TLB miss exception routine. In the TLB miss exception routine, the
address translation table in external memory is searched, and the corresponding physical address
and page management information are recorded in the TLB. After the return from the exception
handling routine, the instruction which caused the TLB miss exception is re-executed.

3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode

There are two virtual memory systems, single virtual memory and multiple virtual memory, either
of which can be selected with the MMUCR.SV bit. In the single virtual memory system, a number
of processes run simultaneously, using virtual address space on an exclusive basis, and the
physical address corresponding to a particular virtual address is uniquely determined. In the
multiple virtual memory system, a number of processes run while sharing the virtual address
space, and a particular virtual address may be translated into different physical addresses
depending on the process. The only difference between the single virtual memory and multiple
virtual memory systems in terms of operation is in the TLB address comparison method (see
section 3.4.3, Address Translation Method).

3.3.7 Address Space Identifier (ASID)

In multiple virtual memory mode, the 8-bit address space identifier (ASID) is used to distinguish
between processes running simultaneously while sharing the virtual address space. Software can
set the ASID of the currently executing process in PTEH in the MMU. The TLB does not have to
be purged when processes are switched by means of ASID.

In single virtual memory mode, ASID is used to provide memory protection for processes running
simultaneously while using the virtual memory space on an exclusive basis.

3.4 TLB Functions

3.4.1 Unified TLB (UTLB) Configuration

The unified TLB (UTLB) is so called because of its use for the following two purposes:

1. To translate a virtual address to a physical address in a data access

2. As a table of address translation information to be recorded in the instruction TLB in the event
of an ITLB miss

Rev. 4.0, 03/00, page 37 of 395

Information in the address translation table located in external memory is cached into the UTLB.
The address translation table contains virtual page numbers and address space identifiers, and
corresponding physical page numbers and page management information. Figure 3.7 shows the
overall configuration of the UTLB. The UTLB consists of 64 fully-associative type entries. Figure
3.8 shows the relationship between the address format and page size.

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

Figure 3.7 UTLB Configuration

31

• 1-kbyte page

10 9 0
Virtual address

31

• 4-kbyte page

12 11 0
Virtual address

31

• 64-kbyte page

16 15 0
Virtual address

31

• 1-Mbyte page

20 19 0
Virtual address

VPN Offset

VPN Offset

VPN Offset

VPN Offset

28 10 9 0
Physical address

28 12 11 0
Physical address

28 16 15 0
Physical address

28 20 19 0
Physical address

PPN Offset

PPN Offset

PPN Offset

PPN Offset

Figure 3.8 Relationship between Page Size and Address Format

Rev. 4.0, 03/00, page 38 of 395

• VPN: Virtual page number

For 1-kbyte page: upper 22 bits of virtual address

For 4-kbyte page: upper 20 bits of virtual address

For 64-kbyte page: upper 16 bits of virtual address

For 1-Mbyte page: upper 12 bits of virtual address

• ASID: Address space identifier

Indicates the process that can access a virtual page.

In single virtual memory mode and user mode, or in multiple virtual memory mode, if the SH
bit is 0, this identifier is compared with the ASID in PTEH when address comparison is
performed.

• SH: Share status bit

When 0, pages are not shared by processes.

When 1, pages are shared by processes.

• SZ: Page size bits

Specify the page size.

00: 1-kbyte page

01: 4-kbyte page

10: 64-kbyte page

11: 1-Mbyte page

• V: Validity bit

Indicates whether the entry is valid.

0: Invalid

1: Valid

Cleared to 0 by a power-on reset.

Not affected by a manual reset.

• PPN: Physical page number

Upper 22 bits of the physical address.

With a 1-kbyte page, PPN bits [28:10] are valid.

With a 4-kbyte page, PPN bits [28:12] are valid.

With a 64-kbyte page, PPN bits [28:16] are valid.

With a 1-Mbyte page, PPN bits [28:20] are valid.

The synonym problem must be taken into account when setting the PPN (see section 3.5.5,
Avoiding Synonym Problems).

Rev. 4.0, 03/00, page 39 of 395

• PR: Protection key data

2-bit data expressing the page access right as a code.

00: Can be read only, in privileged mode

01: Can be read and written in privileged mode

10: Can be read only, in privileged or user mode

11: Can be read and written in privileged mode or user mode

• C: Cacheability bit

Indicates whether a page is cacheable.

0: Not cacheable

1: Cacheable

When control register space is mapped, this bit must be cleared to 0.

When performing PCMCIA space mapping in the cache enabled state, either clear this bit to 0
or set the WT bit to 1.

• D: Dirty bit

Indicates whether a write has been performed to a page.

0: Write has not been performed

1: Write has been performed

• WT: Write-through bit

Specifies the cache write mode.

0: Copy-back mode

1: Write-through mode

When performing PCMCIA space mapping in the cache enabled state, either set this bit to 1 or
clear the C bit to 0.

• SA: Space attribute bits

Valid only when the page is mapped onto PCMCIA connected to area 5 or 6.

000: Undefined

001: Variable-size I/O space (base size according to ,2,649 signal)

010: 8-bit I/O space

011: 16-bit I/O space

100: 8-bit common memory space

101: 16-bit common memory space

110: 8-bit attribute memory space

111: 16-bit attribute memory space

Rev. 4.0, 03/00, page 40 of 395

• TC: Timing control bit

Used to select wait control register bits in the bus control unit for areas 5 and 6.

0: WCR2 (A5W2–A5W0) and PCR (A5PCW1–A5PCW0, A5TED2–A5TED0, A5TEH2–
A5TEH0) are used

1: WCR2 (A6W2–A6W0) and PCR (A6PCW1–A6PCW0, A6TED2–A6TED0, A6TEH2–
A6TEH0) are used

3.4.2 Instruction TLB (ITLB) Configuration

The ITLB is used to translate a virtual address to a physical address in an instruction access.
Information in the address translation table located in the UTLB is cached into the ITLB. Figure
3.9 shows the overall configuration of the ITLB. The ITLB consists of 4 fully-associative type
entries.

PPN [28:10]

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

SH

C

C

C

C

PR

PR

PR

PR

ASID [7:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

V

Entry 0

Entry 1

Entry 2

Entry 3

SA [2:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

TC

Notes: 1. D and WT bits are not supported.
2. There is only one PR bit, corresponding to the upper of the PR bits in the UTLB.

Figure 3.9 ITLB Configuration

3.4.3 Address Translation Method

Figures 3.10 and 3.11 show flowcharts of memory accesses using the UTLB and ITLB.

Rev. 4.0, 03/00, page 41 of 395

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.OCE?

CCR.CB? CCR.WT?

VPNs match
and V = 1

Cache access
in write-through mode

Memory access

Memory access

Data TLB multiple
hit exception

Data TLB protection
violation exception

Data TLB miss
exception

Initial page write
exception

Data TLB protection
violation exception

Cache access
in copy-back mode

Data access to virtual address (VA)

On-chip I/O access

R/W?R/W?

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

Yes

No

No

1 (Privileged)

1

0

0

PR?

0 (User)

D?

R/W? WWW

RRR R

WR/W?

(Non-cacheable)

WT?

C = 1
 and CCR.OCE = 1

No

1

1

0

0

00 or
01

10 11 01 or 11 00 or 10

Figure 3.10 Flowchart of Memory Access Using UTLB

Rev. 4.0, 03/00, page 42 of 395

MMUCR.AT = 1

SH = 0
and (MMUCR.SV = 0 or

SR.MD = 0)

VPNs match
and ASIDs match and

V = 1

Only one
entry matches

SR.MD?

CCR.ICE?

VPNs match
and V = 1

Memory access

Instruction TLB
multiple hit exception

Instruction TLB
miss exception

Instruction access to virtual address (VA)

VA is
in P4 area

VA is
in P2 area

VA is
in P1 area

VA is in P0, U0,
or P3 area

Yes

No

1

0

Yes

Yes

NoNo

Yes

Yes

No

(Non-cacheable)

C = 1
and CCR.ICE = 1

No

PR?

 Instruction TLB protection
violation exception

Match? Record in ITLB

Access prohibited

0

1

No

Yes

Yes

No

Hardware ITLB
miss handling

0 (User)
1 (Privileged)

Search UTLB

Cache access

Figure 3.11 Flowchart of Memory Access Using ITLB

Rev. 4.0, 03/00, page 43 of 395

3.5 MMU Functions

3.5.1 MMU Hardware Management

The SH-4 supports the following MMU functions.

1. The MMU decodes the virtual address to be accessed by software, and performs address
translation by controlling the UTLB/ITLB in accordance with the MMUCR settings.

2. The MMU determines the cache access status on the basis of the page management
information read during address translation (C, WT, SA, and TC bits).

3. If address translation cannot be performed normally in a data access or instruction access, the
MMU notifies software by means of an MMU exception.

4. If address translation information is not recorded in the ITLB in an instruction access, the
MMU searches the UTLB, and if the necessary address translation information is recorded in
the UTLB, the MMU copies this information into the ITLB in accordance with
MMUCR.LRUI.

3.5.2 MMU Software Management

Software processing for the MMU consists of the following:

1. Setting of MMU-related registers. Some registers are also partially updated by hardware
automatically.

2. Recording, deletion, and reading of TLB entries. There are two methods of recording UTLB
entries: by using the LDTLB instruction, or by writing directly to the memory-mapped UTLB.
ITLB entries can only be recorded by writing directly to the memory-mapped ITLB. For
deleting or reading UTLB/ITLB entries, it is possible to access the memory-mapped
UTLB/ITLB.

3. MMU exception handling. When an MMU exception occurs, processing is performed based on
information set by hardware.

3.5.3 MMU Instruction (LDTLB)

A TLB load instruction (LDTLB) is provided for recording UTLB entries. When an LDTLB
instruction is issued, the SH-4 copies the contents of PTEH, PTEL, and PTEA to the UTLB entry
indicated by MMUCR.URC. ITLB entries are not updated by the LDTLB instruction, and
therefore address translation information purged from the UTLB entry may still remain in the
ITLB entry. As the LDTLB instruction changes address translation information, ensure that it is
issued by a program in the P1 or P2 area. The operation of the LDTLB instruction is shown in
figure 3.12.

Rev. 4.0, 03/00, page 44 of 395

PPN [28:10]

PPN [28:10]

PPN [28:10]

SZ [1:0]

SZ [1:0]

SZ [1:0]

SH

SH

SH

C

C

C

PR [1:0]

PR [1:0]

PR [1:0]

ASID [7:0]

ASID [7:0]

ASID [7:0]

VPN [31:10]

VPN [31:10]

VPN [31:10]

V

V

V

Entry 0

Entry 1

Entry 2

D

D

D

WT

WT

WT

PPN [28:10] SZ [1:0] SH C PR [1:0]

SA [2:0]

SA [2:0]

SA [2:0]

TC

TC

TC

SA [2:0] TCASID [7:0] VPN [31:10] VEntry 63 D WT

31 29 28 9 8 7 6 5 4 3 2 1 0

— — V SZ PR SZ C D SHWT

PTEL

Write

UTLB

31 10 9 8 7 0

— ASID

PTEH

31 26 25 24 23 18 17 16 15 10 9 8 7 3 2 1 0

LRUI — URB — URC SV

SQMD

— TI — AT

MMUCR

VPN

10

PPN

31 4 3 2 0

— SATC

PTEA

Entry specification

Figure 3.12 Operation of LDTLB Instruction

3.5.4 Hardware ITLB Miss Handling

In an instruction access, the SH-4 searches the ITLB. If it cannot find the necessary address
translation information (i.e. in the event of an ITLB miss), the UTLB is searched by hardware, and
if the necessary address translation information is present, it is recorded in the ITLB. This
procedure is known as hardware ITLB miss handling. If the necessary address translation
information is not found in the UTLB search, an instruction TLB miss exception is generated and
processing passes to software.

Rev. 4.0, 03/00, page 45 of 395

3.5.5 Avoiding Synonym Problems

When 1- or 4-kbyte pages are recorded in TLB entries, a synonym problem may arise. The
problem is that, when a number of virtual addresses are mapped onto a single physical address, the
same physical address data is recorded in a number of cache entries, and it becomes impossible to
guarantee data integrity. This problem does not occur with the instruction TLB or instruction
cache . In the SH-4, entry specification is performed using bits [13:5] of the virtual address in
order to achieve fast operand cache operation. However, bits [13:10] of the virtual address in the
case of a 1-kbyte page, and bits [13:12] of the virtual address in the case of a 4-kbyte page, are
subject to address translation. As a result, bits [13:10] of the physical address after translation may
differ from bits [13:10] of the virtual address.

Consequently, the following restrictions apply to the recording of address translation information
in UTLB entries.

1. When address translation information whereby a number of 1-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN [13:10]
values are the same.

2. When address translation information whereby a number of 4-kbyte page UTLB entries are
translated into the same physical address is recorded in the UTLB, ensure that the VPN [13:12]
values are the same.

3. Do not use 1-kbyte page UTLB entry physical addresses with UTLB entries of a different page
size.

4. Do not use 4-kbyte page UTLB entry physical addresses with UTLB entries of a different page
size.

The above restrictions apply only when performing accesses using the cache. When cache index
mode is used, VPN [25] is used for the entry address instead of VPN [13], and therefore the above
restrictions apply to VPN [25].

Note: When multiple items of address translation information use the same physical memory to
provide for future SuperH RISC engine family expansion, ensure that the VPN [20:10]
values are the same. Also, do not use the same physical address for address translation
information of different page sizes.

Rev. 4.0, 03/00, page 46 of 395

3.6 MMU Exceptions

There are seven MMU exceptions: the instruction TLB multiple hit exception, instruction TLB
miss exception, instruction TLB protection violation exception, data TLB multiple hit exception,
data TLB miss exception, data TLB protection violation exception, and initial page write
exception. Refer to figures 3.10 and 3.11 for the conditions under which each of these exceptions
occurs.

3.6.1 Instruction TLB Multiple Hit Exception

An instruction TLB multiple hit exception occurs when more than one ITLB entry matches the
virtual address to which an instruction access has been made. If multiple hits occur when the
UTLB is searched by hardware in hardware ITLB miss handling, a data TLB multiple hit
exception will result.

When an instruction TLB multiple hit exception occurs a reset is executed, and cache coherency is
not guaranteed.

Hardware Processing: In the event of an instruction TLB multiple hit exception, hardware
carries out the following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The ITLB entries which caused the multiple hit exception
are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

Rev. 4.0, 03/00, page 47 of 395

3.6.2 Instruction TLB Miss Exception

An instruction TLB miss exception occurs when address translation information for the virtual
address to which an instruction access is made is not found in the UTLB entries by the hardware
ITLB miss handling procedure. The instruction TLB miss exception processing carried out by
hardware and software is shown below. This is the same as the processing for a data TLB miss
exception.

Hardware Processing: In the event of an instruction TLB miss exception, hardware carries out
the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the instruction TLB miss exception handling routine.

Software Processing (Instruction TLB Miss Exception Handling Routine): Software is
responsible for searching the external memory page table and assigning the necessary page table
entry. Software should carry out the following processing in order to find and assign the necessary
page table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the TLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

Rev. 4.0, 03/00, page 48 of 395

3.6.3 Instruction TLB Protection Violation Exception

An instruction TLB protection violation exception occurs when, even though an ITLB entry
contains address translation information matching the virtual address to which an instruction
access is made, the actual access type is not permitted by the access right specified by the PR bit.
The instruction TLB protection violation exception processing carried out by hardware and
software is shown below.

Hardware Processing: In the event of an instruction TLB protection violation exception,
hardware carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the instruction TLB protection violation exception handling routine.

Software Processing (Instruction TLB Protection Violation Exception Handling Routine):
Resolve the instruction TLB protection violation, execute the exception handling return instruction
(RTE), terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

Rev. 4.0, 03/00, page 49 of 395

3.6.4 Data TLB Multiple Hit Exception

A data TLB multiple hit exception occurs when more than one UTLB entry matches the virtual
address to which a data access has been made. A data TLB multiple hit exception is also generated
if multiple hits occur when the UTLB is searched in hardware ITLB miss handling.

When a data TLB multiple hit exception occurs a reset is executed, and cache coherency is not
guaranteed. The contents of PPN in the UTLB prior to the exception may also be corrupted.

Hardware Processing: In the event of a data TLB multiple hit exception, hardware carries out the
following processing:

1. Sets the virtual address at which the exception occurred in TEA.

2. Sets exception code H'140 in EXPEVT.

3. Branches to the reset handling routine (H'A000 0000).

Software Processing (Reset Routine): The UTLB entries which caused the multiple hit
exception are checked in the reset handling routine. This exception is intended for use in program
debugging, and should not normally be generated.

3.6.5 Data TLB Miss Exception

A data TLB miss exception occurs when address translation information for the virtual address to
which a data access is made is not found in the UTLB entries. The data TLB miss exception
processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB miss exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'040 in the case of a read, or H'060 in the case of a write, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0400 to the contents of VBR, and
starts the data TLB miss exception handling routine.

Rev. 4.0, 03/00, page 50 of 395

Software Processing (Data TLB Miss Exception Handling Routine): Software is responsible
for searching the external memory page table and assigning the necessary page table entry.
Software should carry out the following processing in order to find and assign the necessary page
table entry.

1. Write to PTEL the values of the PPN, PR, SZ, C, D, SH, V, and WT bits in the page table
entry recorded in the external memory address translation table. If necessary, the values of the
SA and TC bits should be written to PTEA.

2. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

3. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

4. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

3.6.6 Data TLB Protection Violation Exception

A data TLB protection violation exception occurs when, even though a UTLB entry contains
address translation information matching the virtual address to which a data access is made, the
actual access type is not permitted by the access right specified by the PR bit. The data TLB
protection violation exception processing carried out by hardware and software is shown below.

Hardware Processing: In the event of a data TLB protection violation exception, hardware
carries out the following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'0A0 in the case of a read, or H'0C0 in the case of a write, in EXPEVT
(OCBP, OCBWB: read; OCBI, MOVCA.L: write).

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the data TLB protection violation exception handling routine.

Rev. 4.0, 03/00, page 51 of 395

Software Processing (Data TLB Protection Violation Exception Handling Routine): Resolve
the data TLB protection violation, execute the exception handling return instruction (RTE),
terminate the exception handling routine, and return control to the normal flow. The RTE
instruction should be issued at least one instruction after the LDTLB instruction.

3.6.7 Initial Page Write Exception

An initial page write exception occurs when the D bit is 0 even though a UTLB entry contains
address translation information matching the virtual address to which a data access (write) is
made, and the access is permitted. The initial page write exception processing carried out by
hardware and software is shown below.

Hardware Processing: In the event of an initial page write exception, hardware carries out the
following processing:

1. Sets the VPN of the virtual address at which the exception occurred in PTEH.

2. Sets the virtual address at which the exception occurred in TEA.

3. Sets exception code H'080 in EXPEVT.

4. Sets the PC value indicating the address of the instruction at which the exception occurred in
SPC. If the exception occurred at a delay slot, sets the PC value indicating the address of the
delayed branch instruction in SPC.

5. Sets the SR contents at the time of the exception in SSR. The R15 contents at this time are
saved in SGR.

6. Sets the MD bit in SR to 1, and switches to privileged mode.

7. Sets the BL bit in SR to 1, and masks subsequent exception requests.

8. Sets the RB bit in SR to 1.

9. Branches to the address obtained by adding offset H'0000 0100 to the contents of VBR, and
starts the initial page write exception handling routine.

Rev. 4.0, 03/00, page 52 of 395

Software Processing (Initial Page Write Exception Handling Routine): The following
processing should be carried out as the responsibility of software:

1. Retrieve the necessary page table entry from external memory.

2. Write 1 to the D bit in the external memory page table entry.

3. Write to PTEL the values of the PPN, PR, SZ, C, D, WT, SH, and V bits in the page table
entry recorded in external memory. If necessary, the values of the SA and TC bits should be
written to PTEA.

4. When the entry to be replaced in entry replacement is specified by software, write that value to
URC in the MMUCR register. If URC is greater than URB at this time, the value should be
changed to an appropriate value after issuing an LDTLB instruction.

5. Execute the LDTLB instruction and write the contents of PTEH, PTEL, and PTEA to the
UTLB.

6. Finally, execute the exception handling return instruction (RTE), terminate the exception
handling routine, and return control to the normal flow. The RTE instruction should be issued
at least one instruction after the LDTLB instruction.

3.7 Memory-Mapped TLB Configuration

To enable the ITLB and UTLB to be managed by software, their contents can be read and written
by a P2 area program with a MOV instruction in privileged mode. Operation is not guaranteed if
access is made from a program in another area. A branch to an area other than the P2 area should
be made at least 8 instructions after this MOV instruction. The ITLB and UTLB are allocated to
the P4 area in physical memory space. VPN, V, and ASID in the ITLB can be accessed as an
address array, PPN, V, SZ, PR, C, and SH as data array 1, and SA and TC as data array 2. VPN,
D, V, and ASID in the UTLB can be accessed as an address array, PPN, V, SZ, PR, C, D, WT, and
SH as data array 1, and SA and TC as data array 2. V and D can be accessed from both the address
array side and the data array side. Only longword access is possible. Instruction fetches cannot be
performed in these areas. For reserved bits, a write value of 0 should be specified; their read value
is undefined.

Rev. 4.0, 03/00, page 53 of 395

3.7.1 ITLB Address Array

The ITLB address array is allocated to addresses H'F200 0000 to H'F2FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, V, and ASID to be written to the address array are
specified in the data field.

In the address field, bits [31:24] have the value H'F2 indicating the ITLB address array, and the
entry is selected by bits [9:8]. As longword access is used, 0 should be specified for address field
bits [1:0].

In the data field, VPN is indicated by bits [31:10], V by bit [8], and ASID by bits [7:0].

The following two kinds of operation can be used on the ITLB address array:

1. ITLB address array read

VPN, V, and ASID are read into the data field from the ITLB entry corresponding to the entry
set in the address field.

2. ITLB address array write

VPN, V, and ASID specified in the data field are written to the ITLB entry corresponding to
the entry set in the address field.

Address field
31 23 0

1 1 1 1 0 0 1 0 E

Data field
31 10 9 0

VVPN

VPN:
V:

 E:

24

Virtual page number
Validity bit
Entry

10 9 8 7

9 8 7

ASID

ASID:
:

Address space identifier
Reserved bits (0 write value, undefined
read value)

Figure 3.13 Memory-Mapped ITLB Address Array

Rev. 4.0, 03/00, page 54 of 395

3.7.2 ITLB Data Array 1

ITLB data array 1 is allocated to addresses H'F300 0000 to H'F37F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, and SH to be written to the data array are
specified in the data field.

In the address field, bits [31:23] have the value H'F30 indicating ITLB data array 1, and the entry
is selected by bits [9:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bit
[6], C by bit [3], and SH by bit [1].

The following two kinds of operation can be used on ITLB data array 1:

1. ITLB data array 1 read

PPN, V, SZ, PR, C, and SH are read into the data field from the ITLB entry corresponding to
the entry set in the address field.

2. ITLB data array 1 write

PPN, V, SZ, PR, C, and SH specified in the data field are written to the ITLB entry
corresponding to the entry set in the address field.

Address field
31 23 0

1 1 1 1 0 0 01 1 E

Data field

PPN:
V:
E:

SZ:

24

Physical page number
Validity bit
Entry
Page size bits

10 9 8 7

PR:
C:

SH:
:

Protection key data
Cacheability bit
Share status bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 29 28 4 36 5

SZ SHPR

CPPN

Figure 3.14 Memory-Mapped ITLB Data Array 1

Rev. 4.0, 03/00, page 55 of 395

3.7.3 ITLB Data Array 2

ITLB data array 2 is allocated to addresses H'F380 0000 to H'F3FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits [31:23] have the value H'F38 indicating ITLB data array 2, and the entry
is selected by bits [9:8].

In the data field, SA is indicated by bits [2:0], and TC by bit [3].

The following two kinds of operation can be used on ITLB data array 2:

1. ITLB data array 2 read

SA and TC are read into the data field from the ITLB entry corresponding to the entry set in
the address field.

2. ITLB data array 2 write

SA and TC specified in the data field are written to the ITLB entry corresponding to the entry
set in the address field.

Address field
31 23 0

1 1 1 1 0 0 1 1 1 E

Data field
31 4 0

TC:
 E:

24

Timing control bit
Entry

89 7

3 2

SA:
:

Space attribute bits
Reserved bits (0 write value, undefined read
value)

10

SA

TC

Figure 3.15 Memory-Mapped ITLB Data Array 2

3.7.4 UTLB Address Array

The UTLB address array is allocated to addresses H'F600 0000 to H'F6FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and VPN, D, V, and ASID to be written to the address array are
specified in the data field.

Rev. 4.0, 03/00, page 56 of 395

In the address field, bits [31:24] have the value H'F6 indicating the UTLB address array, and the
entry is selected by bits [13:8]. The address array bit [7] association bit (A bit) specifies whether
or not address comparison is performed when writing to the UTLB address array.

In the data field, VPN is indicated by bits [31:10], D by bit [9], V by bit [8], and ASID by bits
[7:0].

The following three kinds of operation can be used on the UTLB address array:

1. UTLB address array read

VPN, D, V, and ASID are read into the data field from the UTLB entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

2. UTLB address array write (non-associative)

VPN, D, V, and ASID specified in the data field are written to the UTLB entry corresponding
to the entry set in the address field. The A bit in the address field should be cleared to 0.

3. UTLB address array write (associative)

When a write is performed with the A bit in the address field set to 1, comparison of all the
UTLB entries is carried out using the VPN specified in the data field and PTEH.ASID. The
usual address comparison rules are followed, but if a UTLB miss occurs, the result is no
operation, and an exception is not generated. If the comparison identifies a UTLB entry
corresponding to the VPN specified in the data field, D and V specified in the data field are
written to that entry. If there is more than one matching entry, a data TLB multiple hit
exception results. This associative operation is simultaneously carried out on the ITLB, and if
a matching entry is found in the ITLB, V is written to that entry. Even if the UTLB
comparison results in no operation, a write to the ITLB side only is performed as long as there
is an ITLB match. If there is a match in both the UTLB and ITLB, the UTLB information is
also written to the ITLB.

Address field

Data field

VPN:
V:
E:
D:

Virtual page number
Validity bit
Entry
Dirty bit

ASID:
A:

:

Address space identifier
Association bit
Reserved bits (0 write value, undefined
read value)

31 0

VD

10 9 8 730 29 28

A

8 7

ASIDVPN

31 23 2 1 0

1 1 1 1 0 1 1 0 E

24 14 13

Figure 3.16 Memory-Mapped UTLB Address Array

Rev. 4.0, 03/00, page 57 of 395

3.7.5 UTLB Data Array 1

UTLB data array 1 is allocated to addresses H'F700 0000 to H'F77F FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and PPN, V, SZ, PR, C, D, SH, and WT to be written to the data
array are specified in the data field.

In the address field, bits [31:23] have the value H'F70 indicating UTLB data array 1, and the entry
is selected by bits [13:8].

In the data field, PPN is indicated by bits [28:10], V by bit [8], SZ by bits [7] and [4], PR by bits
[6:5], C by bit [3], D by bit [2], SH by bit [1], and WT by bit [0].

The following two kinds of operation can be used on UTLB data array 1:

1. UTLB data array 1 read

PPN, V, SZ, PR, C, D, SH, and WT are read into the data field from the UTLB entry
corresponding to the entry set in the address field.

2. UTLB data array 1 write

PPN, V, SZ, PR, C, D, SH, and WT specified in the data field are written to the UTLB entry
corresponding to the entry set in the address field.

Address field

Data field

PPN:
V:
E:

SZ:
D:

Physical page number
Validity bit
Entry
Page size bits
Dirty bit

PR:
C:

SH:
WT:

:

Protection key data
Cacheability bit
Share status bit
Write-through bit
Reserved bits (0 write value, undefined
read value)

31 2 1 0

V

10 9 8 730 29 28 4 36 5

PR CPPN

31 23 0

1 1 1 1 0 1 1 1 0 E

24 8 714 13

D

SZ SH WT

Figure 3.17 Memory-Mapped UTLB Data Array 1

Rev. 4.0, 03/00, page 58 of 395

3.7.6 UTLB Data Array 2

UTLB data array 2 is allocated to addresses H'F780 0000 to H'F7FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification (when writing). Information for selecting the entry to be accessed is
specified in the address field, and SA and TC to be written to data array 2 are specified in the data
field.

In the address field, bits [31:23] have the value H'F78 indicating UTLB data array 2, and the entry
is selected by bits [13:8].

In the data field, TC is indicated by bit [3], and SA by bits [2:0].

The following two kinds of operation can be used on UTLB data array 2:

1. UTLB data array 2 read

SA and TC are read into the data field from the UTLB entry corresponding to the entry set in
the address field.

2. UTLB data array 2 write

SA and TC specified in the data field are written to the UTLB entry corresponding to the entry
set in the address field.

Address field
31 23 0

1 1 1 1 0 1 1 1 1 E

Data field
31 4 0

TC

24 813 7

3 2

14

SA

TC:
 E:

Timing control bit
Entry

SA:
:

Space attribute bits
Reserved bits (0 write value, undefined read
value)

Figure 3.18 Memory-Mapped UTLB Data Array 2

Rev. 4.0, 03/00, page 59 of 395

Section 4 Caches

4.1 Overview

4.1.1 Features

The SH-4 has an on-chip 8-kbyte instruction cache (IC) for instructions and 16-kbyte operand
cache (OC) for data. Half of the memory of the operand cache (8 kbytes) can also be used as on-
chip RAM. The features of these caches are summarized in table 4.1.

Table 4.1 Cache Features

Item Instruction Cache Operand Cache

Capacity 8-kbyte cache 16-kbyte cache or 8-kbyte cache +
8-kbyte RAM

Type Direct mapping Direct mapping

Line size 32 bytes 32 bytes

Entries 256 512

Write method Copy-back/write-through selectable

Item Store Queues

Capacity 2 × 32 bytes

Addresses H'E000 0000 to H'E3FF FFFF

Write Store instruction (1-cycle write)

Write-back Prefetch instruction

Access right MMU off: according to MMUCR.SQMD

MMU on: according to individual page PR

Rev. 4.0, 03/00, page 60 of 395

4.1.2 Register Configuration

Table 4.2 shows the cache control registers.

Table 4.2 Cache Control Registers

Name Abbreviation R/W
Initial
Value* 1

P4
Address* 2

Area 7
Address* 2

Access
Size

Cache control
register

CCR R/W H'0000 0000 H'FF00 001C H'1F00 001C 32

Queue address
control register 0

QACR0 R/W Undefined H'FF00 0038 H'1F00 0038 32

Queue address
control register 1

QACR1 R/W Undefined H'FF00 003C H'1F00 003C 32

Notes: 1. The initial value is the value after a power-on or manual reset.
2. This is the address when using the virtual/physical address space P4 area. When

making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

4.2 Register Descriptions

There are three cache and store queue related control registers, as shown in figure 4.1.

CCR

31 1416 15 12 11 10 9 8 7 6 5 4 3 2

CB

1 0

ICI ICE ORAOIX OCI

AREA

indicates reserved bits: 0 must be specified in a write; the read value is undefined.

WT OCEIIX

QACR0

31 5 4 2 1 0

AREA

QACR1

31 5 4 2 1 0

Figure 4.1 Cache and Store Queue Control Registers

Rev. 4.0, 03/00, page 61 of 395

(1) Cache Control Register (CCR): CCR contains the following bits:

IIX: IC index enable
ICI: IC invalidation
ICE: IC enable
OIX: OC index enable
ORA: OC RAM enable
OCI: OC invalidation
CB: Copy-back enable
WT: Write-through enable
OCE: OC enable

Longword access to CCR can be performed from H'FF00 001C in the P4 area and H'1F00 001C in
area 7. The CCR bits are used for the cache settings described below. Consequently, CCR
modifications must only be made by a program in the non-cached P2 area. After CCR is updated,
an instruction that performs data access to the P0, P1, P3, or U0 area should be located at least
four instructions after the CCR update instruction. Also, a branch instruction to the P0, P1, P3, or
U0 area should be located at least eight instructions after the CCR update instruction.

• IIX: IC index enable bit

0: Address bits [12:5] used for IC entry selection

1: Address bits [25] and [11:5] used for IC entry selection

• ICI: IC invalidation bit

When 1 is written to this bit, the V bits of all IC entries are cleared to 0. This bit always returns
0 when read.

• ICE: IC enable bit

Indicates whether or not the IC is to be used. When address translation is performed, the IC
cannot be used unless the C bit in the page management information is also 1.

0: IC not used

1: IC used

• OIX: OC index enable bit

0: Address bits [13:5] used for OC entry selection

1: Address bits [25] and [12:5] used for OC entry selection

• ORA: OC RAM enable bit

When the OC is enabled (OCE = 1), the ORA bit specifies whether the 8 kbytes from entry
128 to entry 255 and from entry 384 to entry 511 of the OC are to be used as RAM. When the
OC is not enabled (OCE = 0), the ORA bit should be cleared to 0.

0: 16 kbytes used as cache

1: 8 kbytes used as cache, and 8 kbytes as RAM

Rev. 4.0, 03/00, page 62 of 395

• OCI: OC invalidation bit

When 1 is written to this bit, the V and U bits of all OC entries are cleared to 0. This bit always
returns 0 when read.

• CB: Copy-back bit

Indicates the P1 area cache write mode.

0: Write-through mode

1: Copy-back mode

• WT: Write-through bit

Indicates the P0, U0, and P3 area cache write mode. When address translation is performed,
the value of the WT bit in the page management information has priority.

0: Copy-back mode

1: Write-through mode

• OCE: OC enable bit

Indicates whether or not the OC is to be used. When address translation is performed, the OC
cannot be used unless the C bit in the page management information is also 1.

0: OC not used

1: OC used

(2) Queue Address Control Register 0 (QACR0): Longword access to QACR0 can be
performed from H'FF00 0038 in the P4 area and H'1F00 0038 in area 7. QACR0 specifies the area
onto which store queue 0 (SQ0) is mapped when the MMU is off.

(3) Queue Address Control Register 1 (QACR1): Longword access to QACR1 can be
performed from H'FF00 003C in the P4 area and H'1F00 003C in area 7. QACR1 specifies the
area onto which store queue 1 (SQ1) is mapped when the MMU is off.

Rev. 4.0, 03/00, page 63 of 395

4.3 Operand Cache (OC)

4.3.1 Configuration

Figure 4.2 shows the configuration of the operand cache.

31 26 25 5 4 3 2 1

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits

MMU

RAM area
determination

ORAOIX
[13] [12]

[11:5]

511 19 bits 1 bit 1 bit

Tag U V

Address array Data array

E
nt

ry
 s

el
ec

tio
n

Longword (LW) selection

Effective address

3
9

22

19

0

Write dataRead data

Hit signal

Compare

13 12 11 10 9 0

Figure 4.2 Configuration of Operand Cache

Rev. 4.0, 03/00, page 64 of 395

The operand cache consists of 512 cache lines, each composed of a 19-bit tag, V bit, U bit, and 32-
byte data.

• Tag

Stores the upper 19 bits of the 29-bit external memory address of the data line to be cached.
The tag is not initialized by a power-on or manual reset.

• V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• U bit (dirty bit)

The U bit is set to 1 if data is written to the cache line while the cache is being used in copy-
back mode. That is, the U bit indicates a mismatch between the data in the cache line and the
data in external memory. The U bit is never set to 1 while the cache is being used in write-
through mode, unless it is modified by accessing the memory-mapped cache (see section 4.5,
Memory-Mapped Cache Configuration). The U bit is initialized to 0 by a power-on reset, but
retains its value in a manual reset.

• Data field

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

4.3.2 Read Operation

When the OC is enabled (CCR.OCE = 1) and data is read by means of an effective address from a
cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

• If the tag matches and the V bit is 1 → (3a)

• If the tag matches and the V bit is 0 → (3b)

• If the tag does not match and the V bit is 0 → (3b)

• If the tag does not match, the V bit is 1, and the U bit is 0→ (3b)

• If the tag does not match, the V bit is 1, and the U bit is 1→ (3c)

Rev. 4.0, 03/00, page 65 of 395

3a. Cache hit

The data indexed by effective address bits [4:0] is read from the data field of the cache line
indexed by effective address bits [13:5] in accordance with the access size
(quadword/longword/word/byte).

3b. Cache miss (no write-back)

Data is read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrives in the
cache, the read data is returned to the CPU. While the remaining one cache line of data is being
read, the CPU can execute the next processing. When reading of one line of data is completed,
the tag corresponding to the effective address is recorded in the cache, and 1 is written to the V
bit.

3c. Cache miss (with write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are saved in the
write-back buffer. Then data is read into the cache line from the external memory space
corresponding to the effective address. Data reading is performed, using the wraparound
method, in order from the longword data corresponding to the effective address, and when the
corresponding data arrives in the cache, the read data is returned to the CPU. While the
remaining one cache line of data is being read, the CPU can execute the next processing. When
reading of one line of data is completed, the tag corresponding to the effective address is
recorded in the cache, 1 is written to the V bit, and 0 to the U bit. The data in the write-back
buffer is then written back to external memory.

4.3.3 Write Operation

When the OC is enabled (CCR.OCE = 1) and data is written by means of an effective address to a
cacheable area, the cache operates as follows:

1. The tag, V bit, and U bit are read from the cache line indexed by effective address bits [13:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

Copy-back Write-through

• If the tag matches and the V bit is 1 → (3a) → (3b)

• If the tag matches and the V bit is 0 → (3c) → (3d)

• If the tag does not match and the V bit is 0 → (3c) → (3d)

• If the tag does not match, the V bit is 1, and the U bit is 0→ (3c) → (3d)

• If the tag does not match, the V bit is 1, and the U bit is 1→ (3e) → (3d)

Rev. 4.0, 03/00, page 66 of 395

3a. Cache hit (copy-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then 1 is set in the U bit.

3b. Cache hit (write-through)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. A write is also performed to the corresponding
external memory using the specified access size.

3c. Cache miss (no copy-back/write-back)

A data write in accordance with the access size (quadword/longword/word/byte) is performed
for the data indexed by bits [4:0] of the effective address of the data field of the cache line
indexed by effective address bits [13:5]. Then, data is read into the cache line from the external
memory space corresponding to the effective address. Data reading is performed, using the
wraparound method, in order from the longword data corresponding to the effective address,
and one cache line of data is read excluding the written data. During this time, the CPU can
execute the next processing. When reading of one line of data is completed, the tag
corresponding to the effective address is recorded in the cache, and 1 is written to the V bit and
U bit.

3d. Cache miss (write-through)

A write of the specified access size is performed to the external memory corresponding to the
effective address. In this case, a write to cache is not performed.

3e. Cache miss (with copy-back/write-back)

The tag and data field of the cache line indexed by effective address bits [13:5] are first saved
in the write-back buffer, and then a data write in accordance with the access size
(quadword/longword/word/byte) is performed for the data indexed by bits [4:0] of the effective
address of the data field of the cache line indexed by effective address bits [13:5]. Then, data is
read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and one cache line of data is read excluding the
written data. During this time, the CPU can execute the next processing. When reading of one
line of data is completed, the tag corresponding to the effective address is recorded in the
cache, and 1 is written to the V bit and U bit. The data in the write-back buffer is then written
back to external memory.

Rev. 4.0, 03/00, page 67 of 395

4.3.4 Write-Back Buffer

In order to give priority to data reads to the cache and improve performance, the SH-4 has a write-
back buffer which holds the relevant cache entry when it becomes necessary to purge a dirty cache
entry into external memory as the result of a cache miss. The write-back buffer contains one cache
line of data and the physical address of the purge destination.

LW7Physical address bits [28:5] LW6LW5LW4LW3LW2LW1LW0

Figure 4.3 Configuration of Write-Back Buffer

4.3.5 Write-Through Buffer

The SH-4 has a 64-bit buffer for holding write data when writing data in write-through mode or
writing to a non-cacheable area. This allows the CPU to proceed to the next operation as soon as
the write to the write-through buffer is completed, without waiting for completion of the write to
external memory.

Physical address bits [28:0] LW1LW0

Figure 4.4 Configuration of Write-Through Buffer

4.3.6 RAM Mode

Setting CCR.ORA to 1 enables 8 kbytes of the operand cache to be used as RAM. The operand
cache entries used as RAM are entries 128 to 255 and 384 to 511 . Other entries can still be used
as cache. RAM can be accessed using addresses H'7C00 0000 to H'7FFF FFFF. Byte-, word-,
longword-, and quadword-size data reads and writes can be performed in the operand cache RAM
area. Instruction fetches cannot be performed in this area.

An example of RAM use is shown below. Here, the 4 kbytes comprising OC entries 128 to 256
are designated as RAM area 1, and the 4 kbytes comprising OC entries 384 to 511 as RAM area 2.

Rev. 4.0, 03/00, page 68 of 395

• When OC index mode is off (CCR.OIX = 0)

H'7C00 0000 to H'7C00 0FFF (4 kB): Corresponds to RAM area 1

H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1

H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 2

H'7C00 3000 to H'7C00 3FFF (4 kB): Corresponds to RAM area 2

H'7C00 4000 to H'7C00 4FFF (4 kB): Corresponds to RAM area 1

: : :

RAM areas 1 and 2 then repeat every 8 kbytes up to H'7FFF FFFF.

Thus, to secure a continuous 8-kbyte RAM area, the area from H'7C00 1000 to H'7C00 2FFF
can be used, for example.

• When OC index mode is on (CCR.OIX = 1)

H'7C00 0000 to H'7C00 0FFF (4 kB): Corresponds to RAM area 1

H'7C00 1000 to H'7C00 1FFF (4 kB): Corresponds to RAM area 1

H'7C00 2000 to H'7C00 2FFF (4 kB): Corresponds to RAM area 1

: : :

H'7DFF F000 to H'7DFF FFFF (4 kB): Corresponds to RAM area 1

H'7E00 0000 to H'7E00 0FFF (4 kB): Corresponds to RAM area 2

H'7E00 1000 to H'7E00 1FFF (4 kB): Corresponds to RAM area 2

: : :

H'7FFF F000 to H'7FFF FFFF (4 kB): Corresponds to RAM area 2

As the distinction between RAM areas 1 and 2 is indicated by address bit [25], the area from
H'7DFF F000 to H'7E00 0FFF should be used to secure a continuous 8-kbyte RAM area.

4.3.7 OC Index Mode

Setting CCR.OIX to 1 enables OC indexing to be performed using bit [25] of the effective
address. This is called OC index mode. In normal mode, with CCR.OIX cleared to 0, OC indexing
is performed using bits [13:5] of the effective address; therefore, when 16 kbytes or more of
consecutive data is handled, the OC is fully used by this data. This results in frequent cache
misses. Using index mode allows the OC to be handled as two 8-kbyte areas by means of effective
address bit [25], providing efficient use of the cache.

Rev. 4.0, 03/00, page 69 of 395

4.3.8 Coherency between Cache and External Memory

Coherency between cache and external memory should be assured by software. In the SH-4, the
following four new instructions are supported for cache operations. For details of these
instructions, see section 9, Instruction Descriptions.

Invalidate instruction: OCBI @Rn Cache invalidation (no write-back)

Purge instruction: OCBP @Rn Cache invalidation (with write-back)

Write-back instruction: OCBWB @Rn Cache write-back

Allocate instruction: MOVCA.L R0,@Rn Cache allocation

4.3.9 Prefetch Operation

The SH-4 supports a prefetch instruction to reduce the cache fill penalty incurred as the result of a
cache miss. If it is known that a cache miss will result from a read or write operation, it is possible
to fill the cache with data beforehand by means of the prefetch instruction to prevent a cache miss
due to the read or write operation, and so improve software performance. If a prefetch instruction
is executed for data already held in the cache, or if the prefetch address results in a UTLB miss or
a protection violation, the result is no operation, and an exception is not generated. For details of
the prefetch instruction, see section 9.74, PREF.

Prefetch instruction: PREF @Rn

Rev. 4.0, 03/00, page 70 of 395

4.4 Instruction Cache (IC)

4.4.1 Configuration

Figure 4.5 shows the configuration of the instruction cache.

LW0

32 bits

LW1

32 bits

LW2

32 bits

LW3

32 bits

LW4

32 bits

LW5

32 bits

LW6

32 bits

LW7

32 bits255 19 bits 1 bit

Tag V

Address array

Longword (LW) selection

Data array

0

Read data

Hit signal

Compare

31 26 25 5 4 3 2 1

MMU

IIX
[12]

[11:5]

E
nt

ry
 s

el
ec

tio
n

Effective address

8 3

22

19

13 12 11 10 9 0

Figure 4.5 Configuration of Instruction Cache

Rev. 4.0, 03/00, page 71 of 395

The instruction cache consists of 256 cache lines, each composed of a 19-bit tag, V bit, and 32-
byte data (16 instructions).

• Tag

Stores the upper 19 bits of the 29-bit external address of the data line to be cached. The tag is
not initialized by a power-on or manual reset.

• V bit (validity bit)

Indicates that valid data is stored in the cache line. When this bit is 1, the cache line data is
valid. The V bit is initialized to 0 by a power-on reset, but retains its value in a manual reset.

• Data array

The data field holds 32 bytes (256 bits) of data per cache line. The data array is not initialized
by a power-on or manual reset.

4.4.2 Read Operation

When the IC is enabled (CCR.ICE = 1) and instruction fetches are performed by means of an
effective address from a cacheable area, the instruction cache operates as follows:

1. The tag and V bit are read from the cache line indexed by effective address bits [12:5].

2. The tag is compared with bits [28:10] of the address resulting from effective address
translation by the MMU:

• If the tag matches and the V bit is 1 → (3a)

• If the tag matches and the V bit is 0 → (3b)

• If the tag does not match and the V bit is 0 → (3b)

• If the tag does not match and the V bit is 1 → (3b)

3a. Cache hit

The data indexed by effective address bits [4:2] is read as an instruction from the data field of
the cache line indexed by effective address bits [12:5].

3b. Cache miss

Data is read into the cache line from the external memory space corresponding to the effective
address. Data reading is performed, using the wraparound method, in order from the longword
data corresponding to the effective address, and when the corresponding data arrives in the
cache, the read data is returned to the CPU as an instruction. When reading of one line of data
is completed, the tag corresponding to the effective address is recorded in the cache, and 1 is
written to the V bit.

Rev. 4.0, 03/00, page 72 of 395

4.4.3 IC Index Mode

Setting CCR.IIX to 1 enables IC indexing to be performed using bit [25] of the effective address.
This is called IC index mode. In normal mode, with CCR.IIX cleared to 0, IC indexing is
performed using bits [12:5] of the effective address; therefore, when 8 kbytes or more of
consecutive program instructions are handled, the IC is fully used by this program. This results in
frequent cache misses. Using index mode allows the IC to be handled as two 4-kbyte areas by
means of effective address bit [25], providing efficient use of the cache.

4.5 Memory-Mapped Cache Configuration

In the SH7750 Series, to enable the IC and OC to be managed by software, their contents can be
read and written by a P2 area program with a MOV instruction in privileged mode.

In privileged mode in the SH7751, the contents of OC can be read and written by a P1 or P2 area
program with a MOV instruction, and the contents of IC can be read and written by a P2 area
program with a MOV instruction.

Operation is not guaranteed if access is made from a program in another area. In this case, a
branch to the other area should be made at least 8 instructions after this MOV instruction. The IC
and OC are allocated to the P4 area in physical memory space. Only data accesses can be used on
both the IC address array and data array and the OC address array and data array, and accesses are
always longword-size. Instruction fetches cannot be performed in these areas. For reserved bits, a
write value of 0 should be specified; their read value is undefined.

4.5.1 IC Address Array

The IC address array is allocated to addresses H'F000 0000 to H'F0FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F0 indicating the IC address array, and the entry
is specified by bits [12:5]. CCR.IIX has no effect on this entry specification. The address array bit
[3] association bit (A bit) specifies whether or not association is performed when writing to the IC
address array. As only longword access is used, 0 should be specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], and the V bit by bit [0]. As the IC address
array tag is 19 bits in length, data field bits [31:29] are not used in the case of a write in which
association is not performed. Data field bits [31:29] are used for the virtual address specification
only in the case of a write in which association is performed.

