
Hitachi SuperH™ RISC engine

SH-3/SH-3E/SH3-DSP

Programming Manual

ADE-602-096B
Rev.3.0
9/25/00
Hitachi, Ltd



Cautions

1. Hitachi neither warrants nor grants licenses of any rights of Hitachi’s or any third party’s
patent, copyright, trademark, or other intellectual property rights for information contained in
this document.  Hitachi bears no responsibility for problems that may arise with third party’s
rights, including intellectual property rights, in connection with use of the information
contained in this document.

2. Products and product specifications may be subject to change without notice. Confirm that you
have received the latest product standards or specifications before final design, purchase or
use.

3. Hitachi makes every attempt to ensure that its products are of high quality and reliability.
However, contact Hitachi’s sales office before using the product in an application that
demands especially high quality and reliability or where its failure or malfunction may directly
threaten human life or cause risk of bodily injury, such as aerospace, aeronautics, nuclear
power, combustion control, transportation, traffic, safety equipment or medical equipment for
life support.

4. Design your application so that the product is used within the ranges guaranteed by Hitachi
particularly for maximum rating, operating supply voltage range, heat radiation characteristics,
installation conditions and other characteristics.  Hitachi bears no responsibility for failure or
damage when used beyond the guaranteed ranges.  Even within the guaranteed ranges,
consider normally foreseeable failure rates or failure modes in semiconductor devices and
employ systemic measures such as fail-safes, so that the equipment incorporating Hitachi
product does not cause bodily injury, fire or other consequential damage due to operation of
the Hitachi product.

5. This product is not designed to be radiation resistant.

6. No one is permitted to reproduce or duplicate, in any form, the whole or part of this document
without written approval from Hitachi.

7. Contact Hitachi’s sales office for any questions regarding this document or Hitachi
semiconductor products.



Introduction

The SH-3/SH-3E/SH3-DSP is a new generation of RISC microcomputers that integrate a RISC-
type CPU and the peripheral functions required for system configuration onto a single chip to
achieve high-performance operation. It can operate in a power-down state, which is an essential
feature for portable equipment.

These CPUs have a RISC-type instruction set. Basic instructions can be executed in one clock
cycle, improving instruction execution speed. In addition, the CPU has a 32-bit internal
architecture for enhanced data-processing ability.

In addition, the SH-3E supports single-precision floating point calculations as well as entirely
PCAPI compatible emulation of double-precision floating point calculations. The SH-3E
instructions are a subset of the floating point calculations conforming to the IEEE754 standard.

This programming manual describes in detail the instructions for the SH-3/SH-3E/SH3-DSP and
is intended as a reference on instruction operation and architecture. It also covers the pipeline
operation, which is a feature of the SH-3/SH-3E/SH3-DSP. For information on the hardware,
please refer to the hardware manual for the product in question.

Please contact a Hitachi sales office for information on development environment systems.



Organization of This Manual

Table 1 describes how this manual is organized. Table 2 show the relationships between the items
listed and lists the sections within this manual that cover those items.

Table 1 Manual Organization

Category Section Title Contents

Introduction 1. Features CPU features

Architecture (1) 2. Programming
model

Types and structure of general registers, control
registers and system registers

3. Data Formats Data formats for registers and memory

4. Floating Point
Processor Unit

FPU register configuration, FPU exceptions

5. DSP Operations
and Data Transfer

Fixed-point operations, integer operations, logic
operations, multiplication, shift operations,
overview of DSP operations such as saturation
operations, repeat control

Introduction to
instructions

6. Instruction
Features

Instruction features, addressing modes, and
instruction formats

7. Instruction Sets Summary of instructions by category and list in
alphabetic order

Detailed information
on instructions

8. Description of
Each Instruction

Operation of each instruction in alphabetical order

Architecture (2) 9. Processing States Power-down and other processing states

10. Pipeline Operation Pipeline operation



Table 2 Subjects and Corresponding Sections

Category Topic Section Title

Introduction and CPU features 1. Features
features Instruction features 6.1 RISC-Type Instruction Set

Pipelines 10.1 Basic Configuration of
Pipelines

10.2 Slot and Pipeline Flow

Architecture Organization of registers 2. Programming model

Data formats 3. Data Formats

Floating point processor unit 4. Floating Point Processor Unit

DSP 5. DSP Operations and Data
Transfer

Processing states, reset state, exception
processing state, bus release state,
program execution state, power-down
state, sleep mode and standby mode

9. Processing States

Pipeline operation 10. Pipeline Operation

Introduction to Instruction features 6. Instruction Features
instructions Addressing modes 6.2 Addressing Modes

Instruction formats 6.3 Instruction Formats

List of
instructions

Instruction sets 7.1 Instruction Set by
Classification

7.2 Instruction Set in
Alphabetical Order

Detailed
information on
instructions

Detailed information of instruction
operation

8. Instruction Description

10.7 Instruction Pipelines

Number of instruction execution states 10.3 Number of Instruction
Execution Cycles





i

Contents

Section 1   Features ................................................................................................................ 1
1.1 SH-3 CPU Features............................................................................................................ 1
1.2 SH3-DSP Features ............................................................................................................. 3

Section 2   Programming Model......................................................................................... 5
2.1 Organization of Registers .................................................................................................. 5

2.1.1 Privileged Mode and Banks.................................................................................. 5
2.2 General-Purpose Registers ................................................................................................. 11
2.3 Control Registers................................................................................................................ 13
2.4 System Registers................................................................................................................ 15
2.5 Initial Register Value ......................................................................................................... 16

Section 3   Data Formats....................................................................................................... 17
3.1 Data Format in Registers.................................................................................................... 17
3.2 Data Format in Memory..................................................................................................... 17
3.3 Data Format for Immediate Data ....................................................................................... 18
3.4 DSP Type Data Formats (SH3-DSP Only)........................................................................ 18

Section 4   Floating Point Unit (SH-3E only) ................................................................ 21
4.1 Introduction........................................................................................................................ 21
4.2 Floating Point Registers and System Registers for FPU.................................................... 22

4.2.1 Floating Point Register File .................................................................................. 22
4.2.2 Floating Point Communication Register (FPUL) ................................................. 22
4.2.3 Floating Point Status/Control Register (FPSCR).................................................. 22

4.3 Floating Point Format ........................................................................................................ 24
4.3.1 Floating Point Format ........................................................................................... 24
4.3.2 Not a Number (NaN) ............................................................................................ 24
4.3.3 Denormalized Values............................................................................................ 25
4.3.4 Other Special Values ............................................................................................ 25

4.4 Floating Point Exception Model ........................................................................................ 26
4.4.1 Enabled Exception ................................................................................................ 26
4.4.2 Disabled Exception ............................................................................................... 26
4.4.3 Exception Event and Code for FPU...................................................................... 26
4.4.4 Alignment of Floating Point Data in Memory...................................................... 27
4.4.5 Arithmetic with Special Operands........................................................................ 27

4.5 Synchronization Issues ...................................................................................................... 27

Section 5   DSP Operation Functions and Data Transfers (SH3-DSP Only)........ 29
5.1 ALU Fixed Decimal Point Operations............................................................................... 30



ii

5.1.1 Function ................................................................................................................ 30
5.1.2 Instructions and Operands .................................................................................... 32
5.1.3 DC Bit ................................................................................................................... 32
5.1.4 Condition Bits ....................................................................................................... 35
5.1.5 Overflow Prevention Function (Saturation Operation) ........................................ 35

5.2 ALU Integer Operations .................................................................................................... 35
5.3 ALU Logical Operations.................................................................................................... 37

5.3.1 Function ................................................................................................................ 37
5.3.2 Instructions and Operands .................................................................................... 38
5.3.3 DC Bit ................................................................................................................... 39
5.3.4 Condition Bits ....................................................................................................... 39

5.4 Fixed Decimal Point Multiplication................................................................................... 39
5.5 Shift Operations ................................................................................................................. 41

5.5.1 Arithmetic Shift Operations.................................................................................. 41
5.5.2 Logical Shift Operations ....................................................................................... 43

5.6 The MSB Detection Instruction ......................................................................................... 45
5.6.1 Function ................................................................................................................ 45
5.6.2 Instructions and Operands .................................................................................... 47
5.6.3 DC Bit ................................................................................................................... 48
5.6.4 Condition Bits ....................................................................................................... 48

5.7 Rounding............................................................................................................................ 49
5.7.1 Operation Function ............................................................................................... 49
5.7.2 Instructions and Operands .................................................................................... 50
5.7.3 DC Bit ................................................................................................................... 51
5.7.4 Condition Bits ....................................................................................................... 51
5.7.5 Overflow Prevention Function (Saturation Operation) ........................................ 51

5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)............................................ 52
5.9 Overflow Prevention Function (Saturation Operation)...................................................... 54
5.10 Data Transfers.................................................................................................................... 54

5.10.1 X and Y Memory Data Transfer ........................................................................... 55
5.10.2 Single Data Transfers............................................................................................ 56

5.11 Operand Contention ........................................................................................................... 59
5.12 SP Repeat (Loop) Control.................................................................................................. 60

5.12.1 Usage Notes .......................................................................................................... 64
5.13 Conditional Instructions and Data Transfers...................................................................... 67

Section 6   Instruction Features .......................................................................................... 69
6.1 RISC-Type Instruction Set................................................................................................. 69

6.1.1 16-Bit Fixed Length.............................................................................................. 69
6.1.2 One Instruction/Cycle ........................................................................................... 69
6.1.3 Data Length .......................................................................................................... 69
6.1.4 Load-Store Architecture........................................................................................ 69
6.1.5 Delayed Branch Instructions................................................................................. 70



iii

6.1.6 Multiplication/Accumulation Operation............................................................... 70
6.1.7 T Bit ...................................................................................................................... 70
6.1.8 Immediate Data..................................................................................................... 71
6.1.9 Absolute Address.................................................................................................. 71
6.1.10 16-Bit/32-Bit Displacement.................................................................................. 72
6.1.11 Privileged Instructions .......................................................................................... 72

6.2 CPU Instruction Addressing Modes .................................................................................. 73
6.3 DSP Data Addressing (SH3-DSP Only) ............................................................................ 76

6.3.1 X and Y Data Addressing ..................................................................................... 77
6.3.2 Single Data Addressing ........................................................................................ 78
6.3.3 Modulo Addressing .............................................................................................. 79
6.3.4 DSP Addressing Operation ................................................................................... 81

6.4 Instruction Format of CPU Instructions............................................................................. 83
6.5 Instruction Formats for DSP Instructions (SH3-DSP Only).............................................. 86

6.5.1 Double and Single Data Transfer Instructions...................................................... 86
6.5.2 Parallel Processing Instructions............................................................................ 89

Section 7   Instruction Set..................................................................................................... 93
7.1 Instruction Set by Classification ........................................................................................ 93

7.1.1 Data Transfer Instructions .................................................................................... 98
7.1.2 Arithmetic Instructions ......................................................................................... 100
7.1.3 Logic Operation Instructions ................................................................................ 102
7.1.4 Shift Instructions................................................................................................... 103
7.1.5 Branch Instruction ................................................................................................ 104
7.1.6 System Control Instructions.................................................................................. 105
7.1.7 Floating Point Instructions (SH-3E Only) ............................................................ 109
7.1.8 FPU System Register Related CPU Instructions (SH-3E Only) .......................... 110
7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only) ....................... 110

7.2 Instruction Set in Alphabetical Order ................................................................................ 112
7.3 DSP Data Transfer Instruction Set (SH3-DSP Only) ........................................................ 123

7.3.1 Double Data Transfer Instructions (X Memory Data).......................................... 124
7.3.2 Double Data Transfer Instructions (Y Memory Data).......................................... 124
7.3.3 Single Data Transfer Instructions ......................................................................... 125

7.4 DSP Operation Instruction Set (SH3-DSP Only) .............................................................. 126
7.4.1 ALU Arithmetic Operation Instructions ............................................................... 130
7.4.2 ALU Logical Operation Instructions .................................................................... 134
7.4.3 Fixed Decimal Point Multiplication Instructions.................................................. 134
7.4.4 Shift Operation Instructions.................................................................................. 135
7.4.5 System Control Instructions.................................................................................. 137
7.4.6 NOPX and NOPY Instruction Code ..................................................................... 137

Section 8   Instruction Descriptions .................................................................................. 139
8.1 Sample Description (Name): Classification....................................................................... 139



iv

8.2 Instruction Description (Listing and Description of Instructions
Common to the SH-3, SH-3E and SH3-DSP).................................................................... 143
8.2.1 ADD (Add Binary): Arithmetic Instruction.......................................................... 143
8.2.2 ADDC (Add with Carry): Arithmetic Instruction ................................................ 144
8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction ................... 145
8.2.4 AND (AND Logical): Logic Operation Instruction.............................................. 146
8.2.5 BF (Branch if False): Branch Instruction.............................................................. 148
8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction................................ 149
8.2.7 BRA (Branch): Branch Instruction ....................................................................... 151
8.2.8 BRAF (Branch Far): Branch Instruction .............................................................. 153
8.2.9 BSR (Branch to Subroutine): Branch Instruction ................................................. 154
8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction ........................................ 156
8.2.11 BT (Branch if True): Branch Instruction .............................................................. 158
8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction................................. 159
8.2.13 CLRMAC (Clear MAC Register): System Control Instruction ........................... 161
8.2.14 CLRS (Clear S Bit): System Control Instruction.................................................. 162
8.2.15 CLRT (Clear T Bit): System Control Instruction ................................................. 163
8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction.............................. 164
8.2.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction ................................... 168
8.2.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction .............................. 169
8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction...................................................... 170
8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction............ 175
8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction....... 177
8.2.22 DT (Decrement and Test): Arithmetic Instruction................................................ 179
8.2.23 EXTS (Extend as Signed): Arithmetic Instruction ............................................... 180
8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction .......................................... 181
8.2.25 JMP (Jump): Branch Instruction........................................................................... 182
8.2.26 JSR (Jump to Subroutine): Branch Instruction ..................................................... 184
8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only) 186
8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction

(SH3-DSP Only) ................................................................................................... 191
8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction

(SH3-DSP Only) ................................................................................................... 192
8.2.30 LDS (Load to System Register): System Control Instruction .............................. 193
8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction

(Privileged Only) .................................................................................................. 197
8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction...................... 198
8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction................................... 201
8.2.34 MOV (Move Data): Data Transfer Instruction ..................................................... 204
8.2.35 MOV (Move Immediate Data): Data Transfer Instruction ................................... 209
8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction.................................... 211
8.2.37 MOV (Move Structure Data): Data Transfer Instruction ..................................... 214
8.2.38 MOVA (Move Effective Address): Data Transfer Instruction ............................. 217



v

8.2.39 MOVT (Move T Bit): Data Transfer Instruction.................................................. 218
8.2.40 MUL.L (Multiply Long): Arithmetic Instruction ................................................. 219
8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction ............................ 220
8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction........................ 221
8.2.43 NEG (Negate): Arithmetic Instruction.................................................................. 222
8.2.44 NEGC (Negate with Carry): Arithmetic Instruction ............................................ 223
8.2.45 NOP (No Operation): System Control Instruction................................................ 224
8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction...................... 225
8.2.47 OR (OR Logical) Logic Operation Instruction..................................................... 226
8.2.48 PREF (Prefetch Data to the Cache) ...................................................................... 228
8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction ............................................. 229
8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction........................................... 230
8.2.51 ROTL (Rotate Left): Shift Instruction.................................................................. 231
8.2.52 ROTR (Rotate Right): Shift Instruction................................................................ 232
8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only).... 233
8.2.54 RTS (Return from Subroutine): Branch Instruction ............................................. 235
8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction

(SH3-DSP Only) ................................................................................................... 237
8.2.56 SETS (Set S Bit): System Control Instruction...................................................... 239
8.2.57 SETT (Set T Bit): System Control Instruction ..................................................... 240
8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction.................................... 241
8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction .................................................. 243
8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction................................................ 244
8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction.......................................... 245
8.2.62 SHLL (Shift Logical Left): Shift Instruction........................................................ 247
8.2.63 SHLLn (Shift Logical Left n Bits): Shift Instruction............................................ 248
8.2.64 SHLR (Shift Logical Right): Shift Instruction...................................................... 250
8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction ......................................... 251
8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)............................ 253
8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only) ..... 254
8.2.68 STS (Store System Register): System Control Instruction................................... 259
8.2.69 SUB (Subtract Binary): Arithmetic Instruction.................................................... 264
8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction ........................................... 265
8.2.71 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction ........... 266
8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction.................................. 267
8.2.73 TAS (Test and Set): Logic Operation Instruction................................................. 268
8.2.74 TRAPA (Trap Always): System Control Instruction............................................ 269
8.2.75 TST (Test Logical): Logic Operation Instruction................................................. 270
8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction................................ 272
8.2.77 XTRCT (Extract): Data Transfer Instruction........................................................ 274

8.3 Floating Point Instructions and FPU Related CPU Instructions  (SH-3E Only)................ 275
8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction..................... 277
8.3.2 FADD (Floating Point Add): Floating Point Instruction...................................... 278



vi

8.3.3 FCMP (Floating Point Compare): Floating Point Instruction .............................. 281
8.3.4 FDIV (Floating Point Divide): Floating Point Instruction.................................... 285
8.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction ............... 287
8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction................ 288
8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction ...... 289
8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction ......... 290
8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction .......... 291
8.3.10 FMOV (Floating Point Move): Floating Point Instruction ................................... 294
8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction............................... 298
8.3.12 FNEG (Floating Point Negate): Floating Point Instruction.................................. 300
8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction........................ 301
8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction.. 302
8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction ................................ 303
8.3.16 FTRC (Floating Point Truncate And Convert To Integer):

Floating Point Instruction ..................................................................................... 306
8.3.17 LDS (Load to System Register): FPU Related CPU Instruction.......................... 308
8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction ............. 311

8.4 DSP Data Transfer Instructions (SH3-DSP Only) ............................................................. 314
8.4.1 MOVS (Move Single Data between Memory and DSP Register):

DSP Data Transfer Instruction.............................................................................. 321
8.4.2 MOVX (Move between X Memory and DSP Register):

DSP Data Transfer Instruction.............................................................................. 323
8.4.3 MOVY (Move between Y Memory and DSP Register):

DSP Data Transfer Instruction.............................................................................. 324
8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction .. 326
8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction .. 326

8.5 DSP Operation Instructions ............................................................................................... 327
8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction ................................... 340
8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction 343
8.5.3 PADD PMULS (Addition & Multiply Signed by Signed):

DSP Arithmetic Operation Instruction.................................................................. 346
8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction.............. 348
8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction ..................... 350
8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction .............................. 353
8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction.................. 355
8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction .. 357
8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction ............. 360
8.5.10 [if cc] PDMSB (Detect MSB with Condition):

DSP Arithmetic Operation Instruction.................................................................. 363
8.5.11 [if cc] PINC (Increment by 1 with Condition):

DSP Arithmetic Operation Instruction.................................................................. 366
8.5.12  [if cc] PLDS (Load System Register): DSP System Control Instruction ............ 369
8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction ... 371



vii

8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction ........................... 372
8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction............................ 375
8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction ................................. 378
8.5.17 [if cc] PSHA (Shift Arithmetically with Condition):

DSP Arithmetic Shift Instruction.......................................................................... 381
8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction ... 387
8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction.............. 392
8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction.. 395
8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed):

DSP Arithmetic Operation Instruction.................................................................. 398
8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction .......... 400
8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction........ 402

Section 9   Processing States ............................................................................................... 405
9.1 State Transitions................................................................................................................. 405

9.1.1 Reset State ............................................................................................................ 406
9.1.2 Exception Processing State ................................................................................... 406
9.1.3 Program Execution State ...................................................................................... 406
9.1.4 Power-Down State ................................................................................................ 406
9.1.5 Bus Release State.................................................................................................. 406

9.2 Power-Down State ............................................................................................................. 406
9.2.1 Sleep Mode ........................................................................................................... 406
9.2.2 Standby Mode ....................................................................................................... 407
9.2.3 Hardware Standby Mode ...................................................................................... 407
9.2.4 Module Standby Function..................................................................................... 407

Section 10   Pipeline Operation .......................................................................................... 409
10.1 Basic Configuration of Pipelines ....................................................................................... 409

10.1.1 Five-Stage Pipeline ............................................................................................... 409
10.1.2 Slot and Pipeline Flow.......................................................................................... 410
10.1.3 Number of Cycles Required for Execution of One Slot ....................................... 411
10.1.4 Number of Instruction Execution Cycles.............................................................. 412

10.2 Contention.......................................................................................................................... 413
10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA) ............... 413
10.2.2 Effects of Memory Load Instructions on Pipelines .............................................. 417
10.2.3 Contention due to SR Update Instructions............................................................ 418
10.2.4 Multiplier Access Contention ............................................................................... 418
10.2.5 FPU Contention (SH-3E Only)............................................................................. 420
10.2.6 Contention between DSP Data Operation Instructions and Store Instructions

(SH3-DSP Only) ................................................................................................... 422
10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only) .................. 423

10.3 Programming Guidelines ................................................................................................... 424
10.3.1 Correspondence between Contention and Instructions......................................... 424



viii

10.3.2 Increasing Instruction Execution Speed................................................................ 427
10.3.3 Number of Cycles ................................................................................................. 427

10.4 Operation of Instruction Pipelines ..................................................................................... 428
10.4.1 Data Transfer Instructions .................................................................................... 445
10.4.2 Arithmetic Instructions ......................................................................................... 450
10.4.3 Logic Operation Instructions ................................................................................ 456
10.4.4 Shift Instructions................................................................................................... 461
10.4.5 Branch Instructions ............................................................................................... 463
10.4.6 System Control Instructions.................................................................................. 469
10.4.7 Exception Processing............................................................................................ 484
10.4.8 Pipeline for FPU Instructions (SH-3E Only)........................................................ 488
10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)................................................ 490
10.4.10 DSP Operation Instructions (SH3-DSP Only)...................................................... 496

Appendix A   Instruction Code ........................................................................................... 501
A.1 Instruction Set by Addressing Mode.................................................................................. 501

A.1.1 No Operand........................................................................................................... 502
A.1.2 Direct Register Addressing ................................................................................... 503
A.1.3 Indirect Register Addressing ................................................................................ 509
A.1.4 Post-Increment Indirect Register Addressing ....................................................... 510
A.1.5 Pre-Decrement Indirect Register Addressing ....................................................... 512
A.1.6 Indirect Register Addressing with Displacement ................................................. 513
A.1.7 Indirect Indexed Register Addressing .................................................................. 514
A.1.8 Indirect GBR Addressing with Displacement ...................................................... 514
A.1.9 Indirect Indexed GBR Addressing........................................................................ 515
A.1.10 PC Relative Addressing with Displacement ......................................................... 515
A.1.11 PC Relative Addressing........................................................................................ 515
A.1.12 Immediate ............................................................................................................. 516

A.2 Instruction Sets by Instruction Format............................................................................... 518
A.2.1 0 Format................................................................................................................ 519
A.2.2 n Format................................................................................................................ 520
A.2.3  m Format.............................................................................................................. 523
A.2.4 nm Format............................................................................................................. 526
A.2.5 md Format............................................................................................................. 529
A.2.6 nd4 Format............................................................................................................ 530
A.2.7 nmd Format........................................................................................................... 530
A.2.8 d Format................................................................................................................ 530
A.2.9 d12 Format............................................................................................................ 531
A.2.10 nd8 Format............................................................................................................ 531
A.2.11  i Format................................................................................................................ 531
A.2.12 ni Format............................................................................................................... 532

A.3 Operation Code Map.......................................................................................................... 533



ix

Appendix B   Pipeline Operation and Contention......................................................... 539



x



1

Section 1   Features

1.1 SH-3 CPU Features

The SH-3/SH-3E/SH3-DSP has RISC-type instruction sets. Basic instructions are executed in one
clock cycle, which dramatically improves instruction execution speed. The CPU also has an
internal
32-bit architecture for enhanced data processing ability. Table 1-1 lists the SH-3/SH-3E/SH3-DSP
CPU features.

Table 1-1 SH-3/SH-3E/SH3-DSP CPU Features

Feature Description

Architecture • Hitachi original architecture

• 32-bit internal data bus

General-register machine • Sixteen 32-bit general registers (eight banked registers)

• Five 32-bit control registers

• Four 32-bit system registers (SH-3)

• Six 32-bit system registers (SH-3E)

Instruction set • Instruction length: 16-bit fixed length for improved code efficiency

• Load-store architecture (basic arithmetic and logic operations are
executed between registers)

• Delayed branch system used for reduced pipeline disruption

• Instruction set optimized for C language

Instruction execution time • One instruction/cycle for basic instructions

Address space • Architecture makes 4 Gbytes available

On-chip multiplier • Multiplication operations (32 bits × 32 bits → 64 bits) executed in 2
to 5 cycles, and multiplication/accumulation operations (32 bits × 32
bits + 64 bits → 64 bits) executed in 2 to 5 cycles

Pipeline • Five-stage pipeline

Processing states • Reset state

• Exception processing state

• Program execution state

• Power-down state

• Bus release state

Power-down states • Sleep mode

• Standby mode

• Hardware standby mode



2

Table 1-1 SH-3/SH-3E/SH3-DSP CPU Features (cont)

Feature Description

FPU (SH-3E only) • Single-precision floating point format

• Subset of IEEE754 standard data types

• Invalid calculation exception and divide-by-zero exception (in
compliance with IEEE754 standard)

• Rounding to zero (in compliance with IEEE754 standard)

• General purpose register file, 16 32-bit floating point registers

• Execution pitch for basic instructions: 1 cycle/latency or 2 cycles
(FADD, FSUB, FMUL)

• FMAC (floating point multiply accumulate)

Execution pitch: 1 cycle/latency or 2 cycles

• Support for FDIV and FSQRT

• Support for FLDI0 and FLDI1 (load constant 0/1)



3

1.2 SH3-DSP Features

The SH3 CPU only has 16-bit instructions. The SH3-DSP basically has the same 16-bit
instructions, but it also has additional 32-bit DSP instructions that it uses for parallel processing of
DSP type instructions. The SH3 CPU use a standard Neumann architecture, but the SH3-DSP has
the DSP data paths of the expanded Harvard architecture. Table 1-2 lists the added features of
SH3-DSP.



4

Table 1-2 Features of SH3-DSP Series Microprocessor CPUs

Feature Description

DSP unit • Multiplier

• Arithmetic logic unit (ALU)

• Barrel shifter

• DSP registers

• MSB detection

Multiplier • 16 bits × 16 bits → 32 bits (fixed decimal point)

• 1 cycle multiplier

DSP registers • Two 40-bit data registers

• Six 32-bit data registers

• Modulo register (MOD, 32 bits) added to control registers

• Repeat counter (RC) added to status registers (SR)

• Repeat start register (RS, 32-bit) and repeat end register (RE, 32-
bit) added to control registers

DSP data bus • Expanded Harvard architecture

• Simultaneous access of two data bus and one instruction bus

On-chip memory • 16-kbyte RAM

Parallel processing • Maximum of four parallel processes (ALU operation, multiplication,
and two loads or stores)

Address operator • Two address operators

• Address operations for accessing two memories

DSP data addressing
modes

• Increment decrement and index

• Increment decrement and index can have modulo addressing or
not

Repeat control • Zero-overhead repeat control (loop)

Instruction set • 16 or 32 bits

— 16 bits (for load or store only)

— 32 bits (including for ALU operations and multiplication)

• SuperH microprocessor instructions added for accessing DSP
registers.

Pipeline • Five-stage pipeline

• Fifth stage is the DSP stage



5

Section 2   Programming Model

2.1 Organization of Registers

2.1.1 Privileged Mode and Banks

Processing Modes: The SH-3/SH-3E/SH3-DSP has two operating modes: user mode and
privileged mode. The SH-3/SH-3E/SH3-DSP operates in user mode under normal conditions and
enters privileged mode in response to an exception or interrupt. There are three types of registers:
general, system, and control. All of these registers are 32 bits. Which registers can be accessed
through software depends on the processing mode.

General-Purpose Registers: There are 16 general-purpose registers, numbered R0 through R15.
General-purpose registers R0 to R7 are banked registers that are switched by the processor mode.

In privileged mode, the register bank (RB) bit in the status register (SR) defines which banked
registers can be accessed as general-purpose registers and which cannot. Inaccessible registers can
be accessed through the load control register (LDC) and store control register (STC) instructions.

When the RB bit is one (BANK1 is selected), BANK1 general-purpose registers R0_BANK1
through R7_BANK1 and non-banked general-purpose registers R8 through R15 (a total of 16
registers) can be accessed as general-purpose registers R0 through R15 and BANK0 general-
purpose registers R0_BANK0 through R7_BANK0 (eight registers) are accessed by the LDC and
STC instructions. When the RB bit is a zero (BANK0 is selected), BANK0 general-purpose
registers R0_BANK0 through R7_BANK0 and nonbanked general-purpose registers R8 through
R15 (16 registers) can be accessed as general-purpose registers R0 through R15 and BANK1
general-purpose registers R0_BANK1 through R7_BANK1 (eight registers) are accessed by the
LDC and STC instructions.

In user mode, BANK0 general-purpose registers R0_BANK0 through R7_BANK0 and nonbanked
general-purpose registers R8 through R15 can be accessed as general-purpose registers R0 through
R15 (a total of 16 registers) and BANK1 general-purpose registers R0_BANK1 through
R7_BANK1 (eight registers) cannot be accessed.

When the DSP extended features of the SH3-DSP are enabled, DSP instructions use X and Y data
memory and L bus data memory (single data) addressing for eight of the 16 general-purpose
registers.

To access X memory, R4 and R5 are used as the X address register [Ax] and R8 is used as the X
index register [Ix]. To access the Y memory, R6 and R7 are used as the Y address register [Ay]
and R9 is used as the Y index register [Iy]. To access single data using the L bus, R2, R3, R4, and
R5 are used as the single data address register and R8 as the single data index register [Is].



6

DSP type instructions can simultaneously access X and Y memory. There are two groups of
address pointers for specifying the X and Y data memory addresses.

Control Registers: The control registers include registers that can be accessed in either mode (the
global base register (GBR) and status register (SR)) and registers that can only be accessed in
privileged mode (the saved status register (SSR), saved program counter (SPC), and vector base
register (VBR)). Some bits in the status register (for example, the RB bit) can only be accessed in
privileged mode.

System Registers: There are four system registers that can be accessed in either processing mode:

Multiply and accumulate registers

Multiply and accumulate high (MACH)

Multiply and accumulate low (MACL)

Procedure register (PR)

Program counter (PC)

The register configurations are shown in figure 2-1 by processing mode. Switch between user and
privileged modes using the processing operation mode bit in the status register.

Floating Point Registers and System Registers Used by the FPU (SH-3E Only): There are 16
floating point registers: FR0 to FR15. These are used as source and destination registers for single-
precision floating point operations.

The system registers used by the FPU are the floating point communication register (FPUL) and
the floating point status/control register (FPSCR). These are used for communication between the
FPU and CPU as well as exception handling settings.