The following three kinds of operation can be used on the IC address array:

Rev. 4.0, 03/00, page 73 of 395

1. IC address array read

The tag and V bit are read into the data field from the IC entry corresponding to the entry set in
the address field. In a read, associative operation is not performed regardless of whether the
association bit specified in the address field is 1 or 0.

2. IC address array write (non-associative)

The tag and V bit specified in the data field are written to the IC entry corresponding to the
entry set in the address field. The A bit in the address field should be cleared to 0.

3. IC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field bits [31:10] has been translated to a physical address using the ITLB. If the addresses
match and the V bit is 1, the V bit specified in the data field is written into the IC entry. This
operation is used to invalidate a specific IC entry. If an ITLB miss occurs during address
translation, or the comparison shows a mismatch, no operation results and the write is not
performed. If an instruction TLB multiple hit exception occurs during address translation,
processing switches to the instruction TLB multiple hit exception handling routine.

Address field
31 23 12 5 4 3 2 1 0

1 1 1 1 0 0 0 0 Entry A

Data field
31 10 9 1 0

VTag address

V
A

24 13

: Validity bit
: Association bit
: Reserved bits (0 write value, undefined read value)

Figure 4.6 Memory-Mapped IC Address Array

4.5.2 IC Data Array

The IC data array is allocated to addresses H'F100 0000 to H'F1FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F1 indicating the IC data array, and the entry is
specified by bits [12:5]. CCR.IIX has no effect on this entry specification. Address field bits [4:2]
are used for the longword data specification in the entry. As only longword access is used, 0
should be specified for address field bits [1:0].

Rev. 4.0, 03/00, page 74 of 395

The data field is used for the longword data specification.

The following two kinds of operation can be used on the IC data array:

1. IC data array read

Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the IC entry corresponding to the entry set in the address field.

2. IC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the IC entry corresponding to the entry set in the
address field.

Address field
31 23 12 5 4 2 1 0

1 1 1 1 0 0 0 1 Entry L

Data field
31 0

Longword data

L

24 13

: Longword specification bits
: Reserved bits (0 write value, undefined read value)

Figure 4.7 Memory-Mapped IC Data Array

4.5.3 OC Address Array

The OC address array is allocated to addresses H'F400 0000 to H'F4FF FFFF in the P4 area. An
address array access requires a 32-bit address field specification (when reading or writing) and a
32-bit data field specification. The entry to be accessed is specified in the address field, and the
write tag, U bit, and V bit are specified in the data field.

In the address field, bits [31:24] have the value H'F4 indicating the OC address array, and the
entry is specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry
specification. The address array bit [3] association bit (A bit) specifies whether or not association
is performed when writing to the OC address array. As only longword access is used, 0 should be
specified for address field bits [1:0].

In the data field, the tag is indicated by bits [31:10], the U bit by bit [1], and the V bit by bit [0].
As the OC address array tag is 19 bits in length, data field bits [31:29] are not used in the case of a
write in which association is not performed. Data field bits [31:29] are used for the virtual address
specification only in the case of a write in which association is performed.

Rev. 4.0, 03/00, page 75 of 395

The following three kinds of operation can be used on the OC address array:

1. OC address array read

The tag, U bit, and V bit are read into the data field from the OC entry corresponding to the
entry set in the address field. In a read, associative operation is not performed regardless of
whether the association bit specified in the address field is 1 or 0.

2. OC address array write (non-associative)

The tag, U bit, and V bit specified in the data field are written to the OC entry corresponding to
the entry set in the address field. The A bit in the address field should be cleared to 0.

When a write is performed to a cache line for which the U bit and V bit are both 1, after write-
back of that cache line, the tag, U bit, and V bit specified in the data field are written.

3. OC address array write (associative)

When a write is performed with the A bit in the address field set to 1, the tag stored in the
entry specified in the address field is compared with the tag specified in the data field. If the
MMU is enabled at this time, comparison is performed after the virtual address specified by
data field bits [31:10] has been translated to a physical address using the UTLB. If the
addresses match and the V bit is 1, the U bit and V bit specified in the data field are written
into the OC entry. This operation is used to invalidate a specific OC entry. If the OC entry U
bit is 1, and 0 is written to the V bit or to the U bit, write-back is performed. If an UTLB miss
occurs during address translation, or the comparison shows a mismatch, no operation results
and the write is not performed. If a data TLB multiple hit exception occurs during address
translation, processing switches to the data TLB multiple hit exception handling routine.

Address field
31 23 5 4 3 2 1 0

1 1 1 1 0 1 0 0 Entry A

Data field
31 10 9 1 0

VTag

24 1314

2

U

V
U
A

: Validity bit
: Dirty bit
: Association bit
: Reserved bits (0 write value, undefined read value)

Figure 4.8 Memory-Mapped OC Address Array

Rev. 4.0, 03/00, page 76 of 395

4.5.4 OC Data Array

The OC data array is allocated to addresses H'F500 0000 to H'F5FF FFFF in the P4 area. A data
array access requires a 32-bit address field specification (when reading or writing) and a 32-bit
data field specification. The entry to be accessed is specified in the address field, and the longword
data to be written is specified in the data field.

In the address field, bits [31:24] have the value H'F5 indicating the OC data array, and the entry is
specified by bits [13:5]. CCR.OIX and CCR.ORA have no effect on this entry specification.
Address field bits [4:2] are used for the longword data specification in the entry. As only longword
access is used, 0 should be specified for address field bits [1:0].

The data field is used for the longword data specification.

The following two kinds of operation can be used on the OC data array:

1. OC data array read

Longword data is read into the data field from the data specified by the longword specification
bits in the address field in the OC entry corresponding to the entry set in the address field.

2. OC data array write

The longword data specified in the data field is written for the data specified by the longword
specification bits in the address field in the OC entry corresponding the entry set in the address
field. This write does not set the U bit to 1 on the address array side.

Address field
31 23 5 4 2 1 0

1 1 1 1 0 1 0 1 Entry L

Data field
31 0

Longword data

24 1314

L : Longword specification bits
: Reserved bits (0 write value, undefined read value)

Figure 4.9 Memory-Mapped OC Data Array

Rev. 4.0, 03/00, page 77 of 395

4.6 Store Queues

Two 32-byte store queues (SQs) are supported to perform high-speed writes to external memory.
In the SH7750S and SH7751, when not using the SQs, the low power dissipation power-down
modes, in which SQ functions are stopped, can be used. The queue address control registers
(QACR0 and QACR1) cannot be accessed while SQ functions are stopped. See section 9, Power-
Down Modes, for the procedure for stopping SQ functions.

4.6.1 SQ Configuration

There are two 32-byte store queues, SQ0 and SQ1, as shown in figure 4.10. These two store
queues can be set independently.

SQ0 SQ0[0] SQ0[1] SQ0[2] SQ0[3] SQ0[4] SQ0[5] SQ0[6] SQ0[7]

SQ1 SQ1[0] SQ1[1] SQ1[2] SQ1[3] SQ1[4] SQ1[5] SQ1[6] SQ1[7]

4B 4B 4B 4B 4B 4B 4B 4B

Figure 4.10 Store Queue Configuration

4.6.2 SQ Writes

A write to the SQs can be performed using a store instruction on P4 area H'E000 0000 to H'E3FF
FFFC. A longword or quadword access size can be used. The meaning of the address bits is as
follows:

[31:26]: 111000 Store queue specification
[25:6]: Don’t care Used for external memory transfer/access right
[5]: 0/1 0: SQ0 specification 1: SQ1 specification
[4:2]: LW specification Specifies longword position in SQ0/SQ1
[1:0] 00 Fixed at 0

4.6.3 Transfer to External Memory

Transfer from the SQs to external memory can be performed with a prefetch instruction (PREF).
Issuing a PREF instruction for P4 area H'E000 0000 to H'E3FF FFFC starts a transfer from the
SQs to external memory. The transfer length is fixed at 32 bytes, and the start address is always at
a 32-byte boundary. While the contents of one SQ are being transferred to external memory, the
other SQ can be written to without a penalty cycle, but writing to the SQ involved in the transfer
to external memory is deferred until the transfer is completed.

Rev. 4.0, 03/00, page 78 of 395

The SQ transfer destination external memory address bit [28:0] specification is as shown below,
according to whether the MMU is on or off.

• When MMU is on (MMUCR.AT = 1)

The SQ area (H'E000 0000 to H'E3FF FFFF) is set in VPN of the UTLB, and the transfer
destination external memory address in PPN. The ASID, V, SZ, SH, PR, and D bits have the
same meaning as for normal address translation, but the C and WT bits have no meaning with
regard to this page. It is not possible to perform data transfer to a PCMCIA interface area using
the SQs.

When a prefetch instruction is issued for the SQ area, address translation is performed and
external memory address bits [28:10] are generated in accordance with the SZ bit specification.
For external memory address bits [9:5], the address prior to address translation is generated in
the same way as when the MMU is off. External memory address bits [4:0] are fixed at 0.
Transfer from the SQs to external memory is performed to this address.

• When MMU is off (MMUCR.AT = 0)

The SQ area (H'E000 0000 to H'E3FF FFFF) is specified as the address at which a prefetch is
performed. The meaning of address bits [31:0] is as follows:

[31:26]: 111000 Store queue specification

[25:6]: Address External memory address bits [25:6]

[5]: 0/1 0: SQ0 specification
1: SQ1 specification and external memory address bit [5]

[4:2]: Don’t care No meaning in a prefetch

[1:0] 00 Fixed at 0

External memory address bits [28:26], which cannot be generated from the above address, are
generated from the QACR0/1 registers.

QACR0 [4:2]: External memory address bits [28:26] corresponding to SQ0

QACR1 [4:2]: External memory address bits [28:26] corresponding to SQ1

External memory address bits [4:0] are always fixed at 0 since burst transfer starts at a 32-byte
boundary.

In the SH7750, it is not possible to perform data transfer to a PCMCIA interface area using the
SQs.

In the SH7750S and SH7751, data transfer to a PCMCIA interface area is always performed
using the values of the SA bit and TC bit in PTEA.

Rev. 4.0, 03/00, page 79 of 395

4.6.4 SQ Protection

It is possible to set protection against SQ writes and transfers to external memory. If an SQ write
violates the protection setting, an exception will be generated but the SQ contents will be
corrupted. If a transfer from the SQs to external memory (prefetch instruction) violates the
protection setting, the transfer to external memory will be inhibited and an exception will be
generated.

• When MMU is on

Operation is in accordance with the address translation information recorded in the UTLB, and
MMUCR.SQMD. Write type exception judgment is performed for writes to the SQs, and read
type for transfer from the SQs to external memory (PREF instruction), and a TLB miss
exception, protection violation exception, or initial page write exception is generated.
However, if SQ access is enabled, in privileged mode only, by MMUCR.SQMD, an address
error will be flagged in user mode even if address translation is successful.

• When MMU is off

Operation is in accordance with MMUCR.SQMD.

0: Privileged/user access possible

1: Privileged access possible

If the SQ area is accessed in user mode when MMUCR.SQMD is set to 1, an address error will
be flagged.

Rev. 4.0, 03/00, page 81 of 395

Section 5 Exceptions

5.1 Overview

5.1.1 Features

Exception handling is processing handled by a special routine, separate from normal program
processing, that is executed by the CPU in case of abnormal events. For example, if the executing
instruction ends abnormally, appropriate action must be taken in order to return to the original
program sequence, or report the abnormality before terminating the processing. The process of
generating an exception handling request in response to abnormal termination, and passing control
to a user-written exception handling routine, in order to support such functions, is given the
generic name of exception handling.

SH-4 exception handling is of three kinds: for resets, general exceptions, and interrupts.

5.1.2 Register Configuration

The registers used in exception handling are shown in table 5.1.

Table 5.1 Exception-Related Registers

Name
Abbrevia-
tion R/W Initial Value* 1

P4
Address* 2

Area 7
Address* 2

Access
Size

TRAPA exception
register

TRA R/W Undefined H'FF00 0020 H'1F00 0020 32

Exception event
register

EXPEVT R/W H'0000 0000/
H'0000 0020*1

H'FF00 0024 H'1F00 0024 32

Interrupt event
register

INTEVT R/W Undefined H'FF00 0028 H'1F00 0028 32

Notes: 1. H'0000 0000 is set in a power-on reset, and H'0000 0020 in a manual reset.
2. This is the address when using the virtual/physical address space P4 area. When

making an access from physical address space area 7 using the TLB, the upper 3 bits
of the address are ignored.

Rev. 4.0, 03/00, page 82 of 395

5.2 Register Descriptions

There are three registers related to exception handling. These are allocated to memory, and can be
accessed by specifying the P4 address or area 7 address.

1. The exception event register (EXPEVT) resides at P4 address H'FF00 0024, and contains a 12-
bit exception code. The exception code set in EXPEVT is that for a reset or general exception
event. The exception code is set automatically by hardware when an exception occurs.
EXPEVT can also be modified by software.

2. The interrupt event register (INTEVT) resides at P4 address H'FF00 0028, and contains a 12-
bit (SH7750 Series) or 14-bit (SH7751) exception code. The exception code set in INTEVT is
that for an interrupt request. The exception code is set automatically by hardware when an
exception occurs. INTEVT can also be modified by software.

3. The TRAPA exception register (TRA) resides at P4 address H'FF00 0020, and contains 8-bit
immediate data (imm) for the TRAPA instruction. TRA is set automatically by hardware when
a TRAPA instruction is executed. TRA can also be modified by software.

The bit configurations of EXPEVT, INTEVT, and TRA are shown in figure 5.1.

31 0

0

0 0 0 0

0

31 10 9 1 0

0:

 imm:

Reserved bits. These bits are always read as 0, and should only be written
with 0.
8-bit immediate data of the TRAPA instruction

12 11

2

EXPEVT (SH7750 Series, SH7751), INTEVT (SH7750 Series)

TRA

imm

Exception code

31 0

0 0

14 13

INTEVT (SH7751)

Exception code

Figure 5.1 Register Bit Configurations

Rev. 4.0, 03/00, page 83 of 395

5.3 Exception Handling Functions

5.3.1 Exception Handling Flow

In exception handling, the contents of the program counter (PC), status register (SR), and R15 are
saved in the saved program counter (SPC), saved status register (SSR), and saved general
register15 (SGR), and the CPU starts execution of the appropriate exception handling routine
according to the vector address. An exception handling routine is a program written by the user to
handle a specific exception. The exception handling routine is terminated and control returned to
the original program by executing a return-from-exception instruction (RTE). This instruction
restores the PC and SR contents and returns control to the normal processing routine at the point at
which the exception occurred.

The SGR contents are not written back to R15 by an RTE instruction.

The basic processing flow is as follows. See section 2, Data Formats and Registers, for the
meaning of the individual SR bits.

1. The PC, SR, and R15 contents are saved in SPC, SSR, and SGR.

2. The block bit (BL) in SR is set to 1.

3. The mode bit (MD) in SR is set to 1.

4. The register bank bit (RB) in SR is set to 1.

5. In a reset, the FPU disable bit (FD) in SR is cleared to 0.

6. The exception code is written to bits 11–0 of the exception event register (EXPEVT): SH7750
Series, bits 13–0 of the exception event register (EXPEVT): SH7751 or interrupt event register
(INTEVT).

7. The CPU branches to the determined exception handling vector address, and the exception
handling routine begins.

5.3.2 Exception Handling Vector Addresses

The reset vector address is fixed at H'A000 0000. Exception and interrupt vector addresses are
determined by adding the offset for the specific event to the vector base address, which is set by
software in the vector base register (VBR). In the case of the TLB miss exception, for example,
the offset is H'0000 0400, so if H'9C08 0000 is set in VBR, the exception handling vector address
will be H'9C08 0400. If a further exception occurs at the exception handling vector address, a
duplicate exception will result, and recovery will be difficult; therefore, fixed physical addresses
(P1, P2) should be specified for vector addresses.

Rev. 4.0, 03/00, page 84 of 395

5.4 Exception Types and Priorities

Table 5.2 shows the types of exceptions, with their relative priorities, vector addresses, and
exception/interrupt codes.

Table 5.2 Exceptions

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order

Vector
Address Offset

Exception
Code

Power-on reset 1 1 H'A000 0000 — H’000

Manual reset 1 2 H'A000 0000 — H’020

Hitachi-UDI reset 1 1 H'A000 0000 — H’000

Instruction TLB multiple-hit
exception

1 3 H'A000 0000 — H’140

Reset Abort type

Data TLB multiple-hit exception 1 4 H'A000 0000 — H’140

User break before instruction
execution*1

2 0 (VBR/DBR) H'100/— H'1E0

Instruction address error 2 1 (VBR) H'100 H'0E0

Instruction TLB miss exception 2 2 (VBR) H'400 H'040

Instruction TLB protection
violation exception

2 3 (VBR) H'100 H'0A0

General illegal instruction
exception

2 4 (VBR) H'100 H'180

Slot illegal instruction exception 2 4 (VBR) H'100 H'1A0

General FPU disable exception 2 4 (VBR) H'100 H'800

Slot FPU disable exception 2 4 (VBR) H'100 H'820

Data address error (read) 2 5 (VBR) H'100 H'0E0

Data address error (write) 2 5 (VBR) H'100 H'100

Data TLB miss exception (read) 2 6 (VBR) H'400 H'040

Data TLB miss exception (write) 2 6 (VBR) H'400 H'060

Data TLB protection
violation exception (read)

2 7 (VBR) H'100 H'0A0

Data TLB protection
violation exception (write)

2 7 (VBR) H'100 H'0C0

FPU exception 2 8 (VBR) H'100 H'120

Re-
execution
type

Initial page write exception 2 9 (VBR) H'100 H'080

Unconditional trap (TRAPA) 2 4 (VBR) H'100 H'160

General
exception

Completion
type

User break after instruction
execution*1

2 10 (VBR/DBR) H'100/— H'1E0

Rev. 4.0, 03/00, page 85 of 395

Table 5.2 Exceptions (cont)

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order

Vector
Address Offset

Exception
Code

Nonmaskable interrupt 3 — (VBR) H'600 H'1C0

0 H'200

1 H'220

2 H'240

3 H'260

4 H'280

5 H'2A0

6 H'2C0

7 H'2E0

8 H'300

9 H'320

A H'340

B H'360

C H'380

D H'3A0

External
interrupts

IRL3–
IRL0

E

4 *2 (VBR) H'600

H'3C0

TMU0 TUNI0 H'400

TMU1 TUNI1 H'420

TUNI2 H'440TMU2

TICPI2 H'460

TMU3*3 TUNI3 H'B00

TMU4*3 TUNI4 H'B80

ATI H'480

PRI H'4A0

RTC

CUI H'4C0

SCI ERI H'4E0

RXI H'500

TXI H'520

TEI H'540

WDT ITI H'560

RCMI H'580REF

ROVI

4 *2 (VBR) H'600

H'5A0

Interrupt Completion
type

Peripheral
module
interrupt
(module/
source)

H-UDI H-UDI H'600

GPIO GPIOI H'620

Rev. 4.0, 03/00, page 86 of 395

Table 5.2 Exceptions (cont)

Exception
Category

Execution
Mode Exception

Priority
Level

Priority
Order

Vector
Address Offset

Exception
Code

DMTE0 H'640

DMTE1 H'660

DMTE2 H'680

DMTE3 H'6A0

DMAC

DMAE H'6C0

ERI H'700

RXI H'720

BRI H'740

SCIF

TXI H'760

PCISERR H'A00

PCIERR H'AE0

PCIPWDWN H'AC0

PCIPWON H'AA0

PCIDMA0 H'A80

PCIDMA1 H'A60

PCIDMA2 H'A40

Interrupt Completion
type

Peripheral
module
interrupt
(module/
source)

PCIC*3

PCIDMA3

4 *2 (VBR) H'600

H'A20

Priority: Priority is first assigned by priority level, then by priority order within each level (the lowest
number represents the highest priority).
Exception transition destination: Control passes to H'A000 0000 in a reset, and to [VBR + offset] in
other cases.
Exception code: Stored in EXPEVT for a reset or general exception, and in INTEVT for an interrupt.

IRL: Interrupt request level (pins IRL3–IRL0).

Module/source: See the sections on the relevant peripheral modules.

Notes: 1. When BRCR.UBDE = 1, PC = DBR. In other cases, PC = VBR + H'100.
2. The priority order of external interrupts and peripheral module interrupts can be set by

software.
3. SH7751 exceptions only. Not provided in the SH7750 Series.

Rev. 4.0, 03/00, page 87 of 395

5.5 Exception Flow

5.5.1 Exception Flow

Figure 5.2 shows an outline flowchart of the basic operations in instruction execution and
exception handling. For the sake of clarity, the following description assumes that instructions are
executed sequentially, one by one. Figure 5.2 shows the relative priority order of the different
kinds of exceptions (reset/general exception/interrupt). Register settings in the event of an
exception are shown only for SSR, SPC, SGR, EXPEVT/INTEVT, SR, and PC, but other registers
may be set automatically by hardware, depending on the exception. For details, see section 5.6,
Description of Exceptions. Also, see section 5.6.4, Priority Order with Multiple Exceptions, for
exception handling during execution of a delayed branch instruction and a delay slot instruction,
and in the case of instructions in which two data accesses are performed.

Execute next instruction

Is highest-
priority exception

re-exception
type?

Cancel instruction execution
result

Yes

Yes

Yes

No

No

No

No

Yes

SSR ← SR
SPC ← PC
SGR ← R15
EXPEVT/INTEVT ← exception code
SR.{MD,RB,BL} ← 111
PC ← (BRCR.UBDE=1 && User_Break?

DBR: (VBR + Offset))

EXPEVT ← exception code
SR. {MD, RB, BL, FD, IMASK} ← 11101111
PC ← H'A000 0000

Interrupt
requested?

General
exception requested?

Reset
requested?

Figure 5.2 Instruction Execution and Exception Handling

Rev. 4.0, 03/00, page 88 of 395

5.5.2 Exception Source Acceptance

A priority ranking is provided for all exceptions for use in determining which of two or more
simultaneously generated exceptions should be accepted. Five of the general exceptions—the
general illegal instruction exception, slot illegal instruction exception, general FPU disable
exception, slot FPU disable exception, and unconditional trap exception—are detected in the
process of instruction decoding, and do not occur simultaneously in the instruction pipeline. These
exceptions therefore all have the same priority. General exceptions are detected in the order of
instruction execution. However, exception handling is performed in the order of instruction flow
(program order). Thus, an exception for an earlier instruction is accepted before that for a later
instruction. An example of the order of acceptance for general exceptions is shown in figure 5.3.

Rev. 4.0, 03/00, page 89 of 395

IF

IF

ID

ID

EX

EX

MA

MA

WB

WB

TLB miss (data access)Pipeline flow:

Order of detection:

Instruction n
Instruction n+1

General illegal instruction exception (instruction n+1) and
TLB miss (instruction n+2) are detected simultaneously

Order of exception handling:

TLB miss (instruction n)

Program order

1

Instruction n+2

General illegal instruction exception

IF ID EX MA WB

IF ID EX MA WB

TLB miss (instruction access)

2

3

4

IF: Instruction fetch
ID: Instruction decode
EX: Instruction execution
MA: Memory access
WB: Write-back

Instruction n+3

TLB miss (instruction n)

Re-execution of instruction n

General illegal instruction exception
(instruction n+1)

Re-execution of instruction n+1

TLB miss (instruction n+2)

Re-execution of instruction n+2

Execution of instruction n+3

Figure 5.3 Example of General Exception Acceptance Order

Rev. 4.0, 03/00, page 90 of 395

5.5.3 Exception Requests and BL Bit

When the BL bit in SR is 0, exceptions and interrupts are accepted.

When the BL bit in SR is 1 and an exception other than a user break is generated, the CPU’s
internal registers and the registers of the other modules are set to their states following a manual
reset, and the CPU branches to the same address as in a reset (H'A000 0000). For the operation in
the event of a user break, see User Break Controller in the hardware manual. If an ordinary
interrupt occurs, the interrupt request is held pending and is accepted after the BL bit has been
cleared to 0 by software. If a nonmaskable interrupt (NMI) occurs, it can be held pending or
accepted according to the setting made by software.

Thus, normally, SPC and SSR are saved and then the BL bit in SR is cleared to 0, to enable
multiple exception state acceptance.

5.5.4 Return from Exception Handling

The RTE instruction is used to return from exception handling. When the RTE instruction is
executed, the SPC contents are restored to PC and the SSR contents to SR, and the CPU returns
from the exception handling routine by branching to the SPC address. If SPC and SSR were saved
to external memory, set the BL bit in SR to 1 before restoring the SPC and SSR contents and
issuing the RTE instruction.

5.6 Description of Exceptions

The various exception handling operations are described here, covering exception sources,
transition addresses, and processor operation when a transition is made.

5.6.1 Resets

(1) Power-On Reset

• Sources:

 6&.5 pin high level and 5(6(7 pin low level (SH7750 Series)/5(6(7 pin low level
(SH7751)

 When the watchdog timer overflows while the WT/,7 bit is set to 1 and the RSTS bit is
cleared to 0 in WTCSR. For details, see Clock Oscillation Circuits in hardware manual.

• Transition address: H'A000 0000

• Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

Rev. 4.0, 03/00, page 91 of 395

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are
set to B’1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections. For some CPU functions, the 7567 pin and 5(6(7 pin
must be driven low. It is therefore essential to execute a power-on reset and drive the 7567
pin low when powering on.

If the SCK2 pin is changed to the low level while the 5(6(7 pin is low, a manual reset may
occur after the power-on reset operation. Do not drive the SCK2 pin low during this interval
(see Electrical Characteristics in the hardware manual).

In the SH7750 Series, if the 6&.5 pin is changed to the low level while the 5(6(7 pin is low,
a manual reset may occur after the power-on reset operation. Do not drive the 6&.5 pin low
during this interval. For details, see Electrical Characteristics in the hardware manual.

In the SH7751, if the 5(6(7 pin is driven high before the 05(6(7 pin while both these pins
are low, a manual reset may occur after the power-on reset operation. The 5(6(7 pin must be
driven high at the same time as, or after, the 05(6(7 pin.

Power_on_reset()

{

EXPEVT = H'00000000;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD=0;

Initialize_CPU();

Initialize_Module(PowerOn);

PC = H'A0000000;

}

Rev. 4.0, 03/00, page 92 of 395

(2) Manual Reset

• Sources:

 6&.5 pin low level and 5(6(7 pin low level (SH7750 Series)/05(6(7 pin low level and
5(6(7 pin high level (SH7751)

 When a general exception other than a user break occurs while the BL bit is set to 1 in SR

 When the watchdog timer overflows while the WT/,7 bit is set to 1 and the RSTS bit is set
to 1 in WTCSR. For details, see Clock Oscillation Circuits in the hardware manual.

• Transition address: H'A000 0000

• Transition operations:

Exception code H'020 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are
set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

Manual_reset()

{

EXPEVT = H'00000020;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(Manual);

PC = H'A0000000;

}

Rev. 4.0, 03/00, page 93 of 395

Table 5.3 Types of Reset (SH7750 Series)

Reset State Transition
Conditions Internal States

Type 6&.56&.56&.56&.5 5(6(75(6(75(6(75(6(7 CPU
On-Chip Peripheral
Modules

Power-on reset High Low Initialized

Manual reset Low Low Initialized

See Register
Configuration in
individual sections of
the hardware
manual

Table 5.4 Types of Reset (SH7751)

Reset State Transition
Conditions Internal States

Type 05(6(705(6(705(6(705(6(7 5(6(75(6(75(6(75(6(7 CPU
On-Chip Peripheral
Modules

Power-on reset — Low Initialized

Manual reset Low High Initialized

See Register
Configuration in
individual sections of
the hardware
manual

Rev. 4.0, 03/00, page 94 of 395

(3) H-UDI Reset

• Source: SDIR.TI3–TI0 = B'0110 (negation) or B'0111 (assertion)

• Transition address: H'A000 0000

• Transition operations:

Exception code H'000 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are
set to B'1111.

CPU and on-chip peripheral module initialization is performed. For details, see the register
descriptions in the relevant sections.

H-UDI_reset()

{

EXPEVT = H'00000000;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(PowerOn);

PC = H'A0000000;

}

Rev. 4.0, 03/00, page 95 of 395

(4) Instruction TLB Multiple-Hit Exception

• Source: Multiple ITLB address matches

• Transition address: H'A000 0000

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are
set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

EXPEVT = H'00000140;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(Manual);

PC = H'A0000000;

}

Rev. 4.0, 03/00, page 96 of 395

(5) Operand TLB Multiple-Hit Exception

• Source: Multiple UTLB address matches

• Transition address: H'A000 0000

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

Exception code H'140 is set in EXPEVT, initialization of VBR and SR is performed, and a
branch is made to PC = H'A000 0000.

In the initialization processing, the VBR register is set to H'0000 0000, and in SR, the MD,
RB, and BL bits are set to 1, the FD bit is cleared to 0, and the interrupt mask bits (I3–I0) are
set to B'1111.

CPU and on-chip peripheral module initialization is performed in the same way as in a manual
reset. For details, see the register descriptions in the relevant sections.

TLB_multi_hit()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

EXPEVT = H'00000140;

VBR = H'00000000;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

SR.(I0-I3) = B'1111;

SR.FD = 0;

Initialize_CPU();

Initialize_Module(Manual);

PC = H'A0000000;

}

Rev. 4.0, 03/00, page 97 of 395

5.6.2 General Exceptions

(1) Data TLB Miss Exception

• Source: Address mismatch in UTLB address comparison

• Transition address: VBR + H'0000 0400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 (for a read access) or H'060 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

Data_TLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = read_access ? H'00000040 : H'00000060;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000400;

}

Rev. 4.0, 03/00, page 98 of 395

(2) Instruction TLB Miss Exception

• Source: Address mismatch in ITLB address comparison

• Transition address: VBR + H'0000 0400

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'040 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0400.

To speed up TLB miss processing, the offset is separate from that of other exceptions.

ITLB_miss_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000040;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000400;

}

Rev. 4.0, 03/00, page 99 of 395

(3) Initial Page Write Exception

• Source: TLB is hit in a store access, but dirty bit D = 0

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'080 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Initial_write_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000080;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 100 of 395

(4) Data TLB Protection Violation Exception

• Source: The access does not accord with the UTLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

00 Only read access possible Access not possible

01 Read/write access possible Access not possible

10 Only read access possible Only read access possible

11 Read/write access possible Read/write access possible

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0A0 (for a read access) or H'0C0 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

Data_TLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = read_access ? H'000000A0 : H'000000C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 101 of 395

(5) Instruction TLB Protection Violation Exception

• Source: The access does not accord with the ITLB protection information (PR bits) shown
below.

PR Privileged Mode User Mode

0 Access possible Access not possible

1 Access possible Access possible

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

ITLB_protection_violation_exception()

{

TEA = EXCEPTION_ADDRESS;

PTEH.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'000000A0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 102 of 395

(6) Data Address Error

• Sources:

 Word data access from other than a word boundary (2n +1)

 Longword data access from other than a longword data boundary (4n +1, 4n + 2, or 4n +3)

 Quadword data access from other than a quadword data boundary (8n +1, 8n + 2, 8n +3, 8n
+ 4, 8n + 5, 8n + 6, or 8n + 7)

 Access to area H'8000 0000–H'FFFF FFFF in user mode

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0E0 (for a read access) or H'100 (for a write access) is set in EXPEVT. The
BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. For
details, see section 3, Memory Management Unit (MMU).

Data_address_error()

{

TEA = EXCEPTION_ADDRESS;

PTEN.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = read_access? H'000000E0: H'00000100;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 103 of 395

(7) Instruction Address Error

• Sources:

 Instruction fetch from other than a word boundary (2n +1)

 Instruction fetch from area H'8000 0000–H'FFFF FFFF in user mode

• Transition address: VBR + H'0000 0100

• Transition operations:

The virtual address (32 bits) at which this exception occurred is set in TEA, and the
corresponding virtual page number (22 bits) is set in PTEH [31:10]. ASID in PTEH indicates
the ASID when this exception occurred.

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'0E0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. For details, see section 3, Memory Management Unit
(MMU).

Instruction_address_error()

{

TEA = EXCEPTION_ADDRESS;

PTEN.VPN = PAGE_NUMBER;

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'000000E0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 104 of 395

(8) Unconditional Trap

• Source: Execution of TRAPA instruction

• Transition address: VBR + H'0000 0100

• Transition operations:

As this is a processing-completion-type exception, the PC contents for the instruction
following the TRAPA instruction are saved in SPC. The values of SR and R15 when the
TRAPA instruction is executed are saved in SSR and SGR. The 8-bit immediate value in the
TRAPA instruction is multiplied by 4, and the result is set in TRA [9:0]. Exception code H'160
is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC =
VBR + H'0100.

TRAPA_exception()

{

SPC = PC + 2;

SSR = SR;

SGR = R15;

TRA = imm << 2;

EXPEVT = H'00000160;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 105 of 395

(9) General Illegal Instruction Exception

• Sources:

 Decoding of an undefined instruction not in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

Undefined instruction: H'FFFD

 Decoding in user mode of a privileged instruction not in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'180 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

General_illegal_instruction_exception()

{

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000180;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 106 of 395

(10) Slot Illegal Instruction Exception

• Sources:

 Decoding of an undefined instruction in a delay slot

Delayed branch instructions: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT/S, BF/S

Undefined instruction: H'FFFD

 Decoding of an instruction that modifies PC in a delay slot

Instructions that modify PC: JMP, JSR, BRA, BRAF, BSR, BSRF, RTS, RTE, BT, BF,
BT/S, BF/S, TRAPA, LDC Rm, SR, LDC.L @Rm+,SR

 Decoding in user mode of a privileged instruction in a delay slot

Privileged instructions: LDC, STC, RTE, LDTLB, SLEEP, but excluding LDC/STC
instructions that access GBR

 Decoding of a PC-relative MOV instruction or MOVA instruction in a delay slot

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'1A0 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100. Operation is not guaranteed if an undefined code other
than H'FFFD is decoded.

Slot_illegal_instruction_exception()

{

SPC = PC - 2;

SSR = SR;

SGR = R15;

EXPEVT = H'000001A0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 107 of 395

(11) General FPU Disable Exception

• Source: Decoding of an FPU instruction* not in a delay slot with SR.FD =1

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR.

Exception code H'800 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Note: * FPU instructions are instructions in which the first 4 bits of the instruction code are F (but
excluding undefined instruction H'FFFD), and the LDS, STS, LDS.L, and STS.L
instructions corresponding to FPUL and FPSCR.

General_fpu_disable_exception()

{

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000800;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 108 of 395

(12) Slot FPU Disable Exception

• Source: Decoding of an FPU instruction in a delay slot with SR.FD =1

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC contents for the preceding delayed branch instruction are saved in SPC. The SR and
R15 contents when this exception occurred are saved in SSR and SGR.

Exception code H'820 is set in EXPEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0100.

Slot_fpu_disable_exception()

{

SPC = PC - 2;

SSR = SR;

SGR = R15;

EXPEVT = H'00000820;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 109 of 395

(13) User Breakpoint Trap

• Source: Fulfilling of a break condition set in the user break controller

• Transition address: VBR + H'0000 0100, or DBR

• Transition operations:

In the case of a post-execution break, the PC contents for the instruction following the
instruction at which the breakpoint is set are set in SPC. In the case of a pre-execution break,
the PC contents for the instruction at which the breakpoint is set are set in SPC.

The SR and R15 contents when the break occurred are saved in SSR and SGR. Exception code
H'1E0 is set in EXPEVT.

The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100. It is
also possible to branch to PC = DBR.

For details of PC, etc., when a data break is set, see User Break Controller in the hardware
manual.

User_break_exception()

{

SPC = (pre_execution break? PC : PC + 2);

SSR = SR;

SGR = R15;

EXPEVT = H'000001E0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = (BRCR.UBDE==1 ? DBR : VBR + H’00000100);

}

Rev. 4.0, 03/00, page 110 of 395

(14) FPU Exception

• Source: Exception due to execution of a floating-point operation

• Transition address: VBR + H'0000 0100

• Transition operations:

The PC and SR contents for the instruction at which this exception occurred are saved in SPC
and SSR, and the contents of R15 are saved in SGR. Exception code H'120 is set in EXPEVT.
The BL, MD, and RB bits are set to 1 in SR, and a branch is made to PC = VBR + H'0100.

FPU_exception()

{

SPC = PC;

SSR = SR;

SGR = R15;

EXPEVT = H'00000120;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000100;

}

Rev. 4.0, 03/00, page 111 of 395

5.6.3 Interrupts

(1) NMI

• Source: NMI pin edge detection

• Transition address: VBR + H'0000 0600

• Transition operations:

The contents of PC and SR immediately after the instruction at which this interrupt was
accepted are saved in SPC and SSR, and the contents of R15 are saved in SGR.

Exception code H'1C0 is set in INTEVT. The BL, MD, and RB bits are set to 1 in SR, and a
branch is made to PC = VBR + H'0600. When the BL bit in SR is 0, this interrupt is not
masked by the interrupt mask bits in SR, and is accepted at the highest priority level. When the
BL bit in SR is 1, a software setting can specify whether this interrupt is to be masked or
accepted. For details, see Interrupt Controller in the hardware manual.

NMI()

{

SPC = PC;

SSR = SR;

SGR = R15;

INTEVT = H'000001C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

Rev. 4.0, 03/00, page 112 of 395

(2) IRL Interrupts

• Source: The interrupt mask bit setting in SR is smaller than the IRL (3–0) level, and the BL bit
in SR is 0 (accepted at instruction boundary).

• Transition address: VBR + H'0000 0600

• Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the IRL (3–0) level is set in INTEVT. See table 19.5, Interrupt
Exception Handling Sources and Priority Order, for the corresponding codes. The BL, MD,
and RB bits are set to 1 in SR, and a branch is made to VBR + H'0600. The acceptance level is
not set in the interrupt mask bits in SR. When the BL bit in SR is 1, the interrupt is masked.
For details, see Interrupt Controller in the hardware manual.

IRL()

{

SPC = PC;

SSR = SR;

SGR = R15;

INTEVT = H'00000200 ~ H'000003C0;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

Rev. 4.0, 03/00, page 113 of 395

(3) Peripheral Module Interrupts

• Source: The interrupt mask bit setting in SR is smaller than the peripheral module (H-UDI,
GPIO, DMAC, PCIC*, TMU, RTC, SCI, SCIF, WDT, or REF) interrupt level, and the BL bit
in SR is 0 (accepted at instruction boundary).

Note: * SH7751 only

• Transition address: VBR + H'0000 0600

• Transition operations:

The PC contents immediately after the instruction at which the interrupt is accepted are set in
SPC. The SR and R15 contents at the time of acceptance are set in SSR and SGR.

The code corresponding to the interrupt source is set in INTEVT. The BL, MD, and RB bits
are set to 1 in SR, and a branch is made to VBR + H'0600. The module interrupt levels should
be set as values between B’0000 and B’1111 in the interrupt priority registers (IPRA–IPRC) in
the interrupt controller. For details, see Interrupt Controller in the hardware manual.

Module_interruption()

{

SPC = PC;

SSR = SR;

SGR = R15;

INTEVT = H'00000400 ~ H'00000760;

SR.MD = 1;

SR.RB = 1;

SR.BL = 1;

PC = VBR + H'00000600;

}

Rev. 4.0, 03/00, page 114 of 395

5.6.4 Priority Order with Multiple Exceptions

With some instructions, such as instructions that make two accesses to memory, and the
indivisible pair comprising a delayed branch instruction and delay slot instruction, multiple
exceptions occur. Care is required in these cases, as the exception priority order differs from the
normal order.

1. Instructions that make two accesses to memory

With MAC instructions, memory-to-memory arithmetic/logic instructions, and TAS
instructions, two data transfers are performed by a single instruction, and an exception will be
detected for each of these data transfers. In these cases, therefore, the following order is used
to determine priority.

a. Data address error in first data transfer

b. TLB miss in first data transfer

c. TLB protection violation in first data transfer

d. Initial page write exception in first data transfer

e. Data address error in second data transfer

f. TLB miss in second data transfer

g. TLB protection violation in second data transfer

h. Initial page write exception in second data transfer

2. Indivisible delayed branch instruction and delay slot instruction

As a delayed branch instruction and its associated delay slot instruction are indivisible, they
are treated as a single instruction. Consequently, the priority order for exceptions that occur in
these instructions differs from the usual priority order. The priority order shown below is for
the case where the delay slot instruction has only one data transfer.

a. The delayed branch instruction is checked for priority levels 1 and 2.

b. The delay slot instruction is checked for priority levels 1 and 2.

c. A check is performed for priority level 3 in the delayed branch instruction and priority
level 3 in the delay slot instruction. (There is no priority ranking between these two.)

d. A check is performed for priority level 4 in the delayed branch instruction and priority
level 4 in the delay slot instruction. (There is no priority ranking between these two.)

If the delay slot instruction has a second data transfer, two checks are performed in step b, as in
1 above.

If the accepted exception (the highest-priority exception) is a delay slot instruction re-
execution type exception, the branch instruction PR register write operation (PC → PR
operation performed in BSR, BSRF, JSR) is inhibited.

Rev. 4.0, 03/00, page 115 of 395

5.7 Usage Notes

1. Return from exception handling

a. Check the BL bit in SR with software. If SPC and SSR have been saved to external
memory, set the BL bit in SR to 1 before restoring them.

b. Issue an RTE instruction. When RTE is executed, the SPC contents are set in PC, the SSR
contents are set in SR, and branch is made to the SPC address to return from the exception
handling routine.

2. If an exception or interrupt occurs when SR.BL = 1

a. Exception

When an exception other than a user break occurs, a manual reset is executed. The value in
EXPEVT at this time is H'0000 0020; the value of the SPC and SSR registers is undefined.

b. Interrupt

If an ordinary interrupt occurs, the interrupt request is held pending and is accepted after
the BL bit in SR has been cleared to 0 by software. If a nonmaskable interrupt (NMI)
occurs, it can be held pending or accepted according to the setting made by software. In the
sleep or standby state, however, an interrupt is accepted even if the BL bit in SR is set to 1.

3. SPC when an exception occurs

a. Re-execution type exception

The PC value for the instruction in which the exception occurred is set in SPC, and the
instruction is re-executed after returning from exception handling. If an exception occurs in
a delay slot instruction, however, the PC value for the delay slot instruction is saved in SPC
regardless of whether or not the preceding delay slot instruction condition is satisfied.

b. Completion type exception or interrupt

The PC value for the instruction following that in which the exception occurred is set in
SPC. If an exception occurs in a branch instruction with delay slot, however, the PC value
for the branch destination is saved in SPC.

4. An exception must not be generated in an RTE instruction delay slot, as the operation will be
undefined in this case.

Rev. 4.0, 03/00, page 116 of 395

5.8 Restrictions

1. Restrictions on first instruction of exception handling routine

• Do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at address VBR + H'100, VBR
+ H'400, or VBR + H'600.

• When the UBDE bit in the BRCR register is set to 1 and the user break debug support
function* is used, do not locate a BT, BF, BT/S, BF/S, BRA, or BSR instruction at the address
indicated by the DBR register.

Note: * See User Break Debug Support Function in the hardware manual.

Rev. 4.0, 03/00, page 117 of 395

Section 6 Floating-Point Unit

6.1 Overview

The floating-point unit (FPU) has the following features:

• Conforms to IEEE754 standard

• 32 single-precision floating-point registers (can also be referenced as 16 double-precision
registers)

• Two rounding modes: Round to Nearest and Round to Zero

• Two denormalization modes: Flush to Zero and Treat Denormalized Number

• Six exception sources: FPU Error, Invalid Operation, Divide By Zero, Overflow, Underflow,
and Inexact

• Comprehensive instructions: Single-precision, double-precision, graphics support, system
control

When the FD bit in SR is set to 1, the FPU cannot be used, and an attempt to execute an FPU
instruction will cause an FPU disable exception.

6.2 Data Formats

6.2.1 Floating-Point Format

A floating-point number consists of the following three fields:

• Sign (s)

• Exponent (e)

• Fraction (f)

The SH-4 can handle single-precision and double-precision floating-point numbers, using the
formats shown in figures 6.1 and 6.2.

31

s e f

30 23 22 0

Figure 6.1 Format of Single-Precision Floating-Point Number

Rev. 4.0, 03/00, page 118 of 395

63

s e f

62 52 51 0

Figure 6.2 Format of Double-Precision Floating-Point Number

The exponent is expressed in biased form, as follows:

e = E + bias

The range of unbiased exponent E is Emin – 1 to Emax + 1. The two values Emin – 1 and Emax + 1 are
distinguished as follows. Emin – 1 indicates zero (both positive and negative sign) and a
denormalized number, and Emax + 1 indicates positive or negative infinity or a non-number (NaN).
Table 6.1 shows bias, Emin, and Emax values.

Table 6.1 Floating-Point Number Formats and Parameters

Parameter Single-Precision Double-Precision

Total bit width 32 bits 64 bits

Sign bit 1 bit 1 bit

Exponent field 8 bits 11 bits

Fraction field 23 bits 52 bits

Precision 24 bits 53 bits

Bias +127 +1023

Emax +127 +1023

Emin –126 –1022

Floating-point number value v is determined as follows:

If E = Emax + 1 and f ≠ 0, v is a non-number (NaN) irrespective of sign s
If E = Emax + 1 and f = 0, v = (–1)s (infinity) [positive or negative infinity]
If Emin ≤ E ≤ Emax , v = (–1)s2E (1.f) [normalized number]
If E = Emin – 1 and f ≠ 0, v = (–1)s2Emin (0.f) [denormalized number]
If E = Emin – 1 and f = 0, v = (–1)s0 [positive or negative zero]

Table 6.2 shows the ranges of the various numbers in hexadecimal notation.

Rev. 4.0, 03/00, page 119 of 395

Table 6.2 Floating-Point Ranges

Type Single-Precision Double-Precision

Signaling non-number H'7FFFFFFF to H'7FC00000 H'7FFFFFFF FFFFFFFF to
H'7FF80000 00000000

Quiet non-number H'7FBFFFFF to H'7F800001 H'7FF7FFFF FFFFFFFF to
H'7FF00000 00000001

Positive infinity H'7F800000 H'7FF00000 00000

Positive normalized
number

H'7F7FFFFF to H'00800000 H'7FEFFFFF FFFFFFFF to
H'00100000 00000000

Positive denormalized
number

H'007FFFFF to H'00000001 H'000FFFFF FFFFFFFF to
H'00000000 00000001

Positive zero H'00000000 H'00000000 00000000

Negative zero H'80000000 H'80000000 00000000

Negative denormalized
number

H'80000001 to H'807FFFFF H'80000000 00000001 to
H'800FFFFF FFFFFFFF

Negative normalized
number

H'80800000 to H'FF7FFFFF H'80100000 00000000 to
H'FFEFFFFF FFFFFFFF

Negative infinity H'FF800000 H'FFF00000 00000000

Quiet non-number H'FF800001 to H'FFBFFFFF H'FFF00000 00000001 to
H'FFF7FFFF FFFFFFFF

Signaling non-number H'FFC00000 to H'FFFFFFFF H'FFF80000 00000000 to
H'FFFFFFFF FFFFFFFF

6.2.2 Non-Numbers (NaN)

Figure 6.3 shows the bit pattern of a non-number (NaN). A value is NaN in the following case:

• Sign bit: Don’t care

• Exponent field: All bits are 1

• Fraction field: At least one bit is 1

The NaN is a signaling NaN (sNaN) if the MSB of the fraction field is 1, and a quiet NaN (qNaN)
if the MSB is 0.

Rev. 4.0, 03/00, page 120 of 395

31

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

30 23 22 0

N = 1: sNaN
N = 0: qNaN

Figure 6.3 Single-Precision NaN Bit Pattern

An sNAN is input in an operation, except copy, FABS, and FNEG, that generates a floating-point
value.

• When the EN.V bit in the FPSCR register is 0, the operation result (output) is a qNaN.

• When the EN.V bit in the FPSCR register is 1, an invalid operation exception will be
generated. In this case, the contents of the operation destination register are unchanged.

If a qNaN is input in an operation that generates a floating-point value, and an sNaN has not been
input in that operation, the output will always be a qNaN irrespective of the setting of the EN.V bit
in the FPSCR register. An exception will not be generated in this case.

The qNAN values generated by the SH-4 as operation results are as follows:

• Single-precision qNaN: H'7FBFFFFF

• Double-precision qNaN: H'7FF7FFFF FFFFFFFF

See section 9, Instruction Descriptions, for details of floating-point operations when a non-number
(NaN) is input.

6.2.3 Denormalized Numbers

For a denormalized number floating-point value, the exponent field is expressed as 0, and the
fraction field as a non-zero value.

When the DN bit in the FPU’s status register FPSCR is 1, a denormalized number (source operand
or operation result) is always flushed to 0 in a floating-point operation that generates a value (an
operation other than copy, FNEG, or FABS).

When the DN bit in FPSCR is 0, a denormalized number (source operand or operation result) is
processed as it is. See section 9, Description of Instructions, for details of floating-point operations
when a denormalized number is input.

Rev. 4.0, 03/00, page 121 of 395

6.3 Registers

6.3.1 Floating-Point Registers

Figure 6.4 shows the floating-point register configuration. There are thirty-two 32-bit floating-
point registers, referenced by specifying FR0–FR15, DR0/2/4/6/8/10/12/14, FV0/4/8/12, XF0–
XF15, XD0/2/4/6/8/10/12/14, or XMTRX.

1. Floating-point registers, FPRi_BANKj (32 registers)

FPR0_BANK0–FPR15_BANK0

FPR0_BANK1–FPR15_BANK1

2. Single-precision floating-point registers, FRi (16 registers)

When FPSCR.FR = 0, FR0–FR15 indicate FPR0_BANK0–FPR15_BANK0;

when FPSCR.FR = 1, FR0–FR15 indicate FPR0_BANK1–FPR15_BANK1.

3. Double-precision floating-point registers, DRi (8 registers): A DR register comprises two FR
registers

DR0 = {FR0, FR1}, DR2 = {FR2, FR3}, DR4 = {FR4, FR5}, DR6 = {FR6, FR7},
DR8 = {FR8, FR9}, DR10 = {FR10, FR11}, DR12 = {FR12, FR13}, DR14 = {FR14, FR15}

4. Single-precision floating-point vector registers, FVi (4 registers): An FV register comprises
four FR registers

FV0 = {FR0, FR1, FR2, FR3}, FV4 = {FR4, FR5, FR6, FR7},
FV8 = {FR8, FR9, FR10, FR11}, FV12 = {FR12, FR13, FR14, FR15}

5. Single-precision floating-point extended registers, XFi (16 registers)

When FPSCR.FR = 0, XF0–XF15 indicate FPR0_BANK1–FPR15_BANK1;

when FPSCR.FR = 1, XF0–XF15 indicate FPR0_BANK0–FPR15_BANK0.

6. Double-precision floating-point extended registers, XDi (8 registers): An XD register
comprises two XF registers

XD0 = {XF0, XF1}, XD2 = {XF2, XF3}, XD4 = {XF4, XF5}, XD6 = {XF6, XF7},
XD8 = {XF8, XF9}, XD10 = {XF10, XF11}, XD12 = {XF12, XF13}, XD14 = {XF14, XF15}

7. Single-precision floating-point extended register matrix, XMTRX: XMTRX comprises all 16
XF registers

XMTRX = XF0 XF4 XF8 XF12

XF1 XF5 XF9 XF13

XF2 XF6 XF10 XF14

XF3 XF7 XF11 XF15

Rev. 4.0, 03/00, page 122 of 395

FPR0_BANK0
FPR1_BANK0
FPR2_BANK0
FPR3_BANK0
FPR4_BANK0
FPR5_BANK0
FPR6_BANK0
FPR7_BANK0
FPR8_BANK0
FPR9_BANK0

FPR10_BANK0
FPR11_BANK0
FPR12_BANK0
FPR13_BANK0
FPR14_BANK0
FPR15_BANK0

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0 XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPR0_BANK1
FPR1_BANK1
FPR2_BANK1
FPR3_BANK1
FPR4_BANK1
FPR5_BANK1
FPR6_BANK1
FPR7_BANK1
FPR8_BANK1
FPR9_BANK1

FPR10_BANK1
FPR11_BANK1
FPR12_BANK1
FPR13_BANK1
FPR14_BANK1
FPR15_BANK1

XF0
XF1
XF2
XF3
XF4
XF5
XF6
XF7
XF8
XF9
XF10
XF11
XF12
XF13
XF14
XF15

FR0
FR1
FR2
FR3
FR4
FR5
FR6
FR7
FR8
FR9
FR10
FR11
FR12
FR13
FR14
FR15

DR0

DR2

DR4

DR6

DR8

DR10

DR12

DR14

FV0

FV4

FV8

FV12

XD0XMTRX

XD2

XD4

XD6

XD8

XD10

XD12

XD14

FPSCR.FR = 0 FPSCR.FR = 1

Figure 6.4 Floating-Point Registers

Rev. 4.0, 03/00, page 123 of 395

6.3.2 Floating-Point Status/Control Register (FPSCR)

Floating-point status/control register, FPSCR (32 bits, initial value = H'0004 0001)

31 22 21 20 19 18 17 12 11 7 6 2 1 0

— FR SZ PR DN Cause Enable Flag RM

Note: —: Reserved. These bits are always read as 0, and should only be written with 0.

• FR: Floating-point register bank

FR = 0: FPR0_BANK0–FPR15_BANK0 are assigned to FR0–FR15; FPR0_BANK1–
FPR15_BANK1 are assigned to XF0–XF15.

FR = 1: FPR0_BANK0–FPR15_BANK0 are assigned to XF0–XF15; FPR0_BANK1–
FPR15_BANK1 are assigned to FR0–FR15.

• SZ: Transfer size mode

SZ = 0: The data size of the FMOV instruction is 32 bits.

SZ = 1: The data size of the FMOV instruction is a 32-bit register pair (64 bits).

• PR: Precision mode

PR = 0: Floating-point instructions are executed as single-precision operations.

PR = 1: Floating-point instructions are executed as double-precision operations (graphics
support instructions are undefined).

Do not set SZ and PR to 1 simultaneously; this setting is reserved.

[SZ, PR = 11]: Reserved (FPU operation instruction is undefined.)

• DN: Denormalization mode

DN = 0: A denormalized number is treated as such.

DN = 1: A denormalized number is treated as zero.

• Cause: FPU exception cause field

• Enable: FPU exception enable field

• Flag: FPU exception flag field

FPU
Error (E)

Invalid
Operation (V)

Division
by Zero (Z)

Overflow
(O)

Underflow
(U)

Inexact
(I)

Cause FPU exception
cause field

Bit 17 Bit 16 Bit 15 Bit 14 Bit 13 Bit 12

Enable FPU exception
enable field

None Bit 11 Bit 10 Bit 9 Bit 8 Bit 7

Flag FPU exception
flag field

None Bit 6 Bit 5 Bit 4 Bit 3 Bit 2

Rev. 4.0, 03/00, page 124 of 395

When an FPU operation instruction is executed, the FPU exception cause field is cleared to
zero first. When the next FPU exception is occured, the corresponding bits in the FPU
exception cause field and FPU exception flag field are set to 1. The FPU exception flag field
holds the status of the exception generated after the field was last cleared.

• RM: Rounding mode

RM = 00: Round to Nearest

RM = 01: Round to Zero

RM = 10: Reserved

RM = 11: Reserved

• Bits 22 to 31: Reserved

These bits are always read as 0, and should only be written with 0.

Notes: The following functions have been added to the FPU of the SH-4 (not provided in the FPU
of the SH7718):

1. The FR, SZ, and PR bits have been added.

2. Exception O (overflow), U (underflow), and I (inexact) bits have been added to the
cause, enable, and flag fields.

3. An exception E (FPU error) bit has been added to the cause field.

6.3.3 Floating-Point Communication Register (FPUL)

Information is transferred between the FPU and CPU via the FPUL register. The 32-bit FPUL
register is a system register, and is accessed from the CPU side by means of LDS and STS
instructions. For example, to convert the integer stored in general register R1 to a single-precision
floating-point number, the processing flow is as follows:

R1 → (LDS instruction) → FPUL → (single-precision FLOAT instruction) → FR1

6.4 Rounding

In a floating-point instruction, rounding is performed when generating the final operation result
from the intermediate result. Therefore, the result of combination instructions such as FMAC,
FTRV, and FIPR will differ from the result when using a basic instruction such as FADD, FSUB,
or FMUL. Rounding is performed once in FMAC, but twice in FADD, FSUB, and FMUL.

There are two rounding methods, the method to be used being determined by the RM field in
FPSCR.

• RM = 00: Round to Nearest

• RM = 01: Round to Zero

Rev. 4.0, 03/00, page 125 of 395

Round to Nearest: The value is rounded to the nearest expressible value. If there are two nearest
expressible values, the one with an LSB of 0 is selected.

If the unrounded value is 2Emax (2 – 2–P) or more, the result will be infinity with the same sign as the
unrounded value. The values of Emax and P, respectively, are 127 and 24 for single-precision, and
1023 and 53 for double-precision.

Round to Zero: The digits below the round bit of the unrounded value are discarded.

If the unrounded value is larger than the maximum expressible absolute value, the value will be
the maximum expressible absolute value.

6.5 Floating-Point Exceptions

FPU-related exceptions are as follows:

• General illegal instruction/slot illegal instruction exception

The exception occurs if an FPU instruction is executed when SR.FD = 1.

• FPU exceptions

The exception sources are as follows:

 FPU error (E): When FPSCR.DN = 0 and a denormalized number is input

 Invalid operation (V): In case of an invalid operation, such as NaN input

 Division by zero (Z): Division with a zero divisor

 Overflow (O): When the operation result overflows

 Underflow (U): When the operation result underflows

 Inexact exception (I): When overflow, underflow, or rounding occurs

The FPSCR cause field contains bits corresponding to all of above sources E, V, Z, O, U, and
I, and the FPSCR flag and enable fields contain bits corresponding to sources V, Z, O, U, and
I, but not E. Thus, FPU errors cannot be disabled.

When an exception source occurs, the corresponding bit in the cause field is set to 1, and 1 is
added to the corresponding bit in the flag field. When an exception source does not occur, the
corresponding bit in the cause field is cleared to 0, but the corresponding bit in the flag field
remains unchanged.

• FPU exception handling

FPU exception occurs in the following cases:

 FPU error (E): FPSCR.DN = 0 and a denormalized number is input

 Invalid operation (V): FPSCR.EN.V = 1 and (instruction = FTRV or invalid operation)

 Division by zero (Z): FPSCR.EN.Z = 1 and division with a zero divisor

 Overflow (O): FPSCR.EN.O = 1 and instruction with possibility of operation result
overflow

Rev. 4.0, 03/00, page 126 of 395

 Underflow (U): FPSCR.EN.U = 1 and instruction with possibility of operation result
underflow

 Inexact exception (I): FPSCR.EN.I = 1 and instruction with possibility of inexact operation
result

These possibilities are shown in the individual instruction descriptions. All exception events
that originate in the FPU are assigned as the same exception event. The meaning of an
exception is determined by software by reading system register FPSCR and interpreting the
information it contains. If no bits are set in the cause field of FPSCR when one or more of bits
O, U, I, and V (in case of FTRV only) are set in the enable field, this indicates that an actual
FPU exception is not generated. Also, the destination register is not changed by any FPU
exception handling operation.

Except for the above, the bit corresponding to source V, Z, O, U, or I is set to 1, and a default
value is generated as the operation result.

 Invalid operation (V): qNAN is generated as the result.

 Division by zero (Z): Infinity with the same sign as the unrounded value is generated.

 Overflow (O):

When rounding mode = RZ, the maximum normalized number, with the same sign as the
unrounded value, is generated.

When rounding mode = RN, infinity with the same sign as the unrounded value is
generated.

 Underflow (U):

When FPSCR.DN = 0, a denormalized number with the same sign as the unrounded value,
or zero with the same sign as the unrounded value, is generated.

When FPSCR.DN = 1, zero with the same sign as the unrounded value, is generated.

 Inexact exception (I): An inexact result is generated.

6.6 Graphics Support Functions

The supports two kinds of graphics functions: new instructions for geometric operations, and pair
single-precision transfer instructions that enable high-speed data transfer.

6.6.1 Geometric Operation Instructions

Geometric operation instructions perform approximate-value computations. To enable high-speed
computation with a minimum of hardware, the SH-4 ignores comparatively small values in the
partial computation results of four multiplications. Consequently, the error shown below is
produced in the result of the computation:

Maximum error = MAX (individual multiplication result ×
2–MIN (number of multiplier significant digits–1, number of multiplicand significant digits–1)) + MAX (result value × 2–23, 2–149)

Rev. 4.0, 03/00, page 127 of 395

The number of significant digits is 24 for a normalized number and 23 for a denormalized number
(number of leading zeros in the fractional part).

In future version of SH series, the above error is guaranteed, but the same result as SH-4 is not
guaranteed.

FIPR FVm, FVn (m, n: 0, 4, 8, 12): Examples of the use of this instruction are shown below.

• Inner product (m ≠ n):

This operation is generally used for surface/rear surface determination for polygon surfaces.

• Sum of square of elements (m = n):

This operation is generally used to find the length of a vector.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (I) bit in the cause field and flag field is always set to 1 when an FIPR
instruction is executed. Therefore, if the corresponding bit is set in the enable field, enable
exception handling will be executed.

FTRV XMTRX, FVn (n: 0, 4, 8, 12): Examples of the use of this instruction are shown below.

• Matrix (4 × 4) ⋅ vector (4):

This operation is generally used for viewpoint changes, angle changes, or movements called
vector transformations (4-dimensional). Since affine transformation processing for angle +
parallel movement basically requires a 4 × 4 matrix, the SH-4 supports 4-dimensional
operations.

• Matrix (4 × 4) × matrix (4 × 4):

This operation requires the execution of four FTRV instructions.

Since approximate-value computations are performed to enable high-speed computation, the
inexact exception (I) bit in the cause field and flag field is always set to 1 when an FTRV
instruction is executed. Therefore, if the corresponding bit is set in the enable field, FPU exception
handling will be executed. For the same reason, it is not possible to check all data types in the
registers beforehand when executing an FTRV instruction. If the V bit is set in the enable field,
FPU exception handling will be executed.

FRCHG: This instruction modifies banked registers. For example, when the FTRV instruction is
executed, matrix elements must be set in an array in the background bank. However, to create the
actual elements of a translation matrix, it is easier to use registers in the foreground bank. When
the LDC instruction is used on FPSCR, this instruction expends 4 to 5 cycles in order to maintain
the FPU state. With the FRCHG instruction, an FPSCR.FR bit modification can be performed in
one cycle.

Rev. 4.0, 03/00, page 128 of 395

6.6.2 Pair Single-Precision Data Transfer

In addition to the powerful new geometric operation instructions, the SH-4 also supports high-
speed data transfer instructions.

When FPSCR.SZ = 1, the SH-4 can perform data transfer by means of pair single-precision data
transfer instructions.

• FMOV DRm/XDm, DRn/XDRn (m, n: 0, 2, 4, 6, 8, 10, 12, 14)

• FMOV DRm/XDm, @Rn (m: 0, 2, 4, 6, 8, 10, 12, 14; n: 0 to 15)

These instructions enable two single-precision (2 × 32-bit) data items to be transferred; that is, the
transfer performance of these instructions is doubled.

• FSCHG

This instruction changes the value of the SZ bit in FPSCR, enabling fast switching between
use and non-use of pair single-precision data transfer.

Programming Note
When FPSCR.SZ = 1 and big-endian mode is used, FMOV can be used for a double-precision
floating-point load or store. In little-endian mode, a double-precision floating-point load or store
requires execution of two 32-bit data size operations with FPSCR.SZ = 0.

Rev. 4.0, 03/00, page 129 of 395

Section 7 Instruction Set

7.1 Execution Environment

PC: At the start of instruction execution, PC indicates the address of the instruction itself.

Data sizes and data types: The SH-4’s instruction set is implemented with 16-bit fixed-length
instructions. The SH-4 can use byte (8-bit), word (16-bit), longword (32-bit), and quadword (64-
bit) data sizes for memory access. Single-precision floating-point data (32 bits) can be moved to
and from memory using longword or quadword size. Double-precision floating-point data (64 bits)
can be moved to and from memory using longword size. When a double-precision floating-point
operation is specified (FPSCR.PR = 1), the result of an operation using quadword access will be
undefined. When the SH-4 moves byte-size or word-size data from memory to a register, the data
is sign-extended.

Load-Store Architecture: The SH-4 features a load-store architecture in which operations are
basically executed using registers. Except for bit-manipulation operations such as logical AND
that are executed directly in memory, operands in an operation that requires memory access are
loaded into registers and the operation is executed between the registers.

Delayed Branches: Except for the two branch instructions BF and BT, the SH-4’s branch
instructions and RTE are delayed branches. In a delayed branch, the instruction following the
branch is executed before the branch destination instruction. This execution slot following a
delayed branch is called a delay slot. For example, the BRA execution sequence is as follows:

Static Sequence Dynamic Sequence

BRA TARGET BRA TARGET

ADD R1, R0
next_2

ADD R1, R0
target_instr

ADD in delay slot is executed before
branching to TARGET

Delay Slot: An illegal instruction exception may occur when a specific instruction is executed in a
delay slot. See section 5, Exceptions. The instruction following BF/S or BT/S for which the
branch is not taken is also a delay slot instruction.

T Bit: The T bit in the status register (SR) is used to show the result of a compare operation, and
is referenced by a conditional branch instruction. An example of the use of a conditional branch
instruction is shown below.

ADD #1, R0 ; T bit is not changed by ADD operation
CMP/EQ R1, R0 ; If R0 = R1, T bit is set to 1
BT TARGET ; Branches to TARGET if T bit = 1 (R0 = R1)

Rev. 4.0, 03/00, page 130 of 395

In an RTE delay slot, status register (SR) bits are referenced as follows. In instruction access, the
MD bit is used before modification, and in data access, the MD bit is accessed after modification.
The other bits—S, T, M, Q, FD, BL, and RB—after modification are used for delay slot
instruction execution. The STC and STC.L SR instructions access all SR bits after modification.

Constant Values: An 8-bit constant value can be specified by the instruction code and an
immediate value. 16-bit and 32-bit constant values can be defined as literal constant values in
memory, and can be referenced by a PC-relative load instruction.

MOV.W @(disp, PC), Rn
MOV.L @(disp, PC), Rn

There are no PC-relative load instructions for floating-point operations. However, it is possible to
set 0.0 or 1.0 by using the FLDI0 or FLDI1 instruction on a single-precision floating-point
register.

Rev. 4.0, 03/00, page 131 of 395

7.2 Addressing Modes

Addressing modes and effective address calculation methods are shown in table 7.1. When a
location in virtual memory space is accessed (MMUCR.AT = 1), the effective address is translated
into a physical memory address. If multiple virtual memory space systems are selected
(MMUCR.SV = 0), the least significant bit of PTEH is also referenced as the access ASID. See
section 3, Memory Management Unit (MMU).

Table 7.1 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

Register
direct

Rn Effective address is register Rn.
(Operand is register Rn contents.)

—

Register
indirect

@Rn Effective address is register Rn contents.

Rn Rn

Rn → EA
(EA: effective
address)

Register
indirect
with post-
increment

@Rn+ Effective address is register Rn contents.
A constant is added to Rn after instruction
execution: 1 for a byte operand, 2 for a word
operand, 4 for a longword operand, 8 for a
quadword operand.

Rn Rn

1/2/4/8

+Rn + 1/2/4/8

Rn → EA
After
instruction
execution

Byte:
Rn + 1 → Rn

Word:
Rn + 2 → Rn

Longword:
Rn + 4 → Rn

Quadword:
Rn + 8 → Rn

Register
indirect
with pre-
decrement

@–Rn Effective address is register Rn contents,
decremented by a constant beforehand:
1 for a byte operand, 2 for a word operand,
4 for a longword operand, 8 for a quadword
operand.

Rn

1/2/4/8

Rn – 1/2/4/8–Rn – 1/2/4/8

Byte:
Rn – 1 → Rn

Word:
Rn – 2 → Rn

Longword:
Rn – 4 → Rn

Quadword:
Rn – 8 → Rn

Rn → EA
(Instruction
executed
with Rn after
calculation)

Rev. 4.0, 03/00, page 132 of 395

Table 7.1 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

Register
indirect with
displacement

@(disp:4, Rn) Effective address is register Rn contents with
4-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2 (word),
or 4 (longword), according to the operand size.

Rn

Rn + disp × 1/2/4+

×

1/2/4

disp
(zero-extended)

Byte: Rn +
disp → EA

Word: Rn +
disp × 2 → EA

Longword:
Rn + disp × 4
→ EA

Indexed
register
indirect

@(R0, Rn) Effective address is sum of register Rn and R0
contents.

Rn

R0

Rn + R0+

Rn + R0 → EA

GBR indirect
with
displacement

@(disp:8,
GBR)

Effective address is register GBR contents with
8-bit displacement disp added. After disp is
zero-extended, it is multiplied by 1 (byte), 2 (word),
or 4 (longword), according to the operand size.

GBR

1/2/4

GBR
+ disp × 1/2/4

+

×

disp
(zero-extended)

Byte: GBR +
disp → EA

Word: GBR +
disp × 2 → EA

Longword:
GBR + disp ×
4 → EA

Indexed
GBR indirect

@(R0, GBR) Effective address is sum of register GBR and R0
contents.

GBR

R0

GBR + R0+

GBR + R0 →
EA

Rev. 4.0, 03/00, page 133 of 395

Table 7.1 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

PC-relative
with
displacement

@(disp:8, PC) Effective address is PC+4 with 8-bit displacement
disp added. After disp is zero-extended, it is
multiplied by 2 (word), or 4 (longword), according
to the operand size. With a longword operand,
the lower 2 bits of PC are masked.

PC

H'FFFFFFFC

PC + 4 + disp
× 2

or PC &
 H'FFFFFFFC
+ 4 + disp × 4

+
4

2/4

×

+

& *

disp
(zero-extended)

* With longword operand

Word: PC + 4
+ disp × 2 →
EA

Longword:
PC &
H'FFFFFFFC
+ 4 + disp × 4
→ EA

PC-relative disp:8 Effective address is PC+4 with 8-bit displacement
disp added after being sign-extended and
multiplied by 2.

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC + 4 + disp
× 2 → Branch-
Target

Rev. 4.0, 03/00, page 134 of 395

Table 7.1 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Address Calculation Method

Calculation
Formula

PC-relative disp:12 Effective address is PC+4 with 12-bit displacement
disp added after being sign-extended and
multiplied by 2.

2

+

×

disp
(sign-extended)

4

+

PC

PC + 4 + disp × 2

PC + 4 + disp
× 2 → Branch-
Target

Rn Effective address is sum of PC+4 and Rn.

PC

4

Rn

+

+ PC + 4 + Rn

PC + 4 + Rn
→ Branch-
Target

Immediate #imm:8 8-bit immediate data imm of TST, AND, OR, or
XOR instruction is zero-extended.

—

#imm:8 8-bit immediate data imm of MOV, ADD, or
CMP/EQ instruction is sign-extended.

—

#imm:8 8-bit immediate data imm of TRAPA instruction is
zero-extended and multiplied by 4.

—

Note: For the addressing modes below that use a displacement (disp), the assembler descriptions
in this manual show the value before scaling (×1, ×2, or ×4) is performed according to the
operand size. This is done to clarify the operation of the chip. Refer to the relevant
assembler notation rules for the actual assembler descriptions.
@ (disp:4, Rn) ; Register indirect with displacement

@ (disp:8, GBR) ; GBR indirect with displacement
@ (disp:8, PC) ; PC-relative with displacement
disp:8, disp:12 ; PC-relative

Rev. 4.0, 03/00, page 135 of 395

7.3 Instruction Set

Table 7.2 shows the notation used in the following SH instruction list.

Table 7.2 Notation Used in Instruction List

Item Format Description

Instruction
mnemonic

OP.Sz SRC, DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Source and/or destination operand

Summary of
operation

→, ← Transfer direction
(xx) Memory operand
M/Q/T SR flag bits
& Logical AND of individual bits
| Logical OR of individual bits
∧ Logical exclusive-OR of individual bits
~ Logical NOT of individual bits
<<n, >>n n-bit shift

Instruction code MSB ↔ LSB mmmm: Register number (Rm, FRm)
nnnn: Register number (Rn, FRn)
0000: R0, FR0
0001: R1, FR1
 :
1111: R15, FR15
mmm: Register number (DRm, XDm, Rm_BANK)
nnn: Register number (DRm, XDm, Rn_BANK)
000: DR0, XD0, R0_BANK
001: DR2, XD2, R1_BANK
 :
111: DR14, XD14, R7_BANK
mm: Register number (FVm)
nn: Register number (FVn)
00: FV0
01: FV4
10: FV8
11: FV12
iiii: Immediate data
dddd: Displacement

Privileged mode “Privileged” means the instruction can only be executed
in privileged mode.

T bit Value of T bit after
instruction execution

—: No change

Note: Scaling (×1, ×2, ×4, or ×8) is executed according to the size of the instruction operand(s).

Rev. 4.0, 03/00, page 136 of 395

Table 7.3 Fixed-Point Transfer Instructions

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii — —

MOV.W @(disp,PC),Rn (disp × 2 + PC + 4) → sign
extension → Rn

1001nnnndddddddd — —

MOV.L @(disp,PC),Rn (disp × 4 + PC & H'FFFFFFFC
+ 4) → Rn

1101nnnndddddddd — —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 — —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 — —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — —

MOV.B @Rm+,Rn (Rm)→ sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 — —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 — —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 — —

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension
→ R0

10000100mmmmdddd — —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd — —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1100 — —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1101 — —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — —

Rev. 4.0, 03/00, page 137 of 395

Table 7.3 Fixed-Point Transfer Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) →
sign extension → R0

11000100dddddddd — —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd — —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — —

MOVA @(disp,PC),R0 disp × 4 + PC & H'FFFFFFFC
+ 4 → R0

11000111dddddddd — —

MOVT Rn T → Rn 0000nnnn00101001 — —

SWAP.B Rm,Rn Rm → swap lower 2 bytes
→ Rn

0110nnnnmmmm1000 — —

SWAP.W Rm,Rn Rm → swap upper/lower
words → Rn

0110nnnnmmmm1001 — —

XTRCT Rm,Rn Rm:Rn middle 32 bits → Rn 0010nnnnmmmm1101 — —

Rev. 4.0, 03/00, page 138 of 395

Table 7.4 Arithmetic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — —

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 — Carry

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 — Overflow

CMP/EQ #imm,R0 When R0 = imm, 1 → T
Otherwise, 0 → T

10001000iiiiiiii — Comparison
result

CMP/EQ Rm,Rn When Rn = Rm, 1 → T
Otherwise, 0 → T

0011nnnnmmmm0000 — Comparison
result

CMP/HS Rm,Rn When Rn ≥ Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0010 — Comparison
result

CMP/GE Rm,Rn When Rn ≥ Rm (signed), 1 → T
Otherwise, 0 → T

0011nnnnmmmm0011 — Comparison
result

CMP/HI Rm,Rn When Rn > Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0110 — Comparison
result

CMP/GT Rm,Rn When Rn > Rm (signed), 1 → T
Otherwise, 0 → T

0011nnnnmmmm0111 — Comparison
result

CMP/PZ Rn When Rn ≥ 0, 1 → T
Otherwise, 0 → T

0100nnnn00010001 — Comparison
result

CMP/PL Rn When Rn > 0, 1 → T
Otherwise, 0 → T

0100nnnn00010101 — Comparison
result

CMP/STR Rm,Rn When any bytes are equal,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1100 — Comparison
result

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 — Calculation
result

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M, M^Q → T

0010nnnnmmmm0111 — Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 — 0

DMULS.L Rm,Rn Signed, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm1101 — —

DMULU.L Rm,Rn Unsigned, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm0101 — —

DT Rn Rn – 1 → Rn; when Rn = 0,
1 → T
When Rn ≠ 0, 0 → T

0100nnnn00010000 — Comparison
result

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 — —

Rev. 4.0, 03/00, page 139 of 395

Table 7.4 Arithmetic Operation Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 — —

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 — —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 — —

MAC.L @Rm+,@Rn+ Signed, (Rn) × (Rm) + MAC →
MAC
Rn + 4 → Rn, Rm + 4 → Rm
32 × 32 + 64 → 64 bits

0000nnnnmmmm1111 — —

MAC.W @Rm+,@Rn+ Signed, (Rn) × (Rm) + MAC →
MAC
Rn + 2 → Rn, Rm + 2 → Rm
16 × 16 + 64 → 64 bits

0100nnnnmmmm1111 — —

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

0000nnnnmmmm0111 — —

MULS.W Rm,Rn Signed, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1111 — —

MULU.W Rm,Rn Unsigned, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1110 — —

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 — —

NEGC Rm,Rn 0 – Rm – T → Rn, borrow → T 0110nnnnmmmm1010 — Borrow

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 — —

SUBC Rm,Rn Rn – Rm – T → Rn, borrow → T 0011nnnnmmmm1010 — Borrow

SUBV Rm,Rn Rn – Rm → Rn, underflow → T 0011nnnnmmmm1011 — Underflow

Rev. 4.0, 03/00, page 140 of 395

Table 7.5 Logic Operation Instructions

Instruction Operation Instruction Code Privileged T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm → (R0 +
GBR)

11001101iiiiiiii — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 +
GBR)

11001111iiiiiiii —

TAS.B @Rn When (Rn) = 0, 1 → T
Otherwise, 0 → T
In both cases, 1 → MSB of (Rn)

0100nnnn00011011 — Test result

TST Rm,Rn Rn & Rm; when result = 0,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1000 — Test result

TST #imm,R0 R0 & imm; when result = 0,
1 → T
Otherwise, 0 → T

11001000iiiiiiii — Test result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; when result
= 0, 1 → T
Otherwise, 0 → T

11001100iiiiiiii — Test result

XOR Rm,Rn Rn ∧ Rm → Rn 0010nnnnmmmm1010 — —

XOR #imm,R0 R0 ∧ imm → R0 11001010iiiiiiii — —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ∧ imm → (R0 +
GBR)

11001110iiiiiiii — —

Rev. 4.0, 03/00, page 141 of 395

Table 7.6 Shift Instructions

Instruction Operation Instruction Code Privileged T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB

SHAD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[MSB → Rn]

0100nnnnmmmm1100 — —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB

SHLD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[0 → Rn]

0100nnnnmmmm1101 — —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — —

Rev. 4.0, 03/00, page 142 of 395

Table 7.7 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BF label When T = 0, disp × 2 + PC +
4 → PC
When T = 1, nop

10001011dddddddd — —

BF/S label Delayed branch; when T = 0,
disp × 2 + PC + 4 → PC
When T = 1, nop

10001111dddddddd — —

BT label When T = 1, disp × 2 + PC +
4 → PC
When T = 0, nop

10001001dddddddd — —

BT/S label Delayed branch; when T = 1,
disp × 2 + PC + 4 → PC
When T = 0, nop

10001101dddddddd — —

BRA label Delayed branch, disp × 2 +
PC + 4 → PC

1010dddddddddddd — —

BRAF Rn Rn + PC + 4 → PC 0000nnnn00100011 — —

BSR label Delayed branch, PC + 4 → PR,
disp × 2 + PC + 4 → PC

1011dddddddddddd — —

BSRF Rn Delayed branch, PC + 4 → PR,
Rn + PC + 4 → PC

0000nnnn00000011 — —

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 → PR,
Rn → PC

0100nnnn00001011 — —

RTS Delayed branch, PR → PC 0000000000001011 — —

Rev. 4.0, 03/00, page 143 of 395

Table 7.8 System Control Instructions

Instruction Operation Instruction Code Privileged T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 — —

CLRS 0 → S 0000000001001000 — —

CLRT 0 → T 0000000000001000 — 0

LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged —

LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged —

LDC Rm,Rn_BANK Rm → Rn_BANK (n = 0 to 7) 0100mmmm1nnn1110 Privileged —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged —

LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged —

LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK,
Rm + 4 → Rm

0100mmmm1nnn0111 Privileged —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — —

LDS Rm,PR Rm → PR 0100mmmm00101010 — —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 — —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — —

LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged —

MOVCA.L R0,@Rn R0 → (Rn) (without fetching
cache block)

0000nnnn11000011 — —

NOP No operation 0000000000001001 — —

OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —

OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 — —

OCBWB @Rn Writes back operand cache
block

0000nnnn10110011 — —

PREF @Rn (Rn) → operand cache 0000nnnn10000011 — —

RTE Delayed branch, SSR/SPC →
SR/PC

0000000000101011 Privileged —

Rev. 4.0, 03/00, page 144 of 395

Table 7.8 System Control Instructions (cont)

Instruction Operation Instruction Code Privileged T Bit

SETS 1 → S 0000000001011000 — —

SETT 1 → T 0000000000011000 — 1

SLEEP Sleep or standby 0000000000011011 Privileged —

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — —

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged —

STC DBR,Rn DBR → Rn 0000nnnn11111010 Privileged —

STC Rm_BANK,Rn Rm_BANK → Rn (m = 0 to 7) 0000nnnn1mmm0010 Privileged —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 — —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged —

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged —

STC.L SGR,@-Rn Rn – 4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged —

STC.L DBR,@-Rn Rn – 4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@-Rn Rn – 4 → Rn,
Rm_BANK → (Rn) (m = 0 to 7)

0100nnnn1mmm0011 Privileged —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — —

STS PR,Rn PR → Rn 0000nnnn00101010 — —

STS.L MACH,@-Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 — —

STS.L MACL,@-Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 — —

STS.L PR,@-Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 — —

TRAPA #imm PC + 2 → SPC, SR → SSR,
#imm << 2 → TRA,
H'160 → EXPEVT,
VBR + H'0100 → PC

11000011iiiiiiii — —

Rev. 4.0, 03/00, page 145 of 395

Table 7.9 Floating-Point Single-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 — —

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 → Rm 1111nnn0mmmm1001 — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — —

FMOV DRm,@-Rn Rn-8 → Rn, DRm → (Rn) 1111nnnnmmm01011 — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — —

FABS FRn FRn & H'7FFF FFFF → FRn 1111nnnn01011101 — —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — —

FCMP/EQ FRm,FRn When FRn = FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0100 — Comparison
result

FCMP/GT FRm,FRn When FRn > FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0101 — Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 — —

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 — —

FMAC FR0,FRm,FRn FR0*FRm + FRn → FRn 1111nnnnmmmm1110 — —

FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 — —

FNEG FRn FRn ∧ H'80000000 → FRn 1111nnnn01001101 — —

FSQRT FRn √FRn → FRn 1111nnnn01101101 — —

FSUB FRm,FRn FRn – FRm → FRn 1111nnnnmmmm0001 — —

FTRC FRm,FPUL (long) FRm → FPUL 1111mmmm00111101 — —

Rev. 4.0, 03/00, page 146 of 395

Table 7.10 Floating-Point Double-Precision Instructions

Instruction Operation Instruction Code Privileged T Bit

FABS DRn DRn & H'7FFF FFFF FFFF
FFFF → DRn

1111nnn001011101 — —

FADD DRm,DRn DRn + DRm → DRn 1111nnn0mmm00000 — —

FCMP/EQ DRm,DRn When DRn = DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00100 — Comparison
result

FCMP/GT DRm,DRn When DRn > DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00101 — Comparison
result

FDIV DRm,DRn DRn /DRm → DRn 1111nnn0mmm00011 — —

FCNVDS DRm,FPUL double_to_ float[DRm] → FPUL 1111mmm010111101 — —

FCNVSD FPUL,DRn float_to_ double [FPUL] → DRn 1111nnn010101101 — —

FLOAT FPUL,DRn (float)FPUL → DRn 1111nnn000101101 — —

FMUL DRm,DRn DRn *DRm → DRn 1111nnn0mmm00010 — —

FNEG DRn DRn ^ H'8000 0000 0000 0000
→ DRn

1111nnn001001101 — —

FSQRT DRn √DRn → DRn 1111nnn001101101 — —

FSUB DRm,DRn DRn – DRm → DRn 1111nnn0mmm00001 — —

FTRC DRm,FPUL (long) DRm → FPUL 1111mmm000111101 — —

Table 7.11 Floating-Point Control Instructions

Instruction Operation Instruction Code Privileged T Bit

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 — —

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — —

STS.L FPSCR,@-Rn Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 — —

STS.L FPUL,@-Rn Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 — —

Rev. 4.0, 03/00, page 147 of 395

Table 7.12 Floating-Point Graphics Acceleration Instructions

Instruction Operation Instruction Code Privileged T Bit

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn1mmmm0110 — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — —

FMOV XDm,@-Rn Rn – 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — —

FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 — —

FIPR FVm,FVn inner_product [FVm, FVn] →
FR[n+3]

1111nnmm11101101 — —

FTRV XMTRX,FVn transform_vector [XMTRX, FVn]
→ FVn

1111nn0111111101 — —

FRCHG ~FPSCR.FR → FPSCR.FR 1111101111111101 — —

FSCHG ~FPSCR.SZ → FPSCR.SZ 1111001111111101 — —

Rev. 4.0, 03/00, page 149 of 395

Section 8 Pipelining

The SH-4 is a 2-ILP (instruction-level-parallelism) superscalar pipelining microprocessor.
Instruction execution is pipelined, and two instructions can be executed in parallel. The execution
cycles depend on the implementation of a processor. Definitions in this section may not be
applicable to SH-4 Series models other than the SH-4.

8.1 Pipelines

Figure 8.1 shows the basic pipelines. Normally, a pipeline consists of five or six stages: instruction
fetch (I), decode and register read (D), execution (EX/SX/F0/F1/F2/F3), data access (NA/MA),
and write-back (S/FS). An instruction is executed as a combination of basic pipelines. Figure 8.2
shows the instruction execution patterns.

Rev. 4.0, 03/00, page 150 of 395

1. General Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read
• Destination address calculation

for PC-relative branch

• Non-memory
 data access

• Write-back

I D EX

• Operation

NA S

2. General Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory data
 access

• Write-back

I D EX

• Address
 calculation

MA S

3. Special Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Non-memory
 data access

• Write-back

I D SX

• Operation

NA S

4. Special Load/Store Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Memory data
 access

• Write-back

I D SX

• Address
 calculation

MA S

5. Floating-Point Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 2 • Computation 3
• Write-back

I D F1

• Computation 1

F2 FS

6. Floating-Point Extended Pipeline

• Instruction fetch • Instruction
decode

• Issue
• Register read

• Computation 1 • Computation 3
• Write-back

I D F0

• Computation 0

F1 F2 FS

• Computation 2

F3

Computation: Takes several cycles

7. FDIV/FSQRT Pipeline

Figure 8.1 Basic Pipelines

Rev. 4.0, 03/00, page 151 of 395

1. 1-step operation: 1 issue cycle
EXT[SU].[BW], MOV, MOV#, MOVA, MOVT, SWAP.[BW], XTRCT, ADD*, CMP*,
DIV*, DT, NEG*, SUB*, AND, AND#, NOT, OR, OR#, TST, TST#, XOR, XOR#,
ROT*, SHA*, SHL*, BF*, BT*, BRA, NOP, CLRS, CLRT, SETS, SETT,
LDS to FPUL, STS from FPUL/FPSCR, FLDI0, FLDI1, FMOV, FLDS, FSTS,
single-/double-precision FABS/FNEG

I D EX NA S

2. Load/store: 1 issue cycle
MOV.[BWL]. FMOV*@, LDS.L to FPUL, LDTLB, PREF, STS.L from FPUL/FPSCR

I D EX MA S

3. GBR-based load/store: 1 issue cycle
MOV.[BWL]@(d,GBR)

I D SX MA S

4. JMP, RTS, BRAF: 2 issue cycles
I D EX NA S

D EX NA S

5. TST.B: 3 issue cycles

I D SX MA S
D SX NA S

D SX NA S

6. AND.B, OR.B, XOR.B: 4 issue cycles
I D SX MA S

D SX NA S
D SX NA S

D SX MA S

7. TAS.B: 5 issue cycles

I D EX MA S
D EX MA S

D EX NA S
D EX NA S

D EX MA S

8. RTE: 5 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

9. SLEEP: 4 issue cycles

I D EX NA S
D EX NA S

D EX NA S
D EX NA S

Figure 8.2 Instruction Execution Patterns

Rev. 4.0, 03/00, page 152 of 395

10. OCBI: 1 issue cycle
I D EX MA S

MA

11. OCBP, OCBWB: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

12. MOVCA.L: 1 issue cycle
I D EX MA S

MA
MA

MA
MA

MA
MA

13. TRAPA: 7 issue cycles
I D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

D EX NA S
D EX NA S

14. LDC to DBR/Rp_BANK/SSR/SPC/VBR, BSR: 1 issue cycle

I D EX NA S
SX

SX

15. LDC to GBR: 3 issue cycles
I D EX NA S

D
D
SX

SX

16. LDC to SR: 4 issue cycles
I D EX NA S

D
D

D

SX
SX

SX

I D EX MA S

17. LDC.L to DBR/Rp_BANK/SSR/SPC/VBR: 1 issue cycle

SX
SX

18. LDC.L to GBR: 3 issue cycles

I D EX MA S
D

D
SX

SX

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 153 of 395

19. LDC.L to SR: 4 issue cycles
I D EX MA S

D
D

D

SX
SX

SX

20. STC from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles
I D SX NA S

D SX NA S

21. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX NA S

22. STC.L from DBR/GBR/Rp_BANK/SR/SSR/SPC/VBR: 2 issue cycles

I D SX NA S
D SX MA S

23. STC.L from SGR: 3 issue cycles
I D SX NA S

D SX NA S
D SX MA S

24. LDS to PR, JSR, BSRF: 2 issue cycles
I D EX NA S

D SX
SX

25. LDS.L to PR: 2 issue cycles
I D EX MA S

D SX
SX

26. STS from PR: 2 issue cycles
I D SX NA S

D SX NA S

27. STS.L from PR: 2 issue cycles

I D SX NA S
D SX MA S

28. CLRMAC, LDS to MACH/L: 1 issue cycle
I D EX NA S

F1
F1 F2 FS

29. LDS.L to MACH/L: 1 issue cycle
I D EX MA S

F1
F1 F2 FS

30. STS from MACH/L: 1 issue cycle

I D EX NA S

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 154 of 395

31. STS.L from MACH/L: 1 issue cycle
I D EX MA S

32. LDS to FPSCR: 1 issue cycle

I D EX NA S
F1

F1
F1

F1
F1

F1

33. LDS.L to FPSCR: 1 issue cycle
I D EX MA S

34. Fixed-point multiplication: 2 issue cycles
DMULS.L, DMULU.L, MUL.L, MULS.W, MULU.W

I D EX NA (CPU)
D EX NA S

f1 (FPU)
f1

f1
f1 F2 FS

35. MAC.W, MAC.L: 2 issue cycles
I D EX MA S (CPU)

D EX MA S

f1 (FPU)
f1

f1
f1 F2 FS

36. Single-precision floating-point computation: 1 issue cycle
FCMP/EQ,FCMP/GT, FADD,FLOAT,FMAC,FMUL,FSUB,FTRC,FRCHG,FSCHG

I D F1 F2 FS

37. Single-precision FDIV/SQRT: 1 issue cycle

I D F1 F2 FS
F3

F1 F2 FS

38. Double-precision floating-point computation 1: 1 issue cycle
 FCNVDS, FCNVSD, FLOAT, FTRC

I D F1 F2 FS
d F1 F2 FS

39. Double-precision floating-point computation 2: 1 issue cycle
 FADD, FMUL, FSUB

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 155 of 395

I D F1 F2 FS
D F1 F2 FS

40. Double-precision FCMP: 2 issue cycles
FCMP/EQ,FCMP/GT

I D F1 F2 FS

F3
F1 F2 FS

41. Double-precision FDIV/SQRT: 1 issue cycle
 FDIV, FSQRT

F1 F2d

F1 F2 FS
F1 F2 FS

42. FIPR: 1 issue cycle
I D F0 F1 F2 FS

43. FTRV: 1 issue cycle
F1 F2 FSD F0I

F1 F2 FSd F0
F1 F2 FSd F0

F1 F2 FSd F0

Notes: ??

: Locks D-stage

: Register read only

: Locks, but no operation is executed.

: Can overlap another f1, but not another F1.

d

D

??

f1

: Cannot overlap a stage of the same kind, except when two instructions are
executed in parallel.

Figure 8.2 Instruction Execution Patterns (cont)

Rev. 4.0, 03/00, page 156 of 395

8.2 Parallel-Executability

Instructions are categorized into six groups according to the internal function blocks used, as
shown in table 8.1. Table 8.2 shows the parallel-executability of pairs of instructions in terms of
groups. For example, ADD in the EX group and BRA in the BR group can be executed in parallel.