The register configurations for the different processing modes are illustrated in Figure 2-1 and
Figure 2-2. Refer to 4. Floating Point Unit.



7

31 0
R0_BANK0*1, *2

R1_BANK0*2

R2_BANK0*2

R3_BANK0*2

R4_BANK0*2

R5_BANK0*2

R6_BANK0*2

R7_BANK0*2

R8
R9
R10
R11
R12
R13
R14
R15

SR

GBR
MACH
MACL

PR

PC

31 0
FR0*3

FR1*3

FR2*3

FPSCR*3

FPUL*3

.....

FR15*3

Notes 1.

2.
3.

Register R0 is used as an index register in the indexed register-indirect addressing
mode and indexed GBR-indirect addressing mode. There are some instructions for
which only R0 can be used as the source or destination register.
R0 to R7 are banked registers, and BANK0 is used in the user mode.
These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FR0 to FR15, FPSCR, and FPUL.

Figure 2-1   User Mode Programming Model



8

31 0
R0_BANK1*1, *2

R1_BANK1*2

R2_BANK1*2

R3_BANK1*2

R4_BANK1*2

R5_BANK1*2

R6_BANK1*2

R7_BANK1*2

R8
R9
R10
R11
R12
R13
R14
R15

R0_BANK0*1, *3

R1_BANK0*3

R2_BANK0*3

R3_BANK0*3

R4_BANK0*3

R5_BANK0*3

R6_BANK0*3

R7_BANK0*3

(b) User Mode Programming Model
(RB= 1)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

31 0

R0_BANK1*1, *3

R1_BANK1*3

R2_BANK1*3

R3_BANK1*3

R4_BANK1*3

R5_BANK1*3

R6_BANK1*3

R7_BANK1*3

R8
R9
R10
R11
R12
R13
R14
R15

R0_BANK0*1, *2

R1_BANK0*2

R2_BANK0*2

R3_BANK0*2

R4_BANK0*2

R5_BANK0*2

R6_BANK0*2

R7_BANK0*2

(c) User Mode Programming Model
(RB= 0)

GBR
MACH
MACL

VBR
PR

SR
SSR

PC
SPC

31 0

FR0*4

FR1*4

FR2*4

.....

FR15

31 0

FR0*4

FR1*4

FR2*4

.....

FR15*4

FPSCR*4FPSCR*4

FPUL*4FPUL*4

Register R0 is used as an index register in the indexed register-indirect 
addressing mode and indexed GBR-indirect addressing mode.
R0 to R7 are banked registers. In privileged mode, the RB bit of register SR 
determines which bank is accessed:
BANK0 if the RB bit is set to 0
BANK1 if the RB bit is set to 1.
These banks are accessed by the LDC and STC instructions only. the RB bit of 
register SR determines which bank is accessed:
BANK0 if the RB bit is set to 0
BANK1 if the RB bit is set to 1.
These registers only exist on the SH-3E. They are used for floating point 
operations. Refer to 4. Floating Point Unit for details on FR0 to FR15, FPSCR, 
and FPUL.

Notes 1.

2.

3.

4.

Figure 2-2   Structure of Registers in Privileged Mode



9

DSP Registers and Registers Used by the DSP (SH3-DSP Only)

The DSP unit has nine DSP registers, divided into eight data registers and one control register.

The DSP data registers include two 40-bit registers (A0 and A1) and six 32-bit registers (M0, M1,
X0, X1, Y0, and Y1). The A1 and A0 registers each has eight guard bits, A0G and A1G.

The DSP data registers are used in transferring and processing DSP data as the operand for the
DSP instruction. There are three types of instructions that access the DSP data registers: DSP data
processing, X data processing, and Y data processing.

The 32-bit DSP status register (DSR) is the control register, which indicates the results of
operations. The DSR register has bits to display the results of the operation, which include a
signed greater than bit (GT), a zero value bit (Z), a negative value bit (N), an overflow bit (V), a
DSP condition bit (DC), and condition select bits, which control the DC bit settings (CS).

The DC bit is one of the status flags; it is very similar to the SuperH microcomputer CPU core’s
T bit. In the case of conditional DSP type instructions, the execution of DSP data processing is
controlled in accordance with the DC bit. This control is related to DSP unit execution only, and
only the DSP registers are updated. It is not related to the execution instructions of the SuperH
microprocessor’s CPU core, such as address calculation and load/store instructions. The control
bits CS (bits 0 to 2) specify the condition that the DC bits set.

DSP instructions include both unconditional DSP instructions and conditioned DSP instructions.
Data processing of unconditional DSP instructions updates the condition bits and DC bits, except
for the PMULS, PWAD, PWSB, MOVX, MOVY, and MOVS instructions. Conditional DSP type
instructions are executed in accordance with the status of the DC bit. DSR registers are not
updated, regardless of whether these instructions are executed or not.

Figure 2-1 shows the DSP registers. Table 2-1 lists the DSR register bit functions.



10

39 32 31 0

A0G

A1G

A0

A1

M0

M1

X0

X1

Y0

Y1

DSP data registers

DSP status register (DSR)GT Z N V CS[2:0] DC

8 7 6 5 4 3 2 1 031

Figure 2-3   Organization of the DSP Registers

Table 2-1 DSR Register Bits

Bits Name Function

31–8 Reserved 0: Always reads 0. Always write 0.

7 Signed greater than bit
(GT)

Indicates whether the operation result is positive (and
nonzero) or whether operand 1 is larger than operand 2.
1: Operation result is positive or operand 1 is larger.

6 Zero value bit (Z) Indicates whether the operation result is zero or whether of
operands 1 and 2 are the same.
1: Operation result is zero or operands 1 and 2 are the same.

5 Negative value bit (N) Indicates whether the operation result is negative or whether
operand 1 is smaller than operand 2.
1: Operation result is negative or operand 1 is smaller.

4 Overflow bit (V) Indicates that the operation result overflowed.
1: Operation result overflowed.

3–1 Condition select bits
(CS)

Specifies the mode for selecting the status of the operation
result set in the DC bit. Do not specify 110 or 111.
000: Carry/borrow mode
001: Negative value mode
010: Zero value mode
011: Overflow mode
100: Signed greater than mode
101: Signed equal or greater than mode

0 DSP condition bit (DC) Sets the operation result status in the mode specified by the
CS bits.
0: Specified mode status not achieved
1: Specified mode status achieved.



11

CPU core instructions use the DSR register as a system register. Data transfer to the DSR register
include the following load store instructions:

STS DSR, Rm;

STS.L DSR, @-Rn;

LDS Rn, DSR;

LDS.L @Rn+, DSR;

CPU core instructions also use the A0, A1, X0, X1, Y0, and Y1 registers as system registers.
There are three DSP control registers: the repeat start (RS) register, the repeat end (RE) register,
and the modulo (MOD) register.

The RS and RE registers are used to control program repetition (loops). The number of iterations
is specified in the SR register’s repeat counter (RC), the repeat start address is specified in the RS
register, and the repeat end address is specified in the RE register. The address values stored in the
RS and RE registers are not always the same as the physical starting address and ending address of
the repeat.

The MOD register uses modulo addressing to buffer the repeat data. Modulo addressing is
specified by DMX or DMY in the SR register, the modulo end address (ME) is specified in the top
16 bits of the MOD register, and the modulo start address (MS) is specified in the bottom 16 bits.
The DMX and DMY bits cannot simultaneously specify modulo addressing. Modulo addressing
can be used for X and Y data transfers (MOVX and MOVY). It cannot be used in single data
transfers (MOVS).

Figure 2-5 shows the control registers.

2.2 General-Purpose Registers

Figure 2-4 shows the structure of the general-purpose registers.



12

R0*1, *2

R1*2

R2*2 [As]*4

R3*2 [As]*4

R4*2 [As, Ax]*4

R5*2 [As, Ax]*4

R6*2 [Ay]*4

R7*2 [Ay]*4

R8 [Ix, Is]*4

R9 [Iy]*4

R10

R11

R12

R13

R14

R15

31 0

Notes: 1.

2.

3.

4.

R0 functions as an index register in the 
indexed register-indirect addressing 
mode and indexed GBR-indirect 
addressing mode. In some instructions, 
only R0 can be used as the source or 
destination register.
R0 to R7 are banked registers. In 
privileged mode, the RB bit of register 
SR determines which banks 
(R0_BANK0 to R7_BANK0 or 
R0_BANK1 to R7_BANK1) are 
accessed as general-purpose registers.
These registers only exist on the SH-
3E. They are used for floating point 
operations. Refer to 4. Floating Point 
Unit for details on FR0 to FR15.
When the DSP instruction extended 
features of the SH3-DSP are enabled, 
DSP instructions use these registers as 
memory address registers and index 
registers.

FR0*3

FR1*3

FR2*3

FR3*3

FR4*3

FR5*3

FR6*3

FR7*3

FR8*3

FR9*3

FR10*3

FR11*3

FR12*3

FR13*3

FR14*3

FR15*3

31 0

General-purpose registers

Undefined after reset

Floating point data register

The FMAC instruction uses FR0 to set the multipli-
cation value.

Figure 2-4   Structure of the General-Purpose Registers



13

The symbols R2–R9 are used by the assembler. To change a name to something that indicates the
role of the register for DSP instructions, use an alias. The assembler writes as follows:

Ix: .REG (R8)

The name Ix becomes the alias R8. Aliases are also assigned as follows:

Ax0: .REG (R4)
Ax1: .REG (R5)
Ix: .REG (R8)
Ay0: .REG (R6)
Ay1: .REG (R7)
Iy: .REG (R9)
As0: .REG (R4); defined when an alias is needed for a single data transfer.
As1: .REG (R5); defined when an alias is needed for a single data transfer.
As2: .REG (R2); defined when an alias is needed for a single data transfer.
As3: .REG (R3); defined when an alias is needed for a single data transfer.
Is: .REG (R8); defined when an alias is needed for a single data transfer.

2.3 Control Registers

Figure 2-5 shows the organization of the control registers.



14

SSR

Saved Status Register (SSR)
Stores current SR value at time of exception to
indicate processor status in the return to instruction
stream from exception handler. Undefined after reset.

Saved Program Counter (SPC)
Stores current PC value at time of exception to
indicate return address at completion of exception
processing. Undefined after reset.

Global Base Register (GBR)
Stores the base address of the GBR-indirect addressing
mode. The GBR-indirect addressing mode is used to
transfer data to the register areas of the resident
peripheral modules, and for logic operations. The GBR 
can be accessed in user mode. Undefined after reset.

Vector Base Register (VBR)
Stores the base address of the exception processing
vector area. Initialized to H'00000000 after reset.

31 0

SPC

31 0

GBR

31 0

VBR
31 0

MD:

RB:

BL:

DSP bit:
M and Q bits:

RC:
DMY:

DMX:

I3–I0:
 

S bit:
RF1, RF0:

T bit:

0 bits:

Processor operation mode bit: Indicates the processor operation mode as follows:
1 = Privileged mode; 0 = User mode. Becomes 1 when an exception or interrupt
occurs. Initialized to 1 reset.  
Register bank bit: Defines the general-purpose register used as bank in privileged 
mode. A logic 1 designates R0_BANK1–R7_BANK1 and R8–R15 are accessed 
as general–purpose registers, and R0_BANK0–R7_BANK0 are only accessed by 
LDC and STC instructions; a logic zero designates R0_BANK0–R7_BANK0 and 
R8–R15 are accessed as general-purpose registers, and R0_BANK1–R7_BANK1 
are only accessed by LDC and STC instructions. Becomes 1 when an exception or 
interrupt occurs. Initialized to 1 reset.
Block bit: Masks exceptions and interrupts when 1. For details, see section 5,
Exception Processing. When 0, accepts exceptions and interrupts. Becomes 1 
when an exception or interrupt occurs. Initialized to 1 at reset.
DSP operation mode. DSP instructions are enabled when set to 1.
Used by the DIVOS/DIVOU and DIV1 instructions.
Repeat counter. Specifies the number of repeats for repeat (loop) control (2 to 4,095).
Modulo addressing specification for pointer Y. 1: Modulo addressing mode enabled
for Y memory address pointer and Ay (R6 and R7).
Modulo addressing specification for pointer X. 1: Modulo addressing mode enabled
for memory address pointer and Ax (R4 and R5).
Interrupt mask bits: A 4-bit field indicating the interrupt request mask level. The 
level of interrupt acceptance does not change when an interrupt occurs. Initialized
to B'1111 at reset.
Used by the MAC instruction.
Repeat flags. Used for zero-overhead repeat (loop) control.
00: 1-step repeat
01: 2-step repeat
11: 3-step repeat
10: 4-step (or more) repeat 
The MOVT, CMP/cond, TAS, TST, BT, BF, SETT, CLRT, and DT instructions use
the T bit to indicate true (logic one) or false (logic zero). The ADDV/ADDC, SUBV/SUBC,
DIVOU/DIVOS, DIV1, NEGC, SHAR/SHAL, SHLR/SHRL, ROTA/ROTL, and 
ROTCR/ROTCL instructions also use the T bit to indicate a carry, borrow,
 overflow or underflow.
Always read as 0, and should always be written as 0. 

Notes: Only the M, Q, S, and T can be set or cleared by special instructions from user 
mode. Undefined after reset. All other bits are read or written from privileged mode.
* 0 for versions other than the SH3-DSP.

31

0

30

MD

29

RB

101112131516

0

9

M

8

Q

7

I3 I2 I1 I0

3 2

RF0*DMX* RF1*

1

S

0

T

28

BL

27

0 DMY*DSP*RC*
Status
register (SR)

31 0
RS Repeat Start Register (RS)

31 0

RE Repeat End Register (RE)

31 1516 0
Modulo Register (MOD)ME MS
ME: Modulo End Address
MS: Modulo Start Address

Figure 2-5   Control Registers Configuration



15

2.4 System Registers

The system registers are accessed by the LDS and STS instructions.

Figure 2-3 shows the system register configuration.

31 0

31 0

31 0

PC

PR

FPUL*

MACL

MACH

31 0

FPSCR*

31 0

System registers

Multiply and Accumulate High and Low 
Registers (MACH/L)
Store the results of multiply and multiply-and-
accumulate operations. Undefined after reset.

Floating Point Communication Register (FPUL) 
Points the communication buffer between
the CPU and the FPU.

Program Counter (PC)
Indicates starting address of the current instruction 
incremented by four (two instructions). Initialized to 
H'A000 0000 after reset.

Procedure Register (PR) 
Stores the return address for existing subroutines. 
Undefined after reset.

Floating Point Status/Control Register (FPSCR)
Stores status or controls information for floating 
point operations.

Note: * See section 4, Floating Point Unit, for more information on the FPUL and FPSCR.

Figure 2-6   System Register Configuration



16

2.5 Initial Register Value

Table 2-1 shows the register values after a reset.

Table 2-1 Initial Register Values

Register Type Register Initial Value*1

General purpose R0–R15 Undefined

FR0–FR15*2 Undefined

Control SR MD bit is 1, RB bit is 1, BL bit is 1, bits I3–I0 are
1111 (H'F), bits RC, DMY, and DMX are 0 (SH3-
DSP only), reserved bits are 0, and all others are
undefined

GBR, SSR, SPC Undefined

VBR H'00000000

RS*2, RE*2 Undefined

MOD*2 Undefined

System MACH, MACL, PR,
FPSCR*1, FPUL*1

Undefined

PC H'A0000000

DSP A0, A0G, A1, A1G,
M0, M1, X0, X1, Y0,
Y1

DSR H'00000000

Notes: 1. These registers only exist on the SH-3E. They are used for floating point operations.
Refer to 4. Floating Point Unit for details on FR0 to FR15, FPSCR, and FPUL.

2. These registers only exist on the SH-3E.



17

Section 3   Data Formats

3.1 Data Format in Registers

Register operands are always longwords (32 bits) (figure 3-1). When the memory operand is only
a byte (8 bits) or a word (16 bits), it is sign-extended into a longword when loaded into a register.

31 0
Longword

Figure 3-1   Longword Operand

3.2 Data Format in Memory

Memory data formats are classified into bytes, words, and longwords. Memory can be accessed in
bytes (8 bits), words (16 bits), or longwords (32 bits). Memory operands that do not fill out 32 bits
are sign-extended and stored in a register.

Access word operands from word boundaries (even addresses two bytes apart: 2n addresses) and
longword operands from longword boundaries (even addresses four bytes apart: 4n addresses).
Other accesses cause address errors. Byte operands can be accessed from any address.

Data formats can use either big endian or little endian byte order. Use the external pin (MD5) to
set the endian at power-on reset. When MD5 is low, the processor operates in big endian; when
MD5 is high, the processor operates in little endian. Endians cannot be changed dynamically.
Numbers are always assigned to bit positions, from most significant to least significant and from
left to right. For example, in a longword (32 bits), the leftmost bit (31) is the most significant and
the rightmost bit (0) is the least significant.

Figure 2-6 shows the data format in memory. When little endian is used, data written in bytes (8
bits) should be read in bytes. Data written in words (16 bits) should be read in words.

Longword Longword

31 0

31 0 31 0

1523 7

Byte0 Byte1 Byte2 Byte3

Word1

Big endian

Word0Address A + 4

Address A + 8

Address A + 4

Address A

A + 1A A + 2 A + 3 A + 11 A + 10 A + 9 A + 8
31 01523 7

7

15 15 00 15 15 00

0 0 0 0000 77 7 7 077 7
Byte3 Byte2 Byte1 Byte0

Word0

Little endian

Word1

Address A Address A + 8

Figure 3-2   Data Formats in Memory



18

3.3 Data Format for Immediate Data

Immediate data bytes are arranged inside instruction codes.

For the MOV, ADD, and CMP/EQ instructions, immediate data is sign-extended and then
processed as registers and longwords. In contrast, for the TST, AND, OR, and XOR instructions,
immediate data is zero-extended and then processed as longwords. Consequently, if immediate
data is used with the AND instruction, the upper 24 bits of the destination register will always be
cleared.

Word and longword immediate data is not arranged inside instruction codes. Instead, it is stored in
memory table. Memory tables can be accessed using the immediate data transfer instruction
(MOV) in the PC relative addressing mode with displacement.

For specific examples, see 6.1.8 Immediate Data in section 6. Instruction Features.

3.4 DSP Type Data Formats (SH3-DSP Only)

The SH-DSP uses three different data formats for instructions: the fixed decimal point data format,
the integer data format, and the logical data format.

The DSP type of fixed decimal point data format places a binary decimal point between bits 31
and 30. This data format can have guard bits, no guard bits, or be multiplication input. The valid
bit lengths and values displayed vary for each.

DSP type integer data formats place a binary decimal point between bits 16 and 15. This data
format can have guard bits, no guard bits, or be a shift amount. The valid bit lengths and values
displayed vary for each. The shift amount for arithmetic shift (PSHA) is a seven-bit area between
–64 and +63, although only values between –32 and +32 are valid. The shift amount for logical
shifts is a six bit area, although, in the same fashion, only values between –16 and +16 are valid.

The DSP type logical data format has no decimal point. The data format and valid data length vary
with the instruction and DSP register.

Figure 3-3 shows the three DSP data formats and the position of the two binary decimal points, as
well as the SuperH data format (as reference).



19

S

S

S

S

S

S

S

S

(16 bits)DSP logical data

SuperH integer (word)

(reference)

DSP integer data

DSP fixed decimal 
point data

With guard bits

No guard bits

Multiplication input

With guard bits

No guard bits

Arithmetic shift (PSHA)

Logical shift (PSHL)

39

39

39

39

32

32

31

31

31

31

31

31

31

31

31

22

21

0

0

0

0

0

0

0

0

0

–28 to +28 – 2–31

–1 to +1 – 2–31

–1 to +1 – 2–15

–223 to +223 –1

–215 to +215 –1

–32 to +32

–16 to +16

–231 to +231 –1

16 15

16

16

16

16

16

15

15

15

15

15

S: Sign bit
: Binary decimal point
: Unrelated to processing (ignored)

30

30

30

Figure 3-3   DSP Data Formats



20



21

Section 4   Floating Point Unit (SH-3E only)

4.1 Introduction

The SH-3E has a built-in floating point operations unit (FPU). Figure 4-1 shows the FPU registers.

FR0

FR1

FR2

FR3

FR4

FR5

FR6

FR7

FR8

FR9

FR10

FR11

FR12

FR13

FR14

FR15

31 0

FPUL*

31 0

FPSCR*

31 0

Floating point registers 

System registers 

FR0 functions as the index register 
for FMAC instructions.

Floating Point Communication Register (FPUL)
Indicates the buffer as the communication register 
between the CPU and the FPU. 

Floating Point Status/Control Register (FPSCR)
Stores status or control information for floating point 
operations.

Note: *  See section 4.2, Floating Point Registers and FPU Systems Registers, for more 
information.

Figure 4-1   Register Set Overview: Floating Point Registers and
System Registers Used by the FPU



22

4.2 Floating Point Registers and System Registers for FPU

4.2.1 Floating Point Register File

The SH-3E provides sixteen 32-bit single-precision floating point registers. Register designators
are always 4-bits. In assembly language, the floating point registers are designated as FR0, FR1,
FR2, etc. FR0 functions as the index for FMAC instructions.

4.2.2 Floating Point Communication Register (FPUL)

Information is transferred between the FPU and the CPU through a communication register,
FPUL, which is analogous to the MACL and MACH registers of the integer unit. The SH-3E
provides this communication register because of the differences between integer format and FPU
format. FPUL is a 32-bit system register, accessed on the CPU side by LDS and STS instructions.

4.2.3 Floating Point Status/Control Register (FPSCR)

The SH-3E implements a floating point status and control register, FPSCR, as a system register
accessed through the LDS and STS instructions (figure 4-2). FPSCR is available for modification
by user programs. The FPSCR is part of the process context. It must be saved across context
switches and may need to be saved across procedure calls.

The FPSCR is a 32-bit register that controls FPU rounding, handling of denormalized values, and
captures details about floating point exceptions.

In the SH-3E, only the following modes are supported for these functions.

• Rounding mode: Rounding toward 0.

• Handling of denormalized values: When denormalized values are in the source or destination
operand, they are always treated as 0.

• FPU exceptions: Divide by zero (Z) and invalid (V).



23

0 -------------------- 0 1 CV CZ 0 0 0 EV EZ 0 0 0 FV FZ 0 0 0

Cause Enable Flag

0 10

31 1819 17 16 15 12 11 1014 79 6 245 1 0

CV: Invalid-operation cause bit 
 1: Invalid-operation exception occurred during execution of the current instruction
 0: Invalid-operation exception did not occur

CZ: Divide-by-zero cause bit
 1: Divide-by-zero exception occurred during the execution of the current instruction
 0: Divide-by-zero exception did not occur

EV: Invalid-operation exception enable bit
 1: Enable invalid-operation exception 
 0: Disable invalid-operation exception and return qNaN as a result

EZ: Divide-by-zero exception enable bit 
 1: Enable divide-by-zero exception 
 0: Disable divide-by-zero exception and return correctly signed infinity

FV: Invalid-operation exception flag bit
 1: Invalid-operation exception occurred during execution of the current instruction
 0: Invalid-operation exception did not occur

FZ: Divide-by-zero exception flag bit
 1: Divide-by-zero exception occurred during the execution of the current instruction
 0: Divide-by-zero exception did not occur

Note: With the exception of the above bits, all bits are reserved as shown in the figures and
cannot be modified even by LDS instruction.

Figure 4-2   Floating Point Status/Control Register

The bits in the cause field indicate the cause of exception for the executing of the current
instruction. The cause bits are modified by execution of a floating point instruction. These bits are
set to 0 or 1, depending on occurrence or non-occurrence of exception conditions during the
execution of a single instruction.

The bits in the enable field indicate the specific types of exceptions that are enabled to cause an
exception, that is, change of flow to an exception handling procedure. An exception occurs if the
enable bit and the corresponding cause bit are set by the execution of the current instruction.

The bits in the flag field are used to capture the cumulative effect of all exceptions during the
execution of a sequence of instructions. These bits, once set by an instruction, can not be reset by
following instructions. The bits in this field can only be reset by an explicit store operation on
FPSCR.

See section 4.4, Floating Point Exceptions Model, for more information on handling of floating
point exceptions.



24

4.3 Floating Point Format

4.3.1 Floating Point Format

The SH-3E supports single-precision floating point operations. It also conforms fully to the
IEEE754 standard.

Floating point numbers are composed of three fields:

Sign field : s

Exponent field : e

Mantissa field : f

The exponent is biased. In other words:

e = E + bias

The range of unbiased exponents E is Emin–1 to Emax+1. The two values (Emin–1 and Emax+1) are
distinguished as follows. Emin–1 represents zero (sign is both positive and negative) and a
denormalized number while Emax+1 represents positive and negative infinity and a not-a-number
(NaN). In single-precision operations, the bias value is 127, Emin is –126, and Emax is 127.

31 30 23 22 0

s e f

Figure 4-3   Floating Point Format

The value v of the floating point number is determined as follows:

If E== Emax+1 and f!=0, then v is not a number (NaN) regardless of sign s

If E== Emax+1 and f==0, then v=(–1)s (infinity) [positive or negative infinity]

If Emin<=E<= Emax, then v =(–1)s2E (1.f) [normalized number]

If E== Emin–1 and f!=0, then v =(–1)s2Emin (0.f) [denormalized number]

If E== Emin–1 and f==0, then v =(–1)s 0 [positive or negative zero]

4.3.2 Not a Number (NaN)

In not-a-number (NaN) expressions in single-precision operations, at least one of the bits 22–0 is
set. Set bit 22 for a signaling NaN (sNaN). When bit 22 is reset, the value is then the quiet NaN
(qNaN).



25

The following figure shows the bit pattern of the not-a-number (NaN). Bit N in the figure is set for
sNaN and reset for qNaN. An x indicates a don’t-care bit. At least one of bits 22-0 must be set.

In a not-a-number (NaN), the sign bit is a don’t-care bit.

31 30 23 22 0

x 11111111 Nxxxxxxxxxxxxxxxxxxxxxx

N = 1:  sNaN
N = 0:  qNaN

Figure 4-4   NaN Bit Pattern

When a not-a-number (sNaN) is entered in the operation that generates the floating point value:

When the EV bit is reset in the FPSCR, the operation result (output) is qNaN.

When the EV bit is set in the FPSCR, an invalid operation exception occurs. In such cases, the
contents of the register at the destination side of the operation do not change.

When qNaN is input to the operation that generates the floating point value and sNaN is not input
to the operation, the output will always be qNaN regardless of how the EV bit is set in the FPSCR.
No exception will occur.

4.3.3 Denormalized Values

Denormalized floating point values are expressed by a biased exponent of 0, a nonzero mantissa,
and a hidden bit of 0. In the SH-3E’s floating point unit, denormalized values (operand source or
operation result) are uniformly flushed with 0 in floating point operations (other than copy) that
generate values.

4.3.4 Other Special Values

Other special values are as stipulated by standard IEEE754. Table 4-1 shows the seven different
types of special values in floating point value expressions.



26

Table 4-1 Special Value Expressions in Single-Precision Stipulated in IEEE754

Value Expression

+0.0 0x00000000

-0.0 0x80000000

Denormalized number See section 4.3.3, Denormalized Values

+INF 0x7F800000

–INF 0xFF800000

qNaN (quiet NaN) See section 4.3.2, Not a Number (NaN)

sNaN (signaling NaN) See section 4.3.2, Not a Number (NaN)

4.4 Floating Point Exception Model

4.4.1 Enabled Exception

Invalid-operation and divide-by-zero exceptions are enabled by setting the enable bit for the
relevant exception (the EV or EZ bit) in FPSCR.  All exceptions caused by the FPU are mapped as
FPU exception events.  The meaning of an individual exception is determined by software by
reading the FPSCR system register and analyzing the information held there.

4.4.2 Disabled Exception

If enable bit EV is not set in FPSCR, the result of an invalid operation will be qNaN (with the
exception of FCMP and FTRC).  If enable bit EZ is not set, division by zero will return infinity
with the sign of the current expression (+ or -).

The other floating-point exceptions specified in the IEEE754 standard—inexact, overflow, and
underflow—are not supported by the SH-3E.  In these cases, the SH-3E operates as described
below.

• An overflow will produce the number whose absolute value is the largest representable finite
number in the format with the correct sign bit.  An underflow will produce a correctly signed
zero.  If the result of an operation is inexact, the destination register will hold the inexact result.

4.4.3 Exception Event and Code for FPU

All FPU exceptions are mapped onto the single general exception event at address H'0x120. Loads
and stores of system registers FPUL and FPSCR cause the normal memory management general
exceptions.



27

4.4.4 Alignment of Floating Point Data in Memory

Single precision floating point data is aligned on modulus-4 boundaries, that is, in the same
fashion as SH-3E long integers.

4.4.5 Arithmetic with Special Operands

All arithmetic with special operands (qNaN, sNaN, +INF, –INF, +0, –0) follows IEEE754 rules.

4.5 Synchronization Issues

Synchronization with CPU: Floating-point and CPU instructions are issued serially in program
order, but may complete out-of-order due to execution cycle differences. A floating point
operation that accesses only FPU resources does not require synchronization with the CPU, and
subsequent CPU operations can complete before the completion of the floating point operation.
Therefore an optimized program can hide the execution cycle of a long-execution-cycle floating
point operation such as Divide. A floating point operation such as Compare that accesses CPU
resources, however, requires synchronization to ensure program order.

Floating Point Instructions Requiring Synchronization: Loads, stores, compares/tests, and
instructions accessing FPUL access CPU resources and therefore require synchronization. Loads
and Stores refer to general registers. Post-increment loads and pre-decrement stores modify
general registers. Compares/tests modify the T bit. Instructions accessing FPUL refer to or modify
FPUL. These references and modifications must be synchronized with the CPU.

Maintaining Program Order on Exceptions: Floating point instructions are never completed
until subsequent CPU instructions are completed. If an FPU exception is detected before
subsequent CPU instructions finish and an FPU exception occurs, subsequent CPU instructions are
canceled.

During a floating point instruction execution, if a subsequent instruction causes an exception, the
floating point instruction is left executing and FPU resources cannot be accessed by other
instructions. The other instructions must await the completion of the floating point operation
before they can access. This ensures program order.



28



29

Section 5   DSP Operation Functions and Data Transfers
(SH3-DSP Only)

DSP operations and data transfers are listed below:

ALU Fixed Decimal Point Operations: These are fixed decimal point operations with either 40-
bit (with guard bits) or 32-bit (with no guard bits) fixed decimal point data. These include
addition, subtraction, and comparison instructions.

ALU Integer Operations: These are integer arithmetic operations with either 24-bit (with guard
bits) or 16-bit (with no guard bits) integer data. They include increment and decrement
instructions.

ALU Logical Operations: These are logical operations with 16-bit logical data. They include
AND, OR, and exclusive OR.

Fixed Decimal Point Multiplication: This is fixed decimal point multiplication (arithmetic
operation) of the top 16 bits of fixed decimal point data. Condition bits such as the DC bit are not
updated.

Shift Operations: These are arithmetic and logical shift operations. Arithmetic shift operations
are arithmetic shifts of 40 bits (with guard bits) or 32 bits (with no guard bits) of fixed decimal
point data. Logical shift operations are logical operations on 16 bits of logical data. The amount of
the arithmetic shift operation is –32 to +32 (negative for right shifts, positive for left shifts); for
logical shifts, the amount is –16 to +16.