Table 8.1 Instruction Groups

1. MT Group

CLRT CMP/HI Rm,Rn MOV Rm,Rn

CMP/EQ #imm,R0 CMP/HS Rm,Rn NOP

CMP/EQ Rm,Rn CMP/PL Rn SETT

CMP/GE Rm,Rn CMP/PZ Rn TST #imm,R0

CMP/GT Rm,Rn CMP/STR Rm,Rn TST Rm,Rn

2. EX Group

ADD #imm,Rn MOVT Rn SHLL2 Rn

ADD Rm,Rn NEG Rm,Rn SHLL8 Rn

ADDC Rm,Rn NEGC Rm,Rn SHLR Rn

ADDV Rm,Rn NOT Rm,Rn SHLR16 Rn

AND #imm,R0 OR #imm,R0 SHLR2 Rn

AND Rm,Rn OR Rm,Rn SHLR8 Rn

DIV0S Rm,Rn ROTCL Rn SUB Rm,Rn

DIV0U ROTCR Rn SUBC Rm,Rn

DIV1 Rm,Rn ROTL Rn SUBV Rm,Rn

DT Rn ROTR Rn SWAP.B Rm,Rn

EXTS.B Rm,Rn SHAD Rm,Rn SWAP.W Rm,Rn

EXTS.W Rm,Rn SHAL Rn XOR #imm,R0

EXTU.B Rm,Rn SHAR Rn XOR Rm,Rn

EXTU.W Rm,Rn SHLD Rm,Rn XTRCT Rm,Rn

MOV #imm,Rn SHLL Rn

MOVA @(disp,PC),R0 SHLL16 Rn

3. BR Group

BF disp BRA disp BT disp

BF/S disp BSR disp BT/S disp

Rev. 4.0, 03/00, page 157 of 395

Table 8.1 Instruction Groups (cont)

4. LS Group

FABS DRn FMOV.S @Rm+,FRn MOV.L R0,@(disp,GBR)

FABS FRn FMOV.S FRm,@(R0,Rn) MOV.L Rm,@(disp,Rn)

FLDI0 FRn FMOV.S FRm,@-Rn MOV.L Rm,@(R0,Rn)

FLDI1 FRn FMOV.S FRm,@Rn MOV.L Rm,@-Rn

FLDS FRm,FPUL FNEG DRn MOV.L Rm,@Rn

FMOV @(R0,Rm),DRn FNEG FRn MOV.W @(disp,GBR),R0

FMOV @(R0,Rm),XDn FSTS FPUL,FRn MOV.W @(disp,PC),Rn

FMOV @Rm,DRn LDS Rm,FPUL MOV.W @(disp,Rm),R0

FMOV @Rm,XDn MOV.B @(disp,GBR),R0 MOV.W @(R0,Rm),Rn

FMOV @Rm+,DRn MOV.B @(disp,Rm),R0 MOV.W @Rm,Rn

FMOV @Rm+,XDn MOV.B @(R0,Rm),Rn MOV.W @Rm+,Rn

FMOV DRm,@(R0,Rn) MOV.B @Rm,Rn MOV.W R0,@(disp,GBR)

FMOV DRm,@-Rn MOV.B @Rm+,Rn MOV.W R0,@(disp,Rn)

FMOV DRm,@Rn MOV.B R0,@(disp,GBR) MOV.W Rm,@(R0,Rn)

FMOV DRm,DRn MOV.B R0,@(disp,Rn) MOV.W Rm,@-Rn

FMOV DRm,XDn MOV.B Rm,@(R0,Rn) MOV.W Rm,@Rn

FMOV FRm,FRn MOV.B Rm,@-Rn MOVCA.L R0,@Rn

FMOV XDm,@(R0,Rn) MOV.B Rm,@Rn OCBI @Rn

FMOV XDm,@-Rn MOV.L @(disp,GBR),R0 OCBP @Rn

FMOV XDm,@Rn MOV.L @(disp,PC),Rn OCBWB @Rn

FMOV XDm,DRn MOV.L @(disp,Rm),Rn PREF @Rn

FMOV XDm,XDn MOV.L @(R0,Rm),Rn STS FPUL,Rn

FMOV.S @(R0,Rm),FRn MOV.L @Rm,Rn

FMOV.S @Rm,FRn MOV.L @Rm+,Rn

Rev. 4.0, 03/00, page 158 of 395

Table 8.1 Instruction Groups (cont)

5. FE Group

FADD DRm,DRn FIPR FVm,FVn FSQRT DRn

FADD FRm,FRn FLOAT FPUL,DRn FSQRT FRn

FCMP/EQ FRm,FRn FLOAT FPUL,FRn FSUB DRm,DRn

FCMP/GT FRm,FRn FMAC FR0,FRm,FRn FSUB FRm,FRn

FCNVDS DRm,FPUL FMUL DRm,DRn FTRC DRm,FPUL

FCNVSD FPUL,DRn FMUL FRm,FRn FTRC FRm,FPUL

FDIV DRm,DRn FRCHG FTRV XMTRX,FVn

FDIV FRm,FRn FSCHG

Rev. 4.0, 03/00, page 159 of 395

Table 8.1 Instruction Groups (cont)

6. CO Group

AND.B #imm,@(R0,GBR) LDS Rm,FPSCR STC SR,Rn

BRAF Rn LDS Rm,MACH STC SSR,Rn

BSRF Rn LDS Rm,MACL STC VBR,Rn

CLRMAC LDS Rm,PR STC.L DBR,@-Rn

CLRS LDS.L @Rm+,FPSCR STC.L GBR,@-Rn

DMULS.L Rm,Rn LDS.L @Rm+,FPUL STC.L Rp_BANK,@-Rn

DMULU.L Rm,Rn LDS.L @Rm+,MACH STC.L SGR,@-Rn

FCMP/EQ DRm,DRn LDS.L @Rm+,MACL STC.L SPC,@-Rn

FCMP/GT DRm,DRn LDS.L @Rm+,PR STC.L SR,@-Rn

JMP @Rn LDTLB STC.L SSR,@-Rn

JSR @Rn MAC.L @Rm+,@Rn+ STC.L VBR,@-Rn

LDC Rm,DBR MAC.W @Rm+,@Rn+ STS FPSCR,Rn

LDC Rm,GBR MUL.L Rm,Rn STS MACH,Rn

LDC Rm,Rp_BANK MULS.W Rm,Rn STS MACL,Rn

LDC Rm,SPC MULU.W Rm,Rn STS PR,Rn

LDC Rm,SR OR.B #imm,@(R0,GBR) STS.L FPSCR,@-Rn

LDC Rm,SSR RTE STS.L FPUL,@-Rn

LDC Rm,VBR RTS STS.L MACH,@-Rn

LDC.L @Rm+,DBR SETS STS.L MACL,@-Rn

LDC.L @Rm+,GBR SLEEP STS.L PR,@-Rn

LDC.L @Rm+,Rp_BANK STC DBR,Rn TAS.B @Rn

LDC.L @Rm+,SPC STC GBR,Rn TRAPA #imm

LDC.L @Rm+,SR STC Rp_BANK,Rn TST.B #imm,@(R0,GBR)

LDC.L @Rm+,SSR STC SGR,Rn XOR.B #imm,@(R0,GBR)

LDC.L @Rm+,VBR STC SPC,Rn

Rev. 4.0, 03/00, page 160 of 395

Table 8.2 Parallel-Executability

2nd Instruction

MT EX BR LS FE CO

MT O O O O O X

EX O X O O O X

BR O O X O O X

LS O O O X O X

FE O O O O X X

1st
Instruction

CO X X X X X X

O: Can be executed in parallel
X: Cannot be executed in parallel

8.3 Execution Cycles and Pipeline Stalling

There are three basic clocks in this processor: the I-clock, B-clock, and P-clock. Each hardware
unit operates on one of these clocks, as follows:

• I-clock: CPU, FPU, MMU, caches

• B-clock: External bus controller

• P-clock: Peripheral units

The frequency ratios of the three clocks are determined with the frequency control register
(FRQCR). In this section, machine cycles are based on the I-clock unless otherwise specified. For
details of FRQCR, see Clock Oscillation Circuits in the hardware manual.

Instruction execution cycles are summarized in table 8.3. Penalty cycles due to a pipeline stall or
freeze are not considered in this table.

• Issue rate: Interval between the issue of an instruction and that of the next instruction

• Latency: Interval between the issue of an instruction and the generation of its result
(completion)

• Instruction execution pattern (see figure 8.2)

• Locked pipeline stages

• Interval between the issue of an instruction and the start of locking

• Lock time: Period of locking in machine cycle units

Rev. 4.0, 03/00, page 161 of 395

The instruction execution sequence is expressed as a combination of the execution patterns shown
in figure 8.2. One instruction is separated from the next by the number of machine cycles for its
issue rate. Normally, execution, data access, and write-back stages cannot be overlapped onto the
same stages of another instruction; the only exception is when two instructions are executed in
parallel under parallel-executability conditions. Refer to (a) through (d) in figure 8.3 for some
simple examples.

Latency is the interval between issue and completion of an instruction, and is also the interval
between the execution of two instructions with an interdependent relationship. When there is
interdependency between two instructions fetched simultaneously, the latter of the two is stalled
for the following number of cycles:

• (Latency) cycles when there is flow dependency (read-after-write)

• (Latency – 1) or (latency – 2) cycles when there is output dependency (write-after-write)

 Single/double-precision FDIV, FSQRT is the preceding instruction (latency – 1) cycles

 The other FE group is the preceding instruction (latency – 2) cycles

• 5 or 2 cycles when there is anti-flow dependency (write-after-read), as in the following cases:

 FTRV is the preceding instruction (5 cycle)

 A double-precision FADD, FSUB, or FMUL is the preceding instruction (2 cycles)

In the case of flow dependency, latency may be exceptionally increased or decreased, depending
on the combination of sequential instructions (figure 8.3 (e)).

• When a floating-point (FPU) computation is followed by an FPU register store, the latency of
the floating-point computation may be decreased by 1 cycle.

• If there is a load of the shift amount immediately before an SHAD/SHLD instruction, the
latency of the load is increased by 1 cycle.

• If an instruction with a latency of less than 2 cycles, including write-back to an FPU register, is
followed by a double-precision FPU instruction, FIPR, or FTRV, the latency of the first
instruction is increased to 2 cycles.

The number of cycles in a pipeline stall due to flow dependency will vary depending on the
combination of interdependent instructions or the fetch timing (see figure 8.3. (e)).

Output dependency occurs when the destination operands are the same in a preceding FE group
instruction and a following LS group instruction.

For the stall cycles of an instruction with output dependency, the longest latency to the last write-
back among all the destination operands must be applied instead of “latency” (see figure 8.3 (f)).
A stall due to output dependency with respect to FPSCR, which reflects the result of a floating-
point operation, never occurs. For example, when FADD follows FDIV with no dependency
between FPU registers, FADD is not stalled even if both instructions update the cause field of
FPSCR.

Rev. 4.0, 03/00, page 162 of 395

Anti-flow dependency can occur only between a preceding double-precision FADD, FMUL,
FSUB, or FTRV and a following FMOV, FLDI0, FLDI1, FABS, FNEG, or FSTS. See figure 8.3
(g).

If an executing instruction locks any resource—i.e. a function block that performs a basic
operation—a following instruction that attempts to use the locked resource must be stalled (figure
8.3 (h)). This kind of stall can be compensated by inserting one or more instructions independent
of the locked resource to separate the interfering instructions. For example, when a load
instruction and an ADD instruction that references the loaded value are consecutive, the 2-cycle
stall of the ADD is eliminated by inserting three instructions without dependency. Software
performance can be improved by such instruction scheduling.

Other penalties arise in the event of exceptions or external data accesses, as follows.

• Instruction TLB miss

• Instruction access to external memory (instruction cache miss, etc.)

• Data access to external memory (operand cache miss, etc.)

• Data access to a memory-mapped control register

During the penalty cycles of an instruction TLB miss or external instruction access, no instruction
is issued, but execution of instructions that have already been issued continues. The penalty for a
data access is a pipeline freeze: that is, the execution of uncompleted instructions is interrupted
until the arrival of the requested data. The number of penalty cycles for instruction and data
accesses is largely dependent on the user’s memory subsystems.

Rev. 4.0, 03/00, page 163 of 395

(a) Serial execution: non-parallel-executable instructions

ADD R2,R1
MOV.L @R4,R5

MOV R1,R2
next

SHAD R0,R1
ADD R2,R3
next

I D EX NA S
I D EX NA S

I D ...

1 stall cycle

(b) Parallel execution: parallel-executable and no dependency

I D EX NA S
I D EX MA S

(c) Issue rate: multi-step instruction

AND.B#1,@(R0,GBR) I D SX MA S

D SX MA S
D SX NA S

D SX NA S

I
I

(d) Branch

1 issue cycle

1 issue cycle

4 issue cycles

...

I D EX NA S
I D EX NA S

2-cycle latency for I-stage of branch destination

1 stall cycle
I D

I D EX NA S
I D EX NA S

I D EX NA S

BT/S L_far
ADD R0,R1
SUB R2,R3

BT/S L_far
ADD R0,R1

L_far

I D EX NA S
I D

I D

— — —
...

No stall

BT L_skip
ADD #1,R0
L_skip:

...

i D E A S

4 stall cycles

EX-group SHAD and EX-group ADD
cannot be executed in parallel. Therefore,
SHAD is issued first, and the following
ADD is recombined with the next
instruction.

EX-group ADD and LS-group MOV.L can
be executed in parallel. Overlapping of
stages in the 2nd instruction is possible.

AND.B and MOV are fetched
simultaneously, but MOV is stalled due to
resource locking. After the lock is released,
MOV is refetched together with the next
instruction.

No stall occurs if the branch is not taken.

If the branch is taken, the I-stage of the
branch destination is stalled for the period
of latency. This stall can be covered with a
delay slot instruction which is not parallel-
executable with the branch instruction.

Even if the BT/BF branch is taken, the I-
stage of the branch destination is not
stalled if the displacement is zero.

Figure 8.3 Examples of Pipelined Execution

Rev. 4.0, 03/00, page 164 of 395

(e) Flow dependency

I D EX NA S
I D EX NA S

MOV R0,R1
ADD R2,R1

ADD R2,R1
MOV.L @R1,R1
next

I D EX NA S
I D EX MA Si

I ...

...

...

Zero-cycle latency

1-cycle latency

1 stall cycle

MOV.L @R1,R1
ADD R0,R1
next

I D EX MA S
I D
I

EX NA SD

EX NA S

2-cycle latency

1 stall cycle

MOV.L @R1,R1
SHAD R1,R2
next

FADD FR1,FR2
STS FPUL,R1
STS FPSCR,R2

I D EX NA S
I

4-cycle latency for FPSCR

2 stall cycles

I D F1 F2 FS

I D EX MA S
I D
I

2-cycle latency

2 stall cycles

EX NA Sd

1-cycle increase

I
I

I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

F1 F2 FS
d F1 F2 FS

EX NA SD
EX NA SD

FADD DR0,DR2

7-cycle latency for lower FR
8-cycle latency for upper FR

FMOV FR3,FR5
FMOV FR2,FR4

FLOAT FPUL,DR0
FMOV.S FR0,@-R15

FR3 write
FR2 write

I D F1 F2 FS
d F1 F2 FS

I D EX MA S

3-cycle latency for upper/lower FR

FR1 write
FR0 write

FLDI1 FR3
FIPR FV0,FV4

FMOV @R1,XD14
FTRV XMTRX,FV0

I D EX NA S
I D d F0 F1 F2 FS

Zero-cycle latency
3-cycle increase

3 stall cycles

I D EX MA S
I D d F0 F1 F2 FS

d F0 F1 FSF2
d F0 F2F1 FS

d F1F0 F2 FS

2-cycle latency
1-cycle increase

3 stall cycles

The following instruction, ADD, is not
stalled when executed after an instruction
with zero-cycle latency, even if there is
dependency.

ADD and MOV.L are not executed in
parallel, since MOV.L references the result
of ADD as its destination address.

Because MOV.L and ADD are not fetched
simultaneously in this example, ADD is
stalled for only 1 cycle even though the
latency of MOV.L is 2 cycles.

Due to the flow dependency between the
load and the SHAD/SHLD shift amount,
the latency of the load is increased to 3
cycles.

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 4.0, 03/00, page 165 of 395

I D EX NA S

I D EX NA S
D F1 F2 FS

D F1 F2 FS

(e) Flow dependency (cont)

I

I

LDS R0,FPUL
FLOAT FPUL,FR0
LDS R1,FPUL
FLOAT FPUL,R1

Effectively 1-cycle latency for consecutive LDS/FLOAT instructions

I D EX NA S
D F1 F2 FSI

D F1 F2 FSI
I D EX NA S

Effectively 1-cycle latency for consecutive
FTRC/STS instructions

FTRC FR0,FPUL
STS FPUL,R0
FTRC FR1,FPUL
STS FPUL,R1

(f) Output dependency

D F1 F2 FSI

I D
F1 F2 FS

F1 F2 FS

11-cycle latency

10 stall cycles = latency (11) - 1
The registers are written-back
in program order.

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX NA SI D

7-cycle latency for lower FR
8-cycle latency for upper FR

6 stall cycles = longest latency (8) - 2

FR2 write
FR3 write

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1

F0
F0

F0
F0 F2 FS

(g) Anti-flow dependency

EX MA SI D
5 stall cycles

D F1 F2 FSI
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

EX NA SI D
2 stall cycles

d F1 F2 FS
F1 F2 FS

FSQRT FR4

FMOV FR0,FR4

FADD DR0,DR2

FMOV FR0,FR3

FTRV XMTRX,FV0

FMOV @R1,XD0

FADD DR0,DR2

FMOV FR4,FR1

F3

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 4.0, 03/00, page 166 of 395

(h) Resource conflict

F1 stage locked for 1 cycle

Latency1 cycle/issue

1 stall cycle (F1 stage resource conflict)

FDIV FR6,FR7

FMAC FR0,FR8,FR9
FMAC FR0,FR10,FR11

FMAC FR0,FR12,FR13

FIPR FV8,FV0
FADD FR15,FR4

I D F1F0 F2 FS
I D F1 F2 FS

1 stall cycle

LDS.L @R15+,PR I D EX MA FS
D SX

SX
SX NA S

SX NA SD
I

3 stall cycles

STC GBR,R2

FADD DR0,DR2 I D F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 F2 FS
EX MA S
f1

EX MA SD
f1

f1 F2 FS
f1 F2 FS

I D
5 stall cycles

MAC.W @R1+,@R2+

I D EX MA S
f1

f1
f1 F2 FS

f1 F2 FS
I

f1
D EX MA S
f1

D EX MA S

f1 F2 FS
f1 F2 FS

F1 F2 FS
d F1 F2 FS

d F1 F2 FS
d F1 F2 FS

d F1 F2 FS

F1 ...

I D
3 stall cycles

1 stall
cycle

2 stall cycles

MAC.W @R1+,@R2+

MAC.W @R1+,@R2+

FADD DR4,DR6

f1 stage can overlap preceding f1,
but F1 cannot overlap f1.

D EX MA S

D

I D F1 F2 FS

I D F1 F2 FS

F1 F2 FS

F1 F2I D FS

F3

I D F1 F2 FS

#1 #2 #3 .. #10 #11#8 #9 #12

... :

Figure 8.3 Examples of Pipelined Execution (cont)

Rev. 4.0, 03/00, page 167 of 395

Table 8.3 Execution Cycles

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

1 EXTS.B Rm,Rn EX 1 1 #1 — — —

2 EXTS.W Rm,Rn EX 1 1 #1 — — —

3 EXTU.B Rm,Rn EX 1 1 #1 — — —

4 EXTU.W Rm,Rn EX 1 1 #1 — — —

5 MOV Rm,Rn MT 1 0 #1 — — —

6 MOV #imm,Rn EX 1 1 #1 — — —

7 MOVA @(disp,PC),R0 EX 1 1 #1 — — —

8 MOV.W @(disp,PC),Rn LS 1 2 #2 — — —

9 MOV.L @(disp,PC),Rn LS 1 2 #2 — — —

10 MOV.B @Rm,Rn LS 1 2 #2 — — —

11 MOV.W @Rm,Rn LS 1 2 #2 — — —

12 MOV.L @Rm,Rn LS 1 2 #2 — — —

13 MOV.B @Rm+,Rn LS 1 1/2 #2 — — —

14 MOV.W @Rm+,Rn LS 1 1/2 #2 — — —

15 MOV.L @Rm+,Rn LS 1 1/2 #2 — — —

16 MOV.B @(disp,Rm),R0 LS 1 2 #2 — — —

17 MOV.W @(disp,Rm),R0 LS 1 2 #2 — — —

18 MOV.L @(disp,Rm),Rn LS 1 2 #2 — — —

19 MOV.B @(R0,Rm),Rn LS 1 2 #2 — — —

20 MOV.W @(R0,Rm),Rn LS 1 2 #2 — — —

21 MOV.L @(R0,Rm),Rn LS 1 2 #2 — — —

22 MOV.B @(disp,GBR),R0 LS 1 2 #3 — — —

23 MOV.W @(disp,GBR),R0 LS 1 2 #3 — — —

24 MOV.L @(disp,GBR),R0 LS 1 2 #3 — — —

25 MOV.B Rm,@Rn LS 1 1 #2 — — —

26 MOV.W Rm,@Rn LS 1 1 #2 — — —

27 MOV.L Rm,@Rn LS 1 1 #2 — — —

28 MOV.B Rm,@-Rn LS 1 1/1 #2 — — —

29 MOV.W Rm,@-Rn LS 1 1/1 #2 — — —

30 MOV.L Rm,@-Rn LS 1 1/1 #2 — — —

Data
transfer
instructions

31 MOV.B R0,@(disp,Rn) LS 1 1 #2 — — —

Rev. 4.0, 03/00, page 168 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

32 MOV.W R0,@(disp,Rn) LS 1 1 #2 — — —

33 MOV.L Rm,@(disp,Rn) LS 1 1 #2 — — —

34 MOV.B Rm,@(R0,Rn) LS 1 1 #2 — — —

35 MOV.W Rm,@(R0,Rn) LS 1 1 #2 — — —

36 MOV.L Rm,@(R0,Rn) LS 1 1 #2 — — —

37 MOV.B R0,@(disp,GBR) LS 1 1 #3 — — —

38 MOV.W R0,@(disp,GBR) LS 1 1 #3 — — —

39 MOV.L R0,@(disp,GBR) LS 1 1 #3 — — —

40 MOVCA.L R0,@Rn LS 1 3–7 #12 MA 4 3–7

41 MOVT Rn EX 1 1 #1 — — —

42 OCBI @Rn LS 1 1–2 #10 MA 4 1–2

43 OCBP @Rn LS 1 1–5 #11 MA 4 1–5

44 OCBWB @Rn LS 1 1–5 #11 MA 4 1–5

45 PREF @Rn LS 1 1 #2 — — —

46 SWAP.B Rm,Rn EX 1 1 #1 — — —

47 SWAP.W Rm,Rn EX 1 1 #1 — — —

Data
transfer
instructions

48 XTRCT Rm,Rn EX 1 1 #1 — — —

49 ADD Rm,Rn EX 1 1 #1 — — —

50 ADD #imm,Rn EX 1 1 #1 — — —

51 ADDC Rm,Rn EX 1 1 #1 — — —

52 ADDV Rm,Rn EX 1 1 #1 — — —

53 CMP/EQ #imm,R0 MT 1 1 #1 — — —

54 CMP/EQ Rm,Rn MT 1 1 #1 — — —

55 CMP/GE Rm,Rn MT 1 1 #1 — — —

56 CMP/GT Rm,Rn MT 1 1 #1 — — —

57 CMP/HI Rm,Rn MT 1 1 #1 — — —

58 CMP/HS Rm,Rn MT 1 1 #1 — — —

59 CMP/PL Rn MT 1 1 #1 — — —

60 CMP/PZ Rn MT 1 1 #1 — — —

61 CMP/STR Rm,Rn MT 1 1 #1 — — —

Fixed-point
arithmetic
instructions

62 DIV0S Rm,Rn EX 1 1 #1 — — —

Rev. 4.0, 03/00, page 169 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

63 DIV0U EX 1 1 #1 — — —

64 DIV1 Rm,Rn EX 1 1 #1 — — —

65 DMULS.L Rm,Rn CO 2 4/4 #34 F1 4 2

66 DMULU.L Rm,Rn CO 2 4/4 #34 F1 4 2

67 DT Rn EX 1 1 #1 — — —

68 MAC.L @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

69 MAC.W @Rm+,@Rn+ CO 2 2/2/4/4 #35 F1 4 2

70 MUL.L Rm,Rn CO 2 4/4 #34 F1 4 2

71 MULS.W Rm,Rn CO 2 4/4 #34 F1 4 2

72 MULU.W Rm,Rn CO 2 4/4 #34 F1 4 2

73 NEG Rm,Rn EX 1 1 #1 — — —

74 NEGC Rm,Rn EX 1 1 #1 — — —

75 SUB Rm,Rn EX 1 1 #1 — — —

76 SUBC Rm,Rn EX 1 1 #1 — — —

Fixed-point
arithmetic
instructions

77 SUBV Rm,Rn EX 1 1 #1 — — —

78 AND Rm,Rn EX 1 1 #1 — — —

79 AND #imm,R0 EX 1 1 #1 — — —

80 AND.B #imm,@(R0,GBR) CO 4 4 #6 — — —

81 NOT Rm,Rn EX 1 1 #1 — — —

82 OR Rm,Rn EX 1 1 #1 — — —

83 OR #imm,R0 EX 1 1 #1 — — —

84 OR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

85 TAS.B @Rn CO 5 5 #7 — — —

86 TST Rm,Rn MT 1 1 #1 — — —

87 TST #imm,R0 MT 1 1 #1 — — —

88 TST.B #imm,@(R0,GBR) CO 3 3 #5 — — —

89 XOR Rm,Rn EX 1 1 #1 — — —

90 XOR #imm,R0 EX 1 1 #1 — — —

Logical
instructions

91 XOR.B #imm,@(R0,GBR) CO 4 4 #6 — — —

Rev. 4.0, 03/00, page 170 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

92 ROTL Rn EX 1 1 #1 — — —

93 ROTR Rn EX 1 1 #1 — — —

94 ROTCL Rn EX 1 1 #1 — — —

95 ROTCR Rn EX 1 1 #1 — — —

96 SHAD Rm,Rn EX 1 1 #1 — — —

97 SHAL Rn EX 1 1 #1 — — —

98 SHAR Rn EX 1 1 #1 — — —

99 SHLD Rm,Rn EX 1 1 #1 — — —

100 SHLL Rn EX 1 1 #1 — — —

101 SHLL2 Rn EX 1 1 #1 — — —

102 SHLL8 Rn EX 1 1 #1 — — —

103 SHLL16 Rn EX 1 1 #1 — — —

104 SHLR Rn EX 1 1 #1 — — —

105 SHLR2 Rn EX 1 1 #1 — — —

106 SHLR8 Rn EX 1 1 #1 — — —

Shift
instructions

107 SHLR16 Rn EX 1 1 #1 — — —

108 BF disp BR 1 2 (or 1) #1 — — —

109 BF/S disp BR 1 2 (or 1) #1 — — —

110 BT disp BR 1 2 (or 1) #1 — — —

111 BT/S disp BR 1 2 (or 1) #1 — — —

112 BRA disp BR 1 2 #1 — — —

113 BRAF Rn CO 2 3 #4 — — —

114 BSR disp BR 1 2 #14 SX 3 2

115 BSRF Rn CO 2 3 #24 SX 3 2

116 JMP @Rn CO 2 3 #4 — — —

117 JSR @Rn CO 2 3 #24 SX 3 2

Branch
instructions

118 RTS CO 2 3 #4 — — —

Rev. 4.0, 03/00, page 171 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

119 NOP MT 1 0 #1 — — —

120 CLRMAC CO 1 3 #28 F1 3 2

121 CLRS CO 1 1 #1 — — —

122 CLRT MT 1 1 #1 — — —

123 SETS CO 1 1 #1 — — —

124 SETT MT 1 1 #1 — — —

125 TRAPA #imm CO 7 7 #13 — — —

126 RTE CO 5 5 #8 — — —

127 SLEEP CO 4 4 #9 — — —

128 LDTLB CO 1 1 #2 — — —

129 LDC Rm,DBR CO 1 3 #14 SX 3 2

130 LDC Rm,GBR CO 3 3 #15 SX 3 2

131 LDC Rm,Rp_BANK CO 1 3 #14 SX 3 2

132 LDC Rm,SR CO 4 4 #16 SX 3 2

133 LDC Rm,SSR CO 1 3 #14 SX 3 2

134 LDC Rm,SPC CO 1 3 #14 SX 3 2

135 LDC Rm,VBR CO 1 3 #14 SX 3 2

136 LDC.L @Rm+,DBR CO 1 1/3 #17 SX 3 2

137 LDC.L @Rm+,GBR CO 3 3/3 #18 SX 3 2

138 LDC.L @Rm+,Rp_BANK CO 1 1/3 #17 SX 3 2

139 LDC.L @Rm+,SR CO 4 4/4 #19 SX 3 2

140 LDC.L @Rm+,SSR CO 1 1/3 #17 SX 3 2

141 LDC.L @Rm+,SPC CO 1 1/3 #17 SX 3 2

142 LDC.L @Rm+,VBR CO 1 1/3 #17 SX 3 2

143 LDS Rm,MACH CO 1 3 #28 F1 3 2

144 LDS Rm,MACL CO 1 3 #28 F1 3 2

145 LDS Rm,PR CO 2 3 #24 SX 3 2

146 LDS.L @Rm+,MACH CO 1 1/3 #29 F1 3 2

147 LDS.L @Rm+,MACL CO 1 1/3 #29 F1 3 2

148 LDS.L @Rm+,PR CO 2 2/3 #25 SX 3 2

149 STC DBR,Rn CO 2 2 #20 — — —

System
control
instructions

150 STC SGR,Rn CO 3 3 #21 — — —

Rev. 4.0, 03/00, page 172 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

151 STC GBR,Rn CO 2 2 #20 — — —

152 STC Rp_BANK,Rn CO 2 2 #20 — — —

153 STC SR,Rn CO 2 2 #20 — — —

154 STC SSR,Rn CO 2 2 #20 — — —

155 STC SPC,Rn CO 2 2 #20 — — —

156 STC VBR,Rn CO 2 2 #20 — — —

157 STC.L DBR,@-Rn CO 2 2/2 #22 — — —

158 STC.L SGR,@-Rn CO 3 3/3 #23 — — —

159 STC.L GBR,@-Rn CO 2 2/2 #22 — — —

160 STC.L Rp_BANK,@-Rn CO 2 2/2 #22 — — —

161 STC.L SR,@-Rn CO 2 2/2 #22 — — —

162 STC.L SSR,@-Rn CO 2 2/2 #22 — — —

163 STC.L SPC,@-Rn CO 2 2/2 #22 — — —

164 STC.L VBR,@-Rn CO 2 2/2 #22 — — —

165 STS MACH,Rn CO 1 3 #30 — — —

166 STS MACL,Rn CO 1 3 #30 — — —

167 STS PR,Rn CO 2 2 #26 — — —

168 STS.L MACH,@-Rn CO 1 1/1 #31 — — —

169 STS.L MACL,@-Rn CO 1 1/1 #31 — — —

System
control
instructions

170 STS.L PR,@-Rn CO 2 2/2 #27 — — —

171 FLDI0 FRn LS 1 0 #1 — — —

172 FLDI1 FRn LS 1 0 #1 — — —

173 FMOV FRm,FRn LS 1 0 #1 — — —

174 FMOV.S @Rm,FRn LS 1 2 #2 — — —

175 FMOV.S @Rm+,FRn LS 1 1/2 #2 — — —

176 FMOV.S @(R0,Rm),FRn LS 1 2 #2 — — —

177 FMOV.S FRm,@Rn LS 1 1 #2 — — —

178 FMOV.S FRm,@-Rn LS 1 1/1 #2 — — —

179 FMOV.S FRm,@(R0,Rn) LS 1 1 #2 — — —

180 FLDS FRm,FPUL LS 1 0 #1 — — —

Single-
precision
floating-point
instructions

181 FSTS FPUL,FRn LS 1 0 #1 — — —

Rev. 4.0, 03/00, page 173 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

182 FABS FRn LS 1 0 #1 — — —

183 FADD FRm,FRn FE 1 3/4 #36 — — —

184 FCMP/EQ FRm,FRn FE 1 2/4 #36 — — —

185 FCMP/GT FRm,FRn FE 1 2/4 #36 — — —

186 FDIV FRm,FRn FE 1 12/13 #37 F3 2 10

F1 11 1

187 FLOAT FPUL,FRn FE 1 3/4 #36 — — —

188 FMAC FR0,FRm,FRn FE 1 3/4 #36 — — —

189 FMUL FRm,FRn FE 1 3/4 #36 — — —

190 FNEG FRn LS 1 0 #1 — — —

191 FSQRT FRn FE 1 11/12 #37 F3 2 9

F1 10 1

192 FSUB FRm,FRn FE 1 3/4 #36 — — —

193 FTRC FRm,FPUL FE 1 3/4 #36 — — —

194 FMOV DRm,DRn LS 1 0 #1 — — —

195 FMOV @Rm,DRn LS 1 2 #2 — — —

196 FMOV @Rm+,DRn LS 1 1/2 #2 — — —

197 FMOV @(R0,Rm),DRn LS 1 2 #2 — — —

198 FMOV DRm,@Rn LS 1 1 #2 — — —

199 FMOV DRm,@-Rn LS 1 1/1 #2 — — —

Single-
precision
floating-point
instructions

200 FMOV DRm,@(R0,Rn) LS 1 1 #2 — — —

201 FABS DRn LS 1 0 #1 — — —

202 FADD DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

203 FCMP/EQ DRm,DRn CO 2 3/5 #40 F1 2 2

204 FCMP/GT DRm,DRn CO 2 3/5 #40 F1 2 2

205 FCNVDS DRm,FPUL FE 1 4/5 #38 F1 2 2

206 FCNVSD FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

F3 2 23

F1 22 3

207 FDIV DRm,DRn FE 1 (24, 25)/
26

#41

F1 2 2

208 FLOAT FPUL,DRn FE 1 (3, 4)/5 #38 F1 2 2

Double-
precision
floating-point
instructions

209 FMUL DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

Rev. 4.0, 03/00, page 174 of 395

Table 8.3 Execution Cycles (cont)

Lock
Functional
Category No. Instruction

Instruc-
tion
Group

Issue
Rate Latency

Execu-
tion
Pattern Stage Start Cycles

210 FNEG DRn LS 1 0 #1 — — —

F3 2 22

F1 21 3

211 FSQRT DRn FE 1 (23, 24)/
25

#41

F1 2 2

212 FSUB DRm,DRn FE 1 (7, 8)/9 #39 F1 2 6

Double-
precision
floating-point
instructions

213 FTRC DRm,FPUL FE 1 4/5 #38 F1 2 2

214 LDS Rm,FPUL LS 1 1 #1 — — —

215 LDS Rm,FPSCR CO 1 4 #32 F1 3 3

216 LDS.L @Rm+,FPUL CO 1 1/2 #2 — — —

217 LDS.L @Rm+,FPSCR CO 1 1/4 #33 F1 3 3

218 STS FPUL,Rn LS 1 3 #1 — — —

219 STS FPSCR,Rn CO 1 3 #1 — — —

220 STS.L FPUL,@-Rn CO 1 1/1 #2 — — —

FPU system
control
instructions

221 STS.L FPSCR,@-Rn CO 1 1/1 #2 — — —

222 FMOV DRm,XDn LS 1 0 #1 — — —

223 FMOV XDm,DRn LS 1 0 #1 — — —

224 FMOV XDm,XDn LS 1 0 #1 — — —

225 FMOV @Rm,XDn LS 1 2 #2 — — —

226 FMOV @Rm+,XDn LS 1 1/2 #2 — — —

227 FMOV @(R0,Rm),XDn LS 1 2 #2 — — —

228 FMOV XDm,@Rn LS 1 1 #2 — — —

229 FMOV XDm,@-Rm LS 1 1/1 #2 — — —

230 FMOV XDm,@(R0,Rn) LS 1 1 #2 — — —

231 FIPR FVm,FVn FE 1 4/5 #42 F1 3 1

232 FRCHG FE 1 1/4 #36 — — —

233 FSCHG FE 1 1/4 #36 — — —

F0 2 4

Graphics
acceleration
instructions

234 FTRV XMTRX,FVn FE 1 (5, 5, 6,
7)/8

#43

F1 3 4

Notes: 1. See table 8.1 for the instruction groups.
2. Latency “L1/L2...”: Latency corresponding to a write to each register, including

MACH/MACL/FPSCR.
Example: MOV.B @Rm+, Rn “1/2”: The latency for Rm is 1 cycle, and the latency for

Rn is 2 cycles.
3. Branch latency: Interval until the branch destination instruction is fetched

Rev. 4.0, 03/00, page 175 of 395

4. Conditional branch latency “2 (or 1)”: The latency is 2 for a nonzero displacement, and
1 for a zero displacement.

5. Double-precision floating-point instruction latency “(L1, L2)/L3”: L1 is the latency for FR
[n+1], L2 that for FR [n], and L3 that for FPSCR.

6. FTRV latency “(L1, L2, L3, L4)/L5”: L1 is the latency for FR [n], L2 that for FR [n+1], L3
that for FR [n+2], L4 that for FR [n+3], and L5 that for FPSCR.

7. Latency “L1/L2/L3/L4” of MAC.L and MAC.W instructions: L1 is the latency for Rm, L2
that for Rn, L3 that for MACH, and L4 that for MACL.

8. Latency “L1/L2” of MUL.L, MULS.W, MULU.W, DMULS.L, and DMULU.L instructions:
L1 is the latency for MACH, and L2 that for MACL.

9. Execution pattern: The instruction execution pattern number (see figure 8.2)

10. Lock/stage: Stage locked by the instruction
11. Lock/start: Locking start cycle; 1 is the first D-stage of the instruction.
12. Lock/cycles: Number of cycles locked

Exceptions:
1. When a floating-point computation instruction is followed by an FMOV store, an STS

FPUL, Rn instruction, or an STS.L FPUL, @-Rn instruction, the latency of the floating-
point computation is decreased by 1 cycle.

2. When the preceding instruction loads the shift amount of the following SHAD/SHLD, the
latency of the load is increased by 1 cycle.

3. When an LS group instruction with a latency of less than 3 cycles is followed by a
double-precision floating-point instruction, FIPR, or FTRV, the latency of the first
instruction is increased to 3 cycles.
Example: In the case of FMOV FR4,FR0 and FIPR FV0,FV4, FIPR is stalled for 2

cycles.
4. When MAC*/MUL*/DMUL* is followed by an STS.L MAC*, @-Rn instruction, the latency

of MAC*/MUL*/DMUL* is 5 cycles.
5. In the case of consecutive executions of MAC*/MUL*/DMUL*, the latency is decreased

to 2 cycles.
6. When an LDS to MAC* is followed by an STS.L MAC*, @-Rn instruction, the latency of

the LDS to MAC* is 4 cycles.
7. When an LDS to MAC* is followed by MAC*/MUL*/DMUL*, the latency of the LDS to

MAC* is 1 cycle.
8. When an FSCHG or FRCHG instruction is followed by an LS group instruction that

reads or writes to a floating-point register, the aforementioned LS group instruction[s]
cannot be executed in parallel.

9. When a single-precision FTRC instruction is followed by an STS FPUL, Rn instruction,
the latency of the single-precision FTRC instruction is 1 cycle.

Rev. 4.0, 03/00, page 177 of 395

Section 9 Instruction Descriptions

Instructions are listed in this section in alphabetical order. The following format is used for the
instruction descriptions.

Instruction Name Full Name Instruction Type
Function (Indication of delayed branch

instruction or interrupt-disabling
instruction)

Format Summary of Operation Instruction Code
Execution
States T Bit

The assembler input
format is shown. imm
and disp are numeric
values, expressions,
or symbols.

Summarizes the operation
of the instruction.

Shown in MSB ←→
LSB order.

The no-
wait value
is shown.

Shows the
T bit value
after
execution
of the
instruction.

Description

Describes the operation of the instruction.

Notes

Identifies points to be noted when using the instruction.

Operation

Shows the operation in C. This is given as reference material to help understand the operation of
the instruction. Use of the following resources is assumed.

char 8-bit integer

short 16-bit integer

int 32-bit integer

long 64-bit integer

float single-precision floating point number(32 bits)

double double-precision floating point number(64 bits)

These are data types.

Rev. 4.0, 03/00, page 178 of 395

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

These reflect the respective sizes of address Addr. A word read from other than a 2n address, or a
longword read from other than a 4n address, will be detected as an address error.

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);

These write data Data to address Addr, using the respective sizes. A word write to other than a 2n address,
or a longword write to other than a 4n address, will be detected as an address error.

Delay_Slot(unsigned long Addr);

Shifts to execution of the slot instruction at address (Addr).

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

Registers

struct SR0 {

 unsigned long dummy0:22;

 unsigned long M0:1;

 unsigned long Q0:1;

 unsigned long I0:4;

 unsigned long dummy1:2;

 unsigned long S0:1;

 unsigned long T0:1;

};

SR structure definitions

define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

Definitions of bits in SR

Rev. 4.0, 03/00, page 179 of 395

Error(char *er);

Error display function

These are floating-point number definition statements.

#define PZERO 0

#define NZERO 1

#define DENORM 2

#define NORM 3

#define PINF 4

#define NINF 5

#define qNaN 6

#define sNaN 7

#define EQ 0

#define GT 1

#define LT 2

#define UO 3

#define INVALID 4

#define FADD 0

#define FSUB 1

#define CAUSE 0x0003f000 /* FPSCR(bit17-12) */

#define SET_E 0x00020000 /* FPSCR(bit17) */

#define SET_V 0x00010040 /* FPSCR(bit16,6) */

#define SET_Z 0x00008020 /* FPSCR(bit15,5) */

#define SET_O 0x00004010 /* FPSCR(bit14,4) */

#define SET_U 0x00002008 /* FPSCR(bit13,3) */

#define SET_I 0x00001004 /* FPSCR(bit12,2) */

#define ENABLE_VOUI 0x00000b80 /* FPSCR(bit11,9-7) */

#define ENABLE_V 0x00000800 /* FPSCR(bit11) */

#define ENABLE_Z 0x00000400 /* FPSCR(bit10) */

#define ENABLE_OUI 0x00000380 /* FPSCR(bit9-7) */

#define ENABLE_I 0x00000080 /* FPSCR(bit7) */

#define FLAG 0x0000007C /* FPSCR(bit6-2) */

#define FPSCR_FR FPSCR>>21&1

#define FPSCR_PR FPSCR>>19&1

#define FPSCR_DN FPSCR>>18&1

Rev. 4.0, 03/00, page 180 of 395

#define FPSCR_I FPSCR>>12&1

#define FPSCR_RM FPSCR&1

#define FR_HEX frf.l[FPSCR_FR]

#define FR frf.f[FPSCR_FR]

#define DR frf.d[FPSCR_FR]

#define XF_HEX frf.l[~FPSCR_FR]

#define XF frf.f[~FPSCR_FR]

#define XD frf.d[~FPSCR_FR]

union {

 int l[2][16];

 float f[2][16];

 double d[2][8];

} frf;

int FPSCR;

int sign_of(int n)

{

 return(FR_HEX[n]>>31);

}

int data_type_of(int n) {

int abs;

 abs = FR_HEX[n] & 0x7fffffff;

 if(FPSCR_PR == 0) { /* Single-precision */

 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}

 else {zero(n, 1); return(NZERO);}

 }

 else return(DENORM);

 }

 else if(abs < 0x7f800000) return(NORM);

 else if(abs == 0x7f800000) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7fc00000) return(qNaN);

Rev. 4.0, 03/00, page 181 of 395

 else return(sNaN);

 }

 else { /* Double-precision */

 if(abs < 0x00100000){

 if((FPSCR_DN == 1) ||

((abs == 0x00000000) && (FR_HEX[n+1] == 0x00000000)){

 if(sign_of(n) == 0) {zero(n, 0); return(PZERO);}

 else {zero(n, 1); return(NZERO);}

 }

 else return(DENORM);

 }

 else if(abs < 0x7ff00000) return(NORM);

 else if((abs == 0x7ff00000) &&

 (FR_HEX[n+1] == 0x00000000)) {

 if(sign_of(n) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7ff80000) return(qNaN);

 else return(sNaN);

 }

}

void register_copy(int m,n)

{

 FR[n] = FR[m];

 if(FPSCR_PR == 1) FR[n+1] = FR[m+1];

}

void normal_faddsub(int m,n,type)

{

union {

 float f;

 int l;

} dstf,srcf;

union {

 long d;

 int l[2];

} dstd,srcd;

union { /* “long double” format: */

Rev. 4.0, 03/00, page 182 of 395

 long double x; /* 1-bit sign */

 int l[4]; /* 15-bit exponent */

} dstx; /* 112-bit mantissa */

 if(FPSCR_PR == 0) {

 if(type == FADD) srcf.f = FR[m];

 else srcf.f = -FR[m];

 dstd.d = FR[n]; /* Conversion from single-precision to double-precision */

 dstd.d += srcf.f;

 if(((dstd.d == FR[n]) && (srcf.f != 0.0)) ||

 ((dstd.d == srcf.f) && (FR[n] != 0.0))) {

 set_I();

 if(sign_of(m)^ sign_of(n)) {

 dstd.l[1] -= 1;

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 }

 if(dstd.l[1] & 0x1fffffff) set_I();

 dstf.f += srcf.f; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstd.l[1] &= 0xe0000000; /* Round to zero */

 dstf.f = dstd.d;

 }

 check_single_exception(&FR[n],dstf.f);

 } else {

 if(type == FADD) srcd.d = DR[m>>1];

 else srcd.d = -DR[m>>1];

 dstx.x = DR[n>>1];

 /* Conversion from double-precision to extended double-precision */

 dstx.x += srcd.d;

 if(((dstx.x == DR[n>>1]) && (srcd.d != 0.0)) ||

 ((dstx.x == srcd.d) && (DR[n>>1] != 0.0))) {

 set_I();

 if(sign_of(m)^ sign_of(n)) {

 dstx.l[3] -= 1;

 if(dstx.l[3] == 0xffffffff) {dstx.l[2] -= 1;

 if(dstx.l[2] == 0xffffffff) {dstx.l[1] -= 1;

 if(dstx.l[1] == 0xffffffff) {dstx.l[0] -= 1;}}}

Rev. 4.0, 03/00, page 183 of 395

 }

 }

 if((dstx.l[2] & 0x0fffffff) || dstx.l[3]) set_I();

 dst.d += srcd.d; /* Round to nearest */

 if(FPSCR_RM == 1) {

 dstx.l[2] &= 0xf0000000; /* Round to zero */

 dstx.l[3] = 0x00000000;

 dst.d = dstx.x;

 }

 check_double_exception(&DR[n>>1] ,dst.d);

 }

}

void normal_fmul(int m,n)

{

union {

 float f;

 int l;

} tmpf;

union {

 double d;

 int l[2];

} tmpd;

union {

 long double x;

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpd.d = FR[n]; /* Single-precision to double-precision */

 tmpd.d *= FR[m]; /* Precise creation */

 tmpf.f *= FR[m]; /* Round to nearest */

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f > tmpd.d) && (FPSCR_RM == 1)) {

 tmpf.l -= 1; /* Round to zero */

 }

 check_single_exception(&FR[n],tmpf.f);

 } else {

 tmpx.x = DR[n>>1]; /* Single-precision to double-precision */

Rev. 4.0, 03/00, page 184 of 395

 tmpx.x *= DR[m>>1]; /* Precise creation */

 tmpd.d *= DR[m>>1]; /* Round to nearest */

 if(tmpd.d != tmpx.x) set_I();

 if(tmpd.d > tmpx.x) && (FPSCR_RM == 1)) {

 tmpd.l[1] -= 1; /* Round to zero */

 if(tmpd.l[1] == 0xffffffff) tmpd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], tmpd.d);

 }

}

void fipr(int m,n)

{

union {

 double d;

 int l[2];

} mlt[4];

float dstf;

 if((data_type_of(m) == sNaN) || (data_type_of(n) == sNaN) ||

 (data_type_of(m+1) == sNaN) || (data_type_of(n+1) == sNaN) ||

 (data_type_of(m+2) == sNaN) || (data_type_of(n+2) == sNaN) ||

 (data_type_of(m+3) == sNaN) || (data_type_of(n+3) == sNaN) ||

 (check_product_invalid(m,n)) ||

 (check_product_invalid(m+1,n+1)) ||

 (check_product_invalid(m+2,n+2)) ||

 (check_product_invalid(m+3,n+3))) invalid(n+3);

 else if((data_type_of(m) == qNaN)|| (data_type_of(n) == qNaN)||

 (data_type_of(m+1) == qNaN) || (data_type_of(n+1) == qNaN) ||

 (data_type_of(m+2) == qNaN) || (data_type_of(n+2) == qNaN) ||

 (data_type_of(m+3) == qNaN) || (data_type_of(n+3) == qNaN))
qnan(n+3);

 else if (check_ positive_infinity() &&

 (check_ negative_infinity()) invalid(n+3);

 else if (check_ positive_infinity()) inf(n+3,0);

 else if (check_ negative_infinity()) inf(n+3,1);

 else {

 for(i=0;i<4;i++) {

 /* If FPSCR_DN == 1, zeroize */

 if (data_type_of(m+i) == PZERO) FR[m+i] = +0.0;

Rev. 4.0, 03/00, page 185 of 395

 else if(data_type_of(m+i) == NZERO) FR[m+i] = -0.0;

 if (data_type_of(n+i) == PZERO) FR[n+i] = +0.0;

 else if(data_type_of(n+i) == NZERO) FR[n+i] = -0.0;

 mlt[i].d = FR[m+i];

 mlt[i].d *= FR[n+i];

 /* To be precise, with FIPR, the lower 18 bits are discarded; therefore, this description

 is simplified, and differs from the hardware. */

 mlt[i].l[1] &= 0xff000000;

 mlt[i].l[1] |= 0x00800000;

 }

 mlt[0].d += mlt[1].d + mlt[2].d + mlt[3].d;

 mlt[0].l[1] &= 0xff800000;

 dstf = mlt[0].d;

 set_I();

 check_single_exception(&FR[n+3],dstf);

 }

}

void check_single_exception(float *dst,result)

{

union {

 float f;

 int l;

} tmp;

float abs;

 if(result < 0.0) tmp.l = 0xff800000; /* – infinity */

 else tmp.l = 0x7f800000; /* + infinity */

 if(result == tmp.f) {

 set_O(); set_I();

 if(FPSCR_RM == 1) {

 tmp.l -= 1; /* Maximum value of normalized number */

 result = tmp.f;

 }

 }

 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l = 0x00800000; /* Minimum value of normalized number */

Rev. 4.0, 03/00, page 186 of 395

 if(abs < tmp.f) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0; /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

void check_double_exception(double *dst,result)

{

union {

 double d;

 int l[2];

} tmp;

double abs;

 if(result < 0.0) tmp.l[0] = 0xfff00000; /* – infinity */

 else tmp.l[0] = 0x7ff00000; /* + infinity */

 tmp.l[1] = 0x00000000;

 if(result == tmp.d)

 set_O(); set_I();

 if(FPSCR_RM == 1) {

 tmp.l[0] -= 1;

 tmp.l[1] = 0xffffffff;

 result = tmp.d; /* Maximum value of normalized number */

 }

 }

 if(result < 0.0) abs = -result;

 else abs = result;

 tmp.l[0] = 0x00100000; /* Minimum value of normalized number */

 tmp.l[1] = 0x00000000;

 if(abs < tmp.d) {

 if((FPSCR_DN == 1) && (abs != 0.0)) {

 set_I();

 if(result < 0.0) result = -0.0;

Rev. 4.0, 03/00, page 187 of 395

 /* Zeroize denormalized number */

 else result = 0.0;

 }

 if(FPSCR_I == 1) set_U();

 }

 if(FPSCR & ENABLE_OUI) fpu_exception_trap();

 else *dst = result;

}

int check_product_invalid(int m,n)

{

 return(check_product_infinity(m,n) &&

 ((data_type_of(m) == PZERO) || (data_type_of(n) == PZERO) ||

 (data_type_of(m) == NZERO) || (data_type_of(n) == NZERO)));

}

int check_ product_infinity(int m,n)

{

 return((data_type_of(m) == PINF) || (data_type_of(n) == PINF) ||

 (data_type_of(m) == NINF) || (data_type_of(n) == NINF));

}

int check_ positive_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (~sign_of(m)^
sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (~sign_of(m+1)^
sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (~sign_of(m+2)^
sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (~sign_of(m+3)^
sign_of(n+3))));

}

int check_ negative_infinity(int m,n)

{

 return(((check_ product_infinity(m,n) && (sign_of(m)^ sign_of(n))) ||

 ((check_ product_infinity(m+1,n+1) && (sign_of(m+1)^
sign_of(n+1))) ||

 ((check_ product_infinity(m+2,n+2) && (sign_of(m+2)^
sign_of(n+2))) ||

 ((check_ product_infinity(m+3,n+3) && (sign_of(m+3)^
sign_of(n+3))));

Rev. 4.0, 03/00, page 188 of 395

}

void clear_cause () {FPSCR &= ~CAUSE;}

void set_E() {FPSCR |= SET_E; fpu_exception_trap();}

void set_V() {FPSCR |= SET_V;}

void set_Z() {FPSCR |= SET_Z;}

void set_O() {FPSCR |= SET_O;}

void set_U() {FPSCR |= SET_U;}

void set_I() {FPSCR |= SET_I;}

void invalid(int n)

{

 set_V();

 if((FPSCR & ENABLE_V) == 0 qnan(n);

 else fpu_exception_trap();

}

void dz(int n,sign)

{

 set_Z();

 if((FPSCR & ENABLE_Z) == 0 inf(n,sign);

 else fpu_exception_trap();

}

void zero(int n,sign)

{

 if(sign == 0) FR_HEX [n] = 0x00000000;

 else FR_HEX [n] = 0x80000000;

 if (FPSCR_PR==1) FR_HEX [n+1] = 0x00000000;

}

void inf(int n,sign) {

 if (FPSCR_PR==0) {

 if(sign == 0) FR_HEX [n] = 0x7f800000;

 else FR_HEX [n] = 0xff800000;

 } else {

 if(sign == 0) FR_HEX [n] = 0x7ff00000;

 else FR_HEX [n] = 0xfff00000;

 FR_HEX [n+1] = 0x00000000;

 }

}

Rev. 4.0, 03/00, page 189 of 395

void qnan(int n)

{

 if (FPSCR_PR==0) FR[n] = 0x7fbfffff;

 else { FR[n] = 0x7ff7ffff;

 FR[n+1] = 0xffffffff;

 }

}

Example

An example is shown using assembler mnemonics, indicating the states before and after execution
of the instruction.

Italics (e.g., .align) indicate an assembler control instruction. The meaning of the assembler
control instructions is given below. For details, refer to the Cross-Assembler User’s Manual.

.org Location counter setting

.data.w Word integer data allocation

.data.l Longword integer data allocation

.sdata String data allocation

.align 2 2-byte boundary alignment

.align 4 4-byte boundary alignment

.align 32 32-byte boundary alignment

.arepeat 16 16-times repeat expansion

.arepea t 32 32-times repeat expansion

.aendr Count-specification repeat expansion end

Note: SH Series cross-assembler version 1.0 does not support conditional assembler functions.

Rev. 4.0, 03/00, page 190 of 395

9.1 ADD ADD binary Arithmetic Instruction
Binary Addition

Format Summary of Operation Instruction Code
Execution
States T Bit

ADD Rm,Rn Rn+Rm → Rn 0011nnnnmmmm1100 1 —

ADD #imm,Rn Rn+imm → Rn 0111nnnniiiiiiii 1 —

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in
Rn.

8-bit immediate data can also be added to the contents of general register Rn.

8-bit immediate data is sign-extended to 32 bits, allowing use in decrement operations.

Operation

ADD(long m, long n) /* ADD Rm,Rn */

{

 R[n]+=R[m];

 PC+=2;

}

ADDI(long i, long n) /* ADD #imm,Rn */

{

 if ((i&0x80)==0)

 R[n]+=(0x000000FF & (long)i);

 else R[n]+=(0xFFFFFF00 | (long)i);

 PC+=2;

}

Rev. 4.0, 03/00, page 191 of 395

Example

ADD R0,R1 ; Before execution R0 = H'7FFFFFFF, R1 = H'00000001

; After execution R1 = H'80000000

ADD #H'01,R2 ; Before execution R2 = H'00000000

; After execution R2 = H'00000001

ADD #H'FE,R3 ; Before execution R3 = H'00000001

; After execution R3 = H'FFFFFFFF

Rev. 4.0, 03/00, page 192 of 395

9.2 ADDC ADD with Carry Arithmetic Instruction
Binary Addition
with Carry

Format Summary of Operation Instruction Code
Execution
States T Bit

ADDC Rm,Rn Rn+Rm+T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description

This instruction adds together the contents of general registers Rn and Rm and the T bit, and stores
the result in Rn. A carry resulting from the operation is reflected in the T bit. This instruction is
used for additions exceeding 32 bits.

Operation

ADDC(long m, long n) /* ADDC Rm,Rn */

{

 unsigned long tmp0,tmp1;

 tmp1=R[n]+R[m];

 tmp0=R[n];

 R[n]=tmp1+T;

 if (tmp0>tmp1) T=1;

 else T=0;

 if (tmp1>R[n]) T=1;

 PC+=2;

}

Example

CLRT ;R0:R1(64 bits) + R2:R3(64 bits) = R0:R1(64 bits)

ADDC R3,R1 ; Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

; After execution T = 1, R1 = H'00000000

ADDC R2,R0 ; Before execution T = 1, R0 = H'00000000, R2 = H'00000000

; After execution T = 0, R0 = H'00000001

Rev. 4.0, 03/00, page 193 of 395

9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
Binary Addition
with Overflow Check

Format Summary of Operation Instruction Code
Execution
States T Bit

ADDV Rm,Rn Rn+Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

Description

This instruction adds together the contents of general registers Rn and Rm and stores the result in
Rn. If overflow occurs, the T bit is set.

Operation

ADDV(long m, long n) /* ADDV Rm,Rn */

{

 long dest,src,ans;

 if ((long)R[n]>=0) dest=0;

 else dest=1;

 if ((long)R[m]>=0) src=0;

 else src=1;

 src+=dest;

 R[n]+=R[m];

 if ((long)R[n]>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (src==0 || src==2) {

 if (ans==1) T=1;

 else T=0;

 }

 else T=0;

 PC+=2;

}

Rev. 4.0, 03/00, page 194 of 395

Example

ADDV R0,R1 ; Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T=0

; After execution R1 = H'7FFFFFFF, T=0

ADDV R0,R1 ; Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T=0

; After execution R1 = H'80000000, T=1

Rev. 4.0, 03/00, page 195 of 395

9.4 AND AND logical Logical Instruction
Logical AND

Format Summary of Operation Instruction Code
Execution
States T Bit

AND Rm,Rn Rm & Rm → Rn 0010nnnnmmmm1001 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND.B #imm,@(R0,GBR) (R0+GBR) & imm →
(R0+GBR)

11001101iiiiiiii 4 —

Description

This instruction ANDs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data.

Notes

With AND #imm,R0, the upper 24 bits of R0 are always cleared as a result of the operation.

Operation

AND(long m, long n) /* AND Rm,Rn */

{

 R[n]&=R[m];

 PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

 R[0]&=(0x000000FF & (long)i);

 PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

 long temp;

 temp=(long)Read_Byte(GBR+R[0]);

Rev. 4.0, 03/00, page 196 of 395

 temp&=(0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC+=2;

}

Example

 AND R0,R1 ; Before execution R0 = H'AAAAAAAA, R1=H'55555555

 ; After execution R1 = H'00000000

 AND #H'0F,R0 ; Before execution R0 = H'FFFFFFFF

 ; After execution R0 = H'0000000F

 AND.B #H'80,@(R0,GBR) ; Before execution (R0,GBR) = H'A5

 ; After execution (R0,GBR) = H'80

Rev. 4.0, 03/00, page 197 of 395

9.5 BF Branch if False Branch Instruction
Conditional Branch

Format Summary of Operation Instruction Code
Execution
States T Bit

BF label If T = 0
PC + 4 + disp × 2 → PC
If T = 1, nop

10001011dddddddd 1 —

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 0, and
not taken if T = 1. The branch destination is address (PC + 4 + displacement × 2). The PC source
value is the BF instruction address. As the 8-bit displacement is multiplied by two after sign-
extension, the branch destination can be located in the range from –256 to +254 bytes from the BF
instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BF in
combination with a BRA or JMP instruction, for example.

Operation

BF(int d) /* BF disp */

{

 int disp;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==0)

 PC=PC+4+(disp<<1);

 else PC+=2;

}

Rev. 4.0, 03/00, page 198 of 395

Example

 CLRT ; Normally T = 0

 BT TRGET_T ; T = 0, so branch is not taken.

 BF TRGET_F ; T = 0, so branch to TRGET_F.

 NOP ;

 NOP ;

TRGET_F: ; ← BF instruction branch destination

Rev. 4.0, 03/00, page 199 of 395

9.6 BF/S Branch if False with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BF/S label If T = 0
PC + 4 + disp × 2 → PC
If T = 1, nop

10001111dddddddd 1 —

Description

This is a delayed conditional branch instruction that references the T bit. If T = 1, the next
instruction is executed and the branch is not taken. If T = 0, the branch is taken after execution of
the next instruction.

The branch destination is address (PC + 4 + displacement × 2). The PC source value is the BF/S
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from –256 to +254 bytes from the BF/S instruction.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

If the branch destination cannot be reached, the branch must be handled by using BF/S in
combination with a BF, BRA, or JMP instruction, for example.

Rev. 4.0, 03/00, page 200 of 395

Operation

BFS(int d) /* BFS disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==0)

 PC=PC+4+(disp<<1);

 else PC+=4;

 Delay_Slot(temp+2);

}

Example

 CLRT ; Normally T = 0

 BT/S TRGET_T ; T = 0, so branch is not taken.

 NOP ;

 BF/S TRGET_F ; T = 0, so branch to TRGET.

 ADD R0,R1 ; Executed before branch.

 NOP ;

TRGET_F: ; ← BF/S instruction branch destination

Rev. 4.0, 03/00, page 201 of 395

9.7 BRA BRAnch Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BRA label PC+4+disp×2 → PC 1010dddddddddddd 1 —

Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 +
displacement × 2). The PC source value is the BRA instruction address. As the 12-bit
displacement is multiplied by two after sign-extension, the branch destination can be located in the
range from –4096 to +4094 bytes from the BRA instruction. If the branch destination cannot be
reached, this branch can be performed with a JMP instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRA(int d) /* BRA disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x800)==0)

 disp=(0x00000FFF & d);

 else disp=(0xFFFFF000 | d);

 PC=PC+4+(disp<<1);

 Delay_Slot(temp+2);

}

Rev. 4.0, 03/00, page 202 of 395

Example

 BRA TRGET ; Branch to TRGET.

 ADD R0,R1 ; ADD executed before branch.

 NOP ;

TRGET: ; ← BRA instruction branch destination

Rev. 4.0, 03/00, page 203 of 395

9.8 BRAF BRAnch Far Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BRAF Rn PC+4+Rn → PC 0000nnnn00100011 2 —

Description

This is an unconditional branch instruction. The branch destination is address (PC + 4 + Rn). The
branch destination address is the result of adding 4 plus the 32-bit contents of general register Rn
to PC.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BRAF(int n) /* BRAF Rn */

{

 unsigned int temp;

 temp=PC;

 PC=PC+4+R[n];

 Delay_Slot(temp+2);

}

Example

 MOV.L #(TRGET-BRAF_PC),R0 ; Set displacement.

 BRAF R0 ; Branch to TRGET.

 ADD R0,R1 ; ADD executed before branch.

 BRAF_PC: ;

 NOP

 TRGET: ; ← BRAF instruction branch destination

Rev. 4.0, 03/00, page 204 of 395

9.9 BSR Branch to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BSR label PC+4 → PR,
PC+4+disp×2 → PC

1011dddddddddddd 1 —

Description

This instruction branches to address (PC + 4 + displacement × 2), and stores address (PC + 4) in
PR. The PC source value is the BSR instruction address. As the 12-bit displacement is multiplied
by two after sign-extension, the branch destination can be located in the range from –4096 to
+4094 bytes from the BSR instruction. If the branch destination cannot be reached, this branch can
be performed with a JSR instruction.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSR(int d) /* BSR disp */

{

 int disp;

 unsigned int temp;

 temp=PC;

 if ((d&0x800)==0)

 disp=(0x00000FFF & d);

 else disp=(0xFFFFF000 | d);

 PR=PC+4;

 PC=PC+4+(disp<<1);

 Delay_Slot(temp+2);

}

Rev. 4.0, 03/00, page 205 of 395

Example

 BSR TRGET ; Branch to TRGET.

 MOV R3,R4 ; MOV executed before branch.

 ADD R0,R1 ; Subroutine procedure return destination (contents of PR)

TRGET: ; ← Entry to procedure

 MOV R2,R3 ;

 RTS ; Return to above ADD instruction.

 MOV #1,R0 ; MOV executed before branch.

Rev. 4.0, 03/00, page 206 of 395

9.10 BSRF Branch to SubRoutine Far Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BSRF Rn PC+4 → PR,
PC+4+Rn → PC

0000nnnn00000011 2 —

Description

This instruction branches to address (PC + 4 + Rn), and stores address (PC + 4) in PR. The PC
source value is the BSRF instruction address. The branch destination address is the result of
adding the 32-bit contents of general register Rn to PC + 4.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

BSRF(int n) /* BSRF Rn */

{

 unsigned int temp;

 temp=PC;

 PR=PC+4;

 PC=PC+4+R[n];

 Delay_Slot(temp+2);

}

Rev. 4.0, 03/00, page 207 of 395

Example

 MOV.L #(TRGET-BSRF_PC),R0 ; Set displacement.

 BSRF R0 ; Branch to TRGET.

 MOV R3,R4 ; MOV executed before branch.

 BSRF_PC: ;

 ADD R0,R1 ;

 TRGET: ; ← Entry to procedure

 MOV R2,R3 ;

 RTS ; Return to above ADD instruction.

 MOV #1,R0 ; MOV executed before branch.

Rev. 4.0, 03/00, page 208 of 395

9.11 BT Branch if True Branch Instruction
Conditional Branch

Format Summary of Operation Instruction Code
Execution
States T Bit

BT label If T = 1
PC + 4 + disp × 2 → PC
If T = 0, nop

10001001dddddddd 1 —

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and
not taken if T = 0.

The branch destination is address (PC + 4 + displacement × 2). The PC source value is the BT
instruction address. As the 8-bit displacement is multiplied by two after sign-extension, the branch
destination can be located in the range from –256 to +254 bytes from the BT instruction.

Notes

If the branch destination cannot be reached, the branch must be handled by using BT in
combination with a BRA or JMP instruction, for example.

Operation

BT(int d) /* BT disp */

{

 int disp;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==1)

 PC=PC+4+(disp<<1);

 else PC+=2;

}

Rev. 4.0, 03/00, page 209 of 395

Example

 SETT ; Normally T = 1

 BF TRGET_F ; T = 1, so branch is not taken.

 BT TRGET_T ; T = 1, so branch to TRGET_T.

 NOP ;

 NOP ;

TRGET_T: ; ← BT instruction branch destination

Rev. 4.0, 03/00, page 210 of 395

9.12 BT/S Branch if True with delay Slot Branch Instruction
Conditional Branch with Delay Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

BT/S label If T = 1
PC + 4 + disp × 2 → PC
If T = 0, nop

10001101dddddddd 1 —

Description

This is a conditional branch instruction that references the T bit. The branch is taken if T = 1, and
not taken if T = 0.

The PC source value is the BT/S instruction address. As the 8-bit displacement is multiplied by
two after sign-extension, the branch destination can be located in the range from –256 to +254
bytes from the BT/S instruction. If the branch destination cannot be reached, the branch must be
handled by using BT/S in combination with a BRA or JMP instruction, for example.

Notes

As this is a delayed branch instruction, when the branch condition is satisfied, the instruction
following this instruction is executed before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction.

If the following instruction is a branch instruction, it is identified as a slot illegal instruction.

Rev. 4.0, 03/00, page 211 of 395

Operation

BTS(int d) /* BTS disp */

{

 int disp;

 unsigned temp;

 temp=PC;

 if ((d&0x80)==0)

 disp=(0x000000FF & d);

 else disp=(0xFFFFFF00 | d);

 if (T==1)

 PC=PC+4+(disp<<1);

 else PC+=4;

 Delay_Slot(temp+2);

}

Example

 SETT ; Normally T = 1

 BF/S TRGET_F ; T = 1, so branch is not taken.

 NOP ;

 BT/S TRGET_T ; T = 1, so branch to TRGET_T.

 ADD R0,R1 ; Executed before branch.

 NOP ;

TRGET_T: ; ← BT/S instruction branch destination

Rev. 4.0, 03/00, page 212 of 395

9.13 CLRMAC CleaR MAC register System Control Instruction
MAC Register Clear

Format Summary of Operation Instruction Code
Execution
States T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Description

This instruction clears the MACH and MACL registers.

Operation

CLRMAC() /* CLRMAC */

{

 MACH=0;

 MACL=0;

 PC+=2;

}

Example

 CLRMAC ; Clear MAC register to initialize.

 MAC.W @R0+,@R1+ ; Multiply-and-accumulate operation

 MAC.W @R0+,@R1+ ;

Rev. 4.0, 03/00, page 213 of 395

9.14 CLRS CleaR S bit System Control Instruction
S Bit Clear

Format Summary of Operation Instruction Code
Execution
States T Bit

CLRS 0 → S 0000000001001000 1 —

Description

This instruction clears the S bit to 0.

Operation

CLRS() /* CLRS */

{

 S=0;

 PC+=2;

}

Example

CLRS ;Before execution S = 1

; After execution S = 0

Rev. 4.0, 03/00, page 214 of 395

9.15 CLRT CleaR T bit System Control Instruction
T Bit Clear

Format Summary of Operation Instruction Code
Execution
States T Bit

CLRT 0 → T 0000000000001000 1 0

Description

This instruction clears the T bit.

Operation

CLRT() /* CLRT */

{

 T=0;

 PC+=2;

}

Example

CLRT ;Before execution T = 1

; After execution T = 0

Rev. 4.0, 03/00, page 215 of 395

9.16 CMP/cond CoMPare conditionally Arithmetic Instruction
Compare

Format Summary of Operation Instruction Code
Execution
States T Bit

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Result of
comparison

CMP/GE Rm,Rn If Rn ≥ Rm, signed, 1 → T 0011nnnnmmmm0011 1 Result of
comparison

CMP/GT Rm,Rn If Rn > Rm, signed, 1 → T 0011nnnnmmmm0111 1 Result of
comparison

CMP/HI Rm,Rn If Rn > Rm, unsigned, 1 → T 0011nnnnmmmm0110 1 Result of
comparison

CMP/HS Rm,Rn If Rn ≥ Rm, unsigned, 1 → T 0011nnnnmmmm0010 1 Result of
comparison

CMP/PL Rn If Rn > 0, 1 → T 0100nnnn00010101 1 Result of
comparison

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 1 Result of
comparison

CMP/STR Rm,Rn If any bytes are equal, 1 → T 0010nnnnmmmm1100 1 Result of
comparison

CMP/EQ #imm,R0 If R0 = imm, 1 → T 10001000iiiiiiii 1 Result of
comparison

Description

This instruction compares general registers Rn and Rm, and sets the T bit if the specified condition
(cond) is true. If the condition is false, the T bit is cleared. The contents of Rn are not changed.
Nine conditions can be specified. For the two conditions PZ and PL, Rn is compared with 0.

With the EQ condition, sign-extended 8-bit immediate data can be compared with R0. The
contents of R0 are not changed.

Rev. 4.0, 03/00, page 216 of 395

Mnemonic Description

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm as signed values, T = 1

CMP/GT Rm,Rn If Rn > Rm as signed values, T = 1

CMP/HI Rm,Rn If Rn > Rm as unsigned values, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm as unsigned values, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If any bytes are equal, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation

CMPEQ(long m, long n) /* CMP_EQ Rm,Rn */

{

 if (R[n]==R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPGE(long m, long n) /* CMP_GE Rm,Rn */

{

 if ((long)R[n]>=(long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPGT(long m, long n) /* CMP_GT Rm,Rn */

{

 if ((long)R[n]>(long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPHI(long m, long n) /* CMP_HI Rm,Rn */

{

 if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

 else T=0;

Rev. 4.0, 03/00, page 217 of 395

 PC+=2;

}

CMPHS(long m, long n) /* CMP_HS Rm,Rn */

{

 if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

 else T=0;

 PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

 if ((long)R[n]>0) T=1;

 else T=0;

 PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

 if ((long)R[n]>=0) T=1;

 else T=0;

 PC+=2;

}

CMPSTR(long m, long n) /* CMP_STR Rm,Rn */

{

 unsigned long temp;

 long HH,HL,LH,LL;

 temp=R[n]^R[m];

 HH=(temp&0xFF000000)>>24;

 HL=(temp&0x00FF0000)>>16;

 LH=(temp&0x0000FF00)>>8;

 LL=temp&0x000000FF;

 HH=HH&&HL&&LH&&LL;

 if (HH==0) T=1;

 else T=0;

Rev. 4.0, 03/00, page 218 of 395

 PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

 long imm;

 if ((i&0x80)==0) imm=(0x000000FF & (long i));

 else imm=(0xFFFFFF00 | (long i));

 if (R[0]==imm) T=1;

 else T=0;

 PC+=2;

}

Example

CMP/GE R0,R1 ; R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ; T = 0, so branch is not taken.

CMP/HS R0,R1 ; R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ; T = 1, so branch is taken.

CMP/STR R2,R3 ; R2 = "ABCD", R3 = "XYCZ"

BT TRGET_T ; T = 1, so branch is taken.

Rev. 4.0, 03/00, page 219 of 395

9.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
Initialization for
Signed Division

Format Summary of Operation Instruction Code
Execution
States T Bit

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M,
M^Q → T

0010nnnnmmmm0111 1 Result of
calculation

Description

This instruction performs initial settings for signed division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DIV0S(long m, long n) /* DIV0S Rm,Rn */

{

 if ((R[n] & 0x80000000)==0) Q=0;

 else Q=1;

 if ((R[m] & 0x80000000)==0) M=0;

 else M=1;

 T=!(M==Q);

 PC+=2;

}

Example

See the examples for the DIV1 instruction.

Rev. 4.0, 03/00, page 220 of 395

9.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
Initialization for Unsigned Division

Format Summary of Operation Instruction Code
Execution
States T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description

This instruction performs initial settings for unsigned division. This instruction is followed by a
DIV1 instruction that executes 1-digit division, for example, and repeated divisions are executed
to find the quotient. See the description of the DIV1 instruction for details.

Operation

DIV0U() /* DIV0U */

{

 M=Q=T=0;

 PC+=2;

}

Example

See the examples for the DIV1 instruction.

Rev. 4.0, 03/00, page 221 of 395

9.19 DIV1 DIVide 1 step Arithmetic Instruction
Division

Format Summary of Operation Instruction Code
Execution
States T Bit

DIV1 Rm,Rn 1-step division
(Rn ÷ Rm)

0011nnnnmmmm0100 1 Result of
calculation

Description

This instruction performs 1-digit division (1-step division) of the 32-bit contents of general
register Rn (dividend) by the contents of Rm (divisor). The quotient is obtained by repeated
execution of this instruction alone or in combination with other instructions. The specified
registers and the M, Q, and T bits must not be modified during these repeated executions.

In 1-step division, the dividend is shifted 1 bit to the left, the divisor is subtracted from this, and
the quotient bit is reflected in the Q bit according to whether the result is positive or negative.

The remainder can be found as follows after first finding the quotient using the DIV1 instruction:

(Remainder) = (dividend) – (divisor) × (quotient)

Detection of division by zero or overflow is not provided. Check for division by zero and overflow
division before executing the division. A remainder operation is not provided. Find the remainder
by finding the product of the divisor and the obtained quotient, and subtracting this value from the
dividend.

Initial settings should first be made with the DIV0S or DIV0U instruction. DIV1 is executed once
for each bit of the divisor. If a quotient of more than 17 bits is required, place an ROTCL
instruction before the DIV1 instruction. See the examples for details of the division sequence.

Operation

DIV1(long m, long n) /* DIV1 Rm,Rn */

{

 unsigned long tmp0, tmp2;

 unsigned char old_q, tmp1;

 old_q=Q;

 Q=(unsigned char)((0x80000000 & R[n])!=0);

 tmp2= R[m];

 R[n]<<=1;

 R[n]|=(unsigned long)T;

Rev. 4.0, 03/00, page 222 of 395

 switch(old_q){

 case 0:switch(M){

 case 0:tmp0=R[n];

 R[n]-=tmp2;

 tmp1=(R[n]>tmp0);

 switch(Q){

 case 0:Q=tmp1;

 break;

 case 1:Q=(unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0=R[n];

 R[n]+=tmp2;

 tmp1=(R[n]<tmp0);

 switch(Q){

 case 0:Q=(unsigned char)(tmp1==0);

 break;

 case 1:Q=tmp1;

 break;

 }

 break;

 }

 break;

 case 1:switch(M){

 case 0:tmp0=R[n];

 R[n]+=tmp2;

 tmp1=(R[n]<tmp0);

 switch(Q){

 case 0:Q=tmp1;

 break;

 case 1:Q=(unsigned char)(tmp1==0);

 break;

 }

 break;

 case 1:tmp0=R[n];

Rev. 4.0, 03/00, page 223 of 395

 R[n]-=tmp2;

 tmp1=(R[n]>tmp0);

 switch(Q){

 case 0:Q=(unsigned char)(tmp1==0);

 break;

 case 1:Q=tmp1;

 break;

 }

 break;

 }

 break;

 }

 T=(Q==M);

 PC+=2;

}

Example 1

; R1 (32 bits) ÷ R0 (16 bits) = R1 (16 bits); unsigned

SHLL16 R0 ; Set divisor in upper 16 bits, clear lower 16 bits to 0

TST R0,R0 ; Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ; Check for overflow

BT OVER_DIV ;

DIV0U ; Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ; Repeat 16 times

.aendr ;

ROTCL R1 ;

EXTU.W R1,R1 ; R1 = quotient

Rev. 4.0, 03/00, page 224 of 395

Example 2

; R1:R2 (64 bits) ÷ R0 (32 bits) = R2 (32 bits); unsigned

TST R0,R0 ; Check for division by zero

BT ZERO_DIV ;

CMP/HS R0,R1 ; Check for overflow

BT OVER_DIV ;

DIV0U ; Flag initialization

.arepeat 32 ;

ROTCL R2 ; Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ; R2 = quotient

Example 3

; R1 (16 bits) ÷ R0 (16 bits) = R1 (16 bits); signed

SHLL16 R0 ; Set divisor in upper 16 bits, clear lower 16 bits to 0

EXTS.W R1,R1 ; Dividend sign-extended to 32 bits

XOR R2,R2 ; R2 = 0

MOV R1,R3 ;

ROTCL R3 ;

SUBC R2,R1 ; If dividend is negative, subtract 1

DIV0S R0,R1 ; Flag initialization

.arepeat 16 ;

DIV1 R0,R1 ; Repeat 16 times

.aendr ;

EXTS.W R1,R1 ;

ROTCL R1 ; R1 = quotient (one’s complement notation)

ADDC R2,R1 ; If MSB of quotient is 1, add 1 to convert to two’s complement notation

EXTS.W R1,R1 ; R1 = quotient (two’s complement notation)

Rev. 4.0, 03/00, page 225 of 395

Example 4

; R2 (32 bits) ÷ R0 (32 bits) = R2 (32 bits); signed

MOV R2,R3 ;

ROTCL R3 ;

SUBC R1,R1 ; Dividend sign-extended to 64 bits (R1:R2)

XOR R3,R3 ; R3 = 0

SUBC R3,R2 ; If dividend is negative, subtract 1 to convert to one’s complement notation

DIV0S R0,R1 ; Flag initialization

.arepeat 32 ;

ROTCL R2 ; Repeat 32 times

DIV1 R0,R1 ;

.aendr ;

ROTCL R2 ; R2 = quotient (one’s complement notation)

ADDC R3,R2 ; If MSB of quotient is 1, add 1 to convert to two’s complement notation

; R2 = quotient (two’s complement notation)

Rev. 4.0, 03/00, page 226 of 395

9.20 DMULS.L Double-length
MULtiply as Signed Arithmetic Instruction

Signed Double-Length
Multiplication

Format Summary of Operation Instruction Code
Execution
States T Bit

DMULS.L Rm,Rn Signed,
Rn × Rm →
MACH, MACL

0011nnnnmmmm1101 2–5 —

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication
is performed as a signed arithmetic operation.

Operation

DMULS(long m, long n) /* DMULS.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn=(long)R[n];

 tempm=(long)R[m];

 if (tempn<0) tempn=0-tempn;

 if (tempm<0) tempm=0-tempm;

 if ((long)(R[n]^R[m])<0) fnLmL=-1;

 else fnLmL=0;

 temp1=(unsigned long)tempn;

 temp2=(unsigned long)tempm;

 RnL=temp1&0x0000FFFF;

 RnH=(temp1>>16)&0x0000FFFF;

 RmL=temp2&0x0000FFFF;

 RmH=(temp2>>16)&0x0000FFFF;

Rev. 4.0, 03/00, page 227 of 395

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0;

 Res1=temp1+temp2;

 if (Res1<temp1) Res2+=0x00010000;

 temp1=(Res1<<16)&0xFFFF0000;

 Res0=temp0+temp1;

 if (Res0<temp0) Res2++;

 Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

 if (fnLmL<0) {

 Res2= ~Res2;

 if (Res0==0)

 Res2++;

 else

 Res0=(~Res0)+1;

 }

 MACH=Res2;

 MACL=Res0;

 PC+=2;

}

Example

DMULS.L R0,R1 ; Before execution R0 = H'FFFFFFFE, R1 = H'00005555

; After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;et operation result (lower)

Rev. 4.0, 03/00, page 228 of 395

9.21 DMULU.L Double-length MULtiply
as Unsigned Arithmetic Instruction

Unsigned Double-Length
Multiplication

Format Summary of Operation Instruction Code
Execution
States T Bit

DMULU.L Rm,Rn Unsigned,
Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 2–5 —

Description

This instruction performs 32-bit multiplication of the contents of general register Rn by the
contents of Rm, and stores the 64-bit result in the MACH and MACL registers. The multiplication
is performed as an unsigned arithmetic operation.

Operation

DMULU(long m, long n) /* DMULU.L Rm,Rn */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 RnL=R[n]&0x0000FFFF;

 RnH=(R[n]>>16)&0x0000FFFF;

 RmL=R[m]&0x0000FFFF;

 RmH=(R[m]>>16)&0x0000FFFF;

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0

 Res1=temp1+temp2;

 if (Res1<temp1) Res2+=0x00010000;

 temp1=(Res1<<16)&0xFFFF0000;

Rev. 4.0, 03/00, page 229 of 395

 Res0=temp0+temp1;

 if (Res0<temp0) Res2++;

 Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

 MACH=Res2;

 MACL=Res0;

 PC+=2;

}

Example

DMULU.L R0,R1 ; Before execution R0 = H'FFFFFFFE, R1 = H'00005555

; After execution MACH = H'00005554, MACL = H'FFFF5556

STS MACH,R0 ;Get operation result (upper)

STS MACL,R1 ;Get operation result (lower)

Rev. 4.0, 03/00, page 230 of 395

9.22 DT Decrement and Test Arithmetic Instruction
Decrement and Test

Format Summary of Operation Instruction Code
Execution
States T Bit

DT Rn Rn – 1 → Rn;
if Rn = 0, 1 → T
if Rn ≠ 0, 0 → T

0100nnnn00010000 1 Test
result

Description

This instruction decrements the contents of general register Rn by 1 and compares the result with
zero. If the result is zero, the T bit is set to 1. If the result is nonzero, the T bit is cleared to 0.

Operation

DT(long n)/* DT Rn */

{

 R[n]--;

 if (R[n]==0) T=1;

 else T=0;

 PC+=2;

}

Example

 MOV #4,R5 ; Set loop count

LOOP:

 ADD R0,R1 ;

 DT R5 ; Decrement R5 value and check for 0.

 BF LOOP ; If T = 0, branch to LOOP (in this example, 4 loops are executed).

Rev. 4.0, 03/00, page 231 of 395

9.23 EXTS EXTend as Signed Arithmetic Instruction
Sign Extension

Format Summary of Operation Instruction Code
Execution
States T Bit

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 1 —

Description

This instruction sign-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, the value of Rm bit 7 is transferred to Rn bits 8 to 31. For a word
specification, the value of Rm bit 15 is transferred to Rn bits 16 to 31.

Operation

EXTSB(long m, long n) /* EXTS.B Rm,Rn */

{

 R[n]=R[m];

 if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

}

EXTSW(long m, long n) /* EXTS.W Rm,Rn */

{

 R[n]=R[m];

 if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

}

Rev. 4.0, 03/00, page 232 of 395

Example

EXTS.B R0,R1 ; Before execution R0 = H'00000080

; After execution R1 = H'FFFFFF80

EXTS.W R0,R1 ; Before execution R0 = H'00008000

; After execution R1 = H'FFFF8000

Rev. 4.0, 03/00, page 233 of 395

9.24 EXTU EXTend as Unsigned Arithmetic Instruction
Zero Extension

Format Summary of Operation Instruction Code
Execution
States T Bit

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 1 —

Description

This instruction zero-extends the contents of general register Rm and stores the result in Rn.

For a byte specification, 0 is transferred to Rn bits 8 to 31. For a word specification, 0 is
transferred to Rn bits 16 to 31.

Operation

EXTUB(long m, long n) /* EXTU.B Rm,Rn */

{

 R[n]=R[m];

 R[n]&=0x000000FF;

 PC+=2;

}

EXTUW(long m, long n) /* EXTU.W Rm,Rn */

{

 R[n]=R[m];

 R[n]&=0x0000FFFF;

 PC+=2;

}

Example

EXTU.B R0,R1 ; Before execution R0 = H'FFFFFF80

; After execution R1 = H'00000080

EXTU.W R0,R1 ; Before execution R0 = H'FFFF8000

; After execution R1 = H'00008000

Rev. 4.0, 03/00, page 234 of 395

9.25 FABS Floating-point ABSolute value Floating-Point Instruction
Floating-Point
Absolute Value

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FABS FRn |FRn| → FRn 1111nnnn01011101 1 —

1 FABS DRn |DRn| → DRn 1111nnn001011101 1 —

Description

This instruction clears the most significant bit of the contents of floating-point register FRn/DRn
to 0, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation

void FABS (int n){

 FR[n] = FR[n] & 0x7fffffff;

 pc += 2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 4.0, 03/00, page 235 of 395

9.26 FADD Floating-point ADD Floating-Point Instruction
Floating-Point
Addition

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FADD FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 1 —

1 FADD DRm,DRn DRn+DRm → DRn 1111nnn0mmm00000 6 —

Description

When FPSCR.PR = 0: Arithmetically adds the two single-precision floating-point numbers in FRn
and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically adds the two double-precision floating-point numbers in
DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FADD (int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case NORM: normal_faddsub(m,n,ADD); break;

 case PZERO:

 case NZERO:register_copy(m,n); break;

 default: break;

 } break;

Rev. 4.0, 03/00, page 236 of 395

 case PZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case NZERO: break;

 case PINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 }

}

FADD Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM ADD –INF

+0 +0

–0 –0

+INF +INF Invalid

–INF –INF Invalid –INF

DENORM Error

qNaN qNaN

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 237 of 395

9.27 FCMP Floating-point CoMPare Floating-Point Instruction
Floating-Point
Comparison

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 1. FCMP/EQ FRm,FRn (FRn==FRm)?1:0 → T 1111nnnnmmmm0100 1 1/0

1 2. FCMP/EQ DRm,DRn (DRn==DRm)?1:0 → T 1111nnn0mmm00100 1 1/0

0 3. FCMP/GT FRm,FRn (FRn>FRm)?1:0 → T 1111nnnnmmmm0101 2 1/0

1 4. FCMP/GT DRm,DRn (DRn>DRm)?1:0 → T 1111nnn0mmm00101 2 1/0

Description

1. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

2. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if they are equal, or 0 otherwise.

3. When FPSCR.PR = 0: Arithmetically compares the two single-precision floating-point
numbers in FRn and FRm, and stores 1 in the T bit if FRn > FRm, or 0 otherwise.

4. When FPSCR.PR = 1: Arithmetically compares the two double-precision floating-point
numbers in DRn and DRm, and stores 1 in the T bit if DRn > DRm, or 0 otherwise.

Operation

void FCMP_EQ(int m,n) /* FCMP/EQ FRm,FRn */

{

 pc += 2;

 clear_cause();

 if(fcmp_chk (m,n) == INVALID) fcmp_invalid();

 else if(fcmp_chk (m,n) == EQ) T = 1;

 else T = 0;

}

void FCMP_GT(int m,n) /* FCMP/GT FRm,FRn */

{

 pc += 2;

 clear_cause();

 if ((fcmp_chk (m,n) == INVALID) ||

 (fcmp_chk (m,n) == UO)) fcmp_invalid();

 else if(fcmp_chk (m,n) == GT) T = 1;

Rev. 4.0, 03/00, page 238 of 395

 else T = 0;

}

int fcmp_chk (int m,n)

{

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) return(INVALID);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) return(UO);

 else switch(data_type_of(m)){

 case NORM: switch(data_type_of(n)){

 case PINF :return(GT); break;

 case NINF :return(LT); break;

 default: break;

 } break;

 case PZERO:

 case NZERO: switch(data_type_of(n)){

 case PZERO :

 case NZERO :return(EQ); break;

 default: break;

 } break;

 case PINF : switch(data_type_of(n)){

 case PINF :return(EQ); break;

 default:return(LT); break;

 } break;

 case NINF : switch(data_type_of(n)){

 case NINF :return(EQ); break;

 default:return(GT); break;

 } break;

 }

 if(FPSCR_PR == 0) {

 if(FR[n] == FR[m]) return(EQ);

 else if(FR[n] > FR[m]) return(GT);

 else return(LT);

 }else {

 if(DR[n>>1] == DR[m>>1]) return(EQ);

 else if(DR[n>>1] > DR[m>>1]) return(GT);

Rev. 4.0, 03/00, page 239 of 395

 else return(LT);

 }

}

void fcmp_invalid()

{

 set_V(); if((FPSCR & ENABLE_V) == 0) T = 0;

 else fpu_exception_trap();

}

FCMP Special Cases

FCMP/EQ FRn,DRn

FRm,DRm NORM DNORM +0 –0 +INF –INF qNaN sNaN

NORM CMP

DNORM

+0 EQ

–0

+INF EQ

–INF EQ

qNaN !EQ

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

FCMP/GT FRn,DRn

FRm,DRm NORM DENORM +0 –0 +INF –INF qNaN sNaN

NORM CMP GT !GT

DENORM

+0 !GT

–0

+INF !GT !GT

–INF GT !GT

qNaN UO

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

UO means unordered. Unordered is treated as false (!GT).

Possible Exceptions:
Invalid operation

Rev. 4.0, 03/00, page 240 of 395

9.28 FCNVDS Floating-point CoNVert
Double to Single precision Floating-Point Instruction

Double-Precision
to Single-Precision
Conversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 — — — — —

1 FCNVDS DRm,FPUL (float)DRm → FPUL 1111mmm010111101 2 —

Description

When FPSCR.PR = 1: This instruction converts the double-precision floating-point number in
DRm to a single-precision floating-point number, and stores the result in FPUL.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FPUL is not updated. Appropriate processing should therefore
be performed by software.

Operation

void FCNVDS(int m, float *FPUL){

 case((FPSCR.PR){

 0: undefined_operation(); /* reserved */

 1: fcnvds(m, *FPUL); break; /* FCNVDS */

 }

}

void fcnvds(int m, float *FPUL)

{

 pc += 2;

 clear_cause();

 case(data_type_of(m, *FPUL)){

 NORM :

 PZERO :

 NZERO : normal_ fcnvds(m, *FPUL); break;

 DENORM : set_E();

 PINF : *FPUL = 0x7f800000; break;

 NINF : *FPUL = 0xff800000; break;

Rev. 4.0, 03/00, page 241 of 395

 qNaN : *FPUL = 0x7fbfffff; break;

 sNaN : set_V();

 if((FPSCR & ENABLE_V) == 0) *FPUL = 0x7fbfffff;

 else fpu_exception_trap(); break;

 }

}

void normal_fcnvds(int m, float *FPUL)

{

int sign;

float abs;

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd;

 dstd.d = DR[m>>1];

 if(dstd.l[1] & 0x1fffffff)) set_I();

 if(FPSCR_RM == 1) dstd.l[1] &= 0xe0000000; /* round toward zero*/

 dstf.f = dstd.d;

 check_single_exception(FPUL, dstf.f);

}

FCNVDS Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVDS(FRn FPUL) FCNVDS FCNVDS +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 242 of 395

9.29 FCNVSD Floating-point CoNVert
Single to Double precision Floating-Point Instruction

Single-Precision
to Double-Precision
Conversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 — — — — —

1 FCNVSD FPUL, DRn (double) FPUL → DRn 1111nnn010101101 2 —

Description

When FPSCR.PR = 1: This instruction converts the single-precision floating-point number in
FPUL to a double-precision floating-point number, and stores the result in DRn.

Operation

void FCNVSD(int n, float *FPUL){

 pc += 2;

 clear_cause();

 case((FPSCR_PR){

 0: undefined_operation(); /* reserved */

 1: fcnvsd (n, *FPUL); break; /* FCNVSD */

 }

}

void fcnvsd(int n, float *FPUL)

{

 case(fpul_type(FPUL)){

 PZERO :

 NZERO :

 PINF :

 NINF : DR[n>>1] = *FPUL; break;

 DENORM : set_E(); break;

 qNaN : qnan(n); break;

 sNaN : invalid(n); break;

 }

}

int fpul_type(int *FPUL)

Rev. 4.0, 03/00, page 243 of 395

{

int abs;

 abs = *FPUL & 0x7fffffff;

 if(abs < 0x00800000){

 if((FPSCR_DN == 1) || (abs == 0x00000000)){

 if(sign_of(src) == 0) return(PZERO);

 else return(NZERO);

 }

 else return(DENORM);

 }

 else if(abs < 0x7f800000) return(NORM);

 else if(abs == 0x7f800000) {

 if(sign_of(src) == 0) return(PINF);

 else return(NINF);

 }

 else if(abs < 0x7fc00000) return(qNaN);

 else return(sNaN);

}

FCNVSD Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FCNVSD(FPUL FRn) +NORM –NORM +0 –0 +INF –INF qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

Rev. 4.0, 03/00, page 244 of 395

9.30 FDIV Floating-point DIVide Floating-Point Instruction
Floating-Point
Division

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 10 —

1 FDIV DRm,DRn DRn/DRm → DRn 1111nnn0mmm00011 23 —

Description

When FPSCR.PR = 0: Arithmetically divides the single-precision floating-point number in FRn by
the single-precision floating-point number in FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically divides the double-precision floating-point number in DRn
by the double-precision floating-point number in DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FDIV(int m,n) /* FDIV FRm,FRn */

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n));break;

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n));break;

 case DENORM:set_E(); break;

 default: normal_fdiv(m,n); break;

 } break;

Rev. 4.0, 03/00, page 245 of 395

 case PZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n);break;

 case PINF:

 case NINF: break;

 default: dz(n,sign_of(m)^sign_of(n));break;

 } break;

 case NZERO: switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 case PINF: inf(n,1); break;

 case NINF: inf(n,0); break;

 default: dz(FR[n],sign_of(m)^sign_of(n)); break;

 } break;

 case DENORM: set_E(); break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break

 } break;

 }

}

void normal_fdiv(int m,n)

{

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd,tmpd;

union {

 int double x;

 int l[4];

Rev. 4.0, 03/00, page 246 of 395

} tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f /= FR[m]; /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= FR[m];

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 check_single_exception(&FR[n], dstf.f);

 } else {

 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d /= DR[m>>1]; /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= DR[m>>1];

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 check_double_exception(&DR[n>>1], dstd.d);

 }

}

FDIV Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM DIV 0 INF Error

+0 DZ Invalid +INF –INF DZ

–0 –INF +INF

+INF 0 +0 –0 Invalid

–INF –0 +0

DENORM Error

qNaN qNaN

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 4.0, 03/00, page 247 of 395

Possible Exceptions:
• FPU error

• Invalid operation

• Divide by zero

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 248 of 395

9.31 FIPR Floating-point Inner
PRoduct Floating-Point Instruction

Floating-Point
Inner Product

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FIPR FVm,FVn FVn ⋅ FVm → FR[n+3] 1111nnmm11101101 1 —

— — — — — —

Notes: FV0 = {FR0, FR1, FR2, FR3}
FV4 = {FR4, FR5, FR6, FR7}
FV8 = {FR8, FR9, FR10, FR11}

FV12 = {FR12, FR13, FR14, FR15}

Description

When FPSCR.PR = 0: This instruction calculates the inner products of the 4-dimensional single-
precision floating-point vector indicated by FVn and FVm, and stores the results in FR[n + 3].

The FIPR instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FIPR
execution sequence is as follows:

1. Multiplies all terms. The results are 28 bits long.

2. Aligns these results, rounding them to fit within 30 bits.

3. Adds the aligned values.

4. Performs normalization and rounding.

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

Rev. 4.0, 03/00, page 249 of 395

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FIPR(int m,n) /* FIPR FVm,FVn */

{

 if(FPSCR_PR == 0) {

 pc += 2;

 clear_cause();

 fipr(m,n);

 }

 else undefined_operation();

}

Possible Exceptions:
• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 250 of 395

9.32 FLDI0 Floating-point
LoaD Immediate 0.0 Floating-Point Instruction

0.0 Load

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FLDI0 FRn 0x00000000 → FRn 1111nnnn10001101 1 —

1 — — — — —

Description

When FPSCR.PR = 0, this instruction loads floating-point 0.0 (0x00000000) into FRn.

Operation

void FLDI0(int n)

{

 FR[n] = 0x00000000;

 pc += 2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 251 of 395

9.33 FLDI1 Floating-point LoaD
Immediate 1.0 Floating-Point Instruction

1.0 Load

Format Summary of Operation Instruction Code
Execution
States T Bit

FLDI1 FRn 0x3F800000 → FRn 1111nnnn10011101 1 —

— — — — —

Description

When FPSCR.PR = 0, this instruction loads floating-point 1.0 (0x3F800000) into FRn.

Operation

void FLDI1(int n)

{

 FR[n] = 0x3F800000;

 pc += 2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 252 of 395

9.34 FLDS Floating-point
LoaD to System register Floating-Point Instruction

Transfer to System
Register

Format Summary of Operation Instruction Code
Execution
States T Bit

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 1 —

Description

This instruction loads the contents of floating-point register FRm into system register FPUL.