MSB Detection Instruction: This operation finds the amount of the shift to normalize the data. It
finds the position of the MSB bit in either  40-bit (with guard bits) or 32-bit (with no guard bits)
fixed decimal point data as either 24 bits (with guard bits) or 16 bits (with no guard bits) integer
data.

Rounding Operation: Rounds 40-bit fixed decimal point data (with guard bits) to 24 bits or 32-
bit (with no guard bits) fixed decimal point data to 16 bits.

Data Transfers: Data transfers consist of X and Y data transfers, which load or store 16-bit data
to and from X and Y memory, and single data transfers, which load and store 16- or 32-bit data
from all memories. Two X and Y data transfers can be processed in parallel. Condition bits such
as the DC bit are not updated.

The operation instructions include both conditional operation instructions and instructions that are
conditionally executed depending on the DC bit. Condition bits such as the DC bit are not updated
by conditional instructions. Their settings vary for arithmetic operations, logical operations,
arithmetic shifts, and logical shifts. or MSB detection instructions and rounding instructions, set
the condition bits like for arithmetic operations.



30

Arithmetic operations include overflow preventing instructions (saturation operations). When
saturation operation is specified with the S bit in the SR register, the maximum (positive) or
minimum (negative) value is stored when the result of operation overflows.

5.1 ALU Fixed Decimal Point Operations

5.1.1 Function

ALU fixed decimal point operations basically work with a 32-bit unit to which 8 guard bits are
added for a total of 40 bits. When the source operand is a register without guard bits, the register’s
sign bit is extended and copied to the guard bits. When the destination operand is a register
without guard bits, the lower 32 bits of the operation result are stored in the destination register.

ALU fixed decimal point operations are performed between registers. The source and destination
operands are selected independently from the DSP register. When there are guard bits in the
selected register, the operation is also executed on the guard bits. These operations are executed in
the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are updated by the operation result. For conditional instructions, however, condition bits are not
updated even when the specified condition is achieved. For unconditional instructions, the bits are
updated according to the operation result.

The condition reflected in the DC bit is selected with the CS[2:0] bits. The DC bits of the PADDC
and PSUB instructions, however, are updated regardless of the CS bit settings. In the PADDC
instruction, it is updated as a carry flag; in the PSUB instruction, it is updated as a borrow flag.

Figure 5-1 shows the ALU fixed decimal point operation flowchart.



31

31 0

31

31

0

0

ALU GT VNZ DC

DSR

Source 1 Source 2

Destination

Guard bitsGuard bits

Guard bits

Figure 5-1   ALU Fixed Decimal Point Operation Flowchart

When the memory read destination operand is the same as the ALU operation source operand and
the data transfer instruction program is written on the same line as the ALU operation, data loaded
from memory in the memory access stage (MA) cannot be used as the source operand of the ALU
operation instruction. When this occurs, the result of the instruction executed first is used as the
source operand of the ALU operation and is updated as the destination operand of the data load
instruction thereafter. Figure 5-2 is a flowchart of the operation.

1 2 3 4 5 6

MOVX

MOVX,
ADD

IF ID

IF ID

EX (ad-
dressing)

EX (ad-
dressing)

MA 
(MOVX)

MA
(MOVX)

DSP
(nop)

DSP
(ADD)

MOVX.W @ (R4, R8), X0
MOVX.W @ R4+, X0PADD X0, Y0, A0

Slot

The result of the previous step is used.

Figure 5-2   Sample Processing Flowchart



32

5.1.2 Instructions and Operands

Table 5-1 shows the types of ALU fixed decimal point arithmetic operations. Table 5-2 shows the
correspondence between the operands and registers.

Table 5-1 Types of ALU Fixed Decimal Point Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination

PADD Addition Sx Sy Dz (Du)

PSUB Subtraction Sx Sy Dz (Du)

PADDC Addition with carry Sx Sy Dz

PSUBC Subtraction with borrow Sx Sy Dz

PCMP Compare Sx Sy —

PCOPY Copy data Sx — Dz

— Sy Dz

PABS Absolute value Sx — Dz

— Sy Dz

PNEG Invert sign Sx — Dz

— Sy Dz

PCLR Zero clear — — Dz

Table 5-2 Correspondence between Operands and Registers for ALU Fixed Decimal Point
Arithmetic Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes*1 Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Du*2 Yes Yes Yes Yes

Notes: 1. Yes: Register can be used with operand.
2. Du: Operand when used in combination with multiplication.

5.1.3 DC Bit

The DC bit is set as follows depending on the specification of the CS0-CS2 bits (condition select
bits) of the DSR register.



33

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit indicates whether a carry or borrow has
occurred from the MSB of the operation result. The guard bits have no affect on this. This mode is
the default. Figure 5-3 shows examples when carries and borrows occur.

0000 0000 1111 1111 1111 1111
0000 0000 0000 0000 0000 0001
0000 0001 0000 0000 0000 0000

+)
1111 1111 0111 0000 0000 0000
0011 1111 0001 0000 0000 0000
0011 1110 1000 0000 0000 0000

+)
(1)

0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0001
0000 0000 0000 0000 0000 0000

–)
0000 0000 0001 0000 0000 0001
0000 0000 0001 0000 0000 0010
1111 1111 1111 1111 1111 1111

–)

Guard bits

Guard bits Guard bits

Guard bits

Example 1: Carry Example 2: Carry

Example 3: Borrow Example 4: Borrow

Position where
carry is detected

Position where
carry is detected

Position where
borrow is detected

Position where
borrow is detected

Figure 5-3   Examples of Carries and Borrows

Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the MSB of the
operation result. When a result is negative, the DC bit is 1. When the result is positive, the DC bit
is 0. ALU arithmetic operations are always done in 40 bits. The sign bit indicating positive or
negative is thus the MSB included in the guard bits of the operation result rather than the MSB of
the destination operand. Figure 5-4 shows an example of distinguishing negative from positive. In
this mode, the DC bit has the same value as the condition bit N.

1100 0000 0000 0000 0000 0000
0000 0000 0000 0000 0000 0001
1100 0000 0000 0000 0000 0001

+)
0011 0000 0000 0000 0000 0000
0000 0000 1000 0000 0000 0001
0011 0000 1000 0000 0000 0001

+)

Guard bits Guard bits

Example 1: Negative Example 2: Positive

Sign bit Sign bit

Figure 5-4   Distinguishing Negative and Positive



34

Zero Mode: CS2–CS0 = 010: The DC bit indicates whether the operation result is zero. When it
is, the DC bit is 1. When the operation result is nonzero, the DC bit is 0. In this mode, the DC bit
has the same value as the condition bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit indicates whether the operation result has caused
an overflow. When the operation result without the guard bits has exceeded the bounds of the
destination register, the DC bit is set to 1. The DC bit considers there to be no guard bits, which
makes it an overflow even when there are guard bits. This means that the DC bit is always set to 1
when large numbers use guard bits. In this mode, the DC bit has the same value as the condition
bit V. Figure 5-5 shows an example of distinguishing overflows.

1111 1111 1111 1111 1111 1111
1111 1111 1000 0000 0000 0000
1111 1111 0111 1111 1111 1111

+)
1111 1111 1111 1111 1111 1111
1111 1111 1000 0000 0000 0001
1111 1111 1000 0000 0000 0000

+)

Guard bits Guard bits

Example 1: Overflow Example 2: No overflow

Overflow detection range Overflow detection range

Figure 5-5   Distinguishing Overflows

Signed Greater Than Mode: CS2–CS0 = 100: The DC bit indicates whether the source 1 data
(signed) is greater than the source 2 data (signed) in the result of a comparison instruction PCMP.
For that reason, the PCMP instruction is executed before checking the DC bit in this mode. When
the source 1 data is larger than the source 2 data, the result of the comparison is positive, so this
mode becomes similar to the negative mode. When the source 1 data is larger than the source 2
data and the bounds of the destination operand are exceeded, however, the sign of the result of the
comparison becomes negative. The DC bit is updated. In this mode, the DC bit has the same value
as the condition bit GT. The equation shown below defines the DC bit in this mode. However, VR
becomes a positive value when the result including the guard bit area exceeds the display range of
the destination operand.

DC bit = ~ {(N bit ^ VR)|Z bit}

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SH core’s CMP/GT instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

Signed Greater Than or Equal to Mode: CS2–CS0 = 101: The DC bit indicates whether or not
the source 1 data (signed) is greater than or equal to the source 2 data (signed) in the result of the
execution of a comparison instruction PCMP. For that reason, the PCMP instruction is executed
before checking the DC bit in this mode. This mode is similar to the Signed Greater Than mode
except for checking if the operands are the same. The equation shown below defines the DC bit in



35

this mode. However, VR becomes a positive value when the result, including the guard bit area,
exceeds the display range of the destination operand.

DC bit = ~ (N bit ^ VR)

When the PCMP instruction is executed in this mode, the DC bit becomes the same value as the T
bit that indicates the result of the SuperH core’s CMP/GE instruction. In this mode, the DC bit is
updated according to the above definition for instructions other than the PCMP instruction as well.

5.1.4 Condition Bits

The condition bits are set as follows:

• The N (negative) bit has the same value as the DC bit when the CS bits specify negative mode.
When the operation result is negative, the N bit is 1. When the operation result is positive, the
N bit is 0.

• The Z (zero) bit has the same value as the DC bit when the CS bits specify zero mode. When
the operation result is zero, the Z bit is 1. When the operation result is nonzero, the Z bit is 0.

• The V (overflow) bit has the same value as the DC bit when the CS bits specify overflow
mode. When the operation result exceeds the bounds of the destination register without the
guard bits, the V bit is 1. Otherwise, the V bit is 0.

• The GT (greater than) bit has the same value as the DC bit when the CS bits specify Signed
Greater Than mode. When the comparison result indicates the source 1 data is greater than the
source 2 data, the GT bit is 1. Otherwise, the GT bit is 0.

5.1.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function is engaged for the
ALU fixed decimal point arithmetic operation executed by the DSP unit. When the operation
result overflows, the maximum (positive) or minimum (negative) value is stored.

5.2 ALU Integer Operations

ALU integer operations are basically 24-bit operations on the top word (the top 16 bits, or bits 16
through 31) and 8 guard bits. In ALU integer operations, the bottom word of the source operand
(the bottom 16 bits, or bits 0–15) is ignored and the bottom word of the destination operand is
cleared with zeros. When the source operand has no guard bits, the sign bit is extended to fill the
guard bits. When the destination operand has no guard bits, the top word of the operation result
(not including the guard bits) are stored in the top word of the destination register.

Integer operations are basically the same as ALU fixed decimal point arithmetic operations. There
are only two types of integer operation instructions, increment and decrement, which change the
second operand by +1 or –1. 16 bits of integer data (word data) is loaded to the DSP register and
stored in the top word. The operation is performed using the top word in the DSP register. When



36

there are guard bits, they are valid as well. These operations are executed in the DSP stage (the last
stage) of the pipeline.

Whenever an ALU integer arithmetic operation is executed, the DSR register’s DC, N, Z, V, and
GT bits are basically updated by the operation result. This is the same as for ALU fixed decimal
point operations.

For conditional instructions, condition bits and flags are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result. Figure 5-6 shows the ALU integer operation
flowchart.

31 0

31

31

0

0

ALU GT VNZ DC

DSR

: Cleared to 0

Guard bits Guard bits

Guard bits : Ignored

Destination

Source 1 Source 2

Figure 5-6   ALU Integer Operation Flowchart

Table 5-3 lists the types of ALU integer operations. Table 5-4 shows the correspondence between
the operands and registers.



37

Table 5-3 Types of ALU Integer Operations

Mnemonic Function Source 1 Source 2 Destination

PINC Increment by 1 Sx (+1) Dz

(+1) Sy Dz

PDEC Decrement by 1 Sx (–1) Dz

(–1) Sy Dz

Table 5-4 Correspondence between Operands and Registers for ALU Integer Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

When the S bit of the SR register is set to 1, the overflow prevention function (saturation
operation) is engaged. The overflow prevention function can be specified for ALU integer
arithmetic operations executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.

5.3 ALU Logical Operations

5.3.1 Function

ALU logical operations are performed between registers. The source and destination operands are
selected independently from the DSP register. These operations use only the top word of the
respective operands. The bottom word of the source operand and the guard bits are ignored and the
bottom word of the destination operand and guard bits are cleared with zeros. These operations are
executed in the DSP stage (the last stage) of the pipeline.

Whenever an ALU arithmetic operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. For conditional instructions, condition bits and flags
are not updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result. The DC
bit is updated as specified in the CS bits. Figure 5-7 shows the ALU logical operation flowchart.



38

31 0

31

31

0

0

ALU GT VNZ DC

DSR

: Cleared to 0

: Ignored

Source 1 Source 2

Guard bits

Guard bits

Guard bits

Destination

Figure 5-7   ALU Logical Operation Flowchart

5.3.2 Instructions and Operands

Table 5-5 lists the types of ALU logical arithmetic operations. Table 5-6 shows the
correspondence between the operands and registers, which is the same as for ALU fixed decimal
point operations.

Table 5-5 Types of ALU Logical Arithmetic Operations

Mnemonic Function Source 1 Source 2 Destination

PAND AND Sx Sy Dz

POR OR Sx Sy Dz

PXOR Exclusive OR Sx Sy Dz

Table 5-6 Correspondence between Operands and Registers for ALU Logical Arithmetic
Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.



39

5.3.3 DC Bit

The DC bit is set in logical operations as follows:

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is always 0.

Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

Signed Greater Than or Equal to Mode: CS2–CS0 = 101: The DC bit is always 0.

5.3.4 Condition Bits

The condition bits are set as follows.

• The N bit is the value of bit 31 of the operation result.

• The Z bit is 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is always 0.

5.4 Fixed Decimal Point Multiplication

Multiplication in the DSP unit is between signed single-length operands. It is processed in one
cycle. When double-length multiplication is needed, use the SuperH RISC engine’s double-length
multiplication.

Basically, the operation result for multiplication is 32 bits. When a register that has guard bits is
specified as the destination operand, it is sign-extended.

In the DSP unit, multiplication is a fixed decimal point arithmetic operation, not an integer
operation. This means the top words of the constant and multiplicand are entered into the MAC
operator. In SuperH RISC engine multiplication, the bottom words of the two operands are entered
into the MAC operator. The operation result thus is different from the SuperH RISC engine. The
SuperH RISC engine operation result is matched to the LSB of the destination, while the fixed
decimal point multiplication operation result is matched to the MSB. The LSB of the operation
result in fixed decimal point multiplication is thus always 0.



40

Figure 5-8 shows a flowchart of fixed decimal point multiplication.

31 0

31

31

0

0

0S

0

MAC

Guard bits

Guard bits Guard bits

: Ignored

Destination

Figure 5-8   Fixed Decimal Point Multiplication Flowchart

Table 5-7 shows the fixed decimal point multiplication instruction. Table 5-8 shows the
correspondence between the operands and registers.

Table 5-7 Fixed Decimal Point Multiplication

Mnemonic Function Source 1 Source 2 Destination

PMULS Signed multiplication Se Sf Dg

Table 5-8 Correspondence between Operands and Registers for Fixed Decimal Point
Multiplication

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

DSP unit fixed decimal point multiplication completes a single-length 16 bit × 16 bit operation in
one cycle. Other multiplication is the same as in the SuperH RISC engines.



41

Multiplication instructions do not update the DC, N, Z, V, GT, or any condition bit of the DSR
register.

The overflow prevention function is valid for DSP unit multiplication. Specify it by setting the S
bit of the SR register is set to 1. When an overflow or underflow occurs, the operation result value
is the maximum or minimum value respectively. In DSP unit fixed decimal point multiplication,
overflows only occur for H'8000 × H'8000 ((–1.0) × (–1.0)). When the S bit is 0, the operation
result is H'80000000, which means –1.0 rather than the correct answer of +1.0. When the S bit is
1, the overflow prevention function is engaged and the result is H'007FFFFFFF.

5.5 Shift Operations

The amount of shift in shift operations is specified either through a register or using a direct
immediate value. Other source operands and destination operands are registers. There are two
types of shift operations: arithmetic and logical. Table 5-9 shows the operation types. The
correspondence between operands and registers is the same as for ALU fixed decimal point
operations, except for immediate operands. The correspondence is shown in table 5-10.

Table 5-9 Types of Shift Operations

Mnemonic Function Source 1 Source 2 Destination

PSHA Sx, Sy, Dz Arithmetic shift Sx Sy Dz

PSHL Sx, Sy, Dz Logical shift Sx Sy Dz

PSHA #Imm, Dz Arithmetic shift with
immediate data

Dz Imm1 Dz

PSHL #Imm, Dz Logical shift with immediate
data

Dz Imm1 Dz

–32 ≤ Imm1 ≤ +32, –16 ≤ Imm2 ≤ +16

Table 5-10 Correspondence between Operands and Registers for Shift Operations

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.5.1 Arithmetic Shift Operations

Function: ALU arithmetic shift operations basically work with a 32-bit unit to which 8 guard bits
are added for a total of 40 bits. ALU fixed decimal point operations are basically performed
between registers. When the source operand has no guard bits, the register’s sign bit is copied to



42

the guard bits. When the destination operand has no guard bits, the lower 32 bits of the operation
result are stored in the destination register.

In arithmetic shifts, all bits of the source 1 operand and destination operand are valid. The source 2
operand, which specifies the shift amount, is integer data. The source 2 operand is specified as a
register or immediate operand. The valid amount of shift is –32 to +32. Negative values are shifts
to the right; positive values are shifts to the left. Between –64 and +63 can be specified for the
source 2 operand, but only –32 to +32 is valid. When an invalid number is specified, the results
cannot be guaranteed. When an immediate value is specified for the shift amount, the source 1
operand must be the same as the destination operand. The action of the operation is the same as for
fixed decimal point operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever an arithmetic shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits
are basically updated by the operation result. This is the same as for ALU fixed decimal point
operations. For conditional instructions, condition bits are not updated even when the specified
condition is achieved and the instruction executed. For unconditional instructions, the bits are
always updated according to the operation result.

Figure 5-9 shows the arithmetic shift operation flowchart.

7g 0g 31 16 15 0
0

≥ 0 < 0

+32 to –32

7g 0g 31 23 22 1615 0

6 0
imm1

7g 0g 31 16 15 0

Dz GT DCZ N V

DSR

Left shift Right shift

Shift outShift out
(Copy MSB)

Shift amount data
(source 2)

Update

:  Ignored

Figure 5-9   Arithmetic Shift Operation Flowchart

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits:

• Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

• Negative Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive
operation result. In this mode, the DC bit has the same value as bit N.



43

• Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

• Overflow Mode: CS2–CS0 = 011: The DC bit is set to 1 by an overflow. In this mode, the DC
bit has the same value as bit V.

• Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

• Signed Greater Than or Equal To Mode: CS2–CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows:

• The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

• The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow.

• The GT bit is always 0.

Overflow Prevention Function (Saturation Operation): When the S bit of the SR register is set
to 1, the overflow prevention function is engaged for the ALU fixed decimal point arithmetic
operation executed by the DSP unit. When the operation result overflows, the maximum (positive)
or minimum (negative) value is stored.

5.5.2 Logical Shift Operations

Function: Logical shift operations use the top words of the source 1 operand and the destination
operand. As in ALU logical operations, the guard bits and bottom word of the operands are
ignored. The source 2 operand, which specifies the shift amount, is integer data. The source 2
operand is specified as a register or immediate operand. The valid amount of shift is –16 to +16.
Negative values are shifts to the right; positive values are shifts to the left. Between –32 and +31
can be specified for the source 2 operand, but only –16 to +16 is valid. When an invalid number is
specified, the results cannot be guaranteed. When an immediate value is specified for the shift
amount, the source 1 operand must be the same as the destination operand. The action of the
operation is the same as for fixed decimal point operations and is executed in the DSP stage (the
last stage) of the pipeline.

Whenever a logical shift operation is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. This is the same as for ALU logical operations. For
conditional instructions, condition bits are not updated even when the specified condition is
achieved and the instruction executed. For unconditional instructions, the bits are always updated
according to the operation result.

Figure 5-10 shows the logical shift operation flowchart.



44

7g 0g 31 16 15 0

0

≥ 0 < 0

+16 to –16

7g 0g 31 23 22 1615 0

5

0

imm2

7g 0g 31 16 15 0

Dz GT DCZ N V

DSR0

Shift out Shift out

Update

: Ignored

: Cleared to 0

Shift amount data
(source 2)

Left shift Right shift

Figure 5-10   Logical Shift Operation Flowchart

DC Bit: The DC bit is set as follows depending on the mode specified by the CS bits.

• Carry/borrow mode: CS2–CS0 = 000: The DC bit is the operation result, the value of the bit
pushed out by the last shift.

• Negative Mode: CS2–CS0 = 001: In this mode, the DC bit is the same as the bit 31 of the
operation result. In this mode, the DC bit has the same value as bit N.

• Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is all zeros; otherwise,
the DC bit is 0. In this mode, the DC bit has the same value as bit Z.

• Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the
same value as bit V.

• Signed Greater Than Mode: CS2–CS0 = 100: The DC bit is always 0. In this mode, the DC bit
has the same value as bit GT.

• Signed Greater Than Or Equal To Mode: CS2–CS0 = 101: The DC bit is always 0.

Condition Bits: The condition bits are set as follows.

• The N bit is the same as the result of the ALU logical operation. It is set to the value of bit 31
of the operation result.

• The Z bit is the same as the result of the ALU logical operation. It is set to 1 when the
operation result is all zeros; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is always 0.



45

5.6 The MSB Detection Instruction

5.6.1 Function

The MSB detection instruction (PDMSB: most significant bit detection) finds the amount of shift
for normalizing the data.

The operation result is the same as for ALU integer operations. Basically, the top 16 bits and 8
guard bits are valid for a total 24 bits. When the destination operand is a register that has no guard
bits, it is stored in the top 16 bits of the destination register.

The MSB detection instruction works on all bits of the source operand, but gets its operation result
in integer data. This is because the shift amount for normalization must be integer data for the
arithmetic shift operation. The action of the operation is the same as for fixed decimal point
operations and is executed in the DSP stage (the last stage) of the pipeline.

Whenever a PDMSB instruction is executed, the DSR register’s DC, N, Z, V, and GT bits are
basically updated by the operation result. For conditional instructions, condition bits are not
updated even when the specified condition is achieved and the instruction executed. For
unconditional instructions, the bits are always updated according to the operation result.

Figure 5-11 shows the MSB detection instruction flowchart. Table 5-11 shows the relationship
between source data and destination data.

31 0

31 0

GT VNZ DC

DSR

Priority encoder

: Cleared to 0

Guard bits

Guard bits

Source 1 or 2

Destination

Figure 5-11   MSB Detection Flowchart



46

Table 5-11 Relationship between Source Data and Destination Data

Source Data

Guard Bits Top Word Bottom Word

7g 6g 5g–2g 1g 0g 31 30 29 28 27–4 27–4 3 2 1 0

0 0 — 0 0 0 0 0 0 — — 0 0 0 0

0 0 — 0 0 0 0 0 0 — — 0 0 0 1

0 0 — 0 0 0 0 0 0 — — 0 0 1 *

0 0 — 0 0 0 0 0 0 — — 0 1 * *

↓ ↓ ↓

0 0 — 0 0 0 0 0 1 — — * * * *

0 0 — 0 0 0 0 1 * — — * * * *

0 0 — 0 0 0 1 * * — — * * * *

0 0 — 0 0 1 * * * — — * * * *

0 0 — 0 1 * * * * — — * * * *

↓ ↓ ↓

0 1 — * * * * * * — — * * * *

1 0 — * * * * * * — — * * * *

↓ ↓ ↓

1 1 — 1 0 * * * * — — * * * *

1 1 — 1 1 0 * * * — — * * * *

1 1 — 1 1 1 0 * * — — * * * *

1 1 — 1 1 1 1 0 * — — * * * *

1 1 — 1 1 1 1 1 0 — — * * * *

↓ ↓ ↓

1 1 — 1 1 1 1 1 1 — — 1 0 * *

1 1 — 1 1 1 1 1 1 — — 1 1 0 *

1 1 — 1 1 1 1 1 1 — — 1 1 1 0

1 1 — 1 1 1 1 1 1 — — 1 1 1 1



47

Table 5-11 Relationship between Source Data and Destination Data (cont)

Destination Result

Guard Bits Top word

7g–0g 31–22 21 20 19 18 17 16
10
Hexadecimal

all 0 all 0 0 1 1 1 1 1 +31

0 1 1 1 1 0 +30

0 1 1 1 0 1 +29

0 1 1 1 0 0 +28

↓ ↓ ↓ ↓

all 0 all 0 0 0 0 0 1 0 +2

0 0 0 0 0 1 +1

0 0 0 0 0 0 0

all 1 all 1 1 1 1 1 1 1 –1

1 1 1 1 1 0 –2

↓ ↓ ↓ ↓

all 1 all 1 1 1 1 0 0 0 –8

1 1 1 0 0 0 –8

↓ ↓ ↓ ↓

all 1 all 1 1 1 1 1 1 0 –2

1 1 1 1 1 1 –1

all 0 all 0 0 0 0 0 0 0 0

0 0 0 0 0 1 +1

0 0 0 0 1 0 +2

↓ ↓ ↓ ↓

all 0 all 0 0 1 1 1 0 0 +28

0 1 1 1 0 1 +29

0 1 1 1 1 0 +30

0 1 1 1 1 1 +31

Note: Don’t care bits have no effect.

5.6.2 Instructions and Operands

Table 5-12 shows the MSB detection instruction. The correspondence between the operands and
registers is the same as for ALU fixed decimal point operations. It is shown in table 5-13.



48

Table 5-12 MSB Detection Instruction

Mnemonic Function Source 1 Source 2 Destination

PDMSB MSB detection Sx — Dz

— Sy Dz

Table 5-13 Correspondence between Operands and Registers for MSB Detection
Instructions

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.

5.6.3 DC Bit

The DC bit is set as follows depending on the mode specified by the CS bits:

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is always 0.

Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive operation
result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is always 0. In this mode, the DC bit has the same
value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: Set to 1 for a positive operation result and 0 for a
negative operation result. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2–CS0 = 101: Set to 1 for a positive or zero
operation result and 0 for a negative operation result.

5.6.4 Condition Bits

The condition bits are set as follows.

• The N bit is the same as the result of the ALU integer operation. It is set to 1 for a negative
operation result and 0 for a positive operation result.



49

• The Z bit is the same as the result of the ALU integer operation. It is set to 1 when the
operation result is zero; otherwise, the Z bit is 0.

• The V bit is always 0.

• The GT bit is the same as the result of the ALU integer operation. It is set 1 for a positive
operation result and otherwise to 0.

5.7 Rounding

5.7.1 Operation Function

The DSP unit has a function for rounding 32-bit values to 16-bit values. When the value has guard
bits, 40 bits are rounded to 24 bits. When the rounding instruction is executed, H'0000 8000 is
added to the source operand and the bottom word is then cleared to zeros.

Rounding uses all bits of the source and destination operands. The action of the operation is the
same as for fixed decimal point operations and is executed in the DSP stage (the last stage) of the
pipeline.

The rounding instruction is unconditional. The DSR register’s DC, N, Z, V, and GT bits are thus
always updated according to the operation result.

Figure 5-12 shows the rounding flowchart. Figure 5-13 shows the rounding process definitions.

31 0

31 0

ALU GT VNZ DC

DSR

: Cleared to 0

H'00008000

Addition

Destination

Source 1 or 2

Guard bits

Guard bits

Figure 5-12   Rounding Flowchart



50

H'000002

H'000001

0

H
'0

00
00

18
00

0

H
'0

00
00

20
00

0

H
'0

00
00

28
00

0

Rounding result

Analog values

Actual value

Figure 5-13   Rounding Process Definitions

5.7.2 Instructions and Operands

Table 5-14 shows the instruction. The correspondence between the operands and registers is the
same as for ALU fixed decimal point operations. It is shown in table 5-15.

Table 5-14 Rounding Instruction

Mnemonic Function Source 1 Source 2 Destination

PRND Rounding Sx — Dz

— Sy Dz

Table 5-15 Correspondence between Operands and Registers for Rounding Instruction

Operand X0 X1 Y0 Y1 M0 M1 A0 A1

Sx Yes Yes Yes Yes

Sy Yes Yes Yes Yes

Dz Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes: Register can be used with operand.



51

5.7.3 DC Bit

The DC bit is updated as follows depending on the mode specified by the CS bits. Condition bits
are updated as for ALU fixed decimal point arithmetic operations.

Carry/Borrow Mode: CS2–CS0 = 000: The DC bit is set to 1 when a carry or borrow from the
MSB of the operation result occurs; otherwise, it is set to 0.

Negative Mode: CS2–CS0 = 001: Set to 1 for a negative operation result and 0 for a positive
operation result. In this mode, the DC bit has the same value as bit N.

Zero Mode: CS2–CS0 = 010: The DC bit is 1 when the operation result is zero; otherwise, the
DC bit is 0. In this mode, the DC bit has the same value as bit Z.

Overflow Mode: CS2–CS0 = 011: The DC bit is set to 1 by an overflow; otherwise, it is set to 0.
In this mode, the DC bit has the same value as bit V.

Signed Greater Than Mode: CS2–CS0 = 100: Set to 1 for a positive operation result; otherwise,
it is set to 0. In this mode, the DC bit has the same value as bit GT.

Signed Greater Than or Equal To Mode: CS2–CS0 = 101: Set to 1 for a positive or zero
operation result; otherwise, it is set to 0..

5.7.4 Condition Bits

The condition bits are set as follows. They are updated as for ALU fixed decimal point arithmetic
operations.

• The N bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for a negative operation result and 0 for a positive operation result.

• The Z bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 when the operation result is zero; otherwise, the Z bit is 0.

• The V bit is the same as the result of the ALU fixed decimal point arithmetic operation. It is set
to 1 for an overflow; otherwise, the V bit is 0.

• The GT bit is the same as the result of the ALU fixed decimal point arithmetic operation and
the ALU integer operation. It is set 1 for a positive operation result; otherwise, the GT bit is 0.

5.7.5 Overflow Prevention Function (Saturation Operation)

When the S bit of the SR register is set to 1, the overflow prevention function can be specified for
all rounding processing executed by the DSP unit. When the operation result overflows, the
maximum (positive) or minimum (negative) value is stored.



52

5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)

DSP instructions may be either conditional or unconditional. Unconditional instructions are
executed without regard to the DSP condition bit (DC bit), but conditional instructions may
reference the DC bit before they are executed. With unconditional instructions, the DSR register’s
DC bit and condition bits (N, Z, V, and GT) are updated according to the results of the ALU
operation or shift operation. The DC bit and condition bits (N, Z, V, and GT) are not updated
regardless of whether the conditional instruction is executed. The DC bit is updated according to
the specifications of the condition select (CS) bits. Updates differ for arithmetic operations, logical
operations, arithmetic shifts and logical shifts. Table 5-16 shows the relationship between the CS
bits and the DC bit.