Operation

void FLDS(int m, float *FPUL)

{

 *FPUL = FR[m];

 pc += 2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 253 of 395

9.35 FLOAT Floating-point
convert from integer Floating-Point Instruction

Integer to Floating-Point
Conversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 —

1 FLOAT FPUL,DRn (double)FPUL → DRn 1111nnn000101101 2 —

Description

When FPSCR.PR = 0: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
single-precision floating-point number and stores the result in FRn.

When FPSCR.PR = 1: Taking the contents of FPUL as a 32-bit integer, converts this integer to a
double-precision floating-point number and stores the result in DRn.

When FPSCR.enable.I = 1, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Rev. 4.0, 03/00, page 254 of 395

Operation

void FLOAT(int n, float *FPUL)

{

union {

 double d;

 int l[2];

} tmp;

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 FR[n] = *FPUL; /* convert from integer to float */

 tmp.d = *FPUL;

 if(tmp.l[1] & 0x1fffffff) inexact();

 } else {

 DR[n>>1] = *FPUL; /* convert from integer to double */

 }

}

Possible Exceptions:
Inexact: Not generated when FPSCR.PR = 1.

Rev. 4.0, 03/00, page 255 of 395

9.36 FMAC Floating-point Multiply
and ACcumulate Floating-Point Instruction

Floating-Point Multiply
and Accumulate

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FMAC FR0,FRm,FRn FR0*FRm+FRn → FRn 1111nnnnmmmm1110 1 —

1 — — — — —

Description

When FPSCR.PR = 0: This instruction arithmetically multiplies the two single-precision floating-
point numbers in FR0 and FRm, arithmetically adds the contents of FRn, and stores the result in
FRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FMAC(int m,n)

{

 pc += 2;

 clear_cause();

 if(FPSCR_PR == 1) undefined_operation();

 else if((data_type_of(0) == sNaN) ||

 (data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(0) == qNaN) ||

 (data_type_of(m) == qNaN)) qnan(n);

 else if((data_type_of(0) == DENORM) ||

 (data_type_of(m) == DENORM)) set_E();

 else switch (data_type_of(0){

 case NORM: switch (data_type_of(m)){

 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case DENORM: set_E(); break;

Rev. 4.0, 03/00, page 256 of 395

 case qNaN: qnan(n); break;

 case PZERO:

 case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n));
break;

 default: break;

 }

 case PINF:

 case NINF: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: if(sign_of(0)^ sign_of(m)^sign_of(n)) invalid(n);

 else inf(n,sign_of(0)^ sign_of(m)); break;

 default: inf(n,sign_of(0)^ sign_of(m)); break;

 }

 case NORM: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PINF:

 case NINF: inf(n,sign_of(n)); break;

 case PZERO:

 case NZERO:

 case NORM: normal_fmac(m,n); break;

 } break;

 case PZERO:

 case NZERO: switch (data_type_of(m)){

 case PINF:

 case NINF: invalid(n); break;

 case PZERO:

 case NZERO:

 case NORM: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 case PZERO:

 case NZERO: zero(n,sign_of(0)^ sign_of(m)^sign_of(n)); break;

 default: break;

 } break;

 } break;

Rev. 4.0, 03/00, page 257 of 395

 case PINF :

 case NINF : switch (data_type_of(m)){

 case PZERO:

 case NZERO:invalid(n); break;

 default: switch (data_type_of(n)){

 case DENORM: set_E(); break;

 case qNaN: qnan(n); break;

 default: inf(n,sign_of(0)^sign_of(m)^sign_of(n));break

 } break;

 } break;

 }

}

void normal_fmac(int m,n)

{

union {

 int double x;

 int l[4];

} dstx,tmpx;

float dstf,srcf;

 if((data_type_of(n) == PZERO)|| (data_type_of(n) == NZERO))

 srcf = 0.0; /* flush denormalized value */

 else srcf = FR[n];

 tmpx.x = FR[0]; /* convert single to int double */

 tmpx.x *= FR[m]; /* exact product */

 dstx.x = tmpx.x + srcf;

 if(((dstx.x == srcf) && (tmpx.x != 0.0)) ||

 ((dstx.x == tmpx.x) && (srcf != 0.0))) {

 set_I();

 if(sign_of(0)^ sign_of(m)^ sign_of(n)) {

 dstx.l[3] -= 1; /* correct result */

 if(dstx.l[3] == 0xffffffff) dstx.l[2] -= 1;

 if(dstx.l[2] == 0xffffffff) dstx.l[1] -= 1;

 if(dstx.l[1] == 0xffffffff) dstx.l[0] -= 1;

 }

 else dstx.l[3] |= 1;

 }

 if((dstx.l[1] & 0x01ffffff) || dstx.l[2] || dstx.l[3]) set_I();

Rev. 4.0, 03/00, page 258 of 395

 if(FPSCR_RM == 1) {

 dstx.l[1] &= 0xfe000000; /* round toward zero */

 dstx.l[2] = 0x00000000;

 dstx.l[3] = 0x00000000;

 }

 dstf = dstx.x;

 check_single_exception(&FR[n],dstf);

}

Rev. 4.0, 03/00, page 259 of 395

FMAC Special Cases

FRn FR0 FRm

+Norm –Norm +0 –0 +INF –INF Denorm qNaN sNaN

Norm Norm MAC INF

0 Invalid

INF INF Invalid INF

+0 Norm MAC

0 +0 Invalid

INF INF Invalid INF

–0 +Norm MAC +0 –0 +INF –INF

–Norm –0 +0 –INF +INF

+0 +0 –0 +0 –0 Invalid

–0 –0 +0 –0 +0

INF INF Invalid INF

+INF +Norm +INF Invalid

–Norm +INF

0 Invalid

+INF Invalid +INF

–INF Invalid +INF +INF

–INF +Norm –INF –INF

–Norm

0

+INF Invalid Invalid –INF

–INF –INF –INF Invalid

Denorm Norm

0 Invalid

INF Invalid

!sNaN Denorm Error

qNaN 0 Invalid

INF Invalid

Norm

!sNaN qNaN qNaN

All types sNaN

SNaN all types Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Rev. 4.0, 03/00, page 260 of 395

Possible Exceptions:
• FPU error

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 261 of 395

9.37 FMOV Floating-point MOVe Floating-Point Instruction
Floating-Point
Transfer

SZ Format
Summary of
Operation Instruction Code

Execution
States T Bit

0 1. FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 —

1 2. FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 1 —

0 3. FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 —

1 4. FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 1 —

0 5. FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 —

1 6. FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 1 —

0 7. FMOV.S @Rm+,FRn (Rm) → FRn,Rm+=4 1111nnnnmmmm1001 1 —

1 8. FMOV @Rm+,DRn (Rm) → DRn,Rm+=8 1111nnn0mmmm1001 1 —

0 9. FMOV.S FRm,@-Rn Rn-=4,FRm → (Rn) 1111nnnnmmmm1011 1 —

1 10. FMOV DRm,@-Rn Rn-=8,DRm → (Rn) 1111nnnnmmm01011 1 —

0 11. FMOV.S @(R0,Rm),FRn (R0+Rm) → FRn 1111nnnnmmmm0110 1 —

1 12. FMOV @(R0,Rm),DRn (R0+Rm) → DRn 1111nnn0mmmm0110 1 —

0 13. FMOV.S FRm, @(R0,Rn) FRm → (R0+Rn) 1111nnnnmmmm0111 1 —

1 14. FMOV DRm, @(R0,Rn) DRm → (R0+Rn) 1111nnnnmmm00111 1 —

Description

1. This instruction transfers FRm contents to FRn.

2. This instruction transfers DRm contents to DRn.

3. This instruction transfers FRm contents to memory at address indicated by Rn.

4. This instruction transfers DRm contents to memory at address indicated by Rn.

5. This instruction transfers contents of memory at address indicated by Rm to FRn.

6. This instruction transfers contents of memory at address indicated by Rm to DRn.

7. This instruction transfers contents of memory at address indicated by Rm to FRn, and adds 4 to
Rm.

8. This instruction transfers contents of memory at address indicated by Rm to DRn, and adds 8
to Rm.

9. This instruction subtracts 4 from Rn, and transfers FRm contents to memory at address
indicated by resulting Rn value.

10. This instruction subtracts 8 from Rn, and transfers DRm contents to memory at address
indicated by resulting Rn value.

11. This instruction transfers contents of memory at address indicated by (R0 + Rm) to FRn.

Rev. 4.0, 03/00, page 262 of 395

12. This instruction transfers contents of memory at address indicated by (R0 + Rm) to DRn.

13. This instruction transfers FRm contents to memory at address indicated by (R0 + Rn).

14. This instruction transfers DRm contents to memory at address indicated by (R0 + Rn).

Operation

void FMOV(int m,n) /* FMOV FRm,FRn */

{

 FR[n] = FR[m];

 pc += 2;

}

void FMOV_DR(int m,n) /* FMOV DRm,DRn */

{

 DR[n>>1] = DR[m>>1];

 pc += 2;

}

void FMOV_STORE(int m,n) /* FMOV.S FRm,@Rn */

{

 store_int(FR[m],R[n]);

 pc += 2;

}

void FMOV_STORE_DR(int m,n) /* FMOV DRm,@Rn */

{

 store_quad(DR[m>>1],R[n]);

 pc += 2;

}

 void FMOV_LOAD(int m,n) /* FMOV.S @Rm,FRn */

{

 load_int(R[m],FR[n]);

 pc += 2;

}

void FMOV_LOAD_DR(int m,n) /* FMOV @Rm,DRn */

{

 load_quad(R[m],DR[n>>1]);

 pc += 2;

}

void FMOV_RESTORE(int m,n) /* FMOV.S @Rm+,FRn */

{

Rev. 4.0, 03/00, page 263 of 395

 load_int(R[m],FR[n]);

 R[m] += 4;

 pc += 2;

}

void FMOV_RESTORE_DR(int m,n) /* FMOV @Rm+,DRn */

{

 load_quad(R[m],DR[n>>1]) ;

 R[m] += 8;

 pc += 2;

}

void FMOV_SAVE(int m,n) /* FMOV.S FRm,@–Rn */

{

 store_int(FR[m],R[n]-4);

 R[n] -= 4;

 pc += 2;

}

void FMOV_SAVE_DR(int m,n) /* FMOV DRm,@–Rn */

{

 store_quad(DR[m>>1],R[n]-8);

 R[n] -= 8;

 pc += 2;

}

void FMOV_INDEX_LOAD(int m,n) /* FMOV.S @(R0,Rm),FRn */

{

 load_int(R[0] + R[m],FR[n]);

 pc += 2;

}

void FMOV_INDEX_LOAD_DR(int m,n) /*FMOV @(R0,Rm),DRn */

{

 load_quad(R[0] + R[m],DR[n>>1]);

 pc += 2;

}

void FMOV_INDEX_STORE(int m,n) /*FMOV.S FRm,@(R0,Rn)*/

{

 store_int(FR[m], R[0] + R[n]);

 pc += 2;

}

Rev. 4.0, 03/00, page 264 of 395

void FMOV_INDEX_STORE_DR(int m,n)/*FMOV DRm,@(R0,Rn)*/

{

 store_quad(DR[m>>1], R[0] + R[n]);

 pc += 2;

}

Possible Exceptions:
• Data TLB miss exception

• Data protection violation exception

• Initial write exception

• Address error

Rev. 4.0, 03/00, page 265 of 395

9.38 FMOV Floating-point
MOVe extension Floating-Point Instruction

Floating-Point
Transfer

PR Format
Summary of
Operation Instruction Code

Execution
States T Bit

1 1. FMOV XDm,@Rn XRm → (Rn) 1111nnnnmmm11010 1 —

1 2. FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 1 —

1 3. FMOV @Rm+,XDn (Rm) → XDn,Rm+=8 1111nnn1mmmm1001 1 —

1 4. FMOV XDm,@-Rn Rn-=8,XDm → (Rn) 1111nnnnmmm11011 1 —

1 5. FMOV @(R0,Rm),XDn (R0+Rm) → XDn 1111nnn1mmmm0110 1 —

1 6. FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 1 —

1 7. FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 1 —

1 8. FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 1 —

1 9. FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 1 —

Description

1. This instruction transfers XDm contents to memory at address indicated by Rn.

2. This instruction transfers contents of memory at address indicated by Rm to XDn.

3. This instruction transfers contents of memory at address indicated by Rm to XDn, and adds 8
to Rm.

4. This instruction subtracts 8 from Rn, and transfers XDm contents to memory at address
indicated by resulting Rn value.

5. This instruction transfers contents of memory at address indicated by (R0 + Rm) to XDn.

6. This instruction transfers XDm contents to memory at address indicated by (R0 + Rn).

7. This instruction transfers XDm contents to XDn.

8. This instruction transfers XDm contents to DRn.

9. This instruction transfers DRm contents to XDn.

Rev. 4.0, 03/00, page 266 of 395

Operation

void FMOV_STORE_XD(int m,n) /* FMOV XDm,@Rn */

{

 store_quad(XD[m>>1],R[n]);

 pc += 2;

}

void FMOV_LOAD_XD(int m,n) /* FMOV @Rm,XDn */

{

load_quad(R[m],XD[n>>1]);

pc += 2;

}

void FMOV_RESTORE_XD(int m,n) /* FMOV @Rm+,DBn */

{

load_quad(R[m],XD[n>>1]);

R[m] += 8;

pc += 2;

}

void FMOV_SAVE_XD(int m,n) /* FMOV XDm,@–Rn */

{

store_quad(XD[m>>1],R[n]-8);

R[n] -= 8;

pc += 2;

}

void FMOV_INDEX_LOAD_XD(int m,n) /* FMOV @(R0,Rm),XDn */

{

load_quad(R[0] + R[m],XD[n>>1]);

pc += 2;

}

void FMOV_INDEX_STORE_XD(int m,n) /* FMOV XDm,@(R0,Rn) */

{

 store_quad(XD[m>>1], R[0] + R[n]);

 pc += 2;

}

 void FMOV_XDXD(int m,n) /* FMOV XDm,XDn */

{

 XD[n>>1] = XD[m>>1];

 pc += 2;

Rev. 4.0, 03/00, page 267 of 395

}

void FMOV_XDDR(int m,n) /* FMOV XDm,DRn */

{

 DR[n>>1] = XD[m>>1];

 pc += 2;

}

void FMOV_DRXD(int m,n) /* FMOV DRm,XDn */

{

 XD[n>>1] = DR[m>>1];

 pc += 2;

}

Possible Exceptions:
• Data TLB miss exception

• Data protection violation exception

• Initial write exception

• Address error

Rev. 4.0, 03/00, page 268 of 395

9.39 FMUL Floating-point MULtiply Floating-Point Instruction
Floating-Point
Multiplication

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 1 —

1 FMUL DRm,DRn DRn*DRm → DRn 1111nnn0mmm00010 6 —

Description

When FPSCR.PR = 0: Arithmetically multiplies the two single-precision floating-point numbers
in FRn and FRm, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically multiplies the two double-precision floating-point numbers
in DRn and DRm, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FMUL(int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m){

 case NORM: switch (data_type_of(n)){

 case PZERO:

 case NZERO: zero(n,sign_of(m)^sign_of(n)); break;

 case PINF:

 case NINF: inf(n,sign_of(m)^sign_of(n)); break;

 default: normal_fmul(m,n); break;

Rev. 4.0, 03/00, page 269 of 395

 } break;

 case PZERO:

 case NZERO: switch (data_type_of(n)){

 case PINF:

 case NINF: invalid(n); break;

 default: zero(n,sign_of(m)^sign_of(n));break;

 } break;

 case PINF :

 case NINF : switch (data_type_of(n)){

 case PZERO:

 case NZERO: invalid(n); break;

 default: inf(n,sign_of(m)^sign_of(n));break

 } break;

 }

}

FMUL Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM MUL 0 INF

+0 0 +0 –0 Invalid

–0 –0 +0

+INF INF Invalid +INF –INF

–INF –INF +INF

DENORM Error

qNaN qNaN

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 270 of 395

9.40 FNEG Floating-point NEGate value Floating-Point Instruction
Floating-Point
Sign Inversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FNEG FRn -FRn → FRn 1111nnnn01001101 1 —

1 FNEG DRn -DRn → DRn 1111nnn001001101 1 —

Description

This instruction inverts the most significant bit (sign bit) of the contents of floating-point register
FRn/DRn, and stores the result in FRn/DRn.

The cause and flag fields in FPSCR are not updated.

Operation

void FNEG (int n){

 FR[n] = -FR[n];

 pc += 2;

}

/* Same operation is performed regardless of precision. */

Possible Exceptions:
None

Rev. 4.0, 03/00, page 271 of 395

9.41 FRCHG FR-bit CHanGe Floating-Point Instruction
FR Bit
Inversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FRCHG FPSCR.FR=~FPSCR.FR 1111101111111101 1 —

1 — — — — —

Description

This instruction inverts the FR bit in floating-point register FPSCR. When the FR bit in FPSCR is
changed, FR0 to FR15 in FPR0_BANK0 to FPR15_BANK0 and FPR0_BANK1 to
FPR15_BANK1 become XR0 to XR15, and XR0 to XR15 become FR0 to FR15. When
FPSCR.FR = 0, FPR0_BANK0 to FPR15_BANK0 correspond to FR0 to FR15, and
FPR0_BANK1 to FPR15_BANK1 correspond to XR0 to XR15. When FPSCR.FR = 1,
FPR0_BANK1 to FPR15_BANK1 correspond to FR0 to FR15, and FPR0_BANK0 to
FPR15_BANK0 correspond to XR0 to XR15.

Operation

void FRCHG() /* FRCHG */

{

 if(FPSCR_PR == 0){

 FPSCR ^= 0x00200000; /* bit 21 */

 PC += 2;

 }

 else undefined_operation();

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 272 of 395

9.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
SZ Bit
Inversion

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FSCHG FPSCR.SZ=~FPSCR.SZ 1111001111111101 1 —

1 — — — — —

Description

This instruction inverts the SZ bit in floating-point register FPSCR. Changing the SZ bit in
FPSCR switches FMOV instruction data transfer between one single-precision data unit and a data
pair. When FPSCR.SZ = 0, the FMOV instruction transfers one single-precision data unit. When
FPSCR.SZ = 1, the FMOV instruction transfers two single-precision data units as a pair.

Operation

void FSCHG() /* FSCHG */

{

 if(FPSCR_PR == 0){

 FPSCR ^= 0x00100000; /* bit 20 */

 PC += 2;

 }

 else undefined_operation();

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 273 of 395

9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
Floating-Point
Square Root

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FSQRT FRn √FRn → FRn 1111nnnn01101101 9 —

1 FSQRT DRn √DRn → DRn 1111nnnn01101101 22 —

Description

When FPSCR.PR = 0: Finds the arithmetical square root of the single-precision floating-point
number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Finds the arithmetical square root of the double-precision floating-point
number in DRn, and stores the result in DRn.

When FPSCR.enable.I is set, an FPU exception trap is generated regardless of whether or not an
exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FSQRT(int n){

 pc += 2;

 clear_cause();

 switch(data_type_of(n)){

 case NORM : if(sign_of(n) == 0) normal_ fsqrt(n);

 else invalid(n); break;

 case DENORM: if(sign_of(n) == 0) set_E();

 else invalid(n); break;

 case PZERO :

 case NZERO :

 case PINF : break;

 case NINF : invalid(n); break;

 case qNaN : qnan(n); break;

 case sNaN : invalid(n); break;

 }

}

void normal_fsqrt(int n)

Rev. 4.0, 03/00, page 274 of 395

{

union {

 float f;

 int l;

} dstf,tmpf;

union {

 double d;

 int l[2];

} dstd,tmpd;

union {

 int double x;

 int l[4];

} tmpx;

 if(FPSCR_PR == 0) {

 tmpf.f = FR[n]; /* save destination value */

 dstf.f = sqrt(FR[n]); /* round toward nearest or even */

 tmpd.d = dstf.f; /* convert single to double */

 tmpd.d *= dstf.f;

 if(tmpf.f != tmpd.d) set_I();

 if((tmpf.f < tmpd.d) && (SPSCR_RM == 1))

 dstf.l -= 1; /* round toward zero */

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else FR[n] = dstf.f;

 } else {

 tmpd.d = DR[n>>1]; /* save destination value */

 dstd.d = sqrt(DR[n>>1]); /* round toward nearest or even */

 tmpx.x = dstd.d; /* convert double to int double */

 tmpx.x *= dstd.d;

 if(tmpd.d != tmpx.x) set_I();

 if((tmpd.d < tmpx.x) && (SPSCR_RM == 1)) {

 dstd.l[1] -= 1; /* round toward zero */

 if(dstd.l[1] == 0xffffffff) dstd.l[0] -= 1;

 }

 if(FPSCR & ENABLE_I) fpu_exception_trap();

 else DR[n>>1] = dstd.d;

 }

}

Rev. 4.0, 03/00, page 275 of 395

FSQRT Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FSQRT(FRn) SQRT Invalid +0 –0 +INF Invalid qNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

• Inexact

Rev. 4.0, 03/00, page 276 of 395

9.44 FSTS Floating-point STore
System register Floating-Point Instruction

Transfer from
System Register

Format Summary of Operation Instruction Code
Execution
States T Bit

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 —

Description

This instruction transfers the contents of system register FPUL to floating-point register FRn.

Operation

void FSTS(int n, float *FPUL)

{

 FR[n] = *FPUL;

 pc += 2;

}

Possible Exceptions:
None

Rev. 4.0, 03/00, page 277 of 395

9.45 FSUB Floating-point
SUBtract Floating-Point Instruction

Floating-Point
Subtraction

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FSUB FRm,FRn FRn-FRm → FRn 1111nnnnmmmm0001 1 —

1 FSUB DRm,DRn DRn-DRm → DRn 1111nnn0mmm00001 6

Description

When FPSCR.PR = 0: Arithmetically subtracts the single-precision floating-point number in FRm
from the single-precision floating-point number in FRn, and stores the result in FRn.

When FPSCR.PR = 1: Arithmetically subtracts the double-precision floating-point number in
DRm from the double-precision floating-point number in DRn, and stores the result in DRn.

When FPSCR.enable.O/U/I is set, an FPU exception trap is generated regardless of whether or not
an exception has occurred. When an exception occurs, correct exception information is reflected in
FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate processing should
therefore be performed by software.

Operation

void FSUB (int m,n)

{

 pc += 2;

 clear_cause();

 if((data_type_of(m) == sNaN) ||

 (data_type_of(n) == sNaN)) invalid(n);

 else if((data_type_of(m) == qNaN) ||

 (data_type_of(n) == qNaN)) qnan(n);

 else if((data_type_of(m) == DENORM) ||

 (data_type_of(n) == DENORM)) set_E();

 else switch (data_type_of(m)){

 case NORM: switch (data_type_of(n)){

 case NORM: normal_faddsub(m,n,SUB); break;

 case PZERO:

 case NZERO: register_copy(m,n); FR[n] = -FR[n];break;

 default: break;

Rev. 4.0, 03/00, page 278 of 395

 } break;

 case PZERO: break;

 case NZERO: switch (data_type_of(n)){

 case NZERO: zero(n,0); break;

 default: break;

 } break;

 case PINF: switch (data_type_of(n)){

 case PINF: invalid(n); break;

 default: inf(n,1); break;

 } break;

 case NINF: switch (data_type_of(n)){

 case NINF: invalid(n); break;

 default: inf(n,0); break;

 } break;

 }

}

FSUB Special Cases

FRm,DRm FRn,DRn

NORM +0 –0 +INF –INF DENORM qNaN sNaN

NORM SUB +INF –INF

+0 –0

–0 +0

+INF –INF Invalid

–INF +INF Invalid

DENORM Error

qNaN qNaN

sNaN Invalid

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• FPU error

• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 279 of 395

9.46 FTRC Floating-point TRuncate
and Convert to integer Floating-Point Instruction

Conversion
to Integer

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FTRC FRm,FPUL (long)FRm → FPUL 1111mmmm00111101 1 —

1 FTRC DRm,FPUL (long)DRm → FPUL 1111mmm000111101 2 —

Description

When FPSCR.PR = 0: Converts the single-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

When FPSCR.PR = 1: Converts the double-precision floating-point number in FRm to a 32-bit
integer, and stores the result in FPUL.

The rounding mode is always truncation.

Operation

#define N_INT_SINGLE_RANGE 0xcf000000 & 0x7fffffff /* -1.000000 * 2^31 */

#define P_INT_SINGLE_RANGE 0x4effffff /* 1.fffffe * 2^30 */

#define N_INT_DOUBLE_RANGE 0xc1e0000000200000 & 0x7fffffffffffffff

#define P_INT_DOUBLE_RANGE 0x41e0000000000000

void FTRC(int m, int *FPUL)

{

 pc += 2;

 clear_cause();

 if(FPSCR.PR==0){

 case(ftrc_single_ type_of(m)){

 NORM: *FPUL = FR[m]; break;

 PINF: ftrc_invalid(0); break;

 NINF: ftrc_invalid(1); break;

 }

 }

 else{ /* case FPSCR.PR=1 */

 case(ftrc_double_type_of(m)){

Rev. 4.0, 03/00, page 280 of 395

 NORM: *FPUL = DR[m>>1]; break;

 PINF: ftrc_invalid(0); break;

 NINF: ftrc_invalid(1); break;

 }

 }

}

int ftrc_signle_type_of(int m)

{

 if(sign_of(m) == 0){

 if(FR_HEX[m] > 0x7f800000) return(NINF); /* NaN */

 else if(FR_HEX[m] > P_INT_SINGLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {

 if((FR_HEX[m] & 0x7fffffff) > N_INT_SINGLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

}

int ftrc_double_type_of(int m)

{

 if(sign_of(m) == 0){

 if((FR_HEX[m] > 0x7ff00000) ||

 ((FR_HEX[m] == 0x7ff00000) &&

 (FR_HEX[m+1] != 0x00000000))) return(NINF); /* NaN */

 else if(DR_HEX[m>>1] >= P_INT_DOUBLE_RANGE)

 return(PINF); /* out of range,+INF */

 else return(NORM); /* +0,+NORM */

 } else {

 if((DR_HEX[m>>1] & 0x7fffffffffffffff) >= N_INT_DOUBLE_RANGE)

 return(NINF); /* out of range ,+INF,NaN*/

 else return(NORM); /* -0,-NORM */

 }

}

void ftrc_invalid(int sign, int *FPUL)

{

 set_V();

Rev. 4.0, 03/00, page 281 of 395

 if((FPSCR & ENABLE_V) == 0){

 if(sign == 0) *FPUL = 0x7fffffff;

 else *FPUL = 0x80000000;

 }

 else fpu_exception_trap();

}

FTRC Special Cases

FRn,DRn NORM +0 –0

Positive
Out of
Range

Negative
Out of
Range +INF –INF qNaN sNaN

FTRC
(FRn,DRn)

TRC 0 0 Invalid
+MAX

Invalid
–MAX

Invalid
+MAX

Invalid
–MAX

Invalid
–MAX

Invalid
–MAX

Note: When DN = 1, the value of a denormalized number is treated as 0.

Possible Exceptions:
• Invalid operation

Rev. 4.0, 03/00, page 282 of 395

9.47 FTRV Floating-point
TRansform Vector Floating-Point Instruction

Vector
Transformation

PR Format Summary of Operation Instruction Code
Execution
States T Bit

0 FTRV XMTRX,FVn XMTRX*FVn → FVn 1111nn0111111101 4 —

1 — — — — —

Description

When FPSCR.PR = 0: This instruction takes the contents of floating-point registers XF0 to XF15
indicated by XMTRX as a 4-row × 4-column matrix, takes the contents of floating-point registers
FR[n] to FR[n + 3] indicated by FVn as a 4-dimensional vector, multiplies the array by the vector,
and stores the results in FV[n].

XMTRX FVn FVn
XF[0] XF[4] XF[8] XF[12] FR[n] FR[n]
XF[1] XF[5] XF[9] XF[13] × FR[n+1] → FR[n+1]
XF[2] XF[6] XF[10] XF[14] FR[n+2] FR[n+2]
XF[3] XF[7] XF[11] XF[15] FR[n+3] FR[n+3]

The FTRV instruction is intended for speed rather than accuracy, and therefore the results will
differ from those obtained by using a combination of FADD and FMUL instructions. The FTRV
execution sequence is as follows:

1. Multiplies all terms. The results are 30 bits long.

2. Aligns these results, rounding them to fit within 28 bits.

3. Adds the aligned values.

4. Performs normalization and rounding.

Special processing is performed in the following cases:

1. If an input value is an sNaN, an invalid exception is generated.

2. If the input values to be multiplied include a combination of 0 and infinity, an invalid
operation exception is generated.

3. In cases other than the above, if the input values include a qNaN, the result will be a qNaN.

4. In cases other than the above, if the input values include infinity:

a. If multiplication results in two or more infinities and the signs are different, an invalid
exception will be generated.

b. Otherwise, correct infinities will be stored.

Rev. 4.0, 03/00, page 283 of 395

5. If the input values do not include an sNaN, qNaN, or infinity, processing is performed in the
normal way.

When FPSCR.enable.V/O/U/I is set, an FPU exception trap is generated regardless of whether or
not an exception has occurred. When an exception occurs, correct exception information is
reflected in FPSCR.cause and FPSCR.flag, and FRn or DRn is not updated. Appropriate
processing should therefore be performed by software.

Operation

void FTRV (int n) /* FTRV FVn */

{

float saved_vec[4],result_vec[4];

int saved_fpscr;

int dst,i;

 if(FPSCR_PR == 0) {

 PC += 2;

 clear_cause();

 saved_fpscr = FPSCR;

 FPSCR &= ~ENABLE_VOUI; /* mask VOUI enable */

 dst = 12 - n; /* select other vector than FVn */

 for(i=0;i<4;i++)saved_vec [i] = FR[dst+i];

 for(i=0;i<4;i++){

 for(j=0;j<4;j++) FR[dst+j] = XF[i+4j];

 fipr(n,dst);

 saved_fpscr |= FPSCR & (CAUSE|FLAG) ;

 result_vec [i] = FR[dst+3];

 }

 for(i=0;i<4;i++)FR[dst+i] = saved_vec [i];

 FPSCR = saved_fpscr;

 if(FPSCR & ENABLE_VOUI) fpu_exception_trap();

 else for(i=0;i<4;i++) FR[n+i] = result_vec [i];

 }

 else undefined_operation();

}

Rev. 4.0, 03/00, page 284 of 395

Possible Exceptions:
• Invalid operation

• Overflow

• Underflow

• Inexact

Rev. 4.0, 03/00, page 285 of 395

9.48 JMP JuMP Branch Instruction
Unconditional Branch Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

JMP @Rn Rn → PC 0100nnnn00101011 2 —

Description

Unconditionally makes a delayed branch to the address specified by Rn.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JMP(int n)/* JMP @Rn */

{

 unsigned int temp;

 temp=PC;

 PC=R[n];

 Delay_Slot(temp+2);

}

Example

MOV.L JMP_TABLE,R0 ;R0 = TRGET address

JMP @R0 ;Branch to TRGET.

MOV R0,R1 ;MOV executed before branch.

.align 4

JMP_TABLE: . data.l TRGET ;Jump table

TRGET: ADD #1,R1 ; ← Branch destination

Rev. 4.0, 03/00, page 286 of 395

9.49 JSR Jump to SubRoutine Branch Instruction
Branch to Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

JSR @Rn PC+4 → PR, Rn → PC 0100nnnn00001011 2 —

Description

This instruction makes a delayed branch to the subroutine procedure at the specified address after
execution of the following instruction. Return address (PC + 4) is saved in PR, and a branch is
made to the address indicated by general register Rn. JSR is used in combination with RTS for
subroutine procedure calls.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

Operation

JSR(int n)/* JSR @Rn */

{

 unsigned int temp;

 temp=PC;

 PR=PC+4;

 PC=R[n];

 Delay_Slot(temp+2);

}

Rev. 4.0, 03/00, page 287 of 395

Example

MOV.L JSR_TABLE,R0 ; R0 = TRGET address

JSR @R0 ;Branch to TRGET.

XOR R1,R1 ;XOR executed before branch.

ADD R0,R1 ; ← Procedure return destination (PR contents)

.......

.align 4

JSR_TABLE: . data.l TRGET ;Jump table

TRGET: NOP ;← Entry to procedure

MOV R2,R3 ;

RTS ;Return to above ADD instruction.

MOV #70,R1 ; MOV executed before RTS.

Rev. 4.0, 03/00, page 288 of 395

9.50 LDC LoaD to Control register System Control Instruction
Load to Control
Register (Privileged Instruction)

Format Summary of Operation Instruction Code
Execution
States T Bit

LDC Rm, SR Rm → SR 0100mmmm00001110 4 LSB

LDC Rm, GBR Rm → GBR 0100mmmm00011110 3 —

LDC Rm, VBR Rm → VBR 0100mmmm00101110 1 —

LDC Rm, SSR Rm → SSR 0100mmmm00111110 1 —

LDC Rm, SPC Rm → SPC 0100mmmm01001110 1

LDC Rm, DBR Rm → DBR 0100mmmm11111010 1 —

LDC Rm, R0_BANK Rm → R0_BANK 0100mmmm10001110 1 —

LDC Rm, R1_BANK Rm → R1_BANK 0100mmmm10011110 1 —

LDC Rm, R2_BANK Rm → R2_BANK 0100mmmm10101110 1 —

LDC Rm, R3_BANK Rm → R3_BANK 0100mmmm10111110 1 —

LDC Rm, R4_BANK Rm → R4_BANK 0100mmmm11001110 1 —

LDC Rm, R5_BANK Rm → R5_BANK 0100mmmm11011110 1 —

LDC Rm, R6_BANK Rm → R6_BANK 0100mmmm11101110 1 —

LDC Rm, R7_BANK Rm → R7_BANK 0100mmmm11111110 1 —

LDC.L @Rm+, SR (Rm) → SR, Rm+4 → Rm 0100mmmm00000111 4 LSB

LDC.L @Rm+, GBR (Rm) → GBR, Rm+4 → Rm 0100mmmm00010111 3 —

LDC.L @Rm+, VBR (Rm) → VBR, Rm+4 → Rm 0100mmmm00100111 1 —

LDC.L @Rm+, SSR (Rm) → SSR, Rm+4 → Rm 0100mmmm00110111 1 —

LDC.L @Rm+, SPC (Rm) → SPC, Rm+4 → Rm 0100mmmm01000111 1 —

LDC.L @Rm+, DBR (Rm) → DBR, Rm+4 → Rm 0100mmmm11110110 1 —

LDC.L @Rm+, R0_BANK (Rm) → R0_BANK, Rm+4 → Rm 0100mmmm10000111 1 —

LDC.L @Rm+, R1_BANK (Rm) → R1_BANK, Rm+4 → Rm 0100mmmm10010111 1 —

LDC.L @Rm+, R2_BANK (Rm) → R2_BANK, Rm+4 → Rm 0100mmmm10100111 1 —

LDC.L @Rm+, R3_BANK (Rm) → R3_BANK, Rm+4 → Rm 0100mmmm10110111 1 —

LDC.L @Rm+, R4_BANK (Rm) → R4_BANK, Rm+4 → Rm 0100mmmm11000111 1 —

LDC.L @Rm+, R5_BANK (Rm) → R5_BANK, Rm+4 → Rm 0100mmmm11010111 1 —

LDC.L @Rm+, R6_BANK (Rm) → R6_BANK, Rm+4 → Rm 0100mmmm11100111 1 —

LDC.L @Rm+, R7_BANK (Rm) → R7_BANK, Rm+4 → Rm 0100mmmm11110111 1 —

Description

These instructions store the source operand in the control register SR, GBR, VBR, SSR, SPC,
DBR, or R0_BANK to R7_BANK.

Rev. 4.0, 03/00, page 289 of 395

Notes

With the exception of LDC Rm,GBR and LDC.L @Rm+,GBR, the LDC/LDC.L instructions are
privileged instructions and can only be used in privileged mode. Use in user mode will cause an
illegal instruction exception. However, LDC Rm,GBR and LDC.L @Rm+,GBR can also be used
in user mode.

With the LDC Rm, Rn_BANK and LDC.L @Rm, Rn_BANK instructions, Rn_BANK0 is
accessed when the RB bit in the SR register is 1, and Rn_BANK1 is accessed when this bit is 0.

Operation

 LDCSR(int m) /* LDC Rm,SR : Privileged */

 {

 SR=R[m]&0x700083F3;

 PC+=2;

 }

 LDCGBR(int m) /* LDC Rm,GBR */

 {

 GBR=R[m];

 PC+=2;

 }

 LDCVBR(int m) /* LDC Rm,VBR : Privileged */

 {

 VBR=R[m];

 PC+=2;

 }

 LDCSSR(int m) /* LDC Rm,SSR : Privileged */

 {

 SSR=R[m],

 PC+=2;

 }

 LDCSPC(int m) /* LDC Rm,SPC : Privileged */

 {

 SPC=R[m];

Rev. 4.0, 03/00, page 290 of 395

 PC+=2;

 }

 LDCDBR(int m) /* LDC Rm,DBR : Privileged */

 {

 DBR=R[m];

 PC+=2;

 }

 LDCRn_BANK(int m) /* LDC Rm,Rn_BANK : Privileged */

 /* n=0–7 */

 {

 Rn_BANK=R[m];

 PC+=2;

 }

 LDCMSR(int m) /* LDC.L @Rm+,SR : Privileged */

 {

 SR=Read_Long(R[m])&0x700083F3;

 R[m]+=4;

 PC+=2;

 }

 LDCMGBR(int m) /* LDC.L @Rm+,GBR */

 {

 GBR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMVBR(int m) /* LDC.L @Rm+,VBR : Privileged */

 {

 VBR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

Rev. 4.0, 03/00, page 291 of 395

 LDCMSSR(int m) /* LDC.L @Rm+,SSR : Privileged */

 {

 SSR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMSPC(int m) /* LDC.L @Rm+,SPC : Privileged */

 {

 SPC=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMDBR(int m) /* LDC.L @Rm+,DBR : Privileged */

 {

 DBR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

 LDCMRn_BANK(Long m) /* LDC.L @Rm+,Rn_BANK : Privileged */

 /* n=0–7 */

 {

 Rn_BANK=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

 }

Possible Exceptions:
• General illegal instruction exception

• Illegal slot instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Rev. 4.0, 03/00, page 292 of 395

9.51 LDS LoaD to FPU System
register System Control Instruction

Load to FPU
System Register

Format Summary of Operation Instruction Code
Execution
States T Bit

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 1 —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 1 —

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 1 —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 1 —

Description

This instruction loads the source operand into FPU system registers FPUL and FPSCR.

Operation

#define FPSCR_MASK 0x003FFFFF

LDSFPUL(int m, int *FPUL) /* LDS Rm,FPUL */

{

 *FPUL=R[m];

 PC+=2;

}

LDSMFPUL(int m, int *FPUL) /* LDS.L @Rm+,FPUL */

{

 *FPUL=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

}

LDSFPSCR(int m) /* LDS Rm,FPSCR */

{

 FPSCR=R[m] & FPSCR_MASK;

 PC+=2;

}

LDSMFPSCR(int m) /* LDS.L @Rm+,FPSCR */

{

 FPSCR=Read_Long(R[m]) & FPSCR_MASK;

Rev. 4.0, 03/00, page 293 of 395

 R[m]+=4;

 PC+=2;

}

Possible Exceptions:
• Data TLB miss exception

• Data access protection exception

• Address error

Rev. 4.0, 03/00, page 294 of 395

9.52 LDS LoaD to System register System Control Instruction
Load to System
Register

Format Summary of Operation Instruction Code
Execution
States T Bit

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm→ PR 0100mmmm00101010 2 —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 2 —

Description

Stores the source operand into the system registers MACH, MACL, or PR.

Operation

LDSMACH(int m) /* LDS Rm,MACH */

{

 MACH=R[m];

 PC+=2;

}

LDSMACL(int m) /* LDS Rm,MACL */

{

 MACL=R[m];

 PC+=2;

}

LDSPR(int m) /* LDS Rm,PR */

{

 PR=R[m];

 PC+=2;

}

LDSMMACH(int m) /* LDS.L @Rm+,MACH */

{

Rev. 4.0, 03/00, page 295 of 395

 MACH=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

}

LDSMMACL(int m) /* LDS.L @Rm+,MACL */

{

 MACL=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

}

LDSMPR(int m) /* LDS.L @Rm+,PR */

{

 PR=Read_Long(R[m]);

 R[m]+=4;

 PC+=2;

}

Example

LDS R0,PR ; Before execution R0 = H'12345678, PR = H'00000000

; After execution PR = H'12345678

LDS.L @R15+,MACL ; Before execution R15 = H'10000000

; After execution R15 = H'10000004, MACL = (H'10000000)

Rev. 4.0, 03/00, page 296 of 395

9.53 LDTLB LoaD PTEH/PTEL/PTEA
to TLB System Control Instruction

Load to TLB (Privileged Instruction)

Format Summary of Operation Instruction Code
Execution
States T Bit

LDTLB PTEH/PTEL/PTEA → TLB 0000000000111000 1 —

Description

This instruction loads the contents of the PTEH/PTEL/PTEA registers into the TLB (translation
lookaside buffer) specified by MMUCR.URC (random counter field in the MMC control register).

LDTLB is a privileged instruction, and can only be used in privileged mode. Use of this
instruction in user mode will cause an illegal instruction exception.

Notes

As this instruction loads the contents of the PTEH/PTEL/PTEA registers into a TLB, it should be
used either with the MMU disabled, or in the P1 or P2 virtual space with the MMU enabled (see
section 3, Memory Management Unit, for details). After this instruction is issued, there must be at
least one instruction between the LDTLB instruction and issuance of an instruction relating to
address to areas P0, U0, and P3 (i.e. BRAF, BSRF, JMP, JSR, RTS, or RTE).

Rev. 4.0, 03/00, page 297 of 395

Operation

LDTLB() /*LDTLB */

{

 TLB[MMUCR. URC] .ASID=PTEH & 0x000000FF;

 TLB[MMUCR. URC] .VPN=(PTEH & 0xFFFFFC00)>>10;

 TLB[MMUCR. URC] .PPN=(PTEH & 0x1FFFFC00)>>10;

 TLB[MMUCR. URC] .SZ=(PTEL & 0x00000080)>>6 |

 (PTEL & 0x00000010)>>4;

 TLB[MMUCR. URC] .SH=(PTEH & 0x00000002)>>1;

 TLB[MMUCR. URC] .PR=(PTEH & 0x00000060)>>5;

 TLB[MMUCR. URC] .WT=(PTEH & 0x00000001);

 TLB[MMUCR. URC] .C=(PTEH & 0x00000008)>>3;

 TLB[MMUCR. URC] .D=(PTEH & 0x00000004)>>2;

 TLB[MMUCR. URC] .V=(PTEH & 0x00000100)>>8;

 TLB[MMUCR. URC] .SA=(PTEA & 0x00000007);

 TLB[MMUCR. URC] .TC=(PTEA & 0x00000008)>>3;

 PC+=2;

}

Example

MOV @R0,R1 ; Load page table entry (upper) into R1

MOV R1,@R2 ; Load R1 into PTEH; R2 is PTEH address (H'FF000000)

LDTLB ; Load PTEH, PTEL, PTEA registers into TLB

Rev. 4.0, 03/00, page 298 of 395

9.54 MAC.L Multiply and ACcumulate
Long Arithmetic Instruction

Double-Precision
Multiply-and-Accumulate
Operation

Format Summary of Operation Instruction Code
Execution
States T Bit

MAC.L @Rm+,@Rn+ Signed,
(Rn) × (Rm) + MAC → MAC

Rn + 4 → Rn, Rm + 4 → Rm

0000nnnnmmmm1111 2–5 —

Description

This instruction performs signed multiplication of the 32-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 64-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 4 each time
they are read.

If the S bit is 0, the 64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, the addition to the MAC register contents is a saturation operation at the 48th bit
from the LSB. In a saturation operation, only the lower 48 bits of the MAC register are valid, and
the result range is limited to H'FFFF800000000000 (minimum value) to H'00007FFFFFFFFFFF
(maximum value).

Operation

MACL(long m, long n) /* MAC.L @Rm+,@Rn+ */

{

 unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

 unsigned long temp0,temp1,temp2,temp3;

 long tempm,tempn,fnLmL;

 tempn=(long)Read_Long(R[n]);

 R[n]+=4;

 tempm=(long)Read_Long(R[m]);

 R[m]+=4;

 if ((long)(tempn^tempm)<0) fnLmL=-1;

 else fnLmL=0;

Rev. 4.0, 03/00, page 299 of 395

 if (tempn<0) tempn=0-tempn;

 if (tempm<0) tempm=0-tempm;

 temp1=(unsigned long)tempn;

 temp2=(unsigned long)tempm;

 RnL=temp1&0x0000FFFF;

 RnH=(temp1>>16)&0x0000FFFF;

 RmL=temp2&0x0000FFFF;

 RmH=(temp2>>16)&0x0000FFFF;

 temp0=RmL*RnL;

 temp1=RmH*RnL;

 temp2=RmL*RnH;

 temp3=RmH*RnH;

 Res2=0;

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLmL<0){

 Res2= ~Res2;

 if (Res0==0) Res2++;

 else Res0=(~Res0)+1;

}

if(S==1){

 Res0=MACL+Res0;

 if (MACL>Res0) Res2++;

 if (MACH&0x00008000);

 else Res2+=MACH|0xFFFF0000;

Rev. 4.0, 03/00, page 300 of 395

 Res2+=MACH&0x00007FFF;

 if(((long)Res2<0)&&(Res2<0xFFFF8000)){

 Res2=0xFFFF8000;

 Res0=0x00000000;

 }

 if(((long)Res2>0)&&(Res2>0x00007FFF)){

 Res2=0x00007FFF;

 Res0=0xFFFFFFFF;

 };

 MACH=(Res2&0x0000FFFF)|(MACH&0xFFFF0000);

 MACL=Res0;

}

 else {

 Res0=MACL+Res0;

 if (MACL>Res0) Res2++;

 Res2+=MACH;

 MACH=Res2;

 MACL=Res0;

 }

 PC+=2;

}

Rev. 4.0, 03/00, page 301 of 395

Example

MOVA TBLM,R0 ;Get table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Get table address

CLRMAC ;MAC register initialization

MAC.L @R0+,@R1+ ;

MAC.L @R0+,@R1+ ;

STS MACL,R0 ;Get result in R0

.........

.align 2 ;

TBLM .data.l H'1234ABCD ;

.data.l H'5678EF01 ;

TBLN .data.l H'0123ABCD ;

.data.l H'4567DEF0 ;

Rev. 4.0, 03/00, page 302 of 395

9.55 MAC.W Multiply and
ACcumulate Word Arithmetic Instruction

Single-Precision
Multiply-and-Accumulate
Operation

Format Summary of Operation Instruction Code
Execution
States T Bit

MAC.W @Rm+,@Rn+

MAC @Rm+,@Rn+

Signed,
(Rn) × (Rm) + MAC →MAC

Rn + 2 → Rn, Rm + 2 → Rm

0100nnnnmmmm1111 2–5 —

Description

This instruction performs signed multiplication of the 16-bit operands whose addresses are the
contents of general registers Rm and Rn, adds the 32-bit result to the MAC register contents, and
stores the result in the MAC register. Operands Rm and Rn are each incremented by 2 each time
they are read.

If the S bit is 0, a 16 × 16 + 64 → 64-bit multiply-and-accumulate operation is performed, and the
64-bit result is stored in the linked MACH and MACL registers.

If the S bit is 1, a 16 × 16 + 32 → 32-bit multiply-and-accumulate operation is performed, and the
addition to the MAC register contents is a saturation operation. In a saturation operation, only the
MACL register is valid, and the result range is limited to H'80000000 (minimum value) to
H'7FFFFFFF (maximum value). If overflow occurs, the LSB of the MACH register is set to 1.
H'80000000 (minimum value) is stored in the MACL register if the result overflows in the
negative direction, and H'7FFFFFFF (maximum value) is stored if the result overflows in the
positive direction

Notes

If the S bit is 0, a 16 × 16 + 64 → 64-bit multiply-and-accumulate operation is performed.