53

Table 5-16 Condition Select Bits (CS) and DSP Condition Bit (DC)

CS Bits

2 1 0 Condition Mode Description

0 0 0 Carry/borrow The DC bit is set to 1 when a carry or borrow occurs in the
result of an ALU arithmetic operation. Otherwise, it is cleared to
0.
In logical operations, the DC bit is always cleared to 0.
For shift operations (the PSHA and PSHL instructions), the bit
shifted out last is copied to the DC bit.

0 0 1 Negative In ALU arithmetic operations or arithmetic shifts (PSHA), the
MSB of the result (including the guard bits) is copied to the DC
bit.
In ALU logical operations and logical shifts (PSHL), the MSB of
the result (not including the guard bits) is copied to the DC bit.

0 1 0 Zero When the result of an ALU or shift operation is all zeros (0), the
DC bit is set to 1. Otherwise, it is cleared to 0.

0 1 1 Overflow In ALU arithmetic operations or arithmetic shifts (PSHA), when
the operation result (not including the guard bits) exceeds the
destination register’s value range, the DC bit is set to 1.
Otherwise, it is cleared to 0.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

1 0 0 Signed greater
than

This mode is like the Greater Than Or Equal To mode, but the
DC bit is cleared to 0 when the operation result is zero (0).
When the operation result (including the guard bits) exceeds
the expressible limits, the TRUE condition is VR.

DC bit = ~{(N bit ^ VR)|Z bit)}; for arithmetic operations

DC bit = 0; for logical operations

1 0 1 Greater than or
equal to

In ALU arithmetic operations or arithmetic shifts (PSHA), when
the result does not overflow, the value is the inversion of the
negative mode’s DC bit. When the operation result (including
the guard bits) exceeds the expressible limits, the value is the
same as the negative mode’s DC bit.
In ALU logical operations and logical shifts (PSHL), the DC bit
is always cleared to 0.

DC bit = ~(N bit ^ VR)); for arithmetic operations

DC bit = 0; for logical operations

1 1 0 Reserved

1 1 1



54

5.9 Overflow Prevention Function (Saturation Operation)

The overflow prevention function (saturation operation) is specified by the S bit of the SR register.
This function is valid for arithmetic operations executed by the DSP unit and multiply and
accumulate operations executed by the CPU core. An overflow occurs when the operation result
exceeds the bounds that can be expressed as a two’s complement (not including the guard bits).

Table 5-17 shows the overflow definitions for fixed decimal point arithmetic operations. Table 5-
18 shows the overflow definitions for integer arithmetic operations. Multiply/Accumulate
calculation instructions (MAC) supported by previous SuperH RISC engines are performed on 64-
bit registers (MACH and MACL), so the overflow value differs from the maximum and minimum
values. They are defined exactly the same as before.

Table 5-17 Overflow Definitions for Fixed Decimal Point Arithmetic Operations

Sign Overflow Condition
Maximum/
Minimum Hexadecimal Display

Positive Result > 1–2–31 1–2–31 007FFFFFFF

Negative Result < –1 –1 FF80000000

Table 5-18 Overflow Definitions for Integer Arithmetic Operations

Sign Overflow Condition
Maximum/
Minimum Hexadecimal Display

Positive Result > 2–15 – 1 2–15 – 1 007FFF****

Negative Result < –2–15 –2–15 FF8000****

Note: Don’t care bits have no effect.

When the overflow prevention function is specified, overflows do not occur. Naturally, the
overflow bit (V bit) is not set. When the CS bits specify overflow mode, the DC bit is not set
either.

5.10 Data Transfers

The SH3-DSP can perform up to two data transfers in parallel between the DSP register and on-
chip memory with the DSP unit. The SH-DSP has the following types of data transfers:

1. X and Y memory data transfers: Data transfer to X and Y memory using the XDB and YDB
buses

• Double data transfer: Data transfer only, where transfer in one direction only is permitted

• Parallel data transfers: Data transfer that proceeds in parallel to ALU operation processing



55

2. Single data transfers: Data transfer to on-chip memory using the LDB bus

Note: Data transfer instructions do not update the DSR register’s condition bits.

Table 5-19 shows the various functions.

Table 5-19 Data Transfer Functions

Category Bus Length

Parallel
Processing
with ALU
Operation

Parallel
Processing with
Data Transfer

Instruction
Length

X and Y memory
data transfer

XDB bus
YDB bus

16 bits None (double) None (XDB or
YDB bus)

16 bits

Available (XDB
and YDB bus)

16 bits

Available
(parallel)

None (XDB or
YDB bus)

32 bits

Available (XDB
and YDB bus)

32 bits

Single data
transfer

LDB bus 32 bits
16 bits

None None 16 bits

5.10.1 X and Y Memory Data Transfer

X and Y memory data transfers allow two data transfers to be executed in parallel and allow data
transfers to be executed in parallel with DSP data operations. 32-bit instruction code is required
for executing DSP data operations and transfers in parallel. This is called a parallel data transfer.
When executing an X and Y memory data transfer by itself, 16-bit instruction code is used. This is
called a double data transfer.

Data transfers consist of X memory data transfers and Y memory data transfers. X memory data is
loaded to either the X0 or X1 register; Y memory data is loaded to the Y0 or Y1 register. The X0,
X1, Y0, and Y1 registers become the destination registers. Data can be stored in the X and Y
memory if the A0 or A1 register is the source register. All these data transfers involve word data
(16 bits). Data is transferred from the top word of the source register. Data is transferred to the top
word of the destination register and the bottom word is automatically cleared with zeros.

Specifying a conditional instruction as the operation instruction executed in parallel has no effect
on the data transfer instructions.

X and Y memory data transfers access only the X and Y memory; they cannot access other
memory areas.



56

X pointer (R4, R5) Y pointer (R6, R7)

XAB[15:1] YAB[15:1]
0, +2, +R8 0, +2, +R9

XDB[15:0] YDB[15:0]

X0
X1
A0
A1

Y0
Y1

X memory
(RAM, ROM)

Y memory
(RAM, ROM)

: Cannot be set

: Not affected for storing; cleared for loading

M0
M1

A1G DSRA0G

Figure 5-14   Flowchart of X and Y Memory Data Transfers

5.10.2 Single Data Transfers

Single data transfers execute only one data transfer. They use 16-bit instruction code. Single data
transfers cannot be processed in parallel with ALU operations. The X pointer, which accesses X
memory, and two added pointers are valid; the Y pointer is not valid. As with the SuperH RISC
engine, single data transfers can access all memory areas, including external memory. Except for
the DSR register, the DSP registers can be specified as source and destination operands. (The DSR
register is defined as the system register, so it can transfer data with LDS and STS instructions.)
The guard bit registers A0G and A1G can be specified for operands as independent registers.
Single data transfers use the LAB and LDB buses in place of the XAB, XDB, YAB, and YDB
buses, so contention occurs on the LDB bus between data transfers and instruction fetches.

Single data transfers handle word and longword data. Word data transfers involve only the top
word of the register. When data is loaded to a register, it goes to the top word and the bottom word
is automatically filled with zeros. If there are guard bits, the sign bit is extended to fill them. When
storing from a register, the top word is stored.

When a longword is transferred, 32 bits are valid. When loading a register that has guard bits, the
sign bit is extended to fill the guard bits.



57

When a guard bit register is stored, the top 24 bits become undefined, and the read out is to the
LDB bus. When the guard bit registers A0G and A1G load word data as the destination registers
of the MOVS.W instruction, the bottom byte is written to the register.

Pointer (R2, R3, R4, R5)

LAB[31:0]
–2, 0, +2, +R8

LDB[15:0]

X0
X1
A0
A1

Y0
Y1

Cannot be set

Not affected for storing; cleared for loading. See
the text for information about A0G and A1G.

M0
M1

A1G DSRA0G

All memory areas

:

:

Figure 5-15   Single Data Transfer Flowchart (Word)



58

Pointer (R2, R3, R4, R5)

LAB[31:0]
–4, 0, +4, +R8

LDB[31:0]

X0
X1
A0
A1

Y0
Y1

: Cannot be set

M0
M1

A1G DSRA0G

All memory areas

Figure 5-16   Single Data Transfer Flowchart (Longword)

Data transfers are executed in the MA stage of the pipeline while DSP operations are executed in
the DSP stage. Since the next data store instruction starts before the data operation instruction has
finished, a stall cycle is inserted when the store instruction comes on the instruction line after the
data operation instruction. This overhead cycle can be avoided by adding one instruction between
the data operation instruction and the data transfer instruction. Figure 5-17 shows an example.



59

1 2 3 4 5 6

MOVX

MOVX,
ADD

IF ID

IF ID

EX (ad-
dressing)

DSP (nop)

MOVX.W A0, @R4+
MOVX.W @R5, X1
MOVX.W A0, @R4+

PADD X0, Y0, A0

Slot

IF ID

MOVX

MOVX

MOVX DSP (nop)

7

ADD

MOVX

Insert an unrelated step 
between data operation
instruction and store instruction. 

EX (ad-
dressing)

EX (ad-
dressing)

Figure 5-17   Example of the Execution of Operation and Data Store Instructions

5.11 Operand Contention

Data contention occurs when the same register is specified as the destination operand for two or
more parallel processing instructions. It occurs in three cases.

1. When the same destination operand is specified for an ALU operation and multiplication (Du,
Dg)

2. When the same destination operand is specified for an X memory load and an ALU operation
(Dx, Du, Dz)

3. When the same destination operand is specified for a Y memory load and an ALU operation
(Dx, Du, Dz)

Results cannot be guaranteed when contention occurs. Table 5-20 shows the operand and register
combinations that cause contention.

Some assemblers can detect these types of contention, so pay attention to assembler functions
when selecting one.



60

Table 5-20 Operand and Register Combinations That Create Contention

DSP Register

Operation Operand X0 X1 Y0 Y1 M0 M1 A0 A1

X memory Ax
load IX

Dx *2 *2

Y memory Ay
load Iy

Dy *3 *3

6-operand ALU Sx *1 *1 *1 *1

operation Sy *1 *1 *1 *1

Du *2 *3 *4 *4

3-operand Se *1 *1 *1 *1

multiplication Sf *1 *1 *1 *1

Dg *1 *1 *4 *4

3-operand ALU Sx *1 *1 *1 *1

operation Sy *1 *1 *1 *1

Dz *2 *2 *3 *3 *1 *1 *1 *1

Notes: 1. Register is settable for the operand
2. Dx, Du, and Dz contend
3. Dy, Du, and Dz contend
4. Du and Dg contend

5.12 DSP Repeat (Loop) Control

The SH3-DSP repeat (loop) control function is a special utility for controlling repetition
efficiently. The SETRC instruction is executed to hold a repeat count in the repeat counter (RC, 12
bits) and set an execution mode in which the repeat (loop) program is repeated until the RC is 1.
Upon completion of the repeat operation, the content of the RC becomes 0.

The repeat start register (RS) holds the start address of the repeated section. The repeat end
register (RE) holds the ending address of the repeated section. (There are some exceptions. Refer
to Note 1, Actual programming, in this section [below figure 5-18].) The repeat counter (RC)
holds the repeat count. The procedure for executing repeat control is shown below:

1. Set the repeat start address in the RS register.

2. Set the repeat end address in the RE register.

3. Set the repeat count in the RC counter.



61

4. Execute the repeated program (loop).

The following instructions are used for executing 1 and 2:

LDRS @(disp,PC);

LDRE @(disp,PC);

The SETRC instruction is used to execute 3 and 4. Immediate data or a general register may be
used to specify the repeat count as the operand of the SETRC instruction:

SETRC #imm; #imm → Rc, enable repeat control

SETRC Rm; Rm → Rc, enable repeat control

#imm is 8 bits and the RC counter is 12 bits, so to set the RC counter to a value of 256 or greater,
use the Rm register. A sample program is shown below.

LDRS RptStart;

LDRE RptEnd;

SETRC #imm; RC=#imm

instr0;

; instr1~5 executes repeatedly

RptStart: instrl;

instr2;

instr3;

instr4;

RptEnd:instr5;

instr6;

There are several restrictions on repeat control:

1. At least one instruction must come between the SETRC instruction and the first instruction of
the repeat program (loop).

2. Execute the SETRC instruction after executing the LDRS and LDRE instructions.

3. When there are more than four instructions for the repeat program (loop) and there is no repeat
start address (in the above example, it was address instr1) at the long word boundary, one cycle
stall (cycle awaiting execution) is required for each repeat.

4. When there are three or fewer instructions in the loop, branch instructions (BRA, BSR, BT,
BF, BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC,
LDRS, LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used. If such an
instruction is used, illegal instruction exception handling starts and the address values shown in
Table 5-21 are stored in SPC.



62

Table 5-21 PC Values Address Stored in SPC (1)

Conditions Position Address Stored in SPC

RC>=2 Any RptStart

RC=1 Any Program address of illegal instruction

5. If there are four or fewer instructions in the loop, branched instructions (BRA, BSR, BT, BF,
BT/S, BF/S, BSRF, RTS, BRAF, RTE, JSR, JMP), repeat control instructions (SETRC, LDRS,
LDRE), SR, RS, and RE load instructions, and TRAPA cannot be used for the last three
instructions in the repeat program (loop). If such an instruction is used, illegal instruction
exception handling starts and the address values shown in Table 5-22 are stored in SPC. In
case of repeat control instruction (SETRC, LDRS, LDRE), and SR, RS, and RE load
instructions, they cannot be described in positions other than the repeat module. If described,
proper operation cannot be guaranteed.

Table 5-22 PC Values Address Stored in SPC (2)

Conditions Position Address Stored in SPC

RC>=2 instr3 Program address of illegal instruction

instr4 RptStart-4

instr5 RptStart-2

RC=1 Any Program address of illegal instruction

6. When there are three or fewer instructions in the loop, PC relative instructions (MOVA
(disp,PC), R0, or the like) can only be used at the first instruction (instr1).

7. If there are four or more instructions in the loop, PC relative instructions (MOVA (disp,PC),
R0, or the like) cannot be used in the final two instructions.

8. The SH3-DSP does not have a repeat valid flag; repeats become invalid when the RC counter
becomes 0. When the RC counter is not 0 and the PC counter matches the RE register contents,
repeating begins. When the RC counter is set to 0, the repeat program (loop) is invalid but the
loop is executed only once and does not return to the starting instruction of the loop as when
RC is 1. When the RC counter is set to 1, the repeat module is executed only once. Though it
does not return to the repeat program (loop) start instruction, the RC counter becomes zero
when the repeat module is executed.

9. If there are four or more instructions in the loop, the branched instructions including the
subroutine call back and return instructions cannot be used for the “inst3” through “inst5”
instructions as  branch destination address. If they are executed, the repeat control does not
work correctly. If a repeating portion of a program (a loop) contains three or more instructions
and the branching destination is RptStart or an address ahead of it, repeat control does not
work properly and the content of RC in the SR register is not updated.



63

10. While the repeat is being executed, interruption is restricted. Figure 5-18 shows the flow for
each stage of EX. The initial EX stage of interruption is usually started immediately after the
EX stage of the instruction is completed (indicated by “A”). "B" in the figure below indicates
locations where no interruption is accepted.

1-step repeat 2-step repeat 3-step repeat

A:  Interruption is accepted.
B:  No interruption is accepted.

When RC>=1

More than 4 steps repeat

Start(End):
instr0
instr1
instr2

← A
← B
← B
← A

Start:
End:

instr0
instr1
instr2
instr3

← A
← B
← B
← B
← A

Start:

End:

instr0
instr1
instr2
instr3
instr4

← A
← B
← B
← B
← B
← A

Start:

End:

instr0
instr1

instr n-3
instr n-2
instr n-1
instr n
instr n+1

← A
← A or B (when returning from instr n)
← A

← A
← B
← B
← B
← B
← A

When RC=0:  Interruption is accepted.

:
:

:

Figure 5-18   Restriction on Acceptance of Interruption by Repeat Module



64

5.12.1 Usage Notes

Note 1. Actual programming

The repeat start register (RS) and repeat end register (RE) store the repeat start address
and repeat end address respectively. Addresses stored in these registers are changed
depending on the number of instructions in the repeat program (loop). This rule is
shown below.

Repeat_Start: Address of repeat start instruction

Repeat_Start0: Address of instruction one higher than the repeat start instruction

Repeat_Start3: Address of instruction three higher than the repeat end instruction

Table 5-23 RS and RE Setup Rule

Number of Instructions in Repeat Program (Loop)

Register 1 2 3 >=4

RS Repeat_start0+8 Repeat_start0+6 Repeat_start0+4 Repeat_Start

RE Repeat_start0+4 Repeat_start0+4 Repeat_start0+4 Repeat_End3+4

An example of an actual repeat program (loop) assuming various cases based on the above table is
given below:

Case 1: One repeat instruction

LDRS RptStart0+8;

LDRE RptStart0+4;

SETRC RptCount;

----

RptStart0: instr0;

RtpStart: instr1;Repeat instruction

instr2;

Case 2: Two repeat instructions

LDRS RptStart0+6;

LDRE RptStart0+4;

SETRC RptCount;

----

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

RptEnd:instr2; Repeat instruction 2

instr3;



65

Case 3: Three repeat instructions

LDRS RptStart0+4;

LDRE RptStart0+4;

SETRC RptCount;

----

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

RptEnd:instr3;Repeat instruction 3

instr4;

Case 4: Four or more instructions

LDRS RptStart;

LDRE RptStart3+4;

SETRC RptCount;

----

RptStart0: instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

instr3;Repeat instruction 3

-----------------------------------------

RptEnd3: instrN-3; Repeat instruction N

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1

RptEnd:instrN;Repeat instruction N

instrN+1

The above example can be used as a template when programming this repeat program (loop)
sequence. Extension instruction “REPEAT” can simplify the problems of such complicated
labeling and offset. Details are described in Note 2 below.

Note 2. Extension instruction REPEAT

The extension instruction REPEAT can simplify the handling of the labeling and offset
described in Table 5-23. Labels used are shown below.

RptStart:  RptStart:  Address of first instruction of repeat program (loop)

RptEnd:  Address of last instruction of repeat program (loop)

PptCount:  Repeat count immediate No.

Use this instruction as described below.



66

Repeat count can be designated as immediate value #Imm or register indirect value Rn.

Case 1: One repeat instruction

REPEAT RptStart, RptEnd, RptCount

----

instr0;

RptStart: instr1;Repeat instruction 1

instr2;

Case 2: Two repeat instructions

REPEAT RptStart, RptEnd, RptCount

----

instr0;

RptStart: instr1;Repeat instruction 1

RptEnd:instr2;Repeat instruction 2

Case 3: Three repeat instructions

REPEAT RptStart, RptEnd, RptCount

----

instr0;

RptStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

RptEnd:instr3;Repeat instruction 3

Case 4: Four or more instructions

REPEAT RptStart, RptEnd, RptCount

----

instr0;

RtpStart: instr1;Repeat instruction 1

instr2;Repeat instruction 2

instr3;Repeat instruction 3

-----------------------------------------

instrN-3; Repeat instruction N

instrN-2; Repeat instruction N-2

instrN-1; Repeat instruction N-1

RptEnd:instrN;Repeat instruction N

instrN+1



67

Result of extension of each case corresponds to the case 1 in Note 1.

5.13 Conditional Instructions and Data Transfers

Data operation instructions include both unconditional and conditional instructions. Data transfer
instructions that execute both in parallel can be specified, but they will always execute regardless
of whether the condition is met without affecting the data transfer instruction.

The following is an example of a conditional instruction and a data transfer:

DCT PADD X0, Y0, A0  MOVX.W @R4+, X0  MOVY.W A0, @R6+R9;

When condition is true:
Before execution: X0=H'33333333, Y0=H'55555555, A0=H'123456789A,

R4=H'00008000, R6=H'00008232, R1=H'00000004

(R4)=H'1111, (R6)=H'2222

After execution: X0=H'11110000, Y0=H'55555555, A0=H'0088888888,

R4=H'00008002, R6=H'00008236, R1=H'00000004

(R4)=H'1111, (R6)=H'1234

When condition is false:
Before execution: X0=H'33333333, Y0=H'55555555, A0=H'123456789A,

R4=H'00008000, R6=H'00008232, R1=H'00000004

(R4)=H'1111, (R6)=H'2222

After execution: X0=H'11110000, Y0=H'55555555, A0=H'123456789A,

R4=H'00008002, R6=H'00008236, R1=H'00000004

(R4)=H'1111, (R6)=H'1234



68



69

Section 6   Instruction Features

6.1 RISC-Type Instruction Set

All instructions are RISC type. Their features are detailed in this section.

6.1.1 16-Bit Fixed Length

In the SH-3 CPU all instructions have a fixed length of 16 bits. This contributes to increased code
efficiency.

Like SH-3, the SH-3DSP has 16-bit instructions, but additional 32-bit DSP instructions are
provided to allow parallel processing of DSP instructions. For details on the DSP, see 5. DSP
Operations and Data Transfer.

6.1.2 One Instruction/Cycle

Basic instructions can be executed in one cycle using the pipeline system.

6.1.3 Data Length

Longword is the standard data length for all operations. Memory can be accessed in bytes, words,
or longwords. Byte or word data accessed from memory is sign-extended and handled as longword
data (table 6-1). Immediate data is sign-extended for arithmetic operations or zero-extended for
logic operations. It also is handled as longword data.

Table 6-1 Sign Extension of Word Data

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU

MOV.W @(disp,PC),R1

ADD R1,R0

    .........

.DATA.W H'1234

Data is sign-extended to 32
bits, and R1 becomes
H'00001234. It is next
operated upon by an ADD
instruction.

ADD.W     #H'1234,R0

Note: The address of the immediate data is accessed by @(disp, PC).

6.1.4 Load-Store Architecture

Basic operations are executed between registers. For operations that involve memory access, data
is loaded to the registers and executed (load-store architecture). Instructions such as AND that
manipulate bits, however, are executed directly in memory.



70

6.1.5 Delayed Branch Instructions

Unconditional branch instructions are delayed. Pipeline disruption during branching is reduced by
first executing the instruction that follows the branch instruction, and then branching (table 6-2).

Table 6-2 Delayed Branch Instructions

SH-3/SH-3E/SH3-DSP CPU Description Example for Conventional CPU

BRA    TRGET

ADD    R1,R0

Executes an ADD before
branching to TRGET.

ADD.W    R1,R0

BRA      TRGET

6.1.6 Multiplication/Accumulation Operation

Multiplication of two 16-bit values to produce a 32-bit result is executed in one to three cycles
(one to two cycles for the SH3-DSP), and multiplication of two 32-bit values to produce a 64-bit
result is executed in two to five cycles (two to three cycles for the SH3-DSP).
Multiplication/accumulation, in which two 32-bit values are multiplied and one 32-bit value is
added, is executed in two to five cycles (two to four cycles for the SH3-DSP) when the MAC
instruction is used and in one system when the FMAC instruction* is used.

Note: The FMAC instruction is only available on the SH-3E (floating point calculation
instruction).

6.1.7 T Bit

The T bit in the status register changes according to the result of the comparison, and in turn is the
condition (true/false) that determines if the program will branch (table 6-3). The number of
instructions after T bit in the status register is kept to a minimum to improve the processing speed.

Table 6-3 T Bit

SH-3/SH-3E/SH3-DSP CPU Description
Example for Conventional
CPU

CMP/GE   R1,R0

BT       TRGET0

BF       TRGET1

T bit is set when R0 ≥ R1. The
program branches to TRGET0
when R0 ≥ R1 and to TRGET1
when R0 < R1.

CMP.W    R1,R0

BGE      TRGET0

BLT      TRGET1

ADD      #–1,R0

CMP/EQ   #0,R0

BT       TRGET

T bit is not changed by ADD. T
bit is set when R0 = 0. The
program branches if R0 = 0.

SUB.W    #1,R0

BEQ      TRGET



71

6.1.8 Immediate Data

Byte immediate data is located in instruction code. Word or longword immediate data is not input
via instruction codes but is stored in a memory table. The memory table is accessed by an
immediate data transfer instruction (MOV) using the PC relative addressing mode with
displacement (table 6-4).

Table 6-4 Immediate Data Accessing

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

8-bit immediate MOV      #H'12,R0 MOV.B  #H'12,R0

16-bit immediate MOV.W    @(disp,PC),R0

   .................

.DATA.W  H'1234

MOV.W  #H'1234,R0

32-bit immediate MOV.L    @(disp,PC),R0

   .................

.DATA.L  H'12345678

MOV.L  #H'12345678,R0

Note: The address of the immediate data is accessed by @(disp, PC).

6.1.9 Absolute Address

When data is accessed by absolute address, the value already in the absolute address is placed in
the memory table. Loading the immediate data when the instruction is executed transfers that
value to the register and the data is accessed in the indirect register addressing mode.

Table 6-5 Absolute Address

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

Absolute address MOV.L     @(disp,PC),R1

MOV. B    @R1,R0

    ..................

.DATA.L   H'12345678

MOV.B   @H'12345678,R0



72

6.1.10 16-Bit/32-Bit Displacement

When data is accessed by 16-bit or 32-bit displacement, the pre-existing displacement value is
placed in the memory table. Loading the immediate data when the instruction is executed transfers
that value to the register and the data is accessed in the indirect indexed register addressing mode.

Table 6-6 16-Bit/32-Bit Displacement

Classification SH-3/SH-3E/SH3-DSP CPU Example for Conventional CPU

16-bit displacement MOV.W     @(disp,PC),R0

MOV.W     @(R0,R1),R2

   ..................

.DATA.W   H'1234

MOV.W   @(H'1234,R1),R2

6.1.11 Privileged Instructions

The processor has two operation modes (user/privileged). If these instructions are used in user
mode, an illegal instruction exception is detected. Privileged instructions are:

• LDC

• STC

• RTE

• LDTLB

• SLEEP



73

6.2 CPU Instruction Addressing Modes

Addressing modes and effective address calculation are described in table 6-7.

Table 6-7 Addressing Modes and Effective Addresses

Addressing
Mode

Instruction
Format Effective Addresses Calculation Equation

Direct
register
addressing

Rn The effective address is register Rn. (The operand is
the contents of register Rn.)

—

Indirect
register
addressing

@Rn The effective address is the content of register Rn.

Rn Rn

Rn

Post-
increment
indirect
register
addressing

@Rn + The effective address is the content of register Rn. A
constant is added to the content of Rn after the
instruction is executed. 1 is added for a byte
operation, 2 for a word operation, and 4 for a
longword operation.

Rn Rn

1/2/4

+Rn + 1/2/4

Rn

(After the
instruction is
executed)

Byte: Rn + 1
→ Rn

Word: Rn + 2
→ Rn

Longword:
Rn + 4 → Rn

Pre-
decrement
indirect
register
addressing

@–Rn The effective address is the value obtained by
subtracting a constant from Rn. 1 is subtracted for a
byte operation, 2 for a  word operation, and 4 for a
longword operation.

Rn

1/2/4

Rn – 1/2/4–Rn – 1/2/4

Byte: Rn – 1
→ Rn

Word: Rn – 2
→ Rn

Longword:
Rn – 4 → Rn
(Instruction
executed
with Rn after
calculation)

:  Effective address



74

Table 6-7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Equation

Indirect
register
addressing
with
displace-
ment

@(disp:4,
Rn)

The effective address is Rn plus a 4-bit displacement
(disp). The value of disp is zero-extended, and
remains the same for a byte operation, is doubled for
a word operation, and is quadrupled for a longword
operation.

Rn

1/2/4

+

×

disp
(zero-extended)

Rn
+ disp × 1/2/4

Byte: Rn +
disp

Word: Rn +
disp × 2

Longword:
Rn + disp × 4

Indirect
indexed
register
addressing

@(R0, Rn) The effective address is the Rn value plus R0.

Rn

R0

Rn + R0+

Rn + R0

Indirect
GBR
addressing
with
displace-
ment

@(disp:8,
GBR)

The effective address is the GBR value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, and is
quadrupled for a longword operation.

GBR

1/2/4

+

×

disp
(zero-extended)

GBR
+ disp × 1/2/4

Byte: GBR +
disp

Word: GBR +
disp × 2

Longword:
GBR + disp ×
4

Indirect
indexed
GBR
addressing

@(R0,
GBR)

The effective address is the GBR value plus the R0.

GBR

R0

GBR + R0+

GBR + R0



75

Table 6-7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Equation

Indirect PC
addressing
with
displace-
ment

@(disp:8,
PC)

The effective address is the PC value plus an 8-bit
displacement (disp). The value of disp is zero-
extended, and remains the same for a byte
operation, is doubled for a word operation, and is
quadrupled for a longword operation. For a longword
operation, the lowest two bits of the PC are masked.

PC

H'FFFFFFFC
+

2/4

x

&
(for longword)

disp
(zero-extended)

PC + disp × 2
or

PC&H'FFFFFFFC
+ disp × 4

Word: PC +
disp × 2

Longword:
PC &
H'FFFFFFFC
+ disp × 4

PC relative
addressing

disp:8 The effective address is the PC value sign-extended
with an 8-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2

disp:12 The effective address is the PC value sign-extended
with a 12-bit displacement (disp), doubled, and
added to the PC.

PC

2

+

×

disp
(sign-extended)

PC + disp × 2

PC + disp × 2



76

Table 6-7 Addressing Modes and Effective Addresses (cont)

Addressing
Mode

Instruction
Format Effective Addresses Calculation Equation

PC relative
addressing
(cont)

Rn The effective address is the register PC plus R0.

PC

Rn

+ PC + Rn

PC + R0

Immediate
addressing

#imm:8 The 8-bit immediate data (imm) for the TST, AND,
OR, and XOR instructions are zero-extended.

—

#imm:8 The 8-bit immediate data (imm) for the MOV, ADD,
and CMP/EQ instructions are sign-extended.

—

#imm:8 Immediate data (imm) for the TRAPA  instruction is
zero-extended and is quadrupled.

—

6.3 DSP Data Addressing (SH3-DSP Only)

The DSP command performs two different types of memory accesses. One uses the X and Y data
transfer instructions (MOVX.W and MOVY.W) while the other uses the single data transfer
instructions (MOVS.W and MOVS.L). Data addressing for these two types of instructions also
differs. Table 6-8 summarizes the data transfer instructions.



77

Table 6-8 Summary of Data Transfer Instructions

Item

X and Y Data Transfer
Processing (MOVX.W and
MOVY.W)

Single Data Transfer
Processing (MOVS.W and
MOVS.L)

Address registers Ax: R4, R5; Ay: R6, R7 As: R2, R3, R4, R5

Index registers Ix: R8; Iy: R9 Is: R8

Addressing Nop/Inc(+2)/Index addition:
Post updating

Nop/Inc(+2, +4)/Index addition:
Post updating

— Dec(–2, –4): Pre updating

Modulo addressing Available Not available

Data buses XDB, YDB LDB

Data length 16 bits (word) 16 or 32 bits (word or
longword)

Bus contention None Occurs

Memory X and Y data memories All memory spaces

Source registers Dx, Dy: A0, A1 Ds: A0/A1, M0/M1, X0/X1,
Y0/Y1, A0G, A1G

Destination registers Dx: X0/X1; Dy: Y0/Y1 Ds: A0/A1, M0/M1, X0/X1,
Y0/Y1, A0G, A1G

6.3.1 X and Y Data Addressing

The DSP command allows X and Y data memories to be accessed simultaneously using the
MOVX.W and MOVY.W instructions. DSP instructions have two pointers so they can access the
X and Y data memories simultaneously. DSP instructions have only pointer addressing; immediate
addressing is not available. Address registers are divided in two. The R4 and R5 registers become
the X memory address register (Ax) while the R6 and R7 registers become the Y memory address
register (Ay). The following three types of addressing may be used with X and Y data transfer
instructions.

• Address registers with no update: The Ax and Ay registers are address pointers. They are not
updated.

• Addition index register addressing: The Ax and Ay registers are address pointers. The values
of the Ix and Iy registers are added to the Ax and Ay registers respectively after data transfer
(post updating).

• Increment address register addressing: The Ax and Ay registers are address pointers. +2 is
added to them after data transfer (post updating).



78

Each of the address pointers has an index register. Register R8 becomes the index register (Ix) for
the X memory address register (Ax); register R9 becomes the index register (Iy) for the Y memory
address register (Ay).

X and Y data transfer instructions are processed in words. X and Y data memory is accessed in 16
bit units. Increment processing for that purpose adds two to the address register. To decrement
them, set -2 in the index register and specify addition index register addressing.

Figure 6-1 shows the X and Y data transfer addressing.

ALU AU*1

R8[Ix] R4[Ax]

R5[Ax]

R9[Iy] R6[Ay]

R7[Ay]
+2 (INC) +2 (INC)
+0 (No update) +0 (No update)

Notes: 1.
2.

Adder added for DSP processing
All three addressing methods (increment, index register addition (Ix, Iy), and 
no update) are post-updating methods. To decrement the address pointer, set 
the index register to –2 or –4.

Figure 6-1   X and Y Data Transfer Addressing

6.3.2 Single Data Addressing

The DSP command has single data transfer instructions (MOVS.W and MOVS.L)  that load data
to DSP registers and store data from DSP registers. With these instructions, the R2–R5 registers
are used as address registers (As) for single data transfers.

There are four types of data addressing for single data transfer instructions.

• Address registers with no update: The As register is the address pointer. It is not updated.

• Addition index register addressing: The As register is the address pointer. The value of the Is
register is added to the As register after data transfer (post updating).

• Increment address register addressing: The As register is the address pointer. +2 or +4 is added
to it after data transfer (post updating).



79

• Decrement address register addressing: The As register is the address pointer. –2 or –4 (or +2
or +4) is added to it before data transfer (pre updating).

The address pointer uses the R8 register as its index register (Is). Figure 6-2 shows the single data
transfer addressing.

ALU

R8[Is] R4[As]

R5[As]

+2/+4 (INC)
+0 (No update)

Note:   There are four addressing methods (no update, index register addition (Is),
            increment, and decrement). Index register addition and increment are
            post-updating methods. Decrement is a pre-updating method.

R3[As]

R2[As]

–2/–4 (DEC)

Figure 6-2   Single Data Transfer Addressing

6.3.3 Modulo Addressing

Like other DSPs, the SH3-DSP has a modulo addressing mode. Address registers are updated in
the same way in this mode. When a modulo end address in which the address pointer value is
already set is reached, the address pointer becomes the modulo start address.

Modulo addressing is only effective for X and Y data transfer instructions (MOVX.W and
MOVY.W). When the DMX bit of the SR register is set, the X address register enters modulo
addressing mode; when the DMY bit is set, the Y address register enters modulo addressing mode.
Modulo addressing cannot be used on both X and Y address registers at once. Accordingly, do not
set DMX and DMY at the same time. Should they both be set at once, only DMY will be valid.

The MOD register is provided for specifying the start and end addresses for the modulo address
area. The MOD register stores the MS (modulo start) and ME (modulo end). The following shows
how to use the modulo register (MS and ME).



80

MOV.L ModAddr,Rn; Rn=ModEnd, ModStart

LDC Rn,MOD; ME=ModEnd, MS=ModStart

ModAddr: .DATA.WmEnd; Lower 8bit of ModEnd

.DATA.W mStart; Lower 8bit of ModStart

ModStart: .DATA

  :

ModEnd:.DATA

Set the start and end addresses in MS and ME and then set the DMX or DMY bit to 1. The address
register contents are compared to ME. If they match ME, the start address MS is stored in the
address register. The bottom 16 bits of the address register are compared to ME. The maximum
modulo size is 64 kbytes. This is ample for accessing the X and Y data memory. Figure 6-3 shows
a block diagram of modulo addressing.

Instruction (MOVX/MOVY)

DMX

CONT

MS

CMP

ME

ALU AU

ABx ABy

R4[Ax] R6[Ay]

R5[Ax] R7[Ay]R8[Ix] R9[Iy]

DMY

31 0

0 0

0

0

0

16 16

15 15 15

31 31

31

+2
+0

+2
+0

15 15

1 1

XAB YAB

15

Figure 6-3   Modulo Addressing

The following is an example of modulo addressing.

MS=H'08; ME=H'0C; R4=H'C008;

DMX=1; DMY=0; (Sets modulo addressing for address register Ax (R4, R5))

The above setting changes the R4 register as shown below.



81

R4: H'C008

Inc. R4: H'C00A

Inc. R4: H'C00C

Inc. R4: H'C008 (Becomes the modulo start address when the modulo end address is 
reached)

Place data so the top 16 bits of the modulo start and end address are the same, since the modulo
start address only swaps the bottom 16 bits of the address register.

Note: When using addition index as the DSP data addressing, the address pointer may exceed
this value without matching ME. Should this occur, the address pointer will not return to
the modulo start address.

6.3.4 DSP Addressing Operation

The following shows how DSP addressing works in the execution stage (EX) of a pipeline
(including modulo addressing).

if ( Operation is MOVX.W MOVY.W ) {

ABx=Ax; ABy=Ay’

/* memory access cycle uses Abx and Aby. The addresses to be used have
not been updated */

/* Ax is one of R4,5 */

if ( DMX==0 || DMX==1 @@ DMY==1 )} Ax=Ax+(+2 or R8[Ix} or +0);

/* Inc,Index,Not-Update */

else if (!not-update) Ax=modulo( Ax, (+2 or R8[Ix]) );

/* Ay is one of R6,7 */

if ( DMY==0 ) Ay=Ay+(+2 or R9[Iy] or +0; /* Inc,Index,Not-Update */

else if (! not-update) Ay=modulo( Ay, (+2 or R9[Iy]) );

}

else if ( Operation is MOVS.W or MOVS.L ) {

if ( Addressing is Nop, Inc, Add-index-reg ) {

MAB=As;

/* memory access cycle uses MAB. The address to be used has not been
updated */

/* As is one of R2–5 */

As=As+(+2 or +4 or R8[Is] or +0); /* Inc.Index,Not-Update */

else { /* Decrement, Pre-update */

/* As is one of R2–5 */

As=As+(–2 or –4);



82

MAB=As

/* memory access cycle uses MAB. The address to be used has been updated
*/

}

/* The value to be added to the address register depends on addressing
operations.

For example, (+2 or R8[Ix] or +0) means that

+2: if operation is increment

R8[Ix}:if operation is add-index-reg

+0: if operation is not-update

/*

function modulo ( AddrReg, Index ) {

if ( AdrReg[15:0]==ME ) AdrReg[15:0]==MS;

else AdrReg=AdrReg+Index

return AddrReg;

}



83

6.4 Instruction Format of CPU Instructions

The instruction format table, table 6-8, refers to the source operand and the destination operand.
The meaning of the operand depends on the instruction code. The symbols are used as follows:

• xxxx: Instruction code

• mmmm: Source register

• nnnn: Destination register

• iiii: Immediate data

• dddd: Displacement

Table 6-9 Instruction Formats

Instruction Formats
Source
Operand

Destination
Operand Example

0 format

xxxx xxxx xxxxxxxx
15 0

— — NOP

n format — nnnn: Direct
register

MOVT  Rn

xxxx xxxx xxxxnnnn
15 0 Control register

or system
register

nnnn: Direct
register

STS   MACH,Rn

Control register
or system
register

nnnn: Indirect pre-
decrement register

STC.L
SR,@-Rn

m format mmmm: Direct
register

Control register or
system register

LDC    Rm,SR

xxxxmmmmxxxx xxxx
15 0 mmmm: Indirect

post-increment
register

Control register or
system register

LDC.L  @Rm+,SR

mmmm: Direct
register

— JMP   @Rm

mmmm: PC
relative using
Rm

— BRAF   Rm



84

Table 6-9 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

nm format mmmm: Direct
register

nnnn: Direct
register

ADD    Rm,Rn

nnnnxxxx xxxx
15 0

mmmm
mmmm: Direct
register

nnnn: Direct
register

MOV.L  Rm,@Rn

mmmm: Indirect
post-increment
register
(multiply/
accumulate)
nnnn: Indirect
post-increment
register
(multiply/
accumulate)*

MACH, MACL MAC.W
@Rm+,@Rn+

mmmm: Indirect
post-increment
register

nnnn: Direct
register

MOV.L  @Rm+,Rn

mmmm: Direct
register

nnnn: Indirect pre-
decrement register

MOV.L  Rm,@-Rn

mmmm: Direct
register

nnnn: Indirect
indexed register

MOV.L
Rm,@(R0,Rn)

md format

xxxx dddd
15 0

mmmmxxxx

mmmmdddd:
indirect register
with
displacement

R0 (Direct register) MOV.B
@(disp,Rm),R0

nd4 format

ddddnnnnxxxx
15 0

xxxx

R0 (Direct
register)

nnnndddd: Indirect
register with
displacement

MOV.B
R0,@(disp,Rn)

Note: * In multiply/accumulate instructions, nnnn is the source register.



85

Table 6-9 Instruction Formats (cont)

Instruction Formats
Source
Operand

Destination
Operand Example

nmd format

nnnnxxxx dddd
15 0

mmmm

mmmm: Direct
register

nnnndddd: Indirect
register with
displacement

MOV.L
Rm,@(disp,Rn)

mmmmdddd:
Indirect register
with
displacement

nnnn: Direct
register

MOV.L
@(disp,Rm),Rn

d format

ddddxxxx
15 0

xxxx dddd

dddddddd:
Indirect GBR
with
displacement

R0 (Direct register) MOV.L
@(disp,GBR),R0

R0(Direct
register)

dddddddd: Indirect
GBR with
displacement

MOV.L
R0,@(disp,GBR)

dddddddd: PC
relative with
displacement

R0 (Direct register) MOVA
@(disp,PC),R0

dddddddd: PC
relative

— BF     label

d12 format

ddddxxxx
15 0

dddd dddd

dddddddddddd:
PC relative

— BRA    label

(label = disp +
PC)

nd8 format

ddddnnnnxxxx
15 0

dddd

dddddddd: PC
relative with
displacement

nnnn: Direct
register

MOV.L
@(disp,PC),Rn

i format iiiiiiii: Immediate Indirect indexed
GBR

AND.B
#imm,@(R0,GBR)

i i i ixxxx
15 0

xxxx i i i i
iiiiiiii: Immediate R0 (Direct register) AND    #imm,R0

iiiiiiii: Immediate — TRAPA  #imm

ni format

nnnn i i i ixxxx
15 0

i i i i

iiiiiiii: Immediate nnnn: Direct
register

ADD    #imm,Rn



86

6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)

New instructions have been added to the SH3-DSP for use in digital signal processing. The new
instructions are divided into two groups.

• Double and single data transfer instructions for memory and DSP registers (16 bits)

• Parallel processing instructions processed by the DSP unit (32 bits)

Figure 6-4 shows their instruction formats.

CPU core
instructions

0 0 0 0
to

1 1 1 0

Double data
transfer instructions

Single data
transfer instructions

Parallel processing
instructions B field

A field

A field

A field

1 1 1 1 0 0

1 1 1 1 0 1

1 1 1 1 1 0

15

15

15

15

0

0

0

031

10

10

9

9

1626 25

Figure 6-4   Instruction Formats of DSP Instructions

6.5.1 Double and Single Data Transfer Instructions

Table 6-10 shows the instruction formats for double data transfer instructions. Table 6-11 shows
the instruction formats for single data transfer instructions



87

Table 6-10 Instruction Formats for Double Data Transfers

Category Mnemonic 15 14 13 12 11 10 9 8

X memory NOPX 1 1 1 1 0 0 0
data transfers MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Ax

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Y memory NOPY 1 1 1 1 0 0 0
data transfers MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Ay

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Table 6-10 Instruction Formats for Double Data Transfers (cont)

Category Mnemonic 7 6 5 4 3 2 1 0

X memory NOPX 0 0 0 0
data transfers MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Dx 0 0
1
1

1
0
1

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Da 1 0
1
1

1
0
1

Y memory NOPY 0 0 0 0
data transfers MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Dy 0 0
1
1

1
0
1

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Da 1 0
1
1

1
0
1

Ax: 0=R4, 1=R5  Ay: 0=R6, 1=R7  Dx: 0=X0, 1=X1  Dy: 0=Y0, 1=Y1  Da: 0=A0, 1=A1



88

Table 6-11 Instruction Formats for Single Data Transfers

Category Mnemonic 15 14 13 12 11 10 9 8

Single data
transfer

MOVS.W @–As,Ds
MOVS.W @As,Ds
MOVS.W @As+,Ds
MOVS.W @As+Is,Ds

1 1 1 1 0 1 As
0: R4
1: R5
2: R2

MOVS.W Ds,@A–s
MOVS.W Ds,@As
MOVS.W Ds,@As+
MOVS.W Ds,@As+Is

3: R3

MOVS.L @–As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+Is,Ds

MOVS.L Ds,@A–s
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is

Table 6-11 Instruction Formats for Single Data Transfers (cont)

Category Mnemonic 7 6 5 4 3 2 1 0

Single data
transfer

MOVS.W @–As,Ds
MOVS.W @As,Ds
MOVS.W @As+,Ds
MOVS.W @As+Is,Ds

Ds 0: (*)
1: (*)
2: (*)
3: (*)

0
0
1
1

0
1
0
1

0 0

MOVS.W Ds,@A–s
MOVS.W Ds,@As
MOVS.W Ds,@As+
MOVS.W Ds,@As+Is

4: (*)
5: A1
6: (*)
7: A0

0
0
1
1

0
1
0
1

1

MOVS.L @–As,Ds
MOVS.L @As,Ds
MOVS.L @As+,Ds
MOVS.L @As+Is,Ds

8: X0
9: X1
A: Y0
B: Y1

0
0
1
1

0
1
0
1

0

MOVS.L Ds,@A–s
MOVS.L Ds,@As
MOVS.L Ds,@As+
MOVS.L Ds,@As+Is

C: M0
D: A1G
E:M1
F:A0G

0
0
1
1

0
1
0
1

1

Note: * System reserved code



89

6.5.2 Parallel Processing Instructions

Parallel processing instructions are used by the SH3-DSP to increase the execution efficiency of
digital signal processing using the DSP unit. They are 32 bits long and four can be processed in
parallel (one ALU operation, one multiplication, and two data transfers).

Parallel processing instructions are divided into two fields, A and B. The data transfer instructions
are defined in field A and the ALU operation instruction and multiplication instruction are defined
in field B. These instructions can be defined independently, processed independently, and can be
executed simultaneously in parallel. Table 6-12 lists the field A parallel data transfer instructions,
and Table 6-13 shows the field B ALU operation instructions and multiplication instructions. The
field A instructions are identical to the double data transfer instructions shown in Table 6-10.

Table 6-12 Field A Parallel Data Transfer Instructions

Category Mnemonic 31 30 29 28 27 26 25 24 23

X memory NOPX 1 1 1 1 1 0 0 0
data
transfers

MOVX.W @Ax,Dx
MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

Ax Dx

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

Da

Y memory NOPY 0
data
transfers

MOVY.W @Ay,Dy
MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy
MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Ay



90

Table 6-12 Field A Parallel Data Transfer Instructions (cont)

Category Mnemonic 22 21 20 19 18 17 16 15–0

X memory NOPX 0 0 0 Field B
data
transfers

MOVX.W @Ax,Dx
MOVX.W @Ax+,Dx
MOVX.W @Ax+Ix,Dx

0 0
1
1

1
0
1

MOVX.W Da,@Ax
MOVX.W Da,@Ax+
MOVX.W Da,@Ax+Ix

1 0
1
1

1
0
1

Y memory NOPY 0 0 0 0
data
transfers

MOVY.W @Ay,Dy
MOVY.W @Ay+,Dy
MOVY.W @Ay+Iy,Dy

Dy 0 0
1
1

1
0
1

MOVY.W Da,@Ay
MOVY.W Da,@Ay+
MOVY.W Da,@Ay+Iy

Da 1 0
1
1

1
0
1

Ax: 0=R4, 1=R5  Ay: 0=R6, 1=R7  Dx: 0=X0, 1=X1  Dy: 0=Y0, 1=Y1  Da: 0=A0, 1=A1



91

Table 6-13 Field B ALU Operation Instructions and Multiplication Instructions

Category Mnemonic 14 13 12 10 9 8 7 6 5 4 3 2 1 015
Dz0 0 0

0 0 0

–16 ≤ imm ≤ +16

– 32 ≤ imm ≤ +32

0

1

0 Se Sf Sx Sy Dg Du

0 0 0

0 0 1

0 1 0

00 1 1

10 1 1

01 0 0 00 0 Dz

0: (*1)

1: (*1)
2: (*1)

3: (*1)
4: (*1)
5: A1
6: (*1)
7: A0
8: X0
9: X1
A: Y0
B: Y1
C: M0
D: (*1)
E: M1
F: (*1)

0

00 10

00 01

10

10

10

01

01

01

11

11

11

00 11
10
01
11

1 0:X0
1:X1
2:Y0
3:A1

0:X0
1:X1
2:A0
3:A1

0:X00:Y0
1:Y1
2:X0
3:A1

0:Y0 0:M0
1:Y01:Y1 1:M1
2:A02:M0 2:A0
3:A13:M1 3:A1

0 1 0

PSHL #imm, Dz
PSHA #imm, Dz

PMULS Se, Sf, Dg

Reserved

Reserved

Reserved

Reserved

PWSB Sx, Sy, Dz
PWAD Sx, Sy, Dz

PABS Sx, Dz
PRND Sx, Dz

PRND Sy, Dz
PABS Sy, Dz

Reserved

PSUBC Sx, Sy, Dz
PADDC Sx, Sy, Dz

PCMP Sx, Sy

PSUB Sx, Sy, Du
PMULS Se, Sf, Dg

PADD Sx, Sy, Du
PMULS Se, Sf, Dg

imm. shift

Six
operand
parallel

instruction

Three
operand

instructions

31–27 25–1626
1 0 Field A

11
0

0
1



92

Table 6-13 Field B ALU Operation Instructions and Multiplication Instructions (cont)

Category Mnemonic 14 13 12 10 9 8 7 6 5 4 3 2 1 015

1 1

0001 00
10
01
11

00 10
10
01
11
00 01

10
01
11

00 11
10
01

11
00 01
10
01
11

00 1 if cc1

0*3
0 0

10

01
11

Reserved

Reserved

Reserved

Reserved

Reserved

(if cc)*1 PSHL Sx, Sy, Dz
(if cc) PSHA Sx, Sy, Dz
(if cc) PSUB Sx, Sy, Dz
(if cc) PADD Sx, Sy, Dz

(if cc) PAND Sx, Sy, Dz
(if cc) PXOR Sx, Sy, Dz
(if cc) POR Sx, Sy, Dz
(if cc) PDEC Sx, Dz

(if cc) PDEC Sy, Dz
(if cc) PINC Sx, Dz

(if cc) PINC Sy, Dz

(if cc) PCLR Dz
(if cc) PDMSB Sx, Dz

(if cc) PDMSB Sy, Dz
(if cc) PNEG Sx, Dz

(if cc) PNEG Sy, Dz
(if cc) PCOPY Sx, Dz

(if cc) PCOPY Sy, Dz

(if cc) PSTS MACH, Dz
(if cc) PSTS MACL, Dz

(if cc) PLDS Dz, MACL
(if cc) PLDS Dz, MACH

Conditional
three

operand
instructions

0 0

if cc1 0 Field A Sx
0:X0
1:X1
2:Y0
3:Y1

Sy
0:Y0
1:Y1
2:M0
3:M1

Dz
0:(*1)
1:(*1)
2:(*1)
3:(*1)
4:(*1)
5:A1
6:(*1)
7:A0
8:X0
9:X1
A:Y0
B:Y1
C:M0
D:(*1)
E:M1
F:(*1)

10:DCT

11:DCF

01:*2

31–27 25–1626

1 1

11

Notes: 1.

2.
3.

[if cc]: DCT (DC bit true), DCF (DC bit false), or none (unconditional 
instruction)
Unconditional
System reserved code



93

Section 7   Instruction Set

7.1 Instruction Set by Classification

The SH-3 instruction set includes 68 basic instruction types, and the SH-3E instruction set
includes 84 basic instruction types, divided into seven functional classifications, as shown in Table
7-1. Tables 7-3 to 7-9 summarize instruction notation, machine mode, execution time, and
function.



94

Table 7-1 Classification of Instructions

Classification Types
Operation
Code Function

No. of
Instructions

Data transfer 5 MOV Data transfer
Immediate data transfer
Peripheral module data transfer
Structure data transfer

39

MOVA Effective address transfer

MOVT T bit transfer

SWAP Swap of upper and lower bytes

XTRCT Extraction of the middle of registers
connected

PREF Prefetching data to cache

Arithmetic 21 ADD Binary addition 33
operations ADDC Binary addition with carry

ADDV Binary addition with overflow check

CMP/cond Comparison

DIV1 Division

DIV0S Initialization of signed division

DIV0U Initialization of unsigned division

DMULS Signed double-length multiplication

DMULU Unsigned double-length multiplication

DT Decrement and test

EXTS Sign extension

EXTU Zero extension

MAC Multiply/accumulate, double-length
multiply/accumulate operation

MUL Double-length multiplication (32 × 32 bits)

MULS Signed multiplication (16 × 16 bits)

MULU Unsigned multiplication (16 × 16 bits)

NEG Negation

NEGC Negation with borrow

SUB Binary subtraction

SUBC Binary subtraction with carry

SUBV Binary subtraction with underflow check



95

Table 7-1 Classification of Instructions (cont)

Classification Types Operation Code Function
No. of
Instructions

Logic 6 AND Logical AND 14
operations NOT Bit inversion

OR Logical OR

TAS Memory test and bit set

TST Logical AND and T bit set

XOR Exclusive OR

Shift 12 ROTL One-bit left rotation 16

ROTR One-bit right rotation

ROTCL One-bit left rotation with T bit

ROTCR One-bit right rotation with T bit

SHAL One-bit arithmetic left shift

SHAR One-bit arithmetic right shift

SHLL One-bit logical left shift

SHLLn n-bit logical left shift

SHLR One-bit logical right shift

SHLRn n-bit logical right shift

SHAD Dynamic arithmetic shift

SHLD Dynamic logical shift

Branch 9 BF Conditional branch, conditional
branch with delay (T = 0)

11

BT Conditional branch, conditional
branch with delay (T = 1)

BRA Unconditional branch

BRAF Unconditional branch

BSR Branch to subroutine procedure

BSRF Branch to subroutine procedure

JMP Unconditional branch

JSR Branch to subroutine procedure

RTS Return from subroutine procedure



96

Table 7-1 Classification of Instructions (cont)

Classification Types Operation Code Function
No. of
Instructions

System 15 CLRT T bit clear 83 (75)*
control CLRMAC MAC register clear

CLRS S bit clear

LDC Load to control register

LDS Load to system register

LDTLB Load PTE to TLB

NOP No operation

RTE Return from exception processing

SETS S bit set

SETT T bit set

SLEEP Shift into power-down mode

STC Storing control register data

STS Storing system register data

TRAPA Trap exception handling

Floating point 16 FABS Floating point absolute value 23
instructions FADD Floating point add
(SH-3E only)

FCMP Floating point compare

FDIV Floating point divide

FLDI0 Floating point load immediate 0

FLDI1 Floating point load immediate 1

FLDS Floating point load to system register
FPUL

FLOAT Floating point convert from integer

FMAC Floating point multiply accumulate

FMOV Floating point move

FMUL Floating point multiply

FNEG Floating point negate

FSQRT Floating point square root

FSTS Floating point store from system
register FPUL

FSUB Floating point subtract

FTRC Floating point truncate and convert to
integer

Total: 84 219 (188)*

Note: * The LDS and STS instructions include instructions to load/store to the FPU system
register. These instructions can only be used with the SH-3E. The figure in parentheses
(  ) is the total excluding the SH-3E instructions.



97

Instruction codes, operation, and execution states are listed as shown in Table 7-2 in order by
classification.

Tables 7-3 to 7-8 list the minimum number of clock cycles required for execution. In practice, the
number of execution cycles increases when the instruction fetch is in contention with data access
or when the destination register of a load instruction (memory → register) is the same as the
register used by the next instruction.

Table 7-2 Instruction Code Format

Item Format Explanation

Instruction OP.Sz  SRC,DEST OP: Operation code
Sz: Size
SRC: Source
DEST: Destination
Rm: Source register
Rn: Destination register
imm: Immediate data
disp: Displacement

Operation →, ←
(xx)
M/Q/T
&
|
^
~
<<n, >>n

Direction of transfer
Memory operand
Flag bits in the SR
Logical AND of each bit
Logical OR of each bit
Exclusive OR of each bit
Logical NOT of each bit
n-bit shift

Code MSB ↔ LSB mmmm: Source register
nnnn: Destination register

0000: R0
0001: R1
     ...........
1111: R15

iiii: Immediate data
dddd: Displacement

Privilege Indicates a privileged instruction

Cycles The execution cycles shown in the table are minimums.
The actual number of cycles may be increased:
1. When contention occurs between instruction fetches

and data access, or
2. When the destination register of the load instruction

(memory → register) and the register used by the next
instruction are the same.

T bit Value of T bit after instruction is executed
—: No change

Note: Scaling (×1, ×2, ×4) is performed according to the instruction operand size. See "8.
Instruction Descriptions" for details.



98

7.1.1 Data Transfer Instructions

Table 7-3 Data Transfer Instructions

Instruction Operation Code Privilege Cycles
T
Bit

MOV #imm,Rn imm → Sign extension →
Rn

1110nnnniiiiiiii — 1 —

MOV.W @(disp,PC),Rn (disp × 2 + PC) → Sign
extension → Rn

1001nnnndddddddd — 1 —

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd — 1 —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — 1 —

MOV.B @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0000 — 1 —

MOV.W @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0001 — 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — 1 —

MOV.B Rm,@–Rn Rn–1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 — 1 —

MOV.W Rm,@–Rn Rn–2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 — 1 —

MOV.L Rm,@–Rn Rn–4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 — 1 —

MOV.B @Rm+,Rn (Rm) → Sign extension
→ Rn,Rm + 1 → Rm

0110nnnnmmmm0100 — 1 —

MOV.W @Rm+,Rn (Rm) → Sign extension
→ Rn,Rm + 2 → Rm

0110nnnnmmmm0101 — 1 —

MOV.L @Rm+,Rn (Rm) → Rn,Rm + 4 →
Rm

0110nnnnmmmm0110 — 1 —

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — 1 —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd — 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd — 1 —

MOV.B @(disp,Rm),R0 (disp + Rm) → Sign
extension → R0

10000100mmmmdddd — 1 —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → Sign
extension → R0

10000101mmmmdddd — 1 —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd — 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — 1 —



99

Table 7-3 Data Transfer Instructions (cont)

Instruction Operation Code Privilege Cycles
T
Bit

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1100 — 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1101 — 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — 1 —

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — 1 —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd — 1 —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd — 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) → Sign
extension → R0

11000100dddddddd — 1 —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) → Sign
extension → R0

11000101dddddddd — 1 —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd — 1 —

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd — 1 —

MOVT Rn T → Rn 0000nnnn00101001 — 1 —

PREF @Rn (Rn) → cache 0000nnnn10000011 — 1/2* —

SWAP.B Rm,Rn Rm → Swap the bottom
two bytes → REG

0110nnnnmmmm1000 — 1 —

SWAP.W Rm,Rn Rm → Swap two
consecutive words → Rn

0110nnnnmmmm1001 — 1 —

XTRCT Rm,Rn Rm: Middle 32 bits of Rn
→ Rn

0010nnnnmmmm1101 — 1 —

Note: * Two cycles on the SH3-DSP.



100

7.1.2 Arithmetic Instructions

Table 7-4 Arithmetic Instructions

Instruction Operation Code Privilege Cycles T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — 1 —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — 1 —

ADDC Rm,Rn Rn + Rm + T → Rn,
Carry → T

0011nnnnmmmm1110 — 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
Overflow → T

0011nnnnmmmm1111 — 1 Overflow

CMP/EQ #imm,R0 If R0 = imm, 1 → T 10001000iiiiiiii — 1 Comparison
result

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 — 1 Comparison
result

CMP/HS Rm,Rn If Rn≥Rm with unsigned
data, 1 → T

0011nnnnmmmm0010 — 1 Comparison
result

CMP/GE Rm,Rn If Rn ≥  Rm with signed
data, 1 → T

0011nnnnmmmm0011 — 1 Comparison
result

CMP/HI Rm,Rn If Rn > Rm with
unsigned data, 1 → T

0011nnnnmmmm0110 — 1 Comparison
result

CMP/GT Rm,Rn If Rn > Rm with signed
data, 1 → T

0011nnnnmmmm0111 — 1 Comparison
result

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 — 1 Comparison
result

CMP/PL Rn If Rn > 0, 1 → T 0100nnnn00010101 — 1 Comparison
result

CMP/STR Rm,Rn If Rn and Rm have an
equivalent byte, 1 → T

0010nnnnmmmm1100 — 1 Comparison
result

DIV1 Rm,Rn Single-step division
(Rn/Rm)

0011nnnnmmmm0100 — 1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

0010nnnnmmmm0111 — 1 Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 — 1 0



101

Table 7-4 Arithmetic Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit

DMULS.L Rm,Rn Signed operation of
Rn × Rm → MACH, MACL
32 × 32 → 64 bits

0011nnnnmmmm1101 — 2 (to
5/4)*1

—

DMULU.L Rm,Rn Unsigned operation of
Rn × Rm → MACH, MACL
32 × 32 → 64 bits

0011nnnnmmmm0101 — 2 (to
5/4)*1

—

DT Rn Rn – 1 → Rn, if Rn = 0,
1 → T, else 0 → T

0100nnnn00010000 — 1 Comparison
result

EXTS.B Rm,Rn A byte in Rm is sign-
extended → Rn

0110nnnnmmmm1110 — 1 —

EXTS.W Rm,Rn A word in Rm is sign-
extended → Rn

0110nnnnmmmm1111 — 1 —

EXTU.B Rm,Rn A byte in Rm is zero-
extended → Rn

0110nnnnmmmm1100 — 1 —

EXTU.W Rm,Rn A word in Rm is zero-
extended → Rn

0110nnnnmmmm1101 — 1 —

MAC.L @Rm+,
@Rn+

Signed operation of (Rn) ×
(Rm) + MAC → MAC

0000nnnnmmmm1111 — 2 (to
5/4)*1

—

MAC.W @Rm+,
@Rn+

Signed operation of (Rn) ×
(Rm) + MAC → MAC
16 × 16 + 64 → 64 bits

0100nnnnmmmm1111 — 2 (to 5)*1 —

MUL.L Rm,Rn Rn × Rm → MACL
32 × 32 → 32 bits

0000nnnnmmmm0111 — 2 (to
5/4)*1

—

MULS.W Rm,Rn Signed operation of Rn ×
Rm → MAC
16 × 16 → 32 bits

0010nnnnmmmm1111 — 1 (to 3)*2 —

MULU.W Rm,Rn Unsigned operation of Rn
× Rm → MAC
16 × 16 → 32 bits

0010nnnnmmmm1110 — 1 (to 3)*2 —

NEG Rm,Rn 0–Rm → Rn 0110nnnnmmmm1011 — 1 —

NEGC Rm,Rn 0–Rm–T → Rn,
Borrow → T

0110nnnnmmmm1010 — 1 Borrow

SUB Rm,Rn Rn–Rm → Rn 0011nnnnmmmm1000 — 1 —

SUBC Rm,Rn Rn–Rm–T → Rn,
Borrow → T

0011nnnnmmmm1010 — 1 Borrow

SUBV Rm,Rn Rn–Rm → Rn,
Underflow → T

0011nnnnmmmm1011 — 1 Underflow

Notes: 1. The normal minimum number of execution cycles is 2, but 5 cycles (4 cycles on the
SH3-DSP) are required when the results of an operation are read from the MAC
register immediately after the instruction.