Rev. 4.0, 03/00, page 303 of 395

Operation

MACW(long m, long n) /* MAC.W @Rm+,@Rn+ */

{

 long tempm,tempn,dest,src,ans;

 unsigned long templ;

 tempn=(long)Read_Word(R[n]);

 R[n]+=2;

 tempm=(long)Read_Word(R[m]);

 R[m]+=2;

 templ=MACL;

 tempm=((long)(short)tempn*(long)(short)tempm);

 if ((long)MACL>=0) dest=0;

 else dest=1;

 if ((long)tempm>=0) {

 src=0;

 tempn=0;

 }

 else {

 src=1;

 tempn=0xFFFFFFFF;

 }

 src+=dest;

 MACL+=tempm;

 if ((long)MACL>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (S==1) {

 if (ans==1) {

 if (src==0) MACL=0x7FFFFFFF;

 if (src==2) MACL=0x80000000;

 }

 }

 else {

 MACH+=tempn;

 if (templ>MACL) MACH+=1;

 }

Rev. 4.0, 03/00, page 304 of 395

 PC+=2;

}

Example

MOVA TBLM,R0 ;Get table address

MOV R0,R1 ;

MOVA TBLN,R0 ;Get table address

CLRMAC ;MAC register initialization

MAC.W @R0+,@R1+ ;

MAC.W @R0+,@R1+ ;

STS MACL,R0 ;Get result in R0

...........

.align 2 ;

TBLM .data.w H'1234 ;

.data.w H'5678 ;

TBLN .data.w H'0123 ;

.data.w H'4567 ;

Rev. 4.0, 03/00, page 305 of 395

9.56 MOV MOVe data Data Transfer Instruction
Data Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) sign extension Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

MOV.B @Rm+,Rn (Rm) sign extension Rn,
Rm+1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) sign extension Rn,
Rm+2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm+4 → Rm 0110nnnnmmmm0110 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0+Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0+Rm) sign extension Rn 0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0+Rm) sign extension Rn 0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0+Rm) → Rn 0000nnnnmmmm1110 1 —

Description

This instruction transfers the source operand to the destination. When an operand is memory, the
data size can be specified as byte, word, or longword. When the source operand is memory, the
loaded data is sign-extended to longword before being stored in the register.

Rev. 4.0, 03/00, page 306 of 395

Operation

MOV(long m, long n) /* MOV Rm,Rn */

{

 R[n]=R[m];

 PC+=2;

}

MOVBS(long m, long n) /* MOV.B Rm,@Rn */

{

 Write_Byte(R[n],R[m]);

 PC+=2;

}

MOVWS(long m, long n) /* MOV.W Rm,@Rn */

{

 Write_Word(R[n],R[m]);

 PC+=2;

}

MOVLS(long m, long n) /* MOV.L Rm,@Rn */

{

 Write_Long(R[n],R[m]);

 PC+=2;

}

MOVBL(long m, long n) /* MOV.B @Rm,Rn */

{

 R[n]=(long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

}

MOVWL(long m, long n) /* MOV.W @Rm,Rn */

{

 R[n]=(long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

Rev. 4.0, 03/00, page 307 of 395

 else R[n]|=0xFFFF0000;

 PC+=2;

}

MOVLL(long m, long n) /* MOV.L @Rm,Rn */

}

 R[n]=Read_Long(R[m]);

 PC+=2;

}

MOVBM(long m, long n) /* MOV.B Rm,@-Rn */

{

 Write_Byte(R[n]-1,R[m]);

 R[n]-=1;

 PC+=2;

}

MOVWM(long m, long n) /* MOV.W Rm,@-Rn */

{

 Write_Word(R[n]-2,R[m]);

 R[n]-=2;

 PC+=2;

}

MOVLM(long m, long n) /* MOV.L Rm,@-Rn */

{

 Write_Long(R[n]-4,R[m]);

 R[n]-=4;

 PC+=2;

}

MOVBP(long m, long n) /* MOV.B @Rm+,Rn */

{

 R[n]=(long)Read_Byte(R[m]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 if (n!=m) R[m]+=1;

Rev. 4.0, 03/00, page 308 of 395

 PC+=2;

}

MOVWP(long m, long n) /* MOV.W @Rm+,Rn */

{

 R[n]=(long)Read_Word(R[m]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 if (n!=m) R[m]+=2;

 PC+=2;

}

MOVLP(long m, long n) /* MOV.L @Rm+,Rn */

{

 R[n]=Read_Long(R[m]);

 if (n!=m) R[m]+=4;

 PC+=2;

}

MOVBS0(long m, long n) /* MOV.B Rm,@(R0,Rn) */

{

 Write_Byte(R[n]+R[0],R[m]);

 PC+=2;

}

MOVWS0(long m, long n) /* MOV.W Rm,@(R0,Rn) */

{

 Write_Word(R[n]+R[0],R[m]);

 PC+=2;

}

MOVLS0(long m, long n) /* MOV.L Rm,@(R0,Rn) */

{

 Write_Long(R[n]+R[0],R[m]);

 PC+=2;

}

MOVBL0(long m, long n) /* MOV.B @(R0,Rm),Rn */

Rev. 4.0, 03/00, page 309 of 395

{

 R[n]=(long)Read_Byte(R[m]+R[0]);

 if ((R[n]&0x80)==0) R[n]&=0x000000FF;

 else R[n]|=0xFFFFFF00;

 PC+=2;

}

MOVWL0(long m, long n) /* MOV.W @(R0,Rm),Rn */

{

 R[n]=(long)Read_Word(R[m]+R[0]);

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

}

MOVLL0(long m, long n) /* MOV.L @(R0,Rm),Rn */

{

 R[n]=Read_Long(R[m]+R[0]);

 PC+=2;

}

Example

MOV R0,R1 ;Before execution R0 = H'FFFFFFFF, R1 = H'00000000

; After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution R0 = H'FFFF7F80

; After execution (R1) = H'7F80

MOV.B @R0,R1 ;Before execution (R0) = H'80, R1 = H'00000000

; After execution R1 = H'FFFFFF80

MOV.W R0,@-R1 ;Before execution R0 = H'AAAAAAAA, (R1) = H'FFFF7F80

; After execution R1 = H'FFFF7F7E, (R1) = H'AAAA

MOV.L @R0+,R1 ;Before execution R0 = H'12345670

; After execution R0 = H'12345674, R1 = (H'12345670)

MOV.B R1,@(R0,R2) ; Before execution R2 = H'00000004, R0 = H'10000000

; After execution R1 = (H'10000004)

MOV.W @(R0,R2),R1 ; Before execution R2 = H'00000004, R0 = H'10000000

; After execution R1 = (H'10000004)

Rev. 4.0, 03/00, page 310 of 395

9.57 MOV MOVe constant value Data Transfer Instruction
Immediate Data
Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOV #imm,Rn imm sign extension Rn 1110nnnniiiiiiii 1 —

MOV.W @(disp,PC),Rn (disp×2+PC+4) → sign
extension Rn

1001nnnndddddddd 1 —

MOV.L @(disp,PC),Rn (disp×4+PC+4) → Rn 1101nnnndddddddd 1 —

Description

This instruction stores immediate data, sign-extended to longword, in general register Rn. In the
case of word or longword data, the data is stored from memory address (PC + 4 + displacement ×
2) or (PC + 4 + displacement × 4).

With word data, the 8-bit displacement is multiplied by two after zero-extension, and so the
relative distance from the table is in the range up to PC + 4 + 510 bytes. The PC value is the
address of this instruction.

With longword data, the 8-bit displacement is multiplied by four after zero-extension, and so the
relative distance from the operand is in the range up to PC + 4 + 1020 bytes. The PC value is the
address of this instruction. A value with the lower 2 bits adjusted to B'00 is used in address
calculation.

Notes

If a PC-relative load instruction is executed in a delay slot, an illegal slot instruction exception will
be generated.

Rev. 4.0, 03/00, page 311 of 395

Operation

MOVI(int i, int n) /* MOV #imm,Rn */

{

 if ((i&0x80)==0) R[n]=(0x000000FF & i);

 else R[n]=(0xFFFFFF00 | i);

 PC+=2;

}

MOVWI(d, n) /* MOV.W @(disp,PC),Rn */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[n]=(int)Read_Word(PC+4+(disp<<1));

 if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

 else R[n]|=0xFFFF0000;

 PC+=2;

}

 MOVLI(int d, int n)/* MOV.L @(disp,PC),Rn */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & (int)d);

 R[n]=Read_Long((PC&0xFFFFFFFC)+4+(disp<<2));

 PC+=2;

}

Rev. 4.0, 03/00, page 312 of 395

Example

Address

1000 MOV #H'80,R1 ; R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC IMM means (PC + 4 + H'08)

1004 ADD #-1,R0 ;

1006 TST R0,R0 ;

1008 MOV.L @(3,PC),R3 ; R3 = H'12345678

100A BRA NEXT ;Delayed branch instruction

100C NOP

100E IMM .data.w H'9ABC ;

1010 .data.w H'1234 ;

1012 NEXT JMP @R3 ;BRA branch instruction

1014 CMP/EQ #0,R0 ;

.align 4 ;

1018 .data.l H'12345678 ;

101C .data.l H'9ABCDEF0 ;

Rev. 4.0, 03/00, page 313 of 395

9.58 MOV MOVe global data Data Transfer Instruction
Global Data
Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOV.B @(disp,GBR),R0 (disp+GBR) → sign
extension R0

11000100dddddddd 1 —

MOV.W @(disp,GBR), R0 (disp×2+GBR) → sign
extension R0

11000101dddddddd 1 —

MOV.L @(disp,GBR),R0 (disp×4+GBR) → R0 11000110dddddddd 1 —

MOV.B R0,@(disp,GBR) R0 → (disp+GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) R0 → (disp×2+GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) R0 → (disp×4+GBR) 11000010dddddddd 1 —

Description

This instruction transfers the source operand to the destination. Byte, word, or longword can be
specified as the data size, but the register is always R0. If the transfer data is byte-size, the 8-bit
displacement is only zero-extended, so a range up to +255 bytes can be specified. If the transfer
data is word-size, the 8-bit displacement is multiplied by two after zero-extension, enabling a
range up to +510 bytes to be specified. With longword transfer data, the 8-bit displacement is
multiplied by four after zero-extension, enabling a range up to +1020 bytes to be specified.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading, the destination register is always R0.

Rev. 4.0, 03/00, page 314 of 395

Operation

MOVBLG(int d) /* MOV.B @(disp,GBR),R0 */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(int)Read_Byte(GBR+disp);

 if ((R[0]&0x80)==0) R[0]&=0x000000FF;

 else R[0]|=0xFFFFFF00;

 PC+=2;

}

MOVWLG(int d) /* MOV.W @(disp,GBR),R0 */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(int)Read_Word(GBR+(disp<<1));

 if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

 else R[0]|=0xFFFF0000;

 PC+=2;

}

MOVLLG(int d) /* MOV.L @(disp,GBR),R0 */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=Read_Long(GBR+(disp<<2));

 PC+=2;

}

MOVBSG(int d) /* MOV.B R0,@(disp,GBR) */

{

 unsigned int disp;

Rev. 4.0, 03/00, page 315 of 395

 disp=(unsigned int)(0x000000FF & d);

 Write_Byte(GBR+disp,R[0]);

 PC+=2;

}

MOVWSG(int d) /* MOV.W R0,@(disp,GBR) */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 Write_Word(GBR+(disp<<1),R[0]);

 PC+=2;

}

MOVLSG(int d) /* MOV.L R0,@(disp,GBR) */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & (long)d);

 Write_Long(GBR+(disp<<2),R[0]);

 PC+=2;

}

Example

MOV.L @(2,GBR),R0 ; Before execution (GBR+8) = H'12345670

; After execution R0 = (H'12345670)

MOV.B R0,@(1,GBR) ; Before execution R0 = H'FFFF7F80

; After execution (GBR+1) = H'80

Rev. 4.0, 03/00, page 316 of 395

9.59 MOV MOVe structure data Data Transfer Instruction
Structure Data
Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOV.B R0,@(disp,Rn) R0 → (disp+Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp,Rn) R0 → (disp×2+Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp×4+Rn) 0001nnnnmmmmdddd 1 —

MOV.B @(disp,Rm),R0 (disp+Rm) → sign
extension R0

10000100mmmmdddd 1 —

MOV.W @(disp,Rm),R0 (disp×2+Rm) → sign
extension R0

10000101mmmmdddd 1 —

MOV.L @(disp,Rm),Rn (disp×4+Rm) → Rn 0101nnnnmmmmdddd 1 —

Description

This instruction transfers the source operand to the destination. It is ideal for accessing data inside
a structure or stack. Byte, word, or longword can be specified as the data size, but with byte or
word data the register is always R0.

If the data is byte-size, the 4-bit displacement is only zero-extended, so a range up to +15 bytes
can be specified. If the data is word-size, the 4-bit displacement is multiplied by two after zero-
extension, enabling a range up to +30 bytes to be specified. With longword data, the 4-bit
displacement is multiplied by four after zero-extension, enabling a range up to +60 bytes to be
specified. If a memory operand cannot be reached, the previously described @(R0,Rn) mode must
be used.

When the source operand is memory, the loaded data is sign-extended to longword before being
stored in the register.

Notes

When loading byte or word data, the destination register is always R0. Therefore, if the following
instruction attempts to reference R0, it is kept waiting until completion of the load instruction.
This allows optimization by changing the order of instructions.

MOV.B
AND
ADD

@(2,R1),R0
#80,R0
#20,R1

MOV.B
ADD
AND

@(2,R1),R0
#20,R1
#80,R0

Rev. 4.0, 03/00, page 317 of 395

Operation

MOVBS4(long d, long n /* MOV.B R0,@(disp,Rn) */

{

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Byte(R[n]+disp,R[0]);

 PC+=2;

}

MOVWS4(long d, long n) /* MOV.W R0,@(disp,Rn) */

{

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Word(R[n]+(disp<<1),R[0]);

 PC+=2;

}

MOVLS4(long m, long d, long n) /* MOV.L Rm,@(disp,Rn) */

{

 long disp;

 disp=(0x0000000F & (long)d);

 Write_Long(R[n]+(disp<<2),R[m]);

 PC+=2;

}

MOVBL4(long m, long d) /* MOV.B @(disp,Rm),R0 */

{

 long disp;

 disp=(0x0000000F & (long)d);

 R[0]=Read_Byte(R[m]+disp);

 if ((R[0]&0x80)==0) R[0]&=0x000000FF;

 else R[0]|=0xFFFFFF00;

 PC+=2;

}

Rev. 4.0, 03/00, page 318 of 395

MOVWL4(long m, long d) /* MOV.W @(disp,Rm),R0 */

{

 long disp;

 disp=(0x0000000F & (long)d);

 R[0]=Read_Word(R[m]+(disp<<1));

 if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

 else R[0]|=0xFFFF0000;

 PC+=2;

}

MOVLL4(long m, long d, long n) /* MOV.L @(disp,Rm),Rn */

{

 long disp;

 disp=(0x0000000F & (long)d);

 R[n]=Read_Long(R[m]+(disp<<2));

 PC+=2;

}

Example

MOV.L @(2,R0),R1 ; Before execution (R0+8) = H'12345670

; After execution R1 = (H'12345670)

MOV.L R0,@(H'F,R1) ; Before execution R0 = H'FFFF7F80

; After execution (R1+60) = H'FFFF7F80

Rev. 4.0, 03/00, page 319 of 395

9.60 MOVA MOVe effective Address Data Transfer Instruction
Effective Address
Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOVA @(disp,PC),R0 disp×4+PC+4 → R0 11000111dddddddd 1 —

Description

This instruction stores the source operand effective address in general register R0. The 8-bit
displacement is multiplied by four after zero-extension. The PC value is the address of this
instruction, but a value with the lower 2 bits adjusted to B'00 is used in address calculation.

Notes

If this instruction is executed in a delay slot, an illegal slot instruction exception will be generated.

Operation

MOVA(int d) /* MOVA @(disp,PC),R0 */

{

 unsigned int disp;

 disp=(unsigned int)(0x000000FF & d);

 R[0]=(PC&0xFFFFFFFC)+4+(disp<<2);

 PC+=2;

}

Example

Address .org H'1006

1006 MOVA STR,R0 ; STR address → R0

1008 MOV.B @R0,R1 ; R1 = “X” ← Position after adjustment of lower 2 bits of PC

100A ADD R4,R5 ; ← Original PC position in MOVA instruction address calculation

.align 4

100C STR: .sdata "XYZP12"

Rev. 4.0, 03/00, page 320 of 395

9.61 MOVCA.L MOVe with Cache
block Allocation Data Transfer Instruction

Cache Block Allocation

Format Summary of Operation Instruction Code
Execution
States T Bit

MOVCA.L R0,@Rn R0 → (Rn) 0000nnnn11000011 1 —

Description

This instruction stores the contents of general register R0 in the memory location indicated by
effective address Rn. This instruction differs from other store instructions as follows.

If write-back is selected for the accessed memory, and a cache miss occurs, the cache block will
be allocated but an R0 data write will be performed to that cache block without performing a block
read. Other cache block contents are undefined.

Operation

MOVCAL(int n) /*MOVCA.L R0,@Rn */

 {

 if ((is_write_back_memory(R[n]))

 && (look_up_in_operand_cache(R[n]) == MISS))

 allocate_operand_cache_block(R[n]);

 Write_Long(R[n], R[0]);

 PC+=2;

 }

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

Rev. 4.0, 03/00, page 321 of 395

9.62 MOVT MOVe T bit Data Transfer Instruction
T Bit Transfer

Format Summary of Operation Instruction Code
Execution
States T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description

This instruction stores the T bit in general register Rn. When T = 1, Rn = 1; when T = 0, Rn = 0.

Operation

MOVT(long n) /* MOVT Rn */

{

 R[n]=(0x00000001 & SR);

 PC+=2;

}

Example

XOR R2,R2 ;R2 = 0

CMP/PZ R2 ;T = 1

MOVT R0 ;R0 = 1

CLRT ;T = 0

MOVT R1 ;R1 = 0

Rev. 4.0, 03/00, page 322 of 395

9.63 MUL.L MULtiply Long Arithmetic Instruction
Double-Precision
Multiplication

Format Summary of Operation Instruction Code
Execution
States T Bit

MUL.L Rm,Rn Rn×Rm → MACL 0000nnnnmmmm0111 2–5 —

Description

This instruction performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the lower 32 bits of the result in the MACL register. The contents of MACH are not
changed.

Operation

MULL(long m, long n) /* MUL.L Rm,Rn */

{

 MACL=R[n]*R[m];

 PC+=2;

}

Example

MUL.L R0,R1 ; Before execution R0 = H'FFFFFFFE, R1 = H'00005555

; After execution MACL = H'FFFF5556

STS MACL,R0 ;Get operation result

Rev. 4.0, 03/00, page 323 of 395

9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
Signed
Multiplication

Format Summary of Operation Instruction Code
Execution
States T Bit

MULS.W Rm,Rn

MULS Rm,Rn

Signed, Rn × Rm → MACL 0010nnnnmmmm1111 2–5 —

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as a signed
arithmetic operation. The contents of MACH are not changed.

Operation

MULS(long m, long n) /* MULS Rm,Rn */

{

 MACL=((long)(short)R[n]*(long)(short)R[m]);

 PC+=2;

}

Example

MULS.W R0,R 1 ; Before execution R0 = H'FFFFFFFE, R1 = H'00005555

; After execution MACL = H'FFFF5556

STS MACL,R0 ;Get operation result

Rev. 4.0, 03/00, page 324 of 395

9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
Unsigned Multiplication

Format Summary of Operation Instruction Code
Execution
States T Bit

MULU.W Rm,Rn

MULU Rm,Rn

Unsigned, Rn × Rm → MACL 0010nnnnmmmm1110 2–5 —

Description

This instruction performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The multiplication is performed as an unsigned
arithmetic operation. The contents of MACH are not changed.

Operation

MULU(long m, long n) /* MULU Rm,Rn */

{

 MACL=((unsigned long)(unsigned short)R[n]*

 (unsigned long)(unsigned short)R[m];

 PC+=2;

}

Example

MULU.W R0,R1 ;Before execution R0 = H'00000002, R1 = H'FFFFAAAA

; After execution MACL = H'00015554

STS MACL,R0 ;Get operation result

Rev. 4.0, 03/00, page 325 of 395

9.66 NEG NEGate Arithmetic Instruction
Sign Inversion

Format Summary of Operation Instruction Code
Execution
States T Bit

NEG Rm,Rn 0-Rm → Rn 0110nnnnmmmm1011 1 —

Description

This instruction finds the two’s complement of the contents of general register Rm and stores the
result in Rn. That is, it subtracts Rm from 0 and stores the result in Rn.

Operation

NEG(long m, long n) /* NEG Rm,Rn */

{

 R[n]=0-R[m];

 PC+=2;

}

Example

NEG R0,R1 ; Before execution R0 = H'00000001

; After execution R1 = H'FFFFFFFF

Rev. 4.0, 03/00, page 326 of 395

9.67 NEGC NEGate with Carry Arithmetic Instruction
Sign Inversion with Borrow

Format Summary of Operation Instruction Code
Execution
States T Bit

NEGC Rm,Rn 0 – Rm – T → Rn,
borrow → T

0110nnnnmmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register and the T bit from 0 and stores the result
in Rn. A borrow resulting from the operation is reflected in the T bit. The NEGC instruction is
used for sign inversion of a value exceeding 32 bits.

Operation

NEGC(long m, long n) /* NEGC Rm,Rn */

{

 unsigned long temp;

 temp=0-R[m];

 R[n]=temp-T;

 if (0<temp) T=1;

 else T=0;

 if (temp<R[n]) T=1;

 PC+=2;

}

Example

CLRT ;Sign inversion of R0:R1 (64 bits)

NEGC R1,R1 ;Before execution R1 = H'00000001, T = 0

; After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ; Before execution R0 = H'00000000, T = 1

; After execution R0 = H'FFFFFFFF, T = 1

Rev. 4.0, 03/00, page 327 of 395

9.68 NOP No OPeration System Control Instruction
No Operation

Format Summary of Operation Instruction Code
Execution
States T Bit

NOP No operation 0000000000001001 1 —

Description

This instruction simply increments the program counter (PC), advancing the processing flow to
execution of the next instruction.

Operation

NOP() /* NOP */

{

 PC+=2;

}

Example

NOP ;Time equivalent to one execution state elapses.

Rev. 4.0, 03/00, page 328 of 395

9.69 NOT NOT-logical complement Logical Instruction
Bit Inversion

Format Summary of Operation Instruction Code
Execution
States T Bit

NOT Rm,Rn ∼Rm → Rn 0110nnnnmmmm0111 1 —

Description

This instruction finds the one’s complement of the contents of general register Rm and stores the
result in Rn. That is, it inverts the Rm bits and stores the result in Rn.

Operation

NOT(long m, long n) /* NOT Rm,Rn */

{

 R[n]= ∼R[m];

 PC+=2;

}

Example

NOT R0,R1 ; Before execution R0 = H'AAAAAAAA

 ; After execution R1 = H'55555555

Rev. 4.0, 03/00, page 329 of 395

9.70 OCBI Operand Cache Block
Invalidate Data Transfer Instruction

Cache Block Invalidation

Format Summary of Operation Instruction Code
Execution
States T Bit

OCBI @Rn Operand cache block
invalidation

0000nnnn10010011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. In the case of a
hit in the cache, the corresponding cache block is invalidated (the V bit is cleared to 0). If there is
unwritten information (U bit = 1), write-back is not performed even if write-back mode is selected.
No operation is performed in the case of a cache miss or an access to a non-cache area.

Operation

OCBI(int n) /* OCBI @Rn */

{

 invalidate_operand_cache_block(R[n]);

 PC+=2;

}

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

Note that the above exceptions are generated even if OCBI does not operate.

Rev. 4.0, 03/00, page 330 of 395

9.71 OCBP Operand Cache Block
Purge Data Transfer Instruction

Cache Block Purge

Format Summary of Operation Instruction Code
Execution
States T Bit

OCBP @Rn Operand cache block purge 0000nnnn10100011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is
hit and there is unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block is invalidated (the V bit is cleared to 0). If there is no unwritten
information (U bit = 0), the block is simply invalidated. No operation is performed in the case of a
cache miss or an access to a non-cache area.

Operation

OCBP(int n) /* OCBP @Rn */

{

 if(is_dirty_block(R[n])) write_back(R[n])

 invalidate_operand_cache_block(R[n]);

 PC+=2;

}

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Note that the above exceptions are generated even if OCBP does not operate.

Rev. 4.0, 03/00, page 331 of 395

9.72 OCBWB Operand Cache Block
Write Back Data Transfer Instruction

Cache Block Write-Back

Format Summary of Operation Instruction Code
Execution
States T Bit

OCBWB @Rn Operand cache block write-
back

0000nnnn10110011 1 —

Description

This instruction accesses data using the contents indicated by effective address Rn. If the cache is
hit and there is unwritten information (U bit = 1), the corresponding cache block is written back to
external memory and that block is cleaned (the U bit is cleared to 0). In other cases (i.e. in the case
of a cache miss or an access to a non-cache area, or if the block is already clean), no operation is
performed.

Operation

OCBWB(int n) /* OCBWB @Rn */

 {

 if(is_dirty_block(R[n])) write_back(R[n]);

 PC+=2;

 }

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Note that the above exceptions are generated even if OCBWB does not operate.

Rev. 4.0, 03/00, page 332 of 395

9.73 OR OR logical Logical Instruction
Logical OR

Format Summary of Operation Instruction Code
Execution
States T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR.B #imm,@(R0,GBR) (R0+GBR) | imm →
(R0+GBR)

11001111iiiiiiii 4 —

Description

This instruction ORs the contents of general registers Rn and Rm and stores the result in Rn.

This instruction can be used to OR general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to OR 8-bit memory with 8-bit
immediate data.

Rev. 4.0, 03/00, page 333 of 395

Operation

OR(long m, long n) /* OR Rm,Rn */

{

 R[n]|=R[m];

 PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

 R[0]|=(0x000000FF & (long)i);

 PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

 long temp;

 temp=(long)Read_Byte(GBR+R[0]);

 temp|=(0x000000FF & (long)i);

 Write_Byte(GBR+R[0],temp);

 PC+=2;

}

Example

OR R0,R1 ; Before execution R0 = H'AAAA5555, R1 = H'55550000

; After execution R1 = H'FFFF5555

OR #H'F0,R0 ; Before execution R0 = H'00000008

; After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ; Before execution (R0,GBR) = H'A5

; After execution (R0,GBR) = H'F5

Rev. 4.0, 03/00, page 334 of 395

9.74 PREF PREFetch data to cache Data Transfer Instruction
Prefetch to Data

Cache

Format Summary of Operation nstruction Code
Execution
States T Bit

PREF @Rn Prefetch cache block 0000nnnn10000011 1 —

Description

This instruction reads a 32-byte data block starting at a 32-byte boundary into the operand cache.
The lower 5 bits of the address specified by Rn are masked to zero.

This instruction does not generate address-related errors. In the event of an error, the PREF
instruction is treated as an NOP (no operation) instruction.

Operation

PREF(int n) /* PREF */

{

 PC+=2;

}

Example

MOV.L #SOFT_PF,R1 ; R1 address is SOFT_PF

PREF @R1 ;Load SOFT_PF data into on-chip cache

. align 32

SOFT_PF: . data . l H'12345678

. data . l H'9ABCDEF0

. data . l H'AAAA5555

. data . l H'5555AAAA

. data . l H'11111111

. data . l H'22222222

. data . l H'33333333

. data . l H'44444444

Rev. 4.0, 03/00, page 335 of 395

9.75 ROTCL ROTate with Carry Left Shift Instruction
One-Bit Left Rotation
through T Bit

Format Summary of Operation Instruction Code
Execution
States T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description

This instruction rotates the contents of general register Rn one bit to the left through the T bit, and
stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTCL T

Operation

ROTCL(long n) /* ROTCL Rn */

{

 long temp;

 if ((R[n]&0x80000000)==0) temp=0;

 else temp=1;

 R[n]<<=1;

 if (T==1) R[n]|=0x00000001;

 else R[n]&=0xFFFFFFFE;

 if (temp==1) T=1;

 else T=0;

 PC+=2;

}

Example

ROTCL R0 ; Before execution R0 = H'80000000, T = 0

; After execution R0 = H'00000000, T = 1

Rev. 4.0, 03/00, page 336 of 395

9.76 ROTCR ROTate with Carry Right Shift Instruction
One-Bit Right Rotation
through T Bit

Format Summary of Operation Instruction Code
Execution
States T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description

This instruction rotates the contents of general register Rn one bit to the right through the T bit,
and stores the result in Rn. The bit rotated out of the operand is transferred to the T bit.

T

MSB LSB

ROTCR

Operation

ROTCR(long n) /* ROTCR Rn */

{

 long temp;

 if ((R[n]&0x00000001)==0) temp=0;

 else temp=1;

 R[n]>>=1;

 if (T==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 if (temp==1) T=1;

 else T=0;

 PC+=2;

}

Example

ROTCR R0 ;Before execution R0 = H'00000001, T = 1

; After execution R0 = H'80000000, T = 1

Rev. 4.0, 03/00, page 337 of 395

9.77 ROTL ROTate Left Shift Instruction
One-Bit Left
Rotation

Format Summary of Operation Instruction Code
Execution
States T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description

This instruction rotates the contents of general register Rn one bit to the left, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTL T

Operation

ROTL(long n) /* ROTL Rn */

{

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 if (T==1) R[n]|=0x00000001;

 else R[n]&=0xFFFFFFFE;

 PC+=2;

}

Example

ROTL R0 ; Before execution R0 = H'80000000, T = 0

; After execution R0 = H'00000001, T = 1

Rev. 4.0, 03/00, page 338 of 395

9.78 ROTR ROTate Right Shift Instruction
One-Bit Right
Rotation

Format Summary of Operation Instruction Code
Execution
States T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description

This instruction rotates the contents of general register Rn one bit to the right, and stores the result
in Rn. The bit rotated out of the operand is transferred to the T bit.

MSB LSB

ROTR T

Operation

ROTR(long n) /* ROTR Rn */

{

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 R[n]>>=1;

 if (T==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 PC+=2;

}

Example

ROTR R0 ;Before execution R0 = H'00000001, T = 0

; After execution R0 = H'80000000, T = 1

Rev. 4.0, 03/00, page 339 of 395

9.79 RTE ReTurn from Exception System Control Instruction
Return from Exception Handling (Privileged Instruction)

Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

RTE SSR → SR, SPC→ PC 0000000000101011 5 —

Description

This instruction returns from an exception or interrupt handling routine by restoring the PC and
SR values from SPC and SSR. Program execution continues from the address specified by the
restored PC value.

RTE is a privileged instruction, and can only be used in privileged mode. Use of this instruction in
user mode will cause an illegal instruction exception.

Notes

As this is a delayed branch instruction, the instruction following the RTE instruction is executed
before the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. An exception
must not be generated by the instruction in this instruction’s delay slot. If the following instruction
is a branch instruction, it is identified as a slot illegal instruction.

If this instruction is located in the delay slot immediately following a delayed branch instruction, it
is identified as a slot illegal instruction.

The SR value accessed by the instruction in the RTE delay slot is the value restored from SSR by
the RTE instruction. The SR and MD values defined prior to RTE execution are used to fetch the
instruction in the RTE delay slot.

Rev. 4.0, 03/00, page 340 of 395

Operation

RTE() /* RTE */

{

 unsigned int temp;

 temp=PC;

 SR=SSR;

 PC=SPC;

 Delay_Slot(temp+2);

}

Example

RTE ;Return to original routine.

ADD #8,R14 ; Executed before branch.

Note: In a delayed branch, the actual branch operation occurs after execution of the slot
instruction, but instruction execution (register updating, etc.) is in fact performed in
delayed branch instruction → delay slot instruction order. For example, even if the register
holding the branch destination address is modified in the delay slot, the branch destination
address will still be the register contents prior to the modification.

Rev. 4.0, 03/00, page 341 of 395

9.80 RTS ReTurn from Subroutine Branch Instruction
Return from Subroutine Procedure Delayed Branch Instruction

Format Summary of Operation Instruction Code
Execution
States T Bit

RTS PR → PC 0000000000001011 2 —

Description

This instruction returns from a subroutine procedure by restoring the PC from PR. Processing
continues from the address indicated by the restored PC value. This instruction can be used to
return from a subroutine procedure called by a BSR or JSR instruction to the source of the call.

Notes

As this is a delayed branch instruction, the instruction following this instruction is executed before
the branch destination instruction.

Interrupts are not accepted between this instruction and the following instruction. If the following
instruction is a branch instruction, it is identified as a slot illegal instruction.

The instruction that restores PR must be executed before the RTS instruction. This restore
instruction cannot be in the RTS delay slot.

Operation

RTS() /* RTS */

{

 unsigned int temp;

 temp=PC;

 PC=PR;

 Delay_Slot(temp+2);

}

Rev. 4.0, 03/00, page 342 of 395

Example

MOV.L TABLE,R3 ; R3 = TRGET address

JSR @R3 ; Branch to TRGET.

NOP ;NOP executed before branch.

ADD R0,R1 ; ← Subroutine procedure return destination (PR contents)

........

TABLE: .data.l TRGET ; Jump table

........

TRGET: MOV R1,R0 ;← Entry to procedure

RTS ;PR contents → PC

MOV #12,R0 ; MOV executed before branch.

Rev. 4.0, 03/00, page 343 of 395

9.81 SETS SET S bit System Control Instruction
S Bit Setting

Format Summary of Operation Instruction Code
Execution
States T Bit

SETS 1 → S 0000000001011000 1 —

Description

This instruction sets the S bit to 1.

Operation

SETS() /* SETS */

{

 S=1;

 PC+=2;

}

Example

SETS ;Before execution S = 0

; After execution S = 1

Rev. 4.0, 03/00, page 344 of 395

9.82 SETT SET T bit System Control Instruction
T Bit Setting

Format Summary of Operation Instruction Code
Execution
States T Bit

SETT 1 → T 0000000000011000 1 1

Description

This instruction sets the T bit to 1.

Operation

SETT() /* SETT */

{

 T=1;

 PC+=2;

}

Example

SETT ; Before execution T = 0

; After execution T = 1

Rev. 4.0, 03/00, page 345 of 395

9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
Dynamic Arithmetic Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHAD Rm, Rn When Rm ≥ 0,
Rn << Rm → Rn

When Rm < 0,
Rn >> Rm → [MSB → Rn]

0100nnnnmmmm1100 1 —

Description

This instruction arithmetically shifts the contents of general register Rn. General register Rm
specifies the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, the MSB is added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

MSB LSB

MSB

MSB

LSB

0

Rm 0

Rm 0

Rev. 4.0, 03/00, page 346 of 395

Operation

SHAD(int m,n) /*SHAD Rm,Rn */

{

 int sgn=R[m] & 0x80000000;

 if (sgn==0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0) {

 if ((R[n] & 0x80000000) == 0)

 R[n] = 0;

 else

 R[n] = 0xFFFFFFFF;

 }

 else

 R[n]=(long)R[n] >> ((~R[m] & 0x1F)+1);

 PC+=2;

}

Example

SHAD R1,R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

; After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3,R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

; After execution R3 = H'00000014, R4 = H'80100000

Rev. 4.0, 03/00, page 347 of 395

9.84 SHAL SHift Arithmetic Left Shift Instruction
One-Bit Left
Arithmetic Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the left, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB
SHAL

T 0

Operation

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 PC+=2;

}

Example

SHAL R0 ; Before execution R0 = H'80000001, T = 0

; After execution R0 = H'00000002, T = 1

Rev. 4.0, 03/00, page 348 of 395

9.85 SHAR SHift Arithmetic Right Shift Instruction
One-Bit Right
Arithmetic Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description

This instruction arithmetically shifts the contents of general register Rn one bit to the right, and
stores the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

SHAR T

Operation

SHAR(long n) /* SHAR Rn */

{

 long temp;

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 if ((R[n]&0x80000000)==0) temp=0;

 else temp=1;

 R[n]>>=1;

 if (temp==1) R[n]|=0x80000000;

 else R[n]&=0x7FFFFFFF;

 PC+=2;

}

Example

SHAR R0 ; Before execution R0 = H'80000001, T = 0

; After execution R0 = H'C0000000, T = 1

Rev. 4.0, 03/00, page 349 of 395

9.86 SHLD SHift Logical Dynamically Shift Instruction
Dynamic Logical
Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHLD Rm, Rn When Rm ≥ 0,
Rn << Rm → Rn

When Rm < 0,
Rn >> Rm → [0 → Rn]

0100nnnnmmmm1101 1 —

Description

This instruction logically shifts the contents of general register Rn. General register Rm specifies
the shift direction and the number of bits to be shifted.

Rn register contents are shifted to the left if the Rm register value is positive, and to the right if
negative. In a shift to the right, 0s are added at the upper end.

The number of bits to be shifted is specified by the lower 5 bits (bits 4 to 0) of the Rm register. If
the value is negative (MSB = 1), the Rm register is represented as a two’s complement. The left
shift range is 0 to 31, and the right shift range, 1 to 32.

MSB LSB

MSB

0

LSB

0

Rm 0

Rm 0

Rev. 4.0, 03/00, page 350 of 395

Operation

SHLD(int m,n)/*SHLD Rm,Rn */

{

 int sgn = R[m] & 0x80000000;

 if (sgn == 0)

 R[n] <<= (R[m] & 0x1F);

 else if ((R[m] & 0x1F) == 0)

 R[n] = 0;

 else

 R[n]=(unsigned)R[n] >> ((~R[m] & 0x1F)+1);

 PC+=2;

}

Example

SHLD R1, R2 ; Before execution R1 = H'FFFFFFEC, R2 = H'80180000

; After execution R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3, R4 ; Before execution R3 = H'00000014, R4 = H'FFFFF801

; After execution R3 = H'00000014, R4 = H'80100000

Rev. 4.0, 03/00, page 351 of 395

9.87 SHLL SHift Logical Left Shift Instruction
One-Bit Left
Logical Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description

This instruction logically shifts the contents of general register Rn one bit to the left, and stores the
result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB

0
SHLL

T

Operation

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{

 if ((R[n]&0x80000000)==0) T=0;

 else T=1;

 R[n]<<=1;

 PC+=2;

}

Example

SHLL R0 ; Before execution R0 = H'80000001, T = 0

; After execution R0 = H'00000002, T = 1

Rev. 4.0, 03/00, page 352 of 395

9.88 SHLLn n bits SHift Logical Left Shift Instruction
n-Bit Left
Logical Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHLL2 Rn Rn<<2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn<<8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn<<16 → Rn 0100nnnn00101000 1 —

Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the left, and
stores the result in Rn. The bits shifted out of the operand are discarded.

MSB LSB

0

SHLL8

SHLL16 MSB LSB

0

MSB LSB

0

SHLL2

Rev. 4.0, 03/00, page 353 of 395

Operation

SHLL2(long n) /* SHLL2 Rn */

{

 R[n]<<=2;

 PC+=2;

}

SHLL8(long n) /* SHLL8 Rn */

{

 R[n]<<=8;

 PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

 R[n]<<=16;

 PC+=2;

}

Example

SHLL2 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'48D159E0

SHLL8 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'34567800

SHLL16 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'56780000

Rev. 4.0, 03/00, page 354 of 395

9.89 SHLR SHift Logical Right Shift Instruction
One-Bit Right
Logical Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description

This instruction logically shifts the contents of general register Rn one bit to the right, and stores
the result in Rn. The bit shifted out of the operand is transferred to the T bit.

MSB LSB
SHLR

T0

Operation

SHLR(long n) /* SHLR Rn */

{

 if ((R[n]&0x00000001)==0) T=0;

 else T=1;

 R[n]>>=1;

 R[n]&=0x7FFFFFFF;

 PC+=2;

}

Example

SHLR R0 ;Before execution R0 = H'80000001, T = 0

; After execution R0 = H'40000000, T = 1

Rev. 4.0, 03/00, page 355 of 395

9.90 SHLRn n bits SHift Logical Right Shift Instruction
n-Bit Right
Logical Shift

Format Summary of Operation Instruction Code
Execution
States T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

Description

This instruction logically shifts the contents of general register Rn 2, 8, or 16 bits to the right, and
stores the result in Rn. The bits shifted out of the operand are discarded.

MSB LSB

0

SHLR8

SHLR16 MSB LSB

0

MSB LSB

0

SHLR2

Rev. 4.0, 03/00, page 356 of 395

Operation

SHLR2(long n) /* SHLR2 Rn */

{

 R[n]>>=2;

 R[n]&=0x3FFFFFFF;

 PC+=2;

}

SHLR8(long n) /* SHLR8 Rn */

{

 R[n]>>=8;

 R[n]&=0x00FFFFFF;

 PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

 R[n]>>=16;

 R[n]&=0x0000FFFF;

 PC+=2;

}

Example

SHLR2 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'048D159E

SHLR8 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'00123456

SHLR16 R0 ; Before execution R0 = H'12345678

; After execution R0 = H'00001234

Rev. 4.0, 03/00, page 357 of 395

9.91 SLEEP SLEEP System Control Instruction
Transition to Power-Down Mode (Privileged Instruction)

Format Summary of Operation Instruction Code
Execution
States T Bit

SLEEP Sleep 0000000000011011 4 —

Description

This instruction places the CPU in the power-down state.

In power-down mode, the CPU retains its internal state, but immediately stops executing
instructions and waits for an interrupt request. When it receives an interrupt request, the CPU exits
the power-down state.

SLEEP is a privileged instruction, and can only be used in privileged mode. Use of this instruction
in user mode will cause an illegal instruction exception.

Notes

SLEEP performance depends on the standby control register (STBCR). See Power-Down Modes
in hardware manual, for details.

Operation

SLEEP() /* SLEEP */

{

 Sleep_standby();

}

Example

SLEEP ;Transition to power-down mode

Rev. 4.0, 03/00, page 358 of 395

9.92 STC STore Control register System Control Instruction
Store from Control Register (Privileged Instruction)

Format Summary of Operation Instruction Code
Execution
States T Bit

STC SR, Rn SR → Rn 0000nnnn00000010 2 —

STC GBR, Rn GBR → Rn 0000nnnn00010010 2 —

STC VBR, Rn VBR → Rn 0000nnnn00100010 2 —

STC SSR , Rn SSR → Rn 0000nnnn00110010 2 —

STC SPC, Rn SPC → Rn 0000nnnn01000010 2 —

STC SGR, Rn SGR → Rn 0000nnnn00111010 3 —

STC DBR , Rn DBR → Rn 0000nnnn11111010 2 —

STC R0_BANK, Rn R0_BANK → Rn 0000nnnn10000010 2 —

STC R1_BANK, Rn R1_BANK → Rn 0000nnnn10010010 2 —

STC R2_BANK, Rn R2_BANK → Rn 0000nnnn10100010 2 —

STC R3_BANK, Rn R3_BANK → Rn 0000nnnn10110010 2 —

STC R4_BANK, Rn R4_BANK → Rn 0000nnnn11000010 2 —

STC R5_BANK, Rn R5_BANK → Rn 0000nnnn11010010 2 —

STC R6_BANK, Rn R6_BANK → Rn 0000nnnn11100010 2 —

STC R7_BANK, Rn R7_BANK → Rn 0000nnnn11110010 2 —

STC.L SR, @-Rn Rn-4 → Rn, SR → (Rn) 0100nnnn00000011 2 —

STC.L GBR, @-Rn Rn-4 → Rn, GBR → (Rn) 0100nnnn00010011 2 —

STC.L VBR, @-Rn Rn-4 → Rn, VBR → (Rn) 0100nnnn00100011 2 —

STC.L SSR, @-Rn Rn-4 → Rn, SSR → (Rn) 0100nnnn00110011 2 —

STC.L SPC, @-Rn Rn-4 → Rn, SPC → (Rn) 0100nnnn01000011 2 —

STC.L SGR, @-Rn Rn-4 → Rn, SGR → (Rn) 0100nnnn00110010 3 —

STC.L DBR, @-Rn Rn-4 → Rn, DBR → (Rn) 0100nnnn11110010 2 —

STC.L R0_BANK, @-Rn Rn-4 → Rn, R0_BANK → (Rn) 0100nnnn10000011 2 —

STC.L R1_BANK, @-Rn Rn-4 → Rn, R1_BANK → (Rn) 0100nnnn10010011 2 —

STC.L R2_BANK, @-Rn Rn-4 → Rn, R2_BANK → (Rn) 0100nnnn10100011 2 —

STC.L R3_BANK, @-Rn Rn-4 → Rn, R3_BANK → (Rn) 0100nnnn10110011 2 —

STC.L R4_BANK, @-Rn Rn-4 → Rn, R4_BANK → (Rn) 0100nnnn11000011 2 —

STC.L R5_BANK, @-Rn Rn-4 → Rn, R5_BANK → (Rn) 0100nnnn11010011 2 —

STC.L R6_BANK, @-Rn Rn-4 → Rn, R6_BANK → (Rn) 0100nnnn11100011 2 —

STC.L R7_BANK, @-Rn Rn-4 → Rn, R7_BANK → (Rn) 0100nnnn11110011 2 —

Rev. 4.0, 03/00, page 359 of 395

Description

This instruction stores control register SR, GBR, VBR, SSR, SPC, SGR, DBR or Rm_BANK (m
= 0–7) in the destination.

Rm_BANK operands are specified by the RB bit of the SR register:
when the RB bit is 1 Rm_BANK0 is accessed,
when the RB bit is 0 Rm_BANK1 is accessed.

Notes

STC/STC.L can only be used in privileged mode excepting STC GBR, Rn/STC.L GBR, @-Rn.
Use of these instructions in user mode will cause illegal instruction exceptions.

Operation

STCSR(int n) /* STC SR,Rn : Privileged */

 {

 R[n]=SR;

 PC+=2;

 }

STCGBR(int n) /* STC GBR,Rn */

 {

 R[n]=SGR;

 PC+=2;

 }

STCVBR(int n) /* STC VBR,Rn : Privileged */

 {

 R[n]=VBR;

 PC+=2;

 }

STCSSR(int n) /* STC SSR,Rn : Privileged */

 {

 R[n]=SSR;

 PC+=2;

 }

Rev. 4.0, 03/00, page 360 of 395

STCSPC(int n) /* STC SPC,Rn : Privileged */

 {

 R[n]=SPC;

 PC+=2;

 }

STCSGR(int n) /* STC SGR,Rn : Privileged */

 {

 R[n]=SGR;

 PC+=2;

 }

STCDBR(int n) /* STC DBR,Rn : Privileged */

 {

 R[n]=DBR;

 PC+=2;

 }

STCRm_BANK(int n) /* STC Rm_BANK,Rn : Privileged */

 /* m=0–7 */

 {

 R[n]=Rm_BANK;

 PC+=2;

 }

STCMSR(int n) /* STC.L SR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SR);

 PC+=2;

 }

STCMGBR(int n) /* STC.L GBR,@–Rn */

 {

 R[n]–=4;

 Write_Long(R[n],GBR);

 PC+=2;

Rev. 4.0, 03/00, page 361 of 395

 }

STCMVBR(int n) /* STC.L VBR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],VBR);

 PC+=2;

 }

STCMSSR(int n) /* STC.L SSR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SSR);

 PC+=2;

 }

STCMSPC(int n) /* STC.L SPC,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SPC);

 PC+=2;

 }

STCMSGR(int n) /* STC.L SGR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],SGR);

 PC+=2;

 }

STCMDBR(int n) /* STC.L DBR,@-Rn : Privileged */

 {

 R[n]–=4;

 Write_Long(R[n],DBR);

 PC+=2;

 }

Rev. 4.0, 03/00, page 362 of 395

STCMRm_BANK(int n) /* STC.L Rm_BANK,@-Rn : Privileged */

 /* m=0–7 */

 {

 R[n]–=4;

 Write_Long(R[n],Rm_BANK);

 PC+=2;

 }

Possible Exceptions:
• General illegal instruction exception

• Slot illegal instruction exception

• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Rev. 4.0, 03/00, page 363 of 395

9.93 STS STore System register System Control Instruction
Store from
System Register

Format Summary of Operation Instruction Code
Execution
States T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS.L MACH,@-Rn Rn-4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@-Rn Rn-4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@-Rn Rn-4 → Rn, PR → (Rn) 0100nnnn00100010 1 —

Description

This instruction stores system register MACH, MACL, or PR in the destination.