2. The normal minimum number of execution cycles is 1, but 3 cycles are required when
the results of an operation are read from the MAC register immediately after a MUL
instruction.



102

7.1.3 Logic Operation Instructions

Table 7-5 Logic Operation Instructions

Instruction Operation Code Privilege Cycles T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — 1 —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii — 3 —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — 1 —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — 1 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0
+ GBR)

11001111iiiiiiii — 3 —

TAS.B @Rn If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

0100nnnn00011011 — 3/4* Test
result

TST Rm,Rn Rn & Rm; if the result is
0, 1 → T

0010nnnnmmmm1000 — 1 Test
result

TST #imm,R0 R0 & imm; if the result is
0, 1 → T

11001000iiiiiiii — 1 Test
result

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm; if the
result is 0, 1 → T

11001100iiiiiiii — 3 Test
result

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 — 1 —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii — 1 —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm → (R0
+ GBR)

11001110iiiiiiii — 3 —

Note: * Four cycles on the SH3-DSP.



103

7.1.4 Shift Instructions

Table 7-6 Shift Instructions

Instruction Operation Code Privilege Cycles T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — 1 LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — 1 LSB

SHAD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm → [MSB→Rn]

0100nnnnmmmm1100 — 1 —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — 1 LSB

SHLD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm → [0→Rn]

0100nnnnmmmm1101 — 1 —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 — 1 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — 1 —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 — 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — 1 —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 — 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — 1 —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 — 1 —



104

7.1.5 Branch Instructions

Table 7-7 Branch Instructions

Instruction Operation Code Privilege Cycles T Bit

BF label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001011dddddddd — 3/1* —

BF/S label Delayed branch, if T = 0,
disp × 2 + PC → PC; if T = 1, nop

10001111dddddddd — 2/1* —

BT label Delayed branch, if T = 1,
disp × 2 + PC → PC; if T = 0, nop

10001001dddddddd — 3/1* —

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001101dddddddd — 2/1* —

BRA label Delayed branch, disp × 2 + PC →
PC

1010dddddddddddd — 2 —

BRAF Rn Rn + PC → PC 0000nnnn00100011 — 2 —

BSR label Delayed branch, PC → PR,
disp × 2 + PC → PC

1011dddddddddddd — 2 —

BSRF Rn PC → PR, Rn + PC → PC 0000nnnn00000011 — 2 —

JMP @Rn Delayed branch, Rn → PC 0100nnnn00101011 — 2 —

JSR @Rn Delayed branch, PC → PR,
Rn → PC

0100nnnn00001011 — 2 —

RTS Delayed branch, PR → PC 0000000000001011 — 2 —

Note: * One state when it does not branch.



105

7.1.6 System Control Instructions

Table 7-8 System Control Instructions

Instruction Operation Code Privilege Cycles T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 — 1 —

CLRS 0 → S 0000000001001000 — 1 —

CLRT 0 → T 0000000000001000 — 1 0

LDC Rm,SR Rm → SR 0100mmmm00001110 √ 5 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — 1/3*1 —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 √ 1/3*1 —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 √ 1/3*1 —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 √ 1/3*1 —

LDC Rm,R0_BANK Rm → R0_BANK 0100mmmm10001110 √ 1/3*1 —

LDC Rm,R1_BANK Rm → R1_BANK 0100mmmm10011110 √ 1/3*1 —

LDC Rm,R2_BANK Rm → R2_BANK 0100mmmm10101110 √ 1/3*1 —

LDC Rm,R3_BANK Rm → R3_BANK 0100mmmm10111110 √ 1/3*1 —

LDC Rm,R4_BANK Rm → R4_BANK 0100mmmm11001110 √ 1/3*1 —

LDC Rm,R5_BANK Rm → R5_BANK 0100mmmm11011110 √ 1/3*1 —

LDC Rm,R6_BANK Rm → R6_BANK 0100mmmm11101110 √ 1/3*1 —

LDC Rm,R7_BANK Rm → R7_BANK 0100mmmm11111110 √ 1/3*1 —

LDC.L @Rm+,SR (Rm) → SR,  Rm + 4 → Rm 0100mmmm00000111 √ 7 LSB

LDC.L @Rm+,GBR (Rm) → GBR,  Rm + 4 → Rm 0100mmmm00010111 — 1/5*2 —

LDC.L @Rm+,VBR (Rm) → VBR,  Rm + 4 → Rm 0100mmmm00100111 √ 1/5*2 —

LDC.L @Rm+,SSR (Rm) → SSR,  Rm + 4 → Rm 0100mmmm00110111 √ 1/5*2 —

LDC.L @Rm+,SPC (Rm) → SPC,  Rm + 4 → Rm 0100mmmm01000111 √ 1/5*2 —

LDC.L @Rm+,R0_
BANK

(Rm) → R0_BANK,
Rm + 4 → Rm

0100mmmm10000111 √ 1/5*2 —

LDC.L @Rm+,R1_
BANK

(Rm) → R1_BANK,
Rm + 4 → Rm

0100mmmm10010111 √ 1/5*2 —

LDC.L @Rm+,R2_
BANK

(Rm) → R2_BANK,
Rm + 4 → Rm

0100mmmm10100111 √ 1/5*2 —

LDC.L @Rm+,R3_
BANK

(Rm) → R3_BANK,
Rm + 4 → Rm

0100mmmm10110111 √ 1/5*2 —



106

Table 7-8 System Control Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit

LDC.L @Rm+,R4_
BANK

(Rm) → R4_BANK,
Rm + 4 → Rm

0100mmmm11000111 √ 1/5*2 —

LDC.L @Rm+,R5_
BANK

(Rm) → R5_BANK,
Rm + 4 → Rm

0100mmmm11010111 √ 1/5*2 —

LDC.L @Rm+,R6_
BANK

(Rm) → R6_BANK,
Rm + 4 → Rm

0100mmmm11100111 √ 1/5*2 —

LDC.L @Rm+,R7_
BANK

(Rm) → R7_BANK,
Rm + 4 → Rm

0100mmmm11110111 √ 1/5*2 —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 — 1 —

LDS.L @Rm+,MACH (Rm) → MACH,  Rm + 4 → Rm 0100mmmm00000110 — 1 —

LDS.L @Rm+,MACL (Rm) → MACL,  Rm + 4 → Rm 0100mmmm00010110 — 1 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 — 1 —

LDTLB PTEH/PTEL → TLB 0000000000111000 √ 1 —

NOP No operation 0000000000001001 — 1 —

PREF @Rn (Rn) → cache 0000nnnn10000011 — 1 —

RTE Delayed branch,
SSR/SPC → SR/PC

0000000000101011 √ 4 —

SETS 1 → S 0000000001011000 — 1 —

SETT 1 → T 0000000000011000 — 1 1

SLEEP Sleep 0000000000011011 √ 4*3 —

STC SR,Rn SR → Rn 0000nnnn00000010 √ 1 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 √ 1 —

STC SSR,Rn SSR → Rn 0000nnnn00110010 √ 1 —

STC SPC,Rn SPC → Rn 0000nnnn01000010 √ 1 —



107

Table 7-8 System Control Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit

STC R0_BANK,Rn R0_BANK→ Rn 0000nnnn10000010 √ 1 —

STC R1_BANK,Rn R1_BANK→ Rn 0000nnnn10010010 √ 1 —

STC R2_BANK,Rn R2_BANK→ Rn 0000nnnn10100010 √ 1 —

STC R3_BANK,Rn R3_BANK→ Rn 0000nnnn10110010 √ 1 —

STC R4_BANK,Rn R4_BANK→ Rn 0000nnnn11000010 √ 1 —

STC R5_BANK,Rn R5_BANK→ Rn 0000nnnn11010010 √ 1 —

STC R6_BANK,Rn R6_BANK→ Rn 0000nnnn11100010 √ 1 —

STC R7_BANK,Rn R7_BANK→ Rn 0000nnnn11110010 √ 1 —

STC.L SR,@–Rn Rn–4 → Rn,  SR → (Rn) 0100nnnn00000011 √ 1/2*4 —

STC.L GBR,@–Rn Rn–4 → Rn,  GBR → (Rn) 0100nnnn00010011 — 1/2*4 —

STC.L VBR,@–Rn Rn–4 → Rn,  VBR → (Rn) 0100nnnn00100011 √ 1/2*4 —

STC.L SSR,@–Rn Rn–4 → Rn,  SSR → (Rn) 0100nnnn00110011 √ 1/2*4 —

STC.L SPC,@–Rn Rn–4 → Rn,  SPC → (Rn) 0100nnnn01000011 √ 1/2*4 —

STC.L R0_BANK,@–

Rn

Rn–4 → Rn,
R0_BANK → (Rn)

0100nnnn10000011 √ 2 —

STC.L R1_BANK,@–

Rn

Rn–4 → Rn,
R1_BANK → (Rn)

0100nnnn10010011 √ 2 —

STC.L R2_BANK,@–

Rn

Rn–4 → Rn,
R2_BANK → (Rn)

0100nnnn10100011 √ 2 —

STC.L R3_BANK,@–

Rn

Rn–4 → Rn,
R3_BANK → (Rn)

0100nnnn10110011 √ 2 —

STC.L R4_BANK,@–

Rn

Rn–4 → Rn,
R4_BANK → (Rn)

0100nnnn11000011 √ 2 —

STC.L R5_BANK,@–

Rn

Rn–4 → Rn,
R5_BANK → (Rn)

0100nnnn11010011 √ 2 —

STC.L R6_BANK,@–

Rn

Rn–4 → Rn,
R6_BANK → (Rn)

0100nnnn11100011 √ 2 —

STC.L R7_BANK,@–

Rn

Rn–4 → Rn,
R7_BANK → (Rn)

0100nnnn11110011 √ 2 —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 — 1 —



108

Table 7-8 System Control Instructions (cont)

Instruction Operation Code Privilege Cycles T Bit

STS.L MACH,@–Rn Rn–4 → Rn,  MACH → (Rn) 0100nnnn00000010 — 1 —

STS.L MACL,@–Rn Rn–4 → Rn,  MACL → (Rn) 0100nnnn00010010 — 1 —

STS.L PR,@–Rn Rn–4 → Rn,  PR → (Rn) 0100nnnn00100010 — 1 —

TRAPA #imm PC/SR → SPC/SSR,
#imm<<2 → TRA, 0x160 →
EXPEVT VBR + H'0100 → PC

11000011iiiiiiii — 6/8*5 —

Notes: The number of execution states before the chip enters the sleep state. This table lists the
minimum execution cycles. In practice, the number of execution cycles increases when the
instruction fetch is in contention with data access or when the destination register of a load
instruction (memory → register) is the same as the register used by the next instruction.
1. Three cycles on the SH3-DSP.
2. Five cycles on the SH3-DSP.
3. Number of cycles before transition to sleep state.
4. Two cycles on the SH3-DSP.
5. Eight cycles on the SH3-DSP.



109

7.1.7 Floating Point Instructions (SH-3E Only)

Table 7-9 Floating Point Instructions

Instruction Operation Code Privilege Cycles T Bit

FABS FRn | FRn | → FRn 1111nnnn01011101 — 1 —

FADD FRm,FRn FRn + FRm → FRn 1111nnnnmmmm0000 — 1 —

FCMP/EQ FRm,FRn FRn == FRm?
1:0 → T

1111nnnnmmmm0100 — 1 Comparison
result

FCMP/GT FRm,FRn FRn > FRm?
1:0 → T

1111nnnnmmmm0101 — 1 Comparison
result

FDIV FRm,FRn FRn / FRm → FRn 1111nnnnmmmm0011 — 13 —

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 — 1 —

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 — 1 —

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 — 1 —

FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 — 1 —

FMAC FR0,FRm,FRn FR0 × FRm +
FRn → FRn

1111nnnnmmmm1110 — 1 —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 — 1 —

FMOV.S @(R0,Rm),FRn (R0 + Rm) → FRn 1111nnnnmmmm0110 — 1 —

FMOV.S @Rm+,FRn (Rm) → FRn,
Rm+4 → Rm

1111nnnnmmmm1001 — 1 —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 — 1 —

FMOV.S FRm,@(R0,Rn) FRm → (R0 + Rn) 1111nnnnmmmm0111 — 1 —

FMOV.S FRm,@-Rn Rn-4 → Rn,
FRm → (Rn)

1111nnnnmmmm1011 — 1 —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 — 1 —

FMUL FRm,FRn Fm × FRm → FRn 1111nnnnmmmm0010 — 1 —

FNEG FRn –FRn → FRn 1111nnnn01001101 — 1 —

FSQRT FRn √FRn → FRn 1111nnnn01101101 — 13 —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 — 1 —

FSUB FRm,FRn FRn - FRm → FRn 1111nnnnmmmm0001 — 1 —

FTRC FRm,FPUL (long)FRm → FPUL 1111nnnn00111101 — 1 —



110

7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)

Table 7-10 FPU Related CPU Instructions

Instruction Operation Code Privilege Cycles T Bit

LDS Rm,FPSCR Rm  → FPSCR 0100nnnn01101010 — 1 —

LDS Rm,FPUL Rm → FPUL 0100nnnn01011010 — 1 —

LDS.L @Rm+ ,FPSCR @Rm → FPSCR,
Rm+4 → Rm

0100nnnn01100110 — 1 —

LDS.L @Rm+ ,FPUL @Rm → FPUL, Rm+4 → Rm 0100nnnn01010110 — 1 —

STS FPSCR, Rn FPSCR → Rn 0000nnnn01101010 — 1 —

STS FPUL, Rn FPUL → Rn 0000nnnn01011010 — 1 —

STS.L FPSCR,@- Rn Rn-4 → Rn, FPSCR → @Rn 0100nnnn01100010 — 1 —

STS.L FPUL,@-Rn Rn-4 → Rn, FPUL → @Rn 0100nnnn01010010 — 1 —

7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)

Several system control instructions have been added to the CPU core instructions to support DSP
functions. The RS, RE, and MOD registers (which support modulo addressing) have been added,
and an RC counter has been added to the SR register. LDC and STC instructions have been added
to access these. LDS and STS instructions have also been added for accessing the DSP registers
DSR, A0, X0, X1, Y0, and Y1.

A SETRC instruction has been added for setting the value of the repeat counter (RC) in the SR
register (bits 16–27). When the operand of the SETRC instruction is immediate, 8 bits of
immediate data are set in bits 16–23 of the SR register and bits 24–27 are cleared. When the
operand is a register, the 12 bits 0–11 of the register are set in bits 16–27 of the SR register.

In addition to the new LDC instructions, the LDRE and LDRS instructions have been added for
setting the repeat start address and repeat end address in the RS and RE registers.

Table 7-11 shows the added instructions.



111

Table 7-11 Added CPU Instructions

Instruction Operation Code Cycles T Bit

LDC Rm,MOD Rm→MOD 0100mmmm01011110 3 —

LDC Rm,RE Rm→RE 0100mmmm01111110 3 —

LDC Rm,RS Rm→RS 0100mmmm01101110 3 —

LDC.L @Rm+,MOD (Rm)→MOD,Rm+4→Rm 0100mmmm01010111 5 —

LDC.L @Rm+,RE (Rm)→RE,Rm+4→Rm 0100mmmm01110111 5 —

LDC.L @Rm+,RS (Rm)→RS,Rm+4→Rm 0100mmmm01100111 5 —

STC MOD,Rn MOD→Rn 0000nnnn01010010 1 —

STC RE,Rn RE→Rn 0000nnnn01110010 1 —

STC RS,Rn RS→Rn 0000nnnn01100010 1 —

STC.L MOD,@-Rn Rn–4→Rn,MOD→(Rn) 0100nnnn01010011 2 —

STC.L RE,@-Rn Rn–4→Rn,RE→(Rn) 0100nnnn01110011 2 —

STC.L RS,@-Rn Rn–4→Rn,RS→(Rn) 0100nnnn01100011 2 —

LDS Rm,DSR Rm→DSR 0100mmmm01101010 1 —

LDS.L @Rm+,DSR (Rm)→DSR,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,A0 Rm→A0 0100mmmm01110110 1 —

LDS.L @Rm+,A0 (Rm)→A0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,X0 Rm→X0 0100mmmm01110110 1 —

LDS.L @Rm+,X0 (Rm)→X0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,X1 Rm→X1 0100mmmm01110110 1 —

LDS.L @Rm+,X1 (Rm)→X1,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,Y0 Rm→Y0 0100mmmm01110110 1 —

LDS.L @Rm+,Y0 (Rm)→Y0,Rm+4→Rm 0100mmmm01100110 1 —

LDS Rm,Y1 Rm→Y1,Rm+4→Rm 0100mmmm01110110 1 —

LDS.L @Rm+,Y1 (Rm)→Y1,Rm+4→Rm 0100mmmm01100110 1 —

STS DSR,Rn DSR→Rn 0000nnnn01101010 1 —

STS.L DSR,@-Rn Rn–4→Rn,DSR→(Rn) 0100nnnn01100010 1 —

STS A0,Rn A0→Rn 0000nnnn01111010 1 —

STS.L A0,@-Rn Rn–4→Rn,A0→(Rn) 0100nnnn01110010 1 —

STS X0,Rn X0→Rn 0000nnnn01111010 1 —

STS.L X0,@-Rn Rn–4→Rn,X0→(Rn) 0100nnnn01110010 1 —

STS X1,Rn X1→Rn 0000nnnn01111010 1 —

STS.L X1,@-Rn Rn–4→Rn,X1→(Rn) 0100nnnn01110010 1 —



112

Table 7-11 Added CPU Instructions (cont)

Instruction Operation Code Cycles T Bit

STS Y0,Rn Y0→Rn 0000nnnn10101010 1 —

STS.L Y0,@-Rn Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS Y1,Rn Y1→Rn 0000nnnn10111010 1 —

STS.L Y1,@-Rn Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

SETRC Rm Rm[11:0]→RC (SR[27:16]) 0100mmmm00010100 3 —

SETRC #imm imm→RC(SR[23:16]),
zeros→SR[27:24]

10000010iiiiiiii 3 —

LDRS @(disp,pc) disp × 2+PC→RS 10001100dddddddd 3 —

LDRE @(disp,pc) disp × 2+PC→RE 10001110dddddddd 3 —

7.2 Instruction Set in Alphabetical Order

Table 7-12 alphabetically lists the instruction codes and number of execution cycles for each
instruction.

Table 7-12 Instruction Set Listed Alphabetically

Instruction Operation Code Privilege Cycles T Bit

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii — 1 —

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 — 1 —

ADDC Rm,Rn Rn + Rm + T → Rn,
Carry → T

0011nnnnmmmm1110 — 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
Overflow → T

0011nnnnmmmm1111 — 1 Overflow

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii — 1 —

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 — 1 —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii — 3 —

BF label If T = 0, disp + PC →
PC;  if T = 1, nop

10001011dddddddd — 3/1*2 —

BF/S label If T = 0, disp + PC →
PC;  if T = 1, nop

10001111dddddddd — 2/1*2 —

BRA label Delayed branch, disp +
PC → PC

1010dddddddddddd — 2 —

BRAF Rn Delayed branch, Rn +
PC → PC

0000nnnn00100011 — 2 —



113

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

BSR label Delayed branch, PC →
PR, disp + PC → PC

1011dddddddddddd — 2 —

BSRF Rn Delayed branch, PC →
PR, Rn + PC → PC

0000nnnn00000011 — 2 —

BT label If T = 1, disp + PC →
PC;  if T = 0, nop

10001001dddddddd — 3/1*2 —

BT/S label If T = 1, disp + PC →
PC;  if T = 0, nop

10001101dddddddd — 2/1*2 —

CLRMAC 0 → MACH, MACL 0000000000101000 — 1 —

CLRS 0 → S 0000000001001000 — 1 —

CLRT 0 → T 0000000000001000 — 1 0

CMP/EQ #imm,R0 If R0 = imm, 1 → T 10001000iiiiiiii — 1 Comparison
result

CMP/EQ Rm,Rn If Rn = Rm, 1 → T 0011nnnnmmmm0000 — 1 Comparison
result

CMP/GE Rm,Rn If Rn ≥ Rm with signed
data, 1 → T

0011nnnnmmmm0011 — 1 Comparison
result

CMP/GT Rm,Rn If Rn > Rm with signed
data, 1 → T

0011nnnnmmmm0111 — 1 Comparison
result

CMP/HI Rm,Rn If Rn > Rm with
unsigned data,

0011nnnnmmmm0110 — 1 Comparison
result

CMP/HS Rm,Rn If Rn ≥ Rm with
unsigned data, 1 → T

0011nnnnmmmm0010 — 1 Comparison
result

CMP/PL Rn If Rn>0, 1 → T 0100nnnn00010101 — 1 Comparison
result

CMP/PZ Rn If Rn ≥ 0, 1 → T 0100nnnn00010001 — 1 Comparison
result

CMP/STR Rm,Rn If Rn and Rm have an
equivalent byte, 1 → T

0010nnnnmmmm1100 — 1 Comparison
result

DIV0S Rm,Rn MSB of Rn → Q, MSB
of Rm → M, M ^ Q → T

0010nnnnmmmm0111 — 1 Calculation
result

DIV0U 0 → M/Q/T 0000000000011001 — 1 0

DIV1 Rm,Rn Single-step division
(Rn/Rm)

0011nnnnmmmm0100 — 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn
× Rm → MACH, MACL

0011nnnnmmmm1101 — 2
(to 5)*1

—



114

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

DMULU.L Rm,Rn Unsigned operation
of Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 — 2
(to 5)*1

—

DT Rn Rn - 1 → Rn, when
Rn is 0, 1 → T.
When Rn is
nonzero, 0 → T

0100nnnn00010000 — 1 Comparison
result

EXTS.B Rm,Rn A byte in Rm is sign-
extended → Rn

0110nnnnmmmm1110 — 1 —

EXTS.W Rm,Rn A word in Rm is
sign-extended → Rn

0110nnnnmmmm1111 — 1 —

EXTU.B Rm,Rn A byte in Rm is
zero-extended → Rn

0110nnnnmmmm1100 — 1 —

EXTU.W Rm,Rn A word in Rm is
zero-extended → Rn

0110nnnnmmmm1101 — 1 —

FABS FRn*3 | FRn | → FRn 1111nnnn01011101 — 1 —

FADD FRm ,FRn*3 FRn + FRm → FRn 1111nnnnmmmm0000 — 1 —

FCMP/EQ FRm ,FRn*3 (FRn == FRm)?
1:0 → T

1111nnnnmmmm0100 — 1 Comparison
result

FCMP/GT FRm ,FRn*3 (FRn > FRm) ?
1:0 → T

1111nnnnmmmm0101 — 1 Comparison
result

FDIV FRm ,FRn*3 FRn /FRm → FRn 1111nnnnmmmm0011 — 13 —

FLDI0 FRn*3 H'00000000 → FRn 1111nnnn10001101 — 1 —

FLDI1 FRn*3 H'3F800000 → FRn 1111nnnn10011101 — 1 —

FLDS FRm ,FPUL*3 FRm → FPUL 1111nnnn00011101 — 1 —

FLOAT FPUL, FRn*3 (float)FPUL → FRn 1111nnnn00101101 — 1 —

FMAC FR0,FRm,FRn*3 FR0 × FRm + FRn
→ FRn

1111nnnnmmmm1110 — 1 —

FMOV FRm ,FRn*3 FRm → FRn 1111nnnnmmmm1100 — 1 —

FMOV.S @(R0,Rm),FRn*3 (R0 + Rm) → FRn 1111nnnnmmmm0110 — 1 —

FMOV.S @Rm+,FRn*3 (Rm) → FRn,Rm + 4
= Rm

1111nnnnmmmm1001 — 1 —

FMOV.S @Rm,FRn*3 (Rm) → FRn 1111nnnnmmmm1000 — 1 —

FMOV.S FRm,@(R0,Rn)*3 (FRm) → (R0 + Rn) 1111nnnnmmmm0111 — 1 —

FMOV.S FRm,@-Rn**3 Rn-4 → Rn, FRm →
(Rn)

1111nnnnmmmm1011 — 1 —

FMOV.S FRm,@Rn*3 FRm → (Rn) 1111nnnnmmmm1010 — 1 —

FMUL FRm,FRn*3 FRn × FRm → FRn 1111nnnnmmmm0010 — 1 —



115

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

FNEG FRn*3 –FRn → FRn 1111nnnn01001101 — 1 —

FSQRT FRn*3 √ FRn → FRn 1111nnnn01101101 — 13 —

FSTS FPUL,FRn*3 FPUL → FRn 1111nnnn00001101 — 1 —

FSUB FRm,FRn*3 FRn – FRm → FRn 1111nnnnmmmm0001 — 1 —

FTRC FRm,FPUL*3 (long)FRm → FPUL 1111nnnn00111101 — 1 —

JMP @Rn Delayed branch,
Rn → PC

0100nnnn00101011 — 2 —

JSR @Rn Delayed branch,
PC → PR, Rn → PC

0100nnnn00001011 — 2 —

LDC Rm,GBR Rm → GBR 0100mmmm00011110 — 1/3*4 —

LDC Rm,SR Rm → SR 0100mmmm00001110 √ 5 LSB

LDC Rm,VBR Rm → VBR 0100mmmm00101110 √ 1/3*4 —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 √ 1/3*4 —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 √ 1/3*4 —

LDC Rm,MOD*9 Rm→ MOD 0100mmmm01011110 √ 3 —

LDC Rm,RE*9 Rm→ RE 0100mmmm01101110 √ 3 —

LDC Rm,RS*9 Rm→ RS 0100mmmm01101110 √ 3 —

LDC Rm,R0_BANK Rm → R0_BANK 0100mmmm10001110 √ 1/3*4 —

LDC Rm,R1_BANK Rm → R1_BANK 0100mmmm10011110 √ 1/3*4 —

LDC Rm,R2_BANK Rm → R2_BANK 0100mmmm10101110 √ 1/3*4 —

LDC Rm,R3_BANK Rm → R3_BANK 0100mmmm10111110 √ 1/3*4 —

LDC Rm,R4_BANK Rm → R4_BANK 0100mmmm11001110 √ 1/3*4 —

LDC Rm,R5_BANK Rm → R5_BANK 0100mmmm11011110 √ 1/3*4 —

LDC Rm,R6_BANK Rm → R6_BANK 0100mmmm11101110 √ 1/3*4 —

LDC Rm,R7_BANK Rm → R7_BANK 0100mmmm11111110 √ 1/3*4 —

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 — 1/5*5 —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 √ 7 LSB

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 √ 1/5*5 —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 √ 1/5*5 —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 √ 1/5*5 —

LDC.L @Rm+,MOD*9 (Rm) → MOD,Rm + 4 → Rm 0100mmmm01010111 √ 5 —

LDC.L @Rm+,RE*9 (Rm) → RE,Rm + 4 → Rm 0100mmmm01110111 √ 5 —

LDC.L @Rm+,RS*9 (Rm) → RS,Rm + 4 → Rm 0100mmmm01100111 √ 5 —



116

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

LDC.L @Rm+,R0_BANK (Rm) → R0_BANK,
Rm + 4 → Rm

0100mmmm10000111 √ 1/5*5 —

LDC.L @Rm+,R1_BANK (Rm) → R1_BANK,
Rm + 4 → Rm

0100mmmm10010111 √ 1/5*5 —

LDC.L @Rm+,R2_BANK (Rm) → R2_BANK,
Rm + 4 → Rm

0100mmmm10100111 √ 1/5*5 —

LDC.L @Rm+,R3_BANK (Rm) → R3_BANK,
Rm + 4 → Rm

0100mmmm10110111 √ 1/5*5 —

LDC.L @Rm+,R4_BANK (Rm) → R4_BANK,
Rm + 4 → Rm

0100mmmm11000111 √ 1/5*5 —

LDC.L @Rm+,R5_BANK (Rm) → R5_BANK,
Rm + 4 → Rm

0100mmmm11010111 √ 1/5*5 —

LDC.L @Rm+,R6_BANK (Rm) → R6_BANK,
Rm + 4 → Rm

0100mmmm11100111 √ 1/5*5 —

LDC.L @Rm+,R7_BANK (Rm) → R7_BANK,
Rm + 4 → Rm

0100mmmm11110111 √ 1/5*5 —

LDRE @(disp,PC)*9 disp × 2 + PC → RE 10001110dddddddd — 3 —

LDRS @(disp,PC)*9 disp × 2 + PC → RS 10001100dddddddd — 3 —

LDS Rm,FPSCR*3 Rm → FPSCR 0100nnnn01101010 — 1 —

LDS Rm,FPUL*3 Rm → FPUL 0100nnnn01011010 — 1 —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 — 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 — 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 — 1 —

LDS Rm,A0*9 Rm → DSR 0100mmmm01101010 — 1 —

LDS Rm,DSR*9 Rm → A0 0100mmmm01111010 — 1 —

LDS Rm,X0*9 Rm → X0 0100mmmm10001010 — 1 —

LDS Rm,X1*9 Rm → X1 0100mmmm10011010 — 1 —

LDS Rm,Y0*9 Rm → Y0 0100mmmm10101010 — 1 —

LDS Rm,Y1*9 Rm → Y1 0100mmmm10111010 — 1 —

LDS.L @Rm+ ,FPSCR*3 @Rm → FPSCR ,
Rm+4 → Rn

0100nnnn01100110 — 1 —

LDS.L @Rm+ ,FPUL*3 @Rm → FPUL ,
Rm+4 → Rn

0100nnnn01010110 — 1 —

LDS.L @Rm+,MACH (Rm) → MACH,
Rm + 4 → Rm

0100mmmm00000110 — 1 —

LDS.L @Rm+,MACL (Rm) → MACL,
Rm + 4 → Rm

0100mmmm00010110 — 1 —



117

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

LDS.L @Rm+,PR (Rm) → PR,
Rm + 4 → Rm

0100mmmm00100110 — 1 —

LDS.L @Rm+,DSR*9 (Rm) → DSR,
Rm+4 → Rm

0100mmmm01100110 — 1 —

LDS.L @Rm+,A0*9 (Rm) → A0,
Rm+4 → Rm

0100mmmm01110110 — 1 —

LDS.L @Rm+,X0*9 (Rm) → X0,
Rm+4 → Rm

0100mmmm10000110 — 1 —

LDS.L @Rm+,X1*9 (Rm) → X1,
Rm+4 → Rm

0100mmmm10010110 — 1 —

LDS.L @Rm+,Y0*9 (Rm) → Y0,
Rm+4 → Rm

0100mmmm10100110 — 1 —

LDS.L @Rm+,Y1*9 (Rm) → Y1,
Rm+4 → Rm

0100mmmm10110110 — 1 —

LDTLB PTEH/PTEL → TLB 0000000000111000 √ 1 —

MAC.L @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC →
MAC

0000nnnnmmmm1111 — 2 (to 5)*1 —

MAC.W @Rm+,@Rn+ Signed operation of
(Rn) × (Rm) + MAC →
MAC

0100nnnnmmmm1111 — 2 (to 5)*1 —

MOV #imm,Rn #imm → Sign extension
→ Rn

1110nnnniiiiiiii — 1 —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 — 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) → Sign
extension → R0

11000100dddddddd — 1 —

MOV.B @(disp,Rm),R0 (disp + Rm) → Sign
extension → R0

10000100mmmmdddd — 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1100 — 1 —

MOV.B @Rm+,Rn (Rm) → Sign extension
→ Rn, Rm + 1 → Rm

0110nnnnmmmm0100 — 1 —

MOV.B @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0000 — 1 —

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd — 1 —

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd — 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 — 1 —

MOV.B Rm,@–Rn Rn–1 → Rn, Rm →
(Rn)

0010nnnnmmmm0100 — 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 — 1 —



118

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

MOV.L @(disp,GBR),R0 (disp + GBR) → R0 11000110dddddddd — 1 —

MOV.L @(disp,PC),Rn (disp + PC) → Rn 1101nnnndddddddd — 1 —

MOV.L @(disp,Rm),Rn (disp + Rm) → Rn 0101nnnnmmmmdddd — 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 — 1 —

MOV.L @Rm+,Rn (Rm) → Rn,
Rm + 4 → Rm

0110nnnnmmmm0110 — 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 — 1 —

MOV.L R0,@(disp,GBR) R0 → (disp + GBR) 11000010dddddddd — 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp + Rn) 0001nnnnmmmmdddd — 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 — 1 —

MOV.L Rm,@–Rn Rn–4 → Rn, Rm →
(Rn)

0010nnnnmmmm0110 — 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 — 1 —

MOV.W @(disp,GBR),R0 (disp + GBR) → Sign
extension → R0

11000101dddddddd — 1 —

MOV.W @(disp,PC),Rn (disp + PC) → Sign
extension → Rn

1001nnnndddddddd — 1 —

MOV.W @(disp,Rm),R0 (disp + Rm) → Sign
extension → R0

10000101mmmmdddd — 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → Sign
extension → Rn

0000nnnnmmmm1101 — 1 —

MOV.W @Rm+,Rn (Rm) → Sign extension
→ Rn, Rm + 2 → Rm

0110nnnnmmmm0101 — 1 —

MOV.W @Rm,Rn (Rm) → Sign extension
→ Rn

0110nnnnmmmm0001 — 1 —

MOV.W R0,@(disp,GBR) R0 → (disp + GBR) 11000001dddddddd — 1 —

MOV.W R0,@(disp,Rn) R0 → (disp + Rn) 10000001nnnndddd — 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 — 1 —

MOV.W Rm,@–Rn Rn–2 → Rn, Rm →
(Rn)

0010nnnnmmmm0101 — 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 — 1 —

MOVA @(disp,PC),R0 disp + PC → R0 11000111dddddddd — 1 —

MOVT Rn T → Rn 0000nnnn00101001 — 1 —

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 — 2 (to 5)*1 —

MULS.WRm,Rn Signed operation of Rn
× Rm → MAC

0010nnnnmmmm1111 — 1 (to 3)*1 —



119

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

MULU.WRm,Rn Unsigned operation of Rn ×
Rm → MAC

0010nnnnmmmm1110 — 1 (to 3)*1 —

NEG Rm,Rn 0–Rm → Rn 0110nnnnmmmm1011 — 1 —

NEGC Rm,Rn 0–Rm–T → Rn, Borrow → T 0110nnnnmmmm1010 — 1 Borrow

NOP No operation 0000000000001001 — 1 —

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 — 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii — 1 —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 — 1 —

OR.B #imm,

@(R0,GBR)

(R0 + GBR) | imm →
(R0 + GBR)

11001111iiiiiiii — 3 —

PREF @Rn (Rn) → cache 0000nnnn10000011 — 1/2*6 —

ROTCL Rn T ← Rn ← T 0100nnnn00100100 — 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 — 1 LSB

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 — 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 — 1 LSB

RTE Delayed branch,
SSR/SPC → SR/PC

0000000000101011 √ 4 —

RTS Delayed branch, PR → PC 0000000000001011 — 2 —

SETRC Rm*9 12 lower bits of Rm → RC
(SR bits 27 to 16), repeat
control flag → RF1, RF0

0100mmmm00010100 — 3 —

SETRC #imm*9 imm → RC (SR bits 23 to
16), repeat control flag →
RF1, RF0

10000010iiiiiiii — 3 —

SETS 1 → S 0000000001011000 — 1 —

SETT 1 → T 0000000000011000 — 1 1

SHAD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm →
(MSB→)Rn

0100nnnnmmmm1100 — 1 —

SHAL Rn T ← Rn ← 0 0100nnnn00100000 — 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 — 1 LSB

SHLD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm → (0→)Rn

0100nnnnmmmm1101 — 1 —

SHLL Rn T ← Rn ← 0 0100nnnn00000000 — 1 MSB



120

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 — 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 — 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 — 1 —

SHLR Rn 0 → Rn → T 0100nnnn00000001 — 1 LSB

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 — 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 — 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 — 1 —

SLEEP Sleep 0000000000011011 √ 4 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 — 1 —

STC SR,Rn SR → Rn 0000nnnn00000010 √ 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 √ 1 —

STC SSR,Rn SSR → Rn 0000nnnn00110010 √ 1 —

STC SPC,Rn SPC → Rn 0000nnnn01000010 √ 1 —

STC MOD,Rn*9 MOD → Rn 0000nnnn01010010 — 1 —

STC RE,Rn*9 RE → Rn 0000nnnn01110010 — 1 —

STC RS,Rn*9 RS → Rn 0000nnnn01100010 — 1 —

STC R0_BANK,Rn R0_BANK→ Rn 0000nnnn10000010 √ 1 —

STC R1_BANK,Rn R1_BANK→ Rn 0000nnnn10010010 √ 1 —

STC R2_BANK,Rn R2_BANK→ Rn 0000nnnn10100010 √ 1 —

STC R3_BANK,Rn R3_BANK→ Rn 0000nnnn10110010 √ 1 —

STC R4_BANK,Rn R4_BANK→ Rn 0000nnnn11000010 √ 1 —

STC R5_BANK,Rn R5_BANK→ Rn 0000nnnn11010010 √ 1 —

STC R6_BANK,Rn R6_BANK→ Rn 0000nnnn11100010 √ 1 —

STC R7_BANK,Rn R7_BANK→ Rn 0000nnnn11110010 √ 1 —

STC.L GBR,@–Rn Rn–4 → Rn,
GBR → (Rn)

0100nnnn00010011 — 1/2*6 —

STC.L SR,@–Rn Rn–4 → Rn,  SR → (Rn) 0100nnnn00000011 √ 1/2*6 —

STC.L VBR,@–Rn Rn–4 → Rn,
VBR → (Rn)

0100nnnn00100011 √ 1/2*6 —

STC.L SSR,@–Rn Rn–4 → Rn,
SSR → (Rn)

0100nnnn00110011 √ 1/2*6 —

STC.L SPC,@–Rn Rn–4 → Rn,
SPC → (Rn)

0100nnnn01000011 √ 1/2*6 —

STC.L MOD,@-Rn*9 Rn–4 → Rn, MOD → (Rn) 0100nnnn01010011 √ 2 —

STC.L RE,@-Rn*9 Rn–4 → Rn, RE → (Rn) 0100nnnn01110011 √ 2 —



121

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

STC.L RS,@-Rn*9 Rn–4 → Rn, RS → (Rn) 0100nnnn01100011 √ 2 —

STC.L R0_BANK,@–Rn Rn–4 → Rn,
R0_BANK → (Rn)

0100nnnn10000011 √ 2 —

STC.L R1_BANK,@–Rn Rn–4 → Rn,
R1_BANK → (Rn)

0100nnnn10010011 √ 2 —

STC.L R2_BANK,@–Rn Rn–4 → Rn,
R2_BANK → (Rn)

0100nnnn10100011 √ 2 —

STC.L R3_BANK,@–Rn Rn–4 → Rn,
R3_BANK → (Rn)

0100nnnn10110011 √ 2 —

STC.L R4_BANK,@–Rn Rn–4 → Rn,
R4_BANK → (Rn)

0100nnnn11000011 √ 2 —

STC.L R5_BANK,@–Rn Rn–4 → Rn,
R5_BANK → (Rn)

0100nnnn11010011 √ 2 —

STC.L R6_BANK,@–Rn Rn–4 → Rn,
R6_BANK → (Rn)

0100nnnn11100011 √ 2 —

STC.L R7_BANK,@–Rn Rn–4 → Rn,
R7_BANK → (Rn)

0100nnnn11110011 √ 2 —

STS FPSCR, Rn*3 FPSCR → Rn 0000nnnn01101010 — 1 —

STS FPUL, Rn*3 FPUL → Rn 0000nnnn01011010 — 1 —

STS MACH,Rn MACH → Rn 0000nnnn00001010 — 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 — 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 — 1 —

STS DSR,Rn*9 DSR → Rn 0000nnnn01101010 — 1 —

STS A0,Rn*9 A0 → Rn 0000nnnn01111010 — 1 —

STS X0,Rn*9 X0 → Rn 0000nnnn10001010 — 1 —

STS X1,Rn*9 X1 → Rn 0000nnnn10011010 — 1 —

STS Y0,Rn*9 Y0 → Rn 0000nnnn10101010 — 1 —

STS Y1,Rn*9 Y1 → Rn 0000nnnn10111010 — 1 —

STS.L FPSCR,@-Rn*3 Rn-4 → Rn,
FPSCR → @Rn

0100nnnn01100010 — 1 —

STS.L FPUL,@-Rn*3 Rn-4 → Rn,
FPUL → @Rn

0100nnnn01010010 — 1 —

STS.L MACH,@–Rn Rn–4 → Rn,  MACH →
(Rn)

0100nnnn00000010 — 1 —

STS.L MACL,@–Rn Rn–4 → Rn,  MACL →
(Rn)

0100nnnn00010010 — 1 —

STS.L PR,@–Rn Rn–4 → Rn,  PR → (Rn) 0100nnnn00100010 — 1 —

STS.L DSR,@-Rn*9 Rn–4 → Rn, DSR → (Rn) 0100nnnn01100010 — 1 —



122

Table 7-12 Instruction Set Listed Alphabetically (cont)

Instruction Operation Code Privilege Cycles T Bit

STS.L A0,@-Rn*9 Rn–4 → Rn, A0 → (Rn) 0100nnnn01110010 — 1 —

STS.L X0,@-Rn*9 Rn–4 → Rn, X0 → (Rn) 0100nnnn10000010 — 1 —

STS.L X1,@-Rn*9 Rn–4 → Rn, X1 → (Rn) 0100nnnn10010010 — 1 —

STS.L Y0,@-Rn*9 Rn–4 → Rn, Y0 → (Rn) 0100nnnn10100010 — 1 —

STS.L Y1,@-Rn*9 Rn–4 → Rn, Y1 → (Rn) 0100nnnn10110010 — 1 —

SUB Rm,Rn Rn–Rm → Rn 0011nnnnmmmm1000 — 1 —

SUBC Rm,Rn Rn–Rm–T → Rn,
Borrow → T

0011nnnnmmmm1010 — 1 Borrow

SUBV Rm,Rn Rn–Rm → Rn, Underflow
→ T

0011nnnnmmmm1011 — 1 Under-
flow

SWAP.B Rm,Rn Rm → Swap the two
lowest-order bytes → Rn

0110nnnnmmmm1000 — 1 —

SWAP.W Rm,Rn Rm → Swap two
consecutive words → Rn

0110nnnnmmmm1001 — 1 —

TAS.B @Rn If (Rn) is 0, 1 → T; 1 →
MSB of (Rn)

0100nnnn00011011 — 3/4*7 Test
result

TRAPA #imm PC/SR → SPC/SSR,
(#imm) <<2 → TRA
VBR + H'0100 → PC

11000011iiiiiiii — 6/8*8 —

TST #imm,R0 R0 & imm; if the result is
0, 1 → T

11001000iiiiiiii — 1 Test
result

TST Rm,Rn Rn & Rm; if the result is 0,
1 → T

0010nnnnmmmm1000 — 1 Test
result

TST.B #imm,
@(R0,GBR)

(R0 + GBR) & imm;
if the result is 0, 1 → T

11001100iiiiiiii — 3 Test
result

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii — 1 —

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 — 1 —

XOR.B #imm,
@(R0,GBR)

(R0 + GBR) ^ imm → (R0
+ GBR)

11001110iiiiiiii — 3 —

XTRCT Rm,Rn Rm: Middle 32 bits of Rn
→ Rn

0010nnnnmmmm1101 — 1 —

Notes: 1. The normal minimum number of execution cycles. The number in parentheses is the
number of cycles when there is contention with following instructions.

2. One state when it does not branch.
3. Indicates floating point instructions and FPU related CPU instructions. These

instructions can only be used with the SH-3E.
4. Three cycles on the SH3-DSP.
5. Five cycles on the SH3-DSP.
6. Two cycles on the SH3-DSP.
7. Four cycles on the SH3-DSP.
8. Eight cycles on the SH3-DSP.
9. CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.



123

7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)

Table 7-13 shows the DSP data transfer instructions by category.

Table 7-13 DSP Data Transfer Instruction Categories

Category
Instruction
Types

Operation
Code Function

No. of
Instructions

Double data transfer
instructions

4 NOPX X memory no operation 14

MOVX X memory data transfer

NOPY Y memory no operation

MOVY Y memory data transfer

Single data transfer
instructions

1 MOVS Single data transfer 16

Total 5 Total 30

The data transfer instructions are divided into two groups, double data transfers and single data
transfers. Double data transfers are combined with DSP operation instructions to create DSP
parallel processing instructions. Parallel processing instructions are 32 bits long and include a
double data transfer instruction in field A. Double data transfers that are not parallel processing
instructions and single data transfer instructions are 16 bits long.

In double data transfers, X memory and Y memory can be accessed simultaneously in parallel.
One instruction is specified each for the respective X and Y memory data accesses. The Ax
pointer is used for accessing X memory; the Ay pointer is used for accessing Y memory. Double
data transfers can only access X and Y memory.

Single data transfers can be accessed from any area. In single data transfers, the Ax pointer and
two other pointers are used as the As pointer.



124

7.3.1 Double Data Transfer Instructions (X Memory Data)

Table 7-14 Double Data Transfer Instructions (X Memory Data)

Instruction Operation Code Cycles T Bit

NOPX No Operation 1111000*0*0*00** 1 —

MOVX.W
@Ax,Dx

(Ax)→MSW of Dx,0→LSW of
Dx

111100A*D*0*01** 1 —

MOVX.W
@Ax+,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+2→Ax

111100A*D*0*10** 1 —

MOVX.W
@Ax+Ix,Dx

(Ax)→MSW of Dx,0→LSW of
Dx,Ax+Ix→Ax

111100A*D*0*11** 1 —

MOVX.W
Da,@Ax

MSW of Da→(Ax) 111100A*D*1*01** 1 —

MOVX.W
Da,@Ax+

MSW of Da→(Ax),Ax+2→Ax 111100A*D*1*10** 1 —

MOVX.W
Da,@Ax+Ix

MSW of Da→(Ax),Ax+Ix→Ax 111100A*D*1*11** 1 —

7.3.2 Double Data Transfer Instructions (Y Memory Data)

Table 7-15 Double Data Transfer Instructions (Y Memory Data)

Instruction Operation Code Cycles T Bit

NOPY No Operation 111100*0*0*0**00 1 —

MOVY.W
@Ay,Dy

(Ay)→MSW of Dy,0→LSW of
Dy

111100*A*D*0**01 1 —

MOVY.W
@Ay+,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+2→Ay

111100*A*D*0**10 1 —

MOVY.W
@Ay+Iy,Dy

(Ay)→MSW of Dy,0→LSW of
Dy, Ay+Iy→Ay

111100*A*D*0**11 1 —

MOVY.W
Da,@Ay

MSW of Da→(Ay) 111100*A*D*1**01 1 —

MOVY.W
Da,@Ay+

MSW of Da→(Ay),Ay+2→Ay 111100*A*D*1**10 1 —

MOVY.W
Da,@Ay+Iy

MSW of Da→(Ay),Ay+Iy→Ay 111100*A*D*1**11 1 —



125

7.3.3 Single Data Transfer Instructions

Table 7-16 Single Data Transfer Instructions

Instruction Operation Code Cycles T Bit

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 —

MOVS.W @As,Ds (As)→MSW of Ds,0→LSW of
Ds

111101AADDDD0100 1 —

MOVS.W @As+,Ds (As)→MSW of Ds,0→LSW of
Ds, As+2→As

111101AADDDD1000 1 —

MOVS.W
@As+Ix,Ds

(As)→MSW of Ds,0→LSW of
Ds, As+Ix→As

111101AADDDD1100 1 —

MOVS.W
Ds,@-As

As–2→As,MSW of Ds→(As)* 111101AADDDD0001 1 —

MOVS.W Ds,@As MSW of Ds→(As)* 111101AADDDD0101 1 —

MOVS.W Ds,@As+ MSW of Ds→(As),As+2→As* 111101AADDDD1001 1 —

MOVS.W
Ds,@As+Is

MSW of Ds→(As),As+Is→As* 111101AADDDD1101 1 —

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 —

MOVS.L @As,Ds (As)→Ds 111101AADDDD0110 1 —

MOVS.L @As+,Ds (As)→Ds,As+4→As 111101AADDDD1010 1 —

MOVS.L
@As+Is,Ds

(As)→Ds,As+Is→As 111101AADDDD1110 1 —

MOVS.L Ds,
@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 —

MOVS.L Ds,@As Ds→(As) 111101AADDDD0111 1 —

MOVS.L Ds,@As+ Ds→(As),As+4→As 111101AADDDD1011 1 —

MOVS.L
Ds,@As+Is

Ds→(As),As+Is→As 111101AADDDD1111 1 —

Note: * When guard bit registers A0G and A1G are specified for the source operand Ds, data is
output to the LDB[7:0] bus and the sign bit is output to the top bits [31:8].



126

Table 7-17 lists the correspondence between DSP data transfer operands and registers. CPU core
registers are used as pointer addresses to indicate memory addresses.

Table 7-17 Correspondence between DSP Data Transfer Operands and Registers

SuperH (CPU Core) Registers

Oper-
and R0 R1

R2
(As2)

R3
(As3)

R4
(Ax0)
(As0)

R5
(Ax1)
(Ax0)

R6
(Ay0)

R7
(Ay1)

R8
(Ix)

R9
(Iy)

Ax — — — — Yes Yes — — — —

Ix (Is) — — — — — — — — Yes —

Dx — — — — — — — — — —

Ay — — — — — — Yes Yes — —

Iy — — — — — — — — — Yes

Dy — — — — — — — — — —

Da — — — — — — — — — —

As — — Yes Yes Yes Yes — — — —

Ds — — — — — — — — — —

Oper- DSP Registers

and X0 X1 Y0 Y1 M0 M1 A0 A1 A0G A1G

Ax — — — — — — — — — —

Ix (Is) — — — — — — — — — —

Dx Yes Yes — — — — — — — —

Ay — — — — — — — — — —

Iy — — — — — — — — — —

Dy — — Yes Yes — — — — — —

Da — — — — — — Yes Yes — —

As — — — — — — — — — —

Ds Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Note: Yes indicates that the register can be set.

7.4 DSP Operation Instruction Set (SH3-DSP Only)

DSP operation instructions are digital signal processing instructions that are processed by the DSP
unit. Their instruction code is 32 bits long. Multiple instructions can be processed in parallel. The
instruction code is divided into two fields, A and B. Field A specifies a parallel data transfer
instruction and field B specifies a single or double data operation instruction. Instructions can be



127

specified independently, and their execution is independent and in parallel. Parallel data transfer
instructions specified in field A are exactly the same as double data transfer instructions.

The data operation instructions of field B are of three types: double data operation instructions,
conditional single data operation instructions, and unconditional single data operation instructions.
Table 7-18 shows the format of DSP operation instructions. The operands are selected
independently from the DSP register. Table 7-19 shows the correspondence of DSP operation
instruction operands and registers.

Table 7-18 Instruction Formats for DSP Operation Instructions

Classification Instruction Forms Instruction

Double data operation instructions (6 operands) ALUop. Sx, Sy, Du

MLTop. Se, Sf, Dg

PADD PMULS,

PSUB PMULS

Conditional single
data operation
instructions

3 operands ALUop. Sx, Sy, Dz

DCT ALUop. Sx, Sy,
Dz

DCF ALUop. Sx, Sy,
Dz

PADD, PAND, POR,
PSHA, PSHL, PSUB,
PXOR

2 operands ALUop. Sx, Dz

DCT ALUop. Sx, Dz

DCF ALUop. Sx, Dz

ALUop. Sy, Dz

DCT ALUop. Sy, Dz

DCF ALUop. Sy, Dz

PCOPY, PDEC,
PDMSB, PINC, PLDS,
PSTS, PNEG

1 operand ALUop. Dz

DCT ALUop. Dz

DCF ALUop. Dz

PCLR, PSHA #imm,
PSHL #imm

Unconditional single
data operation
instructions

3 operands ALUop. Sx, Sy, Du

MLTop. Se, Sf, Dg

PADDC, PSUBC,
PWADD, PWSB, PMULS

2 operands ALUop. Sx, Dz

ALUop. Sy, Dz

PCMP, PABS, PRND



128

Table 7-19 Correspondence between DSP Operation Instruction Operands and Registers

ALU and BPU Instructions Multiplication Instructions

Register Sx Sy Dz Du Se Sf Dg

A0 Yes — Yes Yes — — Yes

A1 Yes — Yes Yes Yes Yes Yes

M0 — Yes Yes — — — Yes

M1 — Yes Yes — — — Yes

X0 Yes — Yes Yes Yes Yes —

X1 Yes — Yes — Yes — —

Y0 — Yes Yes Yes Yes Yes —

Y1 — Yes Yes — — Yes —

When writing parallel instructions, first write the field B instruction, then the field A instruction.
The following is an example of a parallel processing program.

PADD A0,M0,A0 PMULSX0,Y0,M0 MOVX.W @R4+,X0 MOVY.W @R6+,Y0[;]

DCF PINC X1,A1 MOVX.W A0,@R5+R8 MOVY.W@R7+,Y0[;]

PCMP X1,M0 MOVX.W @R4 [NOPY][;]

Text in brackets ([]) can be omitted. The no operation instructions NOPX and NOPY can be
omitted. Semicolons (;) are used to demarcate instruction lines, but can be omitted. If semicolons
are used, the space after the semicolon can be used for comments.

The individual status codes (DC, N, Z, V, GT) of the DSR register is always updated by
unconditional ALU operation instructions and shift operation instructions. Conditional instructions
do not update the status codes, even if the conditions have been met. Multiplication instructions
also do not update the status codes. DC bit definitions are determined by the specifications of the
CS bits in the DSR register.



129

Table 7-20 shows the DSP operation instructions by category.

Table 7-20 DSP Operation Instruction Categories

Classification
Instruction
Types

Operation
Code Function

No. of In-
structions

ALU
arith-

ALU fixed decimal
point operation

11 PABS Absolute value
operation

28

metic instructions PADD Addition
opera-
tion PADD

PMULS
Addition and signed
multiplicationinstruc-

PADDC Addition with carrytions

PCLR Clear

PCMP Compare

PCOPY Copy

PNEG Invert sign

PSUB Subtraction

PSUB
PMULS

Subtraction and signed
multiplication

PSUBC Subtraction with borrow

ALU integer
operation

2 PDEC Decrement 12

instructions PINC Increment

MSB detection
instruction

1 PDMSB MSB detection 6

Rounding operation
instruction

1 PRND Rounding 2

ALU logical operation 3 PAND Logical AND
instructions POR Logical OR 9

PXOR Logical exclusive OR

Fixed decimal point
multiplication instruction

1 PMULS Signed multiplication 1

Shift Arithmetic shift
operation instruction

1 PSHA Arithmetic shift 4

Logical shift
operation instruction

1 PSHL Logical shift 4

System control instructions 2 PLDS System register load 12

PSTS Store from system
register

Total 23 Total 78



130

7.4.1 ALU Arithmetic Operation Instructions

ALU Fixed Decimal Point Operation Instructions

Table 7-21 ALU Fixed Decimal Point Operation Instructions

Instruction Operation Code Cycles DC Bit

PABS Sx,Dz If Sx≥0,Sx→Dz

If Sx<0,0– Sx→Dz

111110**********

10001000xx00zzzz

1 Update

PABS Sy,Dz If Sy≥0,Sy→Dz

If Sy<0,0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update

PADD Sx,Sy,Dz Sx+Sy→Dz 111110**********

10110001xxyyzzzz

1 Update

DCT PADD
Sx,Sy,Dz

if DC=1,Sx+Sy→Dz if 0,nop 111110**********

10110010xxyyzzzz

1 —

DCF PADD
Sx,Sy,Dz

if DC=0,Sx+Sy→Dz if 1,nop 111110**********

10110011xxyyzzzz

1 —

PADD Sx,Sy,Du

PMULS Se,Sf,Dg

Sx+Sy→Du

MSW of Se × MSW of
Sf→Dg

111110**********

0111eeffxxyygguu

1 Update

PADDC Sx,Sy,Dz Sx+Sy+DC→Dz 111110**********

10110000xxyyzzzz

1 Update

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update

DCT PCLR Dz if DC=1,H'00000000→Dz

if 0,nop

111110**********

100011100000zzzz

1 —

DCF PCLR Dz if DC=0,H'00000000→Dz

if 1,nop

111110**********

100011110000zzzz

1 —

PCMP Sx,Sy Sx–Sy 111110**********

10000100xxyy0000

1 Update

PCOPY Sx,Dz Sx→Dz 111110**********

11011001xx00zzzz

1 Update

PCOPY Sy,Dz Sy→Dz 111110**********

1111100100yyzzzz

1 Update

DCT PCOPY
Sx,Dz

if DC=1,Sx→Dz if 0,nop 111110**********

11011010xx00zzzz

1 —



131

Table 7-21 ALU Fixed Decimal Point Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

DCT PCOPY
Sy,Dz

if DC=1,Sy→Dz if 0,nop 111110**********

1111101000yyzzzz

1 —

DCF PCOPY
Sx,Dz

if DC=0,Sx→Dz if 1,nop 111110**********

11011011xx00zzzz

1 —

DCF PCOPY
Sy,Dz

if DC=0,Sy→Dz if 1,nop 111110**********

1111101100yyzzzz

1 —

PNEG Sx,Dz 0–Sx→Dz 111110**********

11001001xx00zzzz

1 Update

PNEG Sy,Dz 0–Sy→Dz 111110**********

1110100100yyzzzz

1 Update

DCT PNEG Sx,Dz if DC=1,0–Sx→Dz

if 0,nop

111110**********

11001010xx00zzzz

1 —

DCT PNEG Sy,Dz if DC=1,0–Sy→Dz

if 0,nop

111110**********

1110101000yyzzzz

1 —

DCF PNEG Sx,Dz if DC=0,0–Sx→Dz

if 1,nop

111110**********

11001011xx00zzzz

1 —

DCF PNEG Sy,Dz if DC=0,0–Sy→Dz

if 1,nop

111110**********

1110101100yyzzzz

1 —

PSUB Sx,Sy,Dz Sx–Sy→Dz 111110**********

10100001xxyyzzzz

1 Update

DCT PSUB
Sx,Sy,Dz

if DC=1,Sx–Sy→Dz if 0,nop 111110**********

10100010xxyyzzzz

1 —

DCF PSUB
Sx,Sy,Dz

if DC=0,Sx–Sy→Dz if 1,nop 111110**********

10100011xxyyzzzz

1 —

PSUB Sx,Sy,Du

PMULS Se,Sf,Dg

Sx–Sy→Du

MSW of Se × MSW of
Sf→Dg

111110**********

0110eeffxxyygguu

1 Update

PSUBC Sx,Sy,Dz Sx–Sy–DC→Dz 111110**********

10100000xxyyzzzz

1 Update



132

ALU Integer Operation Instructions

Table 7-22 ALU Integer Operation Instructions

Instruction Operation Code Cycles DC Bit

PDEC Sx,Dz MSW of Sx – 1 → MSW of
Dz, clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update

PDEC Sy,Dz MSW of Sy – 1 → MSW of
Dz, clear LSW of Dz

111110**********

10101001xx00zzzz

1 Update

DCT PDEC Sx,Dz If DC=1, MSW of Sx – 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10001010xx00zzzz

1 —

DCT PDEC Sy,Dz If DC=1, MSW of Sy – 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10101010xx00zzzz

1 —

DCF PDEC Sx,Dz If DC=0, MSW of Sx – 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10001011xx00zzzz

1 —

DCF PDEC Sy,Dz If DC=0, MSW of Sy – 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10101011xx00zzzz

1 —

PINC Sx,Dz MSW of Sx + 1 → MSW of
Dz, clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update

PINC Sy,Dz MSW of Sy + 1 → MSW of
Dz, clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update

DCT PINC Sx,Dz If DC=1, MSW of Sx + 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10011010xx00zzzz

1 —

DCT PINC Sy,Dz If DC=1, MSW of Sy + 1 →
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1011101000yyzzzz

1 —

DCF PINC Sx,Dz If DC=0, MSW of Sx + 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10011011xx00zzzz

1 —

DCF PINC Sy,Dz If DC=0, MSW of Sy + 1 →
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1011101100yyzzzz

1 —



133

MSB Detection Instructions

Table 7-23 MSB Detection Instructions

Instruction Operation Code Cycles DC Bit

PDMSB Sx,Dz Sx data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

10011101xx00zzzz

1 Update

PDMSB Sy,Dz Sy data MSB position →
MSW of Dz, clear LSW of
Dz

111110**********

1011110100yyzzzz

1 Update

DCT PDMSB
Sx,Dz

If DC=1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 —

DCT PDMSB
Sy,Dz

If DC=1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 —

DCF PDMSB
Sx,Dz

If DC=0, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 —

DCF PDMSB
Sy,Dz

If DC=0, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 —

Rounding Operation Instructions

Table 7-24 Rounding Operation Instructions

Instruction Operation Code Cycles DC Bit

PRND Sx,Dz Sx+H'00008000→Dz

clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update

PRND Sy,Dz Sy+H'00008000→Dz

clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update



134

7.4.2 ALU Logical Operation Instructions

Table 7-25 ALU Logical Operation Instructions

Instruction Operation Code Cycles DC Bit

PAND Sx,Sy,Dz Sx & Sy → Dz, clear LSW
of Dz

111110**********

10010101xxyyzzzz

1 Update

DCT PAND
Sx,Sy,Dz

If DC=1, Sx & Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10010110xxyyzzzz