Operation

STSMACH(int n) /* STS MACH,Rn */

{

 R[n]=MACH;

 PC+=2;

}

STSMACL(int n) /* STS MACL,Rn */

{

 R[n]=MACL;

 PC+=2;

}

STSPR(int n) /* STS PR,Rn */

{

 R[n]=PR;

 PC+=2;

}

STSMMACH(int n) /* STS.L MACH,@-Rn */

{

Rev. 4.0, 03/00, page 364 of 395

 R[n]–=4;

 Write_Long(R[n],MACH);

 PC+=2;

}

STSMMACL(int n) /* STS.L MACL,@-Rn */

{

 R[n]–=4;

 Write_Long(R[n],MACL);

 PC+=2;

}

STSMPR(int n) /* STS.L PR,@-Rn */

{

 R[n]–=4;

 Write_Long(R[n],PR);

 PC+=2;

}

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Example

STS MACH,R0 ; Before execution R0 = H'FFFFFFFF, MACH = H'00000000

; After execution R0 = H'00000000

STS.L PR,@-R15 ; Before execution R15 = H'10000004

; After execution R15 = H'10000000, (R15) = PR

Rev. 4.0, 03/00, page 365 of 395

9.94 STS STore from FPU
System register System Control Instruction

Store from FPU
System Register

Format Summary of Operation Instruction Code
Execution
States T Bit

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 1 —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 1 —

STS.L FPUL,@-Rn Rn-4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 —

STS.L FPSCR,@-Rn Rn-4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 —

Description

This instruction stores FPU system register FPUL or FPSCR in the destination.

Operation

STS(int n, int *FPUL) /* STS FPUL,Rn */

{

 R[n]= *FPUL;

 PC+=2;

}

STS_SAVE(int n, int *FPUL) /* STS.L FPUL,@-Rn */

{

 R[n]-=4;

 Write_Long(R[n],*FPUL) ;

 PC+=2;

}

STS(int n) /* STS FPSCR,Rn */

{

 R[n]=FPSCR&0x003FFFFF;

 PC+=2;

}

STS_RESTORE(int n) /* STS.L FPSCR,@-Rn */

{

 R[n]-=4;

 Write_Long(R[n],FPSCR&0x003FFFFF)

Rev. 4.0, 03/00, page 366 of 395

 PC+=2;

}

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Address error

Examples

• STS

Example 1:

MOV.L #H'12ABCDEF, R12

LDS R12, FPUL

STS FPUL, R13

; After executing the STS instruction:

; R13 = 12ABCDEF

Example 2:

STS FPSCR, R2

; After executing the STS instruction:

; The current content of FPSCR is stored in register R2

• STS.L

Example 1:

MOV.L #H'0C700148, R7

STS.L FPUL, @-R7

; Before executing the STS.L instruction:

; R7 = 0C700148

; After executing the STS.L instruction:

; R7 = 0C700144, and the content of FPUL is saved at memory

; locatio\n 0C700144.

Example 2:

MOV.L #H'0C700154, R8

STS.L FPSCR, @-R8

; After executing the STS.L instruction:

; The content of FPSCR is saved at memory location 0C700150.

Rev. 4.0, 03/00, page 367 of 395

9.95 SUB SUBtract binary Arithmetic Instruction
Binary Subtraction

Format Summary of Operation Instruction Code
Execution
States T Bit

SUB Rm,Rn Rn-Rm → Rn 0011nnnnmmmm1000 1 —

Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn and stores the result in Rn. For immediate data subtraction, ADD #imm,Rn should be used.

Operation

SUB(long m, long n) /* SUB Rm,Rn */

{

 R[n]-=R[m];

 PC+=2;

}

Example

SUB R0,R1 ; Before execution R0 = H'00000001, R1 = H'80000000

; After execution R1 = H'7FFFFFFF

Rev. 4.0, 03/00, page 368 of 395

9.96 SUBC SUBtract with Carry Arithmetic Instruction
Binary Subtraction with Borrow

Format Summary of Operation Instruction Code
Execution
States T Bit

SUBC Rm,Rn Rn-Rm-T → Rn, borrow → T 0011nnnnmmmm1010 1 Borrow

Description

This instruction subtracts the contents of general register Rm and the T bit from the contents of
general register Rn, and stores the result in Rn. A borrow resulting from the operation is reflected
in the T bit. This instruction is used for subtractions exceeding 32 bits.

Operation

SUBC(long m, long n) /* SUBC Rm,Rn */

{

 unsigned long tmp0,tmp1;

 tmp1=R[n]-R[m];

 tmp0=R[n];

 R[n]=tmp1-T;

 if (tmp0<tmp1) T=1;

 else T=0;

 if (tmp1<R[n]) T=1;

 PC+=2;

}

Example

CLRT ;R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution T = 0, R1 = H'00000000, R3 = H'00000001

; After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

; After execution T = 1, R0 = H'FFFFFFFF

Rev. 4.0, 03/00, page 369 of 395

9.97 SUBV SUBtract with (V flag)
underflow check Arithmetic Instruction

Binary Subtraction
with Underflow Check

Format Summary of Operation Instruction Code
Execution
States T Bit

SUBV Rm,Rn Rn-Rm → Rn, underflow → T 0011nnnnmmmm1011 1 Underflow

Description

This instruction subtracts the contents of general register Rm from the contents of general register
Rn, and stores the result in Rn. If underflow occurs, the T bit is set.

Operation

SUBV(long m, long n) /* SUBV Rm,Rn */

{

 long dest,src,ans;

 if ((long)R[n]>=0) dest=0;

 else dest=1;

 if ((long)R[m]>=0) src=0;

 else src=1;

 src+=dest;

 R[n]-=R[m];

 if ((long)R[n]>=0) ans=0;

 else ans=1;

 ans+=dest;

 if (src==1) {

 if (ans==1) T=1;

 else T=0;

 }

 else T=0;

 PC+=2;

}

Rev. 4.0, 03/00, page 370 of 395

Example

SUBV R0,R1 ; Before execution R0 = H'00000002, R1 = H'80000001

; After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ; Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

; After execution R3 = H'80000000, T = 1

Rev. 4.0, 03/00, page 371 of 395

9.98 SWAP SWAP register halves Data Transfer Instruction
Upper-/Lower-Half
Swap

Format Summary of Operation Instruction Code
Execution
States T Bit

SWAP.B Rm,Rn Rm → lower-2-byte upper-/
lower-byte swap → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → upper-/lower-word
swap → Rn

0110nnnnmmmm1001 1

Description

This instruction swaps the upper and lower parts of the contents of general register Rm, and stores
the result in Rn.

In the case of a byte specification, the 8 bits from bit 15 to bit 8 of Rm are swapped with the 8 bits
from bit 7 to bit 0. The upper 16 bits of Rm are transferred directly to the upper 16 bits of Rn.

In the case of a word specification, the 16 bits from bit 31 to bit 16 of Rm are swapped with the 16
bits from bit 15 to bit 0.

Operation

SWAPB(long m, long n) /* SWAP.B Rm,Rn */

{

 unsigned long temp0,temp1;

 temp0=R[m]&0xFFFF0000;

 temp1=(R[m]&0x000000FF)<<8;

 R[n]=(R[m]&0x0000FF00)>>8;

 R[n]=R[n]|temp1|temp0;

 PC+=2;

}

SWAPW(long m, long n) /* SWAP.W Rm,Rn */

{

 unsigned long temp;

 temp=(R[m]>>16)&0x0000FFFF;

 R[n]=R[m]<<16;

Rev. 4.0, 03/00, page 372 of 395

 R[n]|=temp;

 PC+=2;

}

Example

SWAP.B R0,R1 ; Before execution R0 = H'12345678

; After execution R1 = H'12347856

SWAP.W R0,R1 ;Before execution R0 = H'12345678

; After execution R1 = H'56781234

Rev. 4.0, 03/00, page 373 of 395

9.99 TAS Test And Set Logical Instruction
Memory Test
and Bit Setting

Format Summary of Operation Instruction Code
Execution
States T Bit

TAS.B @Rn If (Rn) = 0, 1 → T, else 0 → T

1 → MSB of (Rn)

0100nnnn00011011 5 Test
result

Description

This instruction purges the cache block corresponding to the memory area specified by the
contents of general register Rn, reads the byte data indicated by that address, and sets the T bit to 1
if that data is zero, or clears the T bit to 0 if the data is nonzero. The instruction then sets bit 7 to 1
and writes to the same address. The bus is not released during this period.

The purge operation is executed as follows.

In a purge operation, data is accessed using the contents of general register Rn as the effective
address. If there is a cache hit and the corresponding cache block is dirty (U bit = 1), the contents
of that cache block are written back to external memory, and the cache block is then invalidated
(by clearing the V bit to 0). If there is a cache hit and the corresponding cache block is clean (U bit
= 0), the cache block is simply invalidated (by clearing the V bit to 0). A purge is not executed in
the event of a cache miss, or if the accessed memory location is non-cacheable.

The two TAS.B memory accesses are executed automatically. Another memory access is not
executed between the two TAS.B accesses.

Operation

TAS(int n) /* TAS.B @Rn */

{

 int temp;

 temp=(int)Read_Byte(R[n]); /* Bus Lock */

 if (temp==0) T=1;

 else T=0;

 temp|=0x00000080;

 Write_Byte(R[n],temp); /* Bus unlock */

 PC+=2;

}

Rev. 4.0, 03/00, page 374 of 395

Possible Exceptions:
• Data TLB miss exception

• Data TLB protection violation exception

• Initial page write exception

• Address error

Exceptions are checked taking a data access by this instruction as a byte store.

Rev. 4.0, 03/00, page 375 of 395

9.100 TRAPA TRAP Always System Control Instruction
Trap Exception
Handling

Format Summary of Operation Instruction Code
Execution
States T Bit

TRAPA #imm imm → TRA, PC+2 → SPC,
SR → SSR, R15 → SGR,
1 → SR.MD/BL/RB,
0x160 → EXPEVT,
VBR+H'00000100 → PC

11000011iiiiiiii 7 —

Description

This instruction starts trap exception handling. The values of (PC + 2), SR, and R15 are saved to
SPC and SSR, and 8-bit immediate data is stored in the TRA register (bits 9 to 2). The processor
mode is switched to privileged mode (the MD bit in SR is set to 1), and the BL bit and RB bit in
SR are set to 1. As a result, exception and interrupt requests are masked (not accepted), and the
BANK1 registers (R0_BANK1 to R7_BANK1) are selected. Exception code 0x160 is written to
the EXPEVT register (bits 11 to 0). The program branches to address (VBR + H'00000100),
indicated by the sum of the VBR register contents and offset H'00000100.

Operation

TRAPA(int i) /* TRAPA #imm */

 {

 int imm;

 imm=(0x000000FF & i);

 TRA=imm<<2;

 SSR=SR;

 SPC=PC+2;

 SGR=R15;

 SR.MD=1;

 SR.BL=1;

 SR.RB=1;

 EXPEVT=0x00000160;

 PC=VBR+H'00000100;

}

Rev. 4.0, 03/00, page 376 of 395

9.101 TST TeST logical Logical Instruction
AND Operation
T Bit Setting

Format Summary of Operation Instruction Code
Execution
States T Bit

TST Rm,Rn Rn & Rm; if result is 0,
1 → T, else 0 → T

0010nnnnmmmm1000 1 Test
result

TST #imm,R0 R0 & imm; if result is 0,
1 → T, else 0 → T

11001000iiiiiiii 1 Test
result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm;
if result is 0, 1 → T,
else 0 → T

11001100iiiiiiii 3 Test
result

Description

This instruction ANDs the contents of general registers Rn and Rm, and sets the T bit if the result
is zero. If the result is nonzero, the T bit is cleared. The contents of Rn are not changed.

This instruction can be used to AND general register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to AND 8-bit memory with 8-bit
immediate data. The contents of R0 or the memory are not changed.

Operation

TST(long m, long n) /* TST Rm,Rn */

{

 if ((R[n]&R[m])==0) T=1;

 else T=0;

 PC+=2;

}

TSTI(long i) /* TST #imm,R0 */

{

 long temp;

 temp=R[0]&(0x000000FF & (long)i);

 if (temp==0) T=1;

 else T=0;

 PC+=2;

}

Rev. 4.0, 03/00, page 377 of 395

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

 long temp;

 temp=(long)Read_Byte(GBR+R[0]);

 temp&=(0x000000FF & (long)i);

 if (temp==0) T=1;

 else T=0;

 PC+=2;

}

Example

TST R0,R0 ; Before execution R0 = H'00000000

; After execution T = 1

TST #H'80,R0 ; Before execution R0 = H'FFFFFF7F

; After execution T = 1

TST.B #H'A5,@(R0,GBR) ; Before execution (R0,GBR) = H'A5

; After execution T = 0

Rev. 4.0, 03/00, page 378 of 395

9.102 XOR eXclusive OR logical Logical Instruction
Exclusive

Logical OR

Format Summary of Operation Instruction Code
Execution
States T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR.B #imm,@(R0,GBR) (R0+GBR)^imm →
(R0+GBR)

11001110iiiiiiii 4 —

Description

This instruction exclusively ORs the contents of general registers Rn and Rm, and stores the result
in Rn.

This instruction can be used to exclusively OR register R0 contents with zero-extended 8-bit
immediate data, or, in indexed GBR indirect addressing mode, to exclusively OR 8-bit memory
with 8-bit immediate data.

Operation

XOR(long m, long n) /* XOR Rm,Rn */

{

 R[n]^=R[m];

 PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

 R[0]^=(0x000000FF & (long)i);

 PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

 int temp;

 temp=(long)Read_Byte(GBR+R[0]);

 temp^=(0x000000FF &(long)i);

Rev. 4.0, 03/00, page 379 of 395

 Write_Byte(GBR+R[0],temp);

 PC+=2;

}

Example

XOR R0,R1 ; Before execution R0 = H'AAAAAAAA, R1 = H'55555555

; After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 ; Before execution R0 = H'FFFFFFFF

; After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) ; Before execution (R0,GBR) = H'A5

; After execution (R0,GBR) = H'00

Rev. 4.0, 03/00, page 380 of 395

9.103 XTRCT eXTRaCT Data Transfer Instruction
Middle Extraction
from Linked Registers

Format Summary of Operation Instruction Code
Execution
States T Bit

XTRCT Rm,Rn Middle 32 bits of Rm:Rn → Rn 0010nnnnmmmm1101 1 —

Description

This instruction extracts the middle 32 bits from the 64-bit contents of linked general registers Rm
and Rn, and stores the result in Rn.

MSB

RnRm

Rn

LSBMSB LSB

Operation

XTRCT(long m, long n) /* XTRCT Rm,Rn */

{

 unsigned long temp;

 temp=(R[m]<<16)&0xFFFF0000;

 R[n]=(R[n]>>16)&0x0000FFFF;

 R[n]|=temp;

 PC+=2;

}

Example

XTRCT R0,R1 ; Before execution R0 = H'01234567, R1 = H'89ABCDEF

; After execution R1 = H'456789AB

Rev. 4.0, 03/00, page 381 of 395

Appendix A Instruction Codes

A.1 Instruction Set by Addressing Mode

Table A.1 Instruction Set by Addressing Mode

Addressing Mode Category Sample Instruction Type

No operand — NOP 13

Destination operand only MOVT Rn 24

Source and destination
operands

ADD Rm,Rn 56

Transfer to control register or
system register

LDC Rm,SR 16

Register direct

Transfer from control register or
system register

STS MACH,Rn 17

Destination operand only JMP @Rn 7Register indirect

Register direct data transfer MOV.L Rm,@Rn 13

Multiply-and-accumulate
operation

MAC.W @Rm+,@Rn+ 2

Direct data transfer from
register

MOV.L @Rm+,Rn 6

Register indirect with
post-increment

Load to control register or
system register

LDC.L @Rm+SR 12

Direct data transfer from
register

MOV.L Rm,@-Rn 6Register indirect with
pre-decrement

Store from control register or
system register

STC.L SR,@-Rn 13

Register indirect with
displacement

Register direct data transfer MOV.L Rm,@(disp,Rn) 6

Indexed register
indirect

Register direct data transfer MOV.L Rm,@(R0,Rn) 12

GBR indirect with
displacement

Register direct data transfer MOV.L R0,@(disp,GBR) 6

Indexed GBR indirect Immediate data transfer AND.B #imm,@(R0,GBR) 4

PC relative with
displacement

Direct data transfer to register MOV.L @(disp,PC),Rn 3

PC relative using Rn Branch instruction BRAF Rn 2

PC relative Branch instruction BRA label 6

Rev. 4.0, 03/00, page 382 of 395

Table A.1 Instruction Set by Addressing Mode (cont)

Addressing Mode Category Sample Instruction Type

Load to register FLDI0 FRn 2

Register direct arithmetic/logic
operation

ADD #imm,Rn 7

Immediate

Exception vector specification TRAPA #imm 1

Total 234

(1) No Operand

Table A.2 No Operand

Instruction Operation Instruction Code Privileged T Bit

DIV0U 0 → M/Q/T 0000000000011001 — 0

RTS Delayed branch, PR → PC 0000000000001011 — —

CLRMAC 0 → MACH, MACL 0000000000101000 — —

CLRS 0 → S 0000000001001000 — —

CLRT 0 → T 0000000000001000 — 0

LDTLB PTEH/PTEL → TLB 0000000000111000 Privileged —

NOP No operation 0000000000001001 — —

RTE Delayed branch, SSR/SPC →
SR/PC

0000000000101011 Privileged —

SETS 1 → S 0000000001011000 — —

SETT 1 → T 0000000000011000 — 1

SLEEP Sleep or standby 0000000000011011 Privileged —

FRCHG ~FPSCR.FR → FPSCR.FR 1111101111111101 — —

FSCHG ~FPSCR.SZ → FPSCR.SZ 1111001111111101 — —

Rev. 4.0, 03/00, page 383 of 395

(2) Register Direct

Table A.3 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit

MOVT Rn T → Rn 0000nnnn00101001 — —

CMP/PZ Rn When Rn ≥ 0, 1 → T
Otherwise, 0 → T

0100nnnn00010001 — Comparison
result

CMP/PL Rn When Rn > 0, 1 → T
Otherwise, 0 → T

0100nnnn00010101 — Comparison
result

DT Rn Rn – 1 → Rn; when Rn = 0,
1 → T
When Rn ≠ 0, 0 → T

0100nnnn00010000 — Comparison
result

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — LSB

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — —

FABS FRn FRn & H'7FFF FFFF → FRn 1111nnnn01011101 — —

FNEG FRn FRn ∧ H'80000000 → FRn 1111nnnn01001101 — —

FSQRT FRn √FRn → FRn 1111nnnn01101101 — —

FABS DRn DRn & H'7FFF FFFF FFFF
FFFF → DRn

1111nnn001011101 — —

FNEG DRn DRn ^ H'8000 0000 0000 0000
→ DRn

1111nnn001001101 — —

FSQRT DRn √DRn → DRn 1111nnn001101101 — —

Rev. 4.0, 03/00, page 384 of 395

Table A.4 Source and Destination Operands

Instruction Operation Instruction Code Privileged T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — —

SWAP.B Rm,Rn Rm → swap lower 2 bytes
→ Rn

0110nnnnmmmm1000 — —

SWAP.W Rm,Rn Rm → swap upper/lower
words → Rn

0110nnnnmmmm1001 — —

XTRCT Rm,Rn Rm:Rn middle 32 bits → Rn 0010nnnnmmmm1101 — —

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — —

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 — Carry

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 — Overflow

CMP/EQ Rm,Rn When Rn = Rm, 1 → T
Otherwise, 0 → T

0011nnnnmmmm0000 — Comparison
result

CMP/HS Rm,Rn When Rn ≥ Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0010 — Comparison
result

CMP/GE Rm,Rn When Rn ≥ Rm (signed), 1 → T
Otherwise, 0 → T

0011nnnnmmmm0011 — Comparison
result

CMP/HI Rm,Rn When Rn > Rm (unsigned),
1 → T
Otherwise, 0 → T

0011nnnnmmmm0110 — Comparison
result

CMP/GT Rm,Rn When Rn > Rm (signed), 1 → T
Otherwise, 0 → T

0011nnnnmmmm0111 — Comparison
result

CMP/STR Rm,Rn When any bytes are equal,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1100 — Comparison
result

DIV1 Rm,Rn 1-step division (Rn ÷ Rm) 0011nnnnmmmm0100 — Calculation
result

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M, M^Q → T

0010nnnnmmmm0111 — Calculation
result

DMULS.L Rm,Rn Signed, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm1101 — —

DMULU.L Rm,Rn Unsigned, Rn × Rm → MAC,
32 × 32 → 64 bits

0011nnnnmmmm0101 — —

EXTS.B Rm,Rn Rm sign-extended from
byte → Rn

0110nnnnmmmm1110 — —

EXTS.W Rm,Rn Rm sign-extended from
word → Rn

0110nnnnmmmm1111 — —

EXTU.B Rm,Rn Rm zero-extended from
byte → Rn

0110nnnnmmmm1100 — —

EXTU.W Rm,Rn Rm zero-extended from
word → Rn

0110nnnnmmmm1101 — —

Rev. 4.0, 03/00, page 385 of 395

Table A.4 Source and Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

0000nnnnmmmm0111 — —

MULS.W Rm,Rn Signed, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1111 — —

MULU.W Rm,Rn Unsigned, Rn × Rm → MACL
16 × 16 → 32 bits

0010nnnnmmmm1110 — —

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 — —

NEGC Rm,Rn 0 – Rm – T → Rn, borrow → T 0110nnnnmmmm1010 — Borrow

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 — —

SUBC Rm,Rn Rn – Rm – T → Rn, borrow → T 0011nnnnmmmm1010 — Borrow

SUBV Rm,Rn Rn – Rm → Rn, underflow → T 0011nnnnmmmm1011 — Underflow

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — —

TST Rm,Rn Rn & Rm; when result = 0,
1 → T
Otherwise, 0 → T

0010nnnnmmmm1000 — Test result

XOR Rm,Rn Rn ∧ Rm → Rn 0010nnnnmmmm1010 — —

SHAD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[MSB → Rn]

0100nnnnmmmm1100 — —

SHLD Rm,Rn When Rn ≥ 0, Rn << Rm → Rn
When Rn < 0, Rn >> Rm →
[0 → Rn]

0100nnnnmmmm1101 — —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — —

FMOV DRm,DRn DRm → DRn 1111nnn0mmm01100 — —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — —

FCMP/EQ FRm,FRn When FRn = FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0100 — Comparison
result

FCMP/GT FRm,FRn When FRn > FRm, 1 → T
Otherwise, 0 → T

1111nnnnmmmm0101 — Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 — —

FMAC FR0,FRm,FRn FR0*FRm + FRn → FRn 1111nnnnmmmm1110 — —

FMUL FRm,FRn FRn*FRm → FRn 1111nnnnmmmm0010 — —

FSUB FRm,FRn FRn – FRm → FRn 1111nnnnmmmm0001 — —

FADD DRm,DRn DRn + DRm → DRn 1111nnn0mmm00000 — —

FCMP/EQ DRm,DRn When DRn = DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00100 — Comparison
result

Rev. 4.0, 03/00, page 386 of 395

Table A.4 Source and Destination Operands (cont)

Instruction Operation Instruction Code Privileged T Bit

FCMP/GT DRm,DRn When DRn > DRm, 1 → T
Otherwise, 0 → T

1111nnn0mmm00101 — Comparison
result

FDIV DRm,DRn DRn /DRm → DRn 1111nnn0mmm00011 — —

FMUL DRm,DRn DRn *DRm → DRn 1111nnn0mmm00010 — —

FSUB DRm,DRn DRn – DRm → DRn 1111nnn0mmm00001 — —

FMOV DRm,XDn DRm → XDn 1111nnn1mmm01100 — —

FMOV XDm,DRn XDm → DRn 1111nnn0mmm11100 — —

FMOV XDm,XDn XDm → XDn 1111nnn1mmm11100 — —

FIPR FVm,FVn inner_product [FVm, FVn] →
FR[n+3]

1111nnmm11101101 — —

FTRV XMTRX,FVn transform_vector [XMTRX, FVn]
→ FVn

1111nn0111111101 — —

Table A.5 Transfer to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 Privileged LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 Privileged —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 Privileged —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 Privileged —

LDC Rm,DBR Rm → DBR 0100mmmm11111010 Privileged —

LDC Rm,Rn_BANK Rm → Rn_BANK (n = 0 to 7) 0100mmmm1nnn1110 Privileged —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — —

LDS Rm,PR Rm → PR 0100mmmm00101010 — —

FLDS FRm,FPUL FRm → FPUL 1111mmmm00011101 — —

FTRC FRm,FPUL (long) FRm → FPUL 1111mmmm00111101 — —

FCNVDS DRm,FPUL double_to_ float[DRm] → FPUL 1111mmm010111101 — —

FTRC DRm,FPUL (long) DRm → FPUL 1111mmm000111101 — —

LDS Rm,FPSCR Rm → FPSCR 0100mmmm01101010 — —

LDS Rm,FPUL Rm → FPUL 0100mmmm01011010 — —

Rev. 4.0, 03/00, page 387 of 395

Table A.6 Transfer from Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 Privileged —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — —

STC VBR,Rn VBR → Rn 0000nnnn00100010 Privileged —

STC SSR,Rn SSR → Rn 0000nnnn00110010 Privileged —

STC SPC,Rn SPC → Rn 0000nnnn01000010 Privileged —

STC SGR,Rn SGR → Rn 0000nnnn00111010 Privileged —

STC DBR,Rn DBR → Rn 0000nnnn11111010 Privileged —

STC Rm_BANK,Rn Rm_BANK → Rn (m = 0 to 7) 0000nnnn1mmm0010 Privileged —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — —

STS PR,Rn PR → Rn 0000nnnn00101010 — —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — —

FLOAT FPUL,FRn (float) FPUL → FRn 1111nnnn00101101 — —

FCNVSD FPUL,DRn float_to_ double [FPUL] → DRn 1111nnn010101101 — —

FLOAT FPUL,DRn (float)FPUL → DRn 1111nnn000101101 — —

STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 — —

STS FPUL,Rn FPUL → Rn 0000nnnn01011010 — —

(3) Register Indirect

Table A.7 Destination Operand Only

Instruction Operation Instruction Code Privileged T Bit

TAS.B @Rn When (Rn) = 0, 1 → T
Otherwise, 0 → T
In both cases, 1 → MSB of (Rn)

0100nnnn00011011 — Test result

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — —

JSR @Rn Delayed branch, PC + 4 → PR,
Rn → PC

0100nnnn00001011 — —

OCBI @Rn Invalidates operand cache block 0000nnnn10010011 — —

OCBP @Rn Writes back and invalidates
operand cache block

0000nnnn10100011 — —

OCBWB @Rn Writes back operand cache block 0000nnnn10110011 — —

PREF @Rn (Rn) → operand cache 0000nnnn10000011 — —

Rev. 4.0, 03/00, page 388 of 395

Table A.8 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 — —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 — —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — —

MOVCA.L R0,@Rn R0 → (Rn) (without fetching
cache block)

0000nnnn11000011 — —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — —

FMOV @Rm,DRn (Rm) → DRn 1111nnn0mmmm1000 — —

FMOV DRm,@Rn DRm → (Rn) 1111nnnnmmm01010 — —

FMOV @Rm,XDn (Rm) → XDn 1111nnn1mmmm1000 — —

FMOV XDm,@Rn XDm → (Rn) 1111nnnnmmm11010 — —

(4) Register Indirect with Post-Increment

Table A.9 Multiply-and-Accumulate Operation

Instruction Operation Instruction Code Privileged T Bit

MAC.L @Rm+,@Rn+ Signed, (Rn) × (Rm) + MAC → MAC
Rn + 4 → Rn, Rm + 4 → Rm
32 × 32 + 64 → 64 bits

0000nnnnmmmm1111 — —

MAC.W @Rm+,@Rn+ Signed, (Rn) × (Rm) + MAC → MAC
Rn + 2 → Rn, Rm + 2 → Rm
16 × 16 + 64 → 64 bits

0100nnnnmmmm1111 — —

Table A.10 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B @Rm+,Rn (Rm)→ sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 — —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 — —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 — —

FMOV.S @Rm+,FRn (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 — —

FMOV @Rm+,DRn (Rm) → DRn, Rm + 8 → Rm 1111nnn0mmmm1001 — —

FMOV @Rm+,XDn (Rm) → XDn, Rm + 8 → Rm 1111nnn1mmmm1001 — —

Rev. 4.0, 03/00, page 389 of 395

Table A.11 Load to Control Register or System Register

Instruction Operation Instruction Code Privileged T Bit

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 Privileged LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 Privileged —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 Privileged —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 Privileged —

LDC.L @Rm+,DBR (Rm) → DBR, Rm + 4 → Rm 0100mmmm11110110 Privileged —

LDC.L @Rm+,Rn_BANK (Rm) → Rn_BANK,
Rm + 4 → Rm

0100mmmm1nnn0111 Privileged —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 — —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 — —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — —

LDS.L @Rm+,FPSCR (Rm) → FPSCR, Rm+4 → Rm 0100mmmm01100110 — —

LDS.L @Rm+,FPUL (Rm) → FPUL, Rm+4 → Rm 0100mmmm01010110 — —

(5) Register Indirect with Pre-Decrement

Table A.12 Direct Data Transfer from Register

Instruction Operation Instruction Code Privileged T Bit

MOV.B Rm,@-Rn Rn-1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — —

MOV.W Rm,@-Rn Rn-2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — —

MOV.L Rm,@-Rn Rn-4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 — —

FMOV DRm,@-Rn Rn-8 → Rn, DRm → (Rn) 1111nnnnmmm01011 — —

FMOV XDm,@-Rn Rn – 8 → Rn, XDm → (Rn) 1111nnnnmmm11011 — —

Rev. 4.0, 03/00, page 390 of 395

Table A.13 Store from Control Register or System Register

Instruc
tion

Operation Instruction Code Privileged T Bit

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 Privileged —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 — —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 Privileged —

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 Privileged —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 Privileged —

STC.L SGR,@-Rn Rn – 4 → Rn, SGR → (Rn) 0100nnnn00110010 Privileged —

STC.L DBR,@-Rn Rn – 4 → Rn, DBR → (Rn) 0100nnnn11110010 Privileged —

STC.L Rm_BANK,@-Rn Rn – 4 → Rn,
Rm_BANK → (Rn) (m = 0 to 7)

0100nnnn1mmm0011 Privileged —

STS.L MACH,@-Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 — —

STS.L MACL,@-Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 — —

STS.L PR,@-Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 — —

STS.L FPSCR,@-Rn Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 — —

STS.L FPUL,@-Rn Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 — —

(6) Register Indirect with Displacement

Table A.14 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign extension
→ R0

10000100mmmmdddd — —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd — —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — —

Rev. 4.0, 03/00, page 391 of 395

(7) Indexed Register Indirect

Table A.15 Register Direct Data Transfer

Instruction Operation Instruction Code Privileged T Bit

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1100 — —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension
→ Rn

0000nnnnmmmm1101 — —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn0mmmm0110 — —

FMOV DRm,@(R0,Rn) DRm → (R0 + Rn) 1111nnnnmmm00111 — —

FMOV @(R0,Rm),DRn (R0 + Rm) → DRn 1111nnn1mmmm0110 — —

FMOV XDm,@(R0,Rn) XDm → (R0+Rn) 1111nnnnmmm10111 — —

(8) GBR Indirect with Displacement

Table A.16 Register Direct Data Transfer

Instructi
on

Operation Instruction Code Privileged T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — —

MOV.B @(disp,GBR),R0 (disp + GBR) →
sign extension → R0

11000100dddddddd — —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd — —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — —

Rev. 4.0, 03/00, page 392 of 395

(9) Indexed GBR Indirect

Table A.17 Immediate Data Transfer

Instructi
on

Operation Instruction Code Privileged T Bit

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm → (R0 +
GBR)

11001101iiiiiiii — —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 +
GBR)

11001111iiiiiiii —

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; when result
= 0, 1 → T
Otherwise, 0 → T

11001100iiiiiiii — Test result

XOR.B #imm,@(R0,GBR) (R0 + GBR) ∧ imm → (R0 +
GBR)

11001110iiiiiiii — —

(10) PC Relative with Displacement

Table A.18 Direct Data Transfer to Register

Instruction Operation Instruction Code Privileged T Bit

MOV.W @(disp,PC),Rn (disp × 2 + PC + 4) → sign
extension → Rn

1001nnnndddddddd — —

MOV.L @(disp,PC),Rn (disp × 4 + PC & H'FFFFFFFC
+ 4) → Rn

1101nnnndddddddd — —

MOVA @(disp,PC),R0 disp × 4 + PC & H'FFFFFFFC
+ 4 → R0

11000111dddddddd — —

(11) PC Relative Using Rn

Table A.19 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BRAF Rn Rn + PC + 4 → PC 0000nnnn00100011 — —

BSRF Rn Delayed branch, PC + 4 → PR,
Rn + PC + 4 → PC

0000nnnn00000011 — —

Rev. 4.0, 03/00, page 393 of 395

(12) PC Relative

Table A.20 Branch Instructions

Instruction Operation Instruction Code Privileged T Bit

BF label When T = 0, disp × 2 + PC +
4 → PC
When T = 1, nop

10001011dddddddd — —

BF/S label Delayed branch; when T = 0,
disp × 2 + PC + 4 → PC
When T = 1, nop

10001111dddddddd — —

BT label When T = 1, disp × 2 + PC +
4 → PC
When T = 0, nop

10001001dddddddd — —

BT/S label Delayed branch; when T = 1,
disp × 2 + PC + 4 → PC
When T = 0, nop

10001101dddddddd — —

BRA label Delayed branch, disp × 2 +
PC + 4 → PC

1010dddddddddddd — —

BSR label Delayed branch, PC + 4 → PR,
disp × 2 + PC + 4 → PC

1011dddddddddddd — —

(13) Immediate

Table A.21 Load to Register

Instruction Operation Instruction Code Privileged T Bit

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 — —

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 — —

Table A.22 Register Direct Arithmetic/Logic Operation

Instruction Operation Instruction Code Privileged T Bit

MOV #imm,Rn imm → sign extension → Rn 1110nnnniiiiiiii — —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — —

CMP/EQ #imm,R0 When R0 = imm, 1 → T
Otherwise, 0 → T

10001000iiiiiiii — Comparison
result

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — —

TST #imm,R0 R0 & imm; when result = 0,
1 → T
Otherwise, 0 → T

11001000iiiiiiii — Test result

XOR #imm,R0 R0 ∧ imm → R0 11001010iiiiiiii — —

Rev. 4.0, 03/00, page 394 of 395

Table A.23 Exception Vector Specification

Instruction Operation Instruction Code Privileged T Bit

TRAPA #imm PC + 2 → SPC, SR → SSR,
#imm << 2 → TRA,
H'160 → EXPEVT,
VBR + H'0100 → PC

11000011iiiiiiii — —

Rev. 4.0, 03/00, page 395 of 395

Appendix B Instruction Prefetch Side Effects

The SH-4 is provided with an internal buffer for holding pre-read instructions, and always
performs pre-reading. Therefore, program code must not be located in the last 20-byte area of any
memory space. If program code is located in these areas, the memory area will be exceeded and a
bus access for instruction pre-reading may be initiated. A case in which this is a problem is shown
below.

Address
H'03FFFFF8
H'03FFFFFA
H'03FFFFFC
H'03FFFFFE
H'04000000
H'04000002

Area 0

Area 1

ADD R1,R4
JMP @R2
NOP
NOP

.

.

.

.

.
PC (program counter)

Instruction prefetch address

Figure B.1 Instruction Prefetch

Figure B.1 presupposes a case in which the instruction (ADD) indicated by the program counter
(PC) and the address H'0400002 instruction prefetch are executed simultaneously. It is also
assumed that the program branches to an area outside area 1 after executing the following JMP
instruction and delay slot instruction.

In this case, the program flow is unpredictable, and a bus access (instruction prefetch) to area 1
may be initiated.

Instruction Prefetch Side Effects
1. It is possible that an external bus access caused by an instruction prefetch may result in

misoperation of an external device, such as a FIFO, connected to the area concerned.

2. If there is no device to reply to an external bus request caused by an instruction prefetch,
hangup will occur.

Remedies
1. These illegal instruction fetches can be avoided by using the MMU.

2. The problem can be avoided by not locating program code in the last 20 bytes of any area.

SH-4 Programming Manual

Publication Date: 1st Edition, August 1998
4th Edition, March 2000

Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 1998. All rights reserved. Printed in Japan.

	Cover
	Cautions
	Preface
	Contents
	Section 1 Overview
	1.1 SH-4 Features

	Section 2 Programming Model
	2.1 Data Formats
	2.2 Register Configuration
	2.2.1 Privileged Mode and Banks
	2.2.2 General Registers
	2.2.3 Floating-Point Registers
	2.2.4 Control Registers
	2.2.5 System Registers

	2.3 Memory-Mapped Registers
	2.4 Data Format in Registers
	2.5 Data Formats in Memory
	2.6 Processor States
	2.7 Processor Modes

	Section 3 Memory Management Unit (MMU)
	3.1 Overview
	3.1.1 Features
	3.1.2 Role of the MMU
	3.1.3 Register Configuration
	3.1.4 Caution

	3.2 Register Descriptions
	3.3 Memory Space
	3.3.1 Physical Memory Space
	3.3.2 External Memory Space
	3.3.3 Virtual Memory Space
	3.3.4 On-Chip RAM Space
	3.3.5 Address Translation
	3.3.6 Single Virtual Memory Mode and Multiple Virtual Memory Mode
	3.3.7 Address Space Identifier (ASID)

	3.4 TLB Functions
	3.4.1 Unified TLB (UTLB) Configuration
	3.4.2 Instruction TLB (ITLB) Configuration
	3.4.3 Address Translation Method

	3.5 MMU Functions
	3.5.1 MMU Hardware Management
	3.5.2 MMU Software Management
	3.5.3 MMU Instruction (LDTLB)
	3.5.4 Hardware ITLB Miss Handling
	3.5.5 Avoiding Synonym Problems

	3.6 MMU Exceptions
	3.6.1 Instruction TLB Multiple Hit Exception
	3.6.2 Instruction TLB Miss Exception
	3.6.3 Instruction TLB Protection Violation Exception
	3.6.4 Data TLB Multiple Hit Exception
	3.6.5 Data TLB Miss Exception
	3.6.6 Data TLB Protection Violation Exception
	3.6.7 Initial Page Write Exception

	3.7 Memory-Mapped TLB Configuration
	3.7.1 ITLB Address Array
	3.7.2 ITLB Data Array 1
	3.7.3 ITLB Data Array 2
	3.7.4 UTLB Address Array
	3.7.5 UTLB Data Array 1
	3.7.6 UTLB Data Array 2

	Section 4 Caches
	4.1 Overview
	4.1.1 Features
	4.1.2 Register Configuration

	4.2 Register Descriptions
	4.3 Operand Cache (OC)
	4.3.1 Configuration
	4.3.2 Read Operation
	4.3.3 Write Operation
	4.3.4 Write-Back Buffer
	4.3.5 Write-Through Buffer
	4.3.6 RAM Mode
	4.3.7 OC Index Mode
	4.3.8 Coherency between Cache and External Memory
	4.3.9 Prefetch Operation

	4.4 Instruction Cache (IC)
	4.4.1 Configuration
	4.4.2 Read Operation
	4.4.3 IC Index Mode

	4.5 Memory-Mapped Cache Configuration
	4.5.1 IC Address Array
	4.5.2 IC Data Array
	4.5.3 OC Address Array
	4.5.4 OC Data Array

	4.6 Store Queues
	4.6.1 SQ Configuration
	4.6.2 SQ Writes
	4.6.3 Transfer to External Memory
	4.6.4 SQ Protection

	Section 5 Exceptions
	5.1 Overview
	5.1.1 Features
	5.1.2 Register Configuration

	5.2 Register Descriptions
	5.3 Exception Handling Functions
	5.3.1 Exception Handling Flow
	5.3.2 Exception Handling Vector Addresses

	5.4 Exception Types and Priorities
	5.5 Exception Flow
	5.5.1 Exception Flow
	5.5.2 Exception Source Acceptance
	5.5.3 Exception Requests and BL Bit
	5.5.4 Return from Exception Handling

	5.6 Description of Exceptions
	5.6.1 Resets
	5.6.2 General Exceptions
	5.6.3 Interrupts
	5.6.4 Priority Order with Multiple Exceptions

	5.7 Usage Notes
	5.8 Restrictions

	Section 6 Floating-Point Unit
	6.1 Overview
	6.2 Data Formats
	6.2.1 Floating-Point Format
	6.2.2 Non-Numbers (NaN)
	6.2.3 Denormalized Numbers

	6.3 Registers
	6.3.1 Floating-Point Registers
	6.3.2 Floating-Point Status/Control Register (FPSCR)
	6.3.3 Floating-Point Communication Register (FPUL)

	6.4 Rounding
	6.5 Floating-Point Exceptions
	6.6 Graphics Support Functions
	6.6.1 Geometric Operation Instructions
	6.6.2 Pair Single-Precision Data Transfer

	Section 7 Instruction Set
	7.1 Execution Environment
	7.2 Addressing Modes
	7.3 Instruction Set

	Section 8 Pipelining
	8.1 Pipelines
	8.2 Parallel-Executability
	8.3 Execution Cycles and Pipeline Stalling

	Section 9 Instruction Descriptions
	9.1 ADD ADD binary Arithmetic Instruction
	9.2 ADDC ADD with Carry Arithmetic Instruction
	9.3 ADDV ADD with (V flag) overflow check Arithmetic Instruction
	9.4 AND AND logical Logical Instruction
	9.5 BF Branch if False Branch Instruction
	9.6 BF/S Branch if False with delay Slot Branch Instruction
	9.7 BRA BRAnch Branch Instruction
	9.8 BRAF BRAnch Far Branch Instruction
	9.9 BSR Branch to SubRoutine Branch Instruction
	9.10 BSRF Branch to SubRoutine Far Branch Instruction
	9.11 BT Branch if True Branch Instruction
	9.12 BT/S Branch if True with delay Slot Branch Instruction
	9.13 CLRMAC CleaR MAC register System Control Instruction
	9.14 CLRS CleaR S bit System Control Instruction
	9.15 CLRT CleaR T bit System Control Instruction
	9.16 CMP/cond CoMPare conditionally Arithmetic Instruction
	9.17 DIV0S DIVide (step 0) as Signed Arithmetic Instruction
	9.18 DIV0U DIVide (step 0) as Unsigned Arithmetic Instruction
	9.19 DIV1 DIVide 1 step Arithmetic Instruction
	9.20 DMULS.L Double-length
	9.21 DMULU.L Double-length MULtiply
	9.22 DT Decrement and Test Arithmetic Instruction
	9.23 EXTS EXTend as Signed Arithmetic Instruction
	9.24 EXTU EXTend as Unsigned Arithmetic Instruction
	9.25 FABS Floating-point ABSolute value Floating-Point Instruction
	9.26 FADD Floating-point ADD Floating-Point Instruction
	9.27 FCMP Floating-point CoMPare Floating-Point Instruction
	9.28 FCNVDS Floating-point CoNVert
	9.29 FCNVSD Floating-point CoNVert
	9.30 FDIV Floating-point DIVide Floating-Point Instruction
	9.31 FIPR Floating-point Inner
	9.32 FLDI0 Floating-point
	9.33 FLDI1 Floating-point LoaD
	9.34 FLDS Floating-point
	9.35 FLOAT Floating-point
	9.36 FMAC Floating-point Multiply
	9.37 FMOV Floating-point MOVe Floating-Point Instruction
	9.38 FMOV Floating-point
	9.39 FMUL Floating-point MULtiply Floating-Point Instruction
	9.40 FNEG Floating-point NEGate value Floating-Point Instruction
	9.41 FRCHG FR-bit CHanGe Floating-Point Instruction
	9.42 FSCHG Sz-bit CHanGe Floating-Point Instruction
	9.43 FSQRT Floating-point SQuare RooT Floating-Point Instruction
	9.44 FSTS Floating-point STore
	9.45 FSUB Floating-point
	9.46 FTRC Floating-point TRuncate
	9.47 FTRV Floating-point
	9.48 JMP JuMP Branch Instruction
	9.49 JSR Jump to SubRoutine Branch Instruction
	9.50 LDC LoaD to Control register System Control Instruction
	9.51 LDS LoaD to FPU System
	9.52 LDS LoaD to System register System Control Instruction
	9.53 LDTLB LoaD PTEH/PTEL/PTEA
	9.54 MAC.L Multiply and ACcumulate
	9.55 MAC.W Multiply and
	9.56 MOV MOVe data Data Transfer Instruction
	9.57 MOV MOVe constant value Data Transfer Instruction
	9.58 MOV MOVe global data Data Transfer Instruction
	9.59 MOV MOVe structure data Data Transfer Instruction
	9.60 MOVA MOVe effective Address Data Transfer Instruction
	9.61 MOVCA.L MOVe with Cache
	9.62 MOVT MOVe T bit Data Transfer Instruction
	9.63 MUL.L MULtiply Long Arithmetic Instruction
	9.64 MULS.W MULtiply as Signed Word Arithmetic Instruction
	9.65 MULU.W MULtiply as Unsigned Word Arithmetic Instruction
	9.66 NEG NEGate Arithmetic Instruction
	9.67 NEGC NEGate with Carry Arithmetic Instruction
	9.68 NOP No OPeration System Control Instruction
	9.69 NOT NOT-logical complement Logical Instruction
	9.70 OCBI Operand Cache Block
	9.71 OCBP Operand Cache Block
	9.72 OCBWB Operand Cache Block
	9.73 OR OR logical Logical Instruction
	9.74 PREF PREFetch data to cache Data Transfer Instruction
	9.75 ROTCL ROTate with Carry Left Shift Instruction
	9.76 ROTCR ROTate with Carry Right Shift Instruction
	9.77 ROTL ROTate Left Shift Instruction
	9.78 ROTR ROTate Right Shift Instruction
	9.79 RTE ReTurn from Exception System Control Instruction
	9.80 RTS ReTurn from Subroutine Branch Instruction
	9.81 SETS SET S bit System Control Instruction
	9.82 SETT SET T bit System Control Instruction
	9.83 SHAD SHift Arithmetic Dynamically Shift Instruction
	9.84 SHAL SHift Arithmetic Left Shift Instruction
	9.85 SHAR SHift Arithmetic Right Shift Instruction
	9.86 SHLD SHift Logical Dynamically Shift Instruction
	9.87 SHLL SHift Logical Left Shift Instruction
	9.88 SHLLn n bits SHift Logical Left Shift Instruction
	9.89 SHLR SHift Logical Right Shift Instruction
	9.90 SHLRn n bits SHift Logical Right Shift Instruction
	9.91 SLEEP SLEEP System Control Instruction
	9.92 STC STore Control register System Control Instruction
	9.93 STS STore System register System Control Instruction
	9.94 STS STore from FPU
	9.95 SUB SUBtract binary Arithmetic Instruction
	9.96 SUBC SUBtract with Carry Arithmetic Instruction
	9.97 SUBV SUBtract with (V flag)
	9.98 SWAP SWAP register halves Data Transfer Instruction
	9.99 TAS Test And Set Logical Instruction
	9.100 TRAPA TRAP Always System Control Instruction
	9.101 TST TeST logical Logical Instruction
	9.102 XOR eXclusive OR logical Logical Instruction
	9.103 XTRCT eXTRaCT Data Transfer Instruction

	Appendix A Instruction Codes
	A.1 Instruction Set by Addressing Mode

	Appendix B Instruction Prefetch Side Effects
	Colophon