1 —

DCF PAND
Sx,Sy,Dz

If DC=0, Sx & Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10010111xxyyzzzz

1 —

POR Sx,Sy,Dz Sx | Sy → Dz, clear LSW of
Dz

111110**********

10110101xxyyzzzz

1 Update

DCT POR
Sx,Sy,Dz

If DC=1, Sx | Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 —

DCF POR
Sx,Sy,Dz

If DC=0, Sx | Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 —

PXOR Sx,Sy,Dz Sx ^ Sy → Dz, clear LSW
of Dz

111110**********

10100101xxyyzzzz

1 Update

DCT PXOR
Sx,Sy,Dz

If DC=1, Sx ^ Sy → Dz,
clear LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 —

DCF PXOR
Sx,Sy,Dz

If DC=0, Sx ^ Sy → Dz,
clear LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 —

7.4.3 Fixed Decimal Point Multiplication Instructions

Table 7-26 Fixed Decimal Point Multiplication Instructions

Instruction Operation Code Cycles DC Bit

PMULS Se,Sf,Dg MSW of Se × MSW of
Sf→Dg

111110**********

0100eeff0000gg00

1 —



135

7.4.4 Shift Operation Instructions

Arithmetic Shift Instructions

Table 7-27 Arithmetic Shift Instructions

Instruction Operation Code Cycles DC Bit

PSHA Sx,Sy,Dz if Sy≥0,Sx<<Sy→Dz

if Sy<0,Sx>>Sy→Dz

111110**********

10010001xxyyzzzz

1 Update

DCT PSHA
Sx,Sy,Dz

if DC=1 &
Sy≥0,Sx<<Sy→Dz

if DC=1 &
Sy<0,Sx>>Sy→Dz

if DC=0,nop

111110**********

10010010xxyyzzzz

1 —

DCF PSHA
Sx,Sy,Dz

if DC=0 &
Sy≥0,Sx<<Sy→Dz

if DC=0 &
Sy<0,Sx>>Sy→Dz

if DC=1,nop

111110**********

10010011xxyyzzzz

1 —

PSHA #imm,Dz if imm≥0,Dz<<imm→Dz

if imm<0,Dz>>imm→Dz

111110**********

00000iiiiiiizzzz

1 Update



136

Logical Shift Operation Instructions

Table 7-28 Logical Shift Operation Instructions

Instruction Operation Code Cycles DC Bit

PSHL Sx,Sy,Dz if Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

111110**********

10000001xxyyzzzz

1 Update

DCT PSHL
Sx,Sy,Dz

if DC=1 &
Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if DC=1 &
Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

if DC=0,nop

111110**********

10000010xxyyzzzz

1 —

DCF PSHL
Sx,Sy,Dz

if DC=0 &
Sy≥0,Sx<<Sy→Dz, clear
LSW of Dz

if DC=0 &
Sy<0,Sx>>Sy→Dz, clear
LSW of Dz

if DC=1,nop

111110**********

10000011xxyyzzzz

1 —

 PSHL #imm,Dz if imm≥0,Dz<<imm→Dz,
clear LSW of Dz

if imm<0,Dz>>imm→Dz,
clear LSW of Dz

111110**********

00010iiiiiiizzzz

1 Update



137

7.4.5 System Control Instructions

Table 7-29 System Control Instructions

Instruction Operation Code Cycles DC Bit

PLDS
Dz,MACH

Dz→MACH 111110**********

111011010000zzzz

1 —

PLDS
Dz,MACL

Dz→MACL 111110**********

111111010000zzzz

1 —

DCT PLDS
Dz,MACH

if DC=1,Dz→MACH

if 0,nop

111110**********

111011100000zzzz

1 —

DCT PLDS
Dz,MACL

if DC=1,Dz→MACL

if 0,nop

111110**********

111111100000zzzz

1 —

DCF PLDS
Dz,MACH

if DC=0,Dz→MACH

if 1,nop

111110**********

111011110000zzzz

1 —

DCF PLDS
Dz,MACL

if DC=0,Dz→MACL

if 1,nop

111110**********

111111110000zzzz

1 —

PSTS
MACH,Dz

MACH→Dz 111110**********

110011010000zzzz

1 —

PSTS
MACL,Dz

MACL→Dz 111110**********

110111010000zzzz

1 —

DCT PSTS
MACH,Dz

if DC=1,MACH→Dz

if 0,nop

111110**********

110011100000zzzz

1 —

DCT PSTS
MACL,Dz

if DC=1,MACL→Dz

if 0,nop

111110**********

110111100000zzzz

1 —

DCF PSTS
MACH,Dz

if DC=0,MACH→Dz

if 1,nop

111110**********

110011110000zzzz

1 —

DCF PSTS
MACL,Dz

if DC=0,MACL→Dz

if 1,nop

111110**********

110111110000zzzz

1 —

7.4.6 NOPX and NOPY Instruction Code

When there is no data transfer instruction to be processed in parallel with the DSP operation
instruction, a NOPX or NOPY instruction can be written as the data transfer instruction or the
instruction can be omitted. The operation code is the same in either case. Table 7-30 shows the
NOPX and NOPY instruction code.



138

Table 7-30 Sample NOPX and NOPY Instruction Code

Instruction Code

PADD X0, Y0, A0 MOVX. W @R4+, X0 MOVY.W @R6+R9, Y0 1111100010110000

1000000010100000

PADD X0, Y0, A0 NOPX              MOVY.W @R6+R9, Y0 1111100000110000

1000000010100000

PADD X0, Y0, A0 NOPX              NOPY 1111100000000000

1000000010100000

PADD X0, Y0, A0 NOPX

PADD X0, Y0, A0

                 MOVX. W @R4+, X0 MOVY.W @R6+R9, Y0 1111000010110000

                 MOVX. W @R4+, X0 NOPY 1111000010000000

                 MOVS. W @R4+, X0 1111011010000000

                 NOPX             MOVY.W @R6+R9, Y0 1111000000110000

                                  MOVY.W @R6+R9, Y0

                 NOPX             NOPY 1111000000000000

NOP 0000000000001001



139

Section 8   Instruction Descriptions

This section describes instructions in alphabetical order using the format shown below in section
8.1. The actual descriptions begin at section 8.2.

8.1 Sample Description (Name): Classification

Class: Indicates if the instruction is a delayed branch instruction or interrupt disabled instruction

Format Abstract Code Cycle T Bit

Assembler input format;
imm and disp are numbers,
expressions, or symbols

A brief description
of operation

Displayed in
order MSB ↔
LSB

Number of
cycles when
there is no
wait state

The value of
T bit after the
instruction is
executed

Note: Section 8.2 contains an description of CPU instructions common to the SH-3, SH-3E, and
SH3-DSP, section 8.3 covers floating point instructions that can only be used with the SH-
3E, and section 8.4 covers DSP data transfer instructions that can only be used with the
SH3-DSP.
The number of execution cycles required for floating point instructions is determined by the
latency and pitch values. "Latency" refers to the number of cycles required to generate the
result value for the operation, and "pitch" indicates the number of wait cycles required
before execution of the next instruction can begin. The latency and pitch values are the
same for most CPU instructions, indicating that they each require one execution cycle.

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language. This part is just a reference to help understanding of
an operation. The following resources should be used.

• Reads data of each length from address Addr. An address error will occur if word data is read
from an address other than 2n or if longword data is read from an address other than 4n:

unsigned char Read_Byte(unsigned long Addr);

unsigned short Read_Word(unsigned long Addr);

unsigned long Read_Long(unsigned long Addr);

• Writes data of each length to address Addr. An address error will occur if word data is written
to an address other than 2n or if longword data is written to an address other than 4n:

unsigned char Write_Byte(unsigned long Addr, unsigned long Data);

unsigned short Write_Word(unsigned long Addr, unsigned long Data);

unsigned long Write_Long(unsigned long Addr, unsigned long Data);



140

• Starts execution from the slot instruction located at an address (Addr – 4). For Delay_Slot (4),
execution starts from an instruction at address 0 rather than address 4. The following
instructions are detected before execution as having illegal slots (they become illegal slot
instructions when used as delay slot instructions):

BF, BT, BRA, BSR, JMP, JSR, RTS, RTE, TRAPA, BF/S, BT/S, BRAF, BSRF

Delay_Slot(unsigned long Addr);

• List registers:

unsigned long R[16];

unsigned long SR,GBR,VBR;

unsigned long MACH,MACL,PR;

unsigned long PC;

• Definition of SR structures:

struct SR0 {

unsigned long   dummy0:4;

unsigned long      RC0:12;

unsigned long   dummy1:4;

unsigned long     DMY0:1;

unsigned long     DMX0:1;

unsigned long       M0:1;

unsigned long       Q0:1;

unsigned long       I0:4;

unsigned long     RF10:1;

unsigned long     RF00:1;

unsigned long       S0:1;

unsigned long       T0:1;

};

• Definition of bits in SR:

#define M ((*(struct SR0 *)(&SR)).M0)

#define Q ((*(struct SR0 *)(&SR)).Q0)

#define S ((*(struct SR0 *)(&SR)).S0)

#define T ((*(struct SR0 *)(&SR)).T0)

#define RF1 ((*(struct SR0 *)(&SR)).RF10)

#define RF0 ((*(struct SR0 *)(&SR)).RF00)



141

• Error display function:

Error( char *er );

The PC should point to the location four bytes (the second instruction) after the current instruction.
Therefore, PC = 4; means the instruction starts execution from address 0, not address 4.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction. Characters in italics such as .align are assembler control instructions
(listed below). For more information, see the Cross Assembler User Manual.

.org Location counter set

.data.w Securing integer word data

.data.l Securing integer longword data

.sdata Securing string data

.align 2 2-byte boundary alignment

.align 4 2-byte boundary alignment

.arepeat 16 16-repeat expansion

.arepeat 32 32-repeat expansion

.aendr End of repeat expansion of specified number

Notes: The SH series cross assembler version 1.0 does not support the conditional assembler
functions.

1. For the following addressing modes involving displacement (disp), the assembler
descriptors in this manual indicate values before scaling ((1, (2, (3, (4) to match the
operand size. This is done to clarify the operation of the LSI device. Refer to the
applicable assembler notation rules for the actual assembler descriptors.

@(disp: 4, Rn); Register indirect with displacement

@(disp: 8, GBR); GBR indirect with displacement

@(disp: 8, PC); PC relative with displacement

disp: 8, disp: 12; PC relative

2. Of the 16 bits of the instruction code, codes not assigned as instructions or privileged
instructions in the user mode (excluding instructions that access GBR) are treated as
general invalid instructions and invalid instruction exception processing is performed.

Example: H'FFFF [general invalid instruction]

3. If the instruction following a delayed branching instruction such as BRA and BT/S is a
general invalid instruction or a PC overwrite instruction (branching instruction, etc.)
(such instructions are referred to as "slot invalid instructions"), slot invalid instruction
exception processing is performed.

4. In the SH3-DSP, if a general invalid instruction, a PC overwrite instruction (branching
instruction, etc.), or an instruction (SETRC, LDRS, LDRE, LDC) that overwrites the
SR, RS, or RE register is contained within a repeating program (loop) consisting of



142

three or fewer instructions or within the final three instructions of a repeating program
(loop) consisting of four or more instructions, invalid instruction exception processing
is performed. For details, refer to 5.12 DSP Repeat (Loop) Control.



143

8.2 Instruction Description (Listing and Description of Instructions
Common to the SH-3, SH-3E and SH3-DSP)

8.2.1 ADD (Add Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 —

ADD #imm,Rn Rn + imm → Rn 0111nnnniiiiiiii 1 —

Description: Adds general register Rn data to Rm data, and stores the result in Rn. 8-bit
immediate data can be added instead of Rm data. Since the 8-bit immediate data is sign-extended
to 32 bits, this instruction can add and subtract immediate data.

Operation:

ADD(long m,long n) /* ADD Rm,Rn */

{

R[n]+=R[m];

PC+=2;

}

ADDI(long i,long n) /* ADD #imm,Rn */

{

if ((i&0x80)==0) R[n]+=(0x000000FF & (long)i);

else R[n]+=(0xFFFFFF00 | (long)i);

PC+=2;

}

Examples:

ADD R0,R1 ;Before execution R0 = H'7FFFFFFF, R1 = H'00000001

;After execution R1 = H'80000000

ADD #H'01,R2 ;Before execution R2 = H'00000000

;After execution R2 = H'00000001

ADD #H'FE,R3 ;Before execution R3 = H'00000001

;After execution R3 = H'FFFFFFFF



144

8.2.2 ADDC (Add with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADDC Rm,Rn Rn + Rm + T → Rn, carry → T 0011nnnnmmmm1110 1 Carry

Description: Adds general register Rm data and the T bit to Rn data, and stores the result in Rn.
The T bit changes according to the result. This instruction can add data that has more than 32 bits.

Operation:

ADDC (long m,long n) /* ADDC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]+R[m];

tmp0=R[n];

R[n]=tmp1+T;

if (tmp0>tmp1) T=1;

else T=0;

if (tmp1>R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1 (64 bits) + R2:R3 (64 bits) =  R0:R1 (64 bits)

ADDC R3,R1 ;Before execution T = 0, R1 = H'00000001, R3 = H'FFFFFFFF

;After execution T = 1, R1 = H'0000000

ADDC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

;After execution T = 0, R0 = H'00000001



145

8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit

ADDV Rm,Rn Rn + Rm → Rn, overflow → T 0011nnnnmmmm1111 1 Overflow

Description: Adds general register Rn data to Rm data, and stores the result in Rn. If an overflow
occurs, the T bit is set to 1.

Operation:

ADDV(long m,long n) /*ADDV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]+=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==0 || src==2) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

ADDV R0,R1 ;Before execution R0 = H'00000001, R1 = H'7FFFFFFE, T = 0

;After execution R1 = H'7FFFFFFF, T = 0

ADDV R0,R1 ;Before execution R0 = H'00000002, R1 = H'7FFFFFFE, T = 0

;After execution R1 = H'80000000, T = 1



146

8.2.4 AND (AND Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 —

Description: Logically ANDs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can be ANDed with zero-extended 8-bit immediate data.
8-bit memory data pointed to by GBR relative addressing can be ANDed with 8-bit immediate
data.

Note: After AND #imm, R0 is executed and the upper 24 bits of R0 are always cleared to 0.

Operation:

AND(long m,long n) /* AND Rm,Rn */

{

R[n]&=R[m]

PC+=2;

}

ANDI(long i) /* AND #imm,R0 */

{

R[0]&=(0x000000FF & (long)i);

PC+=2;

}

ANDM(long i) /* AND.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}



147

Examples:

AND R0,R1 ;Before execution R0 = H'AAAAAAAA, R1 = H'55555555

;After execution R1 = H'00000000

AND #H'0F,R0 ;Before execution R0 = H'FFFFFFFF

;After execution R0 = H'0000000F

AND.B #H'80,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

;After execution @(R0,GBR) = H'80



148

8.2.5 BF (Branch if False): Branch Instruction

Format Abstract Code Cycle T Bit

BF label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001011dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BF executes the next
instruction. If T = 0, it branches. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: When branching, three cycles; when not branching, one cycle. If this instruction is located
in a delayed slot immediately following a delayed branch instruction, it is acknowledged as an
illegal slot instruction.

Operation:

BF(long d) /* BF disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) PC=PC+(disp<<1)+4;

else PC+=2;

}

Example:

CLRT ;T is always cleared to 0

BT TRGET_T ;Does not branch, because T = 0

BF TRGET_F ;Branches to TRGET_F, because T = 0

NOP

NOP ;← The PC location is used to calculate the branch destination
;address of the BF instruction

TRGET_F: ;← Branch destination of the BF instruction



149

8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BF label When T = 0, disp × 2 + PC → PC;
When T = 1, nop

10001111dddddddd 2/1 —

Description: Reads the T bit, and if T = 1, BF executes the next instruction. If T = 0, it branches
after executing the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BF with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.



150

Operation:

BFS(long d) /* BFS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==0) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}

Examples:

SETT ;T is always 1

BF/S TARGET_F ;Does not branch, because T = 1

NOP

BT/S TARGET_T ;Branches to TARGET, because T = 1

ADD R0,R1 ;Executed before branch.

NOP ;← The PC location is used to calculate the branch destination
;address of the BT/S instruction

TRGET_T: ;← Branch destination of the BT/S instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



151

8.2.7 BRA (Branch): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BRA label disp × 2 + PC → PC 1010dddddddddddd 2 —

Description: Branches unconditionally after executing the instruction following this BRA
instruction. The branch destination is an address specified by PC + displacement. The PC points to
the starting address of the second instruction after this BRA instruction. The 12-bit displacement is
sign-extended and doubled. Consequently, the relative interval from the branch destination is –
4096 to +4094 bytes. If the displacement is too short to reach the branch destination, this
instruction must be changed to the JMP instruction. Here, a MOV instruction must be used to
transfer the destination address to a register.

Note: Since this is a delayed branch instruction, the instruction after BRA is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

BRA(long d) /* BRA disp */

{

unsigned long temp;

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

temp=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}



152

Examples:

BRA TRGET ;Branches to TRGET

ADD R0,R1 ;Executes ADD before branching

NOP ;← The PC location is used to calculate the branch destination
;address of the BRA instruction

TRGET: ;← Branch destination of the BRA instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



153

8.2.8 BRAF (Branch Far): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BRAF Rm Rm + PC → PC 0000nnnn00100011 2 —

Description: Branches unconditionally. The branch destination is PC + the 32-bit contents of the
general register Rn. PC is the start address of the second instruction after this instruction.

Note: Since this is a delayed branch instruction, the instruction after BRAF is executed before
branching. No interrupts and address errors are accepted between this instruction and the next
instruction. If the next instruction is a branch instruction, it is acknowledged as an illegal slot
instruction. If this instruction is located in a delayed slot immediately following a delayed branch
instruction, it is acknowledged as an illegal slot instruction.

Operation:

BRAF(long m) /* BRAF Rm */

{

unsigned long temp;

temp=PC;

PC+=R[m];

Delay_Slot(temp+2);

}

Examples:

MOV.L #(TARGET-BSRF_PC),R0 ;Sets displacement.

BRAF TRGET ;Branches to TARGET

ADD R0,R1 ;Executes ADD before branching

   BRAF_PC: ;← The PC location is used to calculate the
;branch destination address of the BRAF
;instruction

NOP

   TARGET: ;← Branch destination of the BRAF instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching



154

destination address is stored, the contents of the register before updating will be used as
the branching destination address.

8.2.9 BSR (Branch to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BSR label PC → PR, disp × 2 + PC → PC 1011dddddddddddd 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSR instruction. The PC value is stored in the PR, and the program
branches to an address specified by PC + displacement. The PC points to the starting address of
the second instruction after this BSR instruction. The 12-bit displacement is sign-extended and
doubled. Consequently, the relative interval from the branch destination is –4096 to +4094 bytes.
If the displacement is too short to reach the branch destination, the JSR instruction must be used
instead. With JSR, the destination address must be transferred to a register by using the MOV
instruction. This BSR instruction and the RTS instruction are used for a subroutine procedure call.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.



155

Operation:

BSR(long d) /* BSR disp */

{

long disp;

if ((d&0x800)==0) disp=(0x00000FFF & d);

else disp=(0xFFFFF000 | d);

PR=PC;

PC=PC+(disp<<1)+4;

Delay_Slot(PR+2);

}

Examples:

BSR TRGET ;Branches to TRGET

MOV R3,R4 ;Executes the MOV instruction before branching

ADD R0,R1 ;← The PC location is used to calculate the branch destination
;address of the BSR instruction (return address for when the
;subroutine procedure is completed (PR data))

.......

.......

TRGET: ;← Procedure entrance

MOV R2,R3

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



156

8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

BSRF Rm PC → PR, Rm + PC → PC 0000nnnn00000011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this BSRF instruction. The PC value is stored in the PR. The branch
destination is PC + the 32-bit contents of the general register Rn. PC is the start address of the
second instruction after this instruction. Used as a subroutine call in combination with RTS.

Note: Since this is a delayed branch instruction, the instruction after BSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

Operation:

BSRF(long m) /* BSRF Rm */

{

PR=PC;

PC+=R[m];

Delay_Slot(PR+2);

}



157

Examples:

MOV.L #(TARGET-BSRF_PC),R0 ;Sets displacement.

BRSF @R0 ;Branches to TARGET

MOV R3,R4 ;Executes the MOV instruction before
;branching

BSRF_PC: ;← The PC location is used to calculate the
;branch destination with BSRF.

ADD R0,R1

.....

.....

TARGET: ;←Procedure entrance

MOV R2,R3

RTS ;Returns to the above ADD instruction

MOV #1,R0 ;Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



158

8.2.11 BT (Branch if True): Branch Instruction

Format Abstract Code Cycle T Bit

BT label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001001dddddddd 3/1 —

Description: Reads the T bit, and conditionally branches. If T = 1, BT branches. If T = 0, BT
executes the next instruction. The branch destination is an address specified by PC +
displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT with the BRA instruction or the like.

Note: When branching, requires three cycles; when not branching, one cycle. If this instruction is
located in a delayed slot immediately following a delayed branch instruction, it is acknowledged
as an illegal slot instruction.

Operation:

BT(long d) /* BT disp */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) PC=PC+(disp<<1)+4;

else PC+=2;

}

Examples:

SETT ;T is always 1

BF TRGET_F ;Does not branch, because T = 1

BT TRGET_T ;Branches to TRGET_T, because T = 1

NOP

NOP ;← The PC location is used to calculate the branch destination
;address of the BT instruction

TRGET_T: ;← Branch destination of the BT instruction



159

8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction

Format Abstract Code Cycle T Bit

BT/S label When T = 1, disp × 2 + PC → PC;
When T = 0, nop

10001101dddddddd 2/1 —

Description: Reads the T bit, and if T = 1, BT/S branches after the following instruction executes.
If T = 0, BT/S executes the next instruction. The branch destination is an address specified by PC
+ displacement. The PC points to the starting address of the second instruction after the branch
instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the relative
interval from the branch destination is –256 to +254 bytes. If the displacement is too short to reach
the branch destination, use BT/S with the BRA instruction or the like.

Note: The BF/S instruction is a conditional delayed branch instruction:

Taken case: The instruction immediately following is executed before the branch. Between the
time this instruction and the instruction immediately following are executed, no interrupts are
accepted. When the instruction immediately following is a branch instruction, it is recognized as
an illegal slot instruction.

Not taken case: This instruction operates as a nop instruction. Between the time this instruction
and the instruction immediately following are executed, interrupts are accepted. When the
instruction immediately following is a branch instruction, it is not recognized as an illegal slot
instruction.

Operation:

BTS(long d) /* BTS disp */

{

long disp;

unsigned long temp;

temp=PC;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

if (T==1) {

PC=PC+(disp<<1)+4;

Delay_Slot(temp+2);

}

else PC+=2;

}



160

Examples:

SETT ;T is always 1

BF/S TARGET_F ;Does not branch, because T = 1

NOP

BT/S TARGET_T ;Branches to TARGET, because T = 1

ADD R0,R1 ;Executes before branching.

NOP ;← The PC location is used to calculate the branch destination
;address of the BT/S instruction

TARGET_T: ;← Branch destination of the BT/S instruction

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



161

8.2.13 CLRMAC (Clear MAC Register): System Control Instruction

Format Abstract Code Cycle T Bit

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

Description: Clears the MACH and MACL registers.

Operation:

CLRMAC() /* CLRMAC */

{

MACH=0;

MACL=0;

PC+=2;

}

Examples:

CLRMAC  ;Initializes the MAC register

MAC.W @R0+,@R1+  ;Multiply and accumulate operation

MAC.W @R0+,@R1+



162

8.2.14 CLRS (Clear S Bit): System Control Instruction

Format Abstract Code Cycle T Bit

CLRS 0 → S 0000000001001000 1 —

Description: Clears the S bit.

Operation:

CLRS() /* CLRS */

{

S=0;

PC+=2;

}

Examples:

CLRS ;Before execution S=1

;After execution S=0



163

8.2.15 CLRT (Clear T Bit): System Control Instruction

Format Abstract Code Cycle T Bit

CLRT 0 → T 0000000000001000 1 0

Description: Clears the T bit.

Operation:

CLRT() /* CLRT */

{

T=0;

PC+=2;

}

Examples:

CLRT ;Before execution T = 1

;After execution T = 0



164

8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction

Format Abstract Code Cycle T Bit

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn ≥
Rm, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/GT Rm,Rn When signed and Rn >
Rm, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/HI Rm,Rn When unsigned and Rn >
Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/HS Rm,Rn When unsigned and Rn ≥
Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/PL Rn When Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn When Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn
equals a byte in Rm, 1 →
T

0010nnnnmmmm1100 1 Comparison
result

CMP/EQ #imm,R0 When R0 = imm, 1 → T 10001000iiiiiiii 1 Comparison
result

Description: Compares general register Rn data with Rm data, and sets the T bit to 1 if a specified
condition (cond) is satisfied. The T bit is cleared to 0 if the condition is not satisfied, and the Rn
data does not change. The nine conditions in table 8-1 can be specified. Conditions PZ and PL are
the results of comparisons between Rn and 0. Sign-extended 8-bit immediate data can also be
compared with R0 by using condition EQ. Here, R0 data does not change. Table 8-1 shows the
mnemonics for the conditions.



165

Table 8-1 CMP Mnemonics

Mnemonics Condition

CMP/EQ Rm,Rn If Rn = Rm, T = 1

CMP/GE Rm,Rn If Rn ≥ Rm with signed data, T = 1

CMP/GT Rm,Rn If Rn > Rm with signed data, T = 1

CMP/HI Rm,Rn If Rn > Rm with unsigned data, T = 1

CMP/HS Rm,Rn If Rn ≥ Rm with unsigned data, T = 1

CMP/PL Rn If Rn > 0, T = 1

CMP/PZ Rn If Rn ≥ 0, T = 1

CMP/STR Rm,Rn If a byte in Rn equals a byte in Rm, T = 1

CMP/EQ #imm,R0 If R0 = imm, T = 1

Operation:

CMPEQ(long m,long n) /* CMP_EQ Rm,Rn */

{

if (R[n]==R[m]) T=1;

else T=0;

PC+=2;

}

CMPGE(long m,long n) /* CMP_GE Rm,Rn */

{

if ((long)R[n]>=(long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPGT(long m,long n) /* CMP_GT Rm,Rn */

{

if ((long)R[n]>(long)R[m]) T=1;

else T=0;

PC+=2;

}



166

CMPHI(long m,long n) /* CMP_HI Rm,Rn */

{

if ((unsigned long)R[n]>(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPHS(long m,long n) /* CMP_HS Rm,Rn */

{

if ((unsigned long)R[n]>=(unsigned long)R[m]) T=1;

else T=0;

PC+=2;

}

CMPPL(long n) /* CMP_PL Rn */

{

if ((long)R[n]>0) T=1;

else T=0;

PC+=2;

}

CMPPZ(long n) /* CMP_PZ Rn */

{

if ((long)R[n]>=0) T=1;

else T=0;

PC+=2;

}

CMPSTR(long m,long n) /* CMP_STR Rm,Rn */

{

unsigned long temp;

long HH,HL,LH,LL;

temp=R[n]^R[m];

HH=(temp&0xFF000000)>>12;

HL=(temp&0x00FF0000)>>8;

LH=(temp&0x0000FF00)>>4; LL=temp&0x000000FF;

HH=HH&&HL&&LH&&LL;

if (HH==0) T=1;

else T=0;



167

PC+=2;

}

CMPIM(long i) /* CMP_EQ #imm,R0 */

{

long imm;

if ((i&0x80)==0) imm=(0x000000FF & (long i));

else imm=(0xFFFFFF00 | (long i));

if (R[0]==imm) T=1;

else T=0;

PC+=2;

}

Examples:

CMP/GE R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;Does not branch because T = 0

CMP/HS R0,R1 ;R0 = H'7FFFFFFF, R1 = H'80000000

BT TRGET_T ;Branches because T = 1

CMP/STR R2,R3 ;R2 = “ABCD”, R3 = “XYCZ”

BT TRGET_T ;Branches because T = 1



168

8.2.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV0S Rm,Rn MSB of Rn → Q,
MSB of Rm → M, M^Q → T

0010nnnnmmmm0111 1 Calculation
result

Description: DIV0S is an initialization instruction for signed division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0S(long m,long n) /* DIV0S Rm,Rn */

{

if ((R[n]&0x80000000)==0) Q=0;

else Q=1;

if ((R[m]&0x80000000)==0) M=0;

else M=1;

T=!(M==Q);

PC+=2;

}

Examples: See DIV1.



169

8.2.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV0U 0 → M/Q/T 0000000000011001 1 0

Description: DIV0U is an initialization instruction for unsigned division. It finds the quotient by
repeatedly dividing in combination with the DIV1 or another instruction that divides for each bit
after this instruction. See the description given with DIV1 for more information.

Operation:

DIV0U()/* DIV0U */

{

M=Q=T=0;

PC+=2;

}

Example: See DIV1.



170

8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

Description: Uses single-step division to divide one bit of the 32-bit data in general register Rn
(dividend) by Rm data (divisor). It finds a quotient through repetition either independently or used
in combination with other instructions. During this repetition, do not rewrite the specified register
or the M, Q, and T bits.

In one-step division, the dividend is shifted one bit left, the divisor is subtracted and the quotient
bit reflected in the Q bit according to the status (positive or negative). To find the remainder in a
division, first find the quotient using a DIV1 instruction, then find the remainder as follows:

(remainder) = (dividend) – (divisor) × (quotient)

Zero division, overflow detection, and remainder operation are not supported. Check for zero
division and overflow division before dividing.

Find the remainder by first finding the sum of the divisor and the quotient obtained and then
subtracting it from the dividend. That is, first initialize with DIV0S or DIV0U. Repeat DIV1 for
each bit of the divisor to obtain the quotient. When the quotient requires 17 or more bits, place
ROTCL before DIV1. For the division sequence, see the following examples.



171

Operation:

DIV1(long m,long n) /* DIV1 Rm,Rn */

{

unsigned long tmp0;

unsigned char old_q,tmp1;

old_q=Q;

Q=(unsigned char)((0x80000000 & R[n])!=0);

R[n]<<=1;

R[n]|=(unsigned long)T;

switch(old_q){

case 0:switch(M){

case 0:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;



172

case 1:switch(M){

case 0:tmp0=R[n];

R[n]+=R[m];

tmp1=(R[n]<tmp0);

switch(Q){

case 0:Q=tmp1;

break;

case 1:Q=(unsigned char)(tmp1==0);

break;

}

break;

case 1:tmp0=R[n];

R[n]-=R[m];

tmp1=(R[n]>tmp0);

switch(Q){

case 0:Q=(unsigned char)(tmp1==0);

break;

case 1:Q=tmp1;

break;

}

break;

}

break;

}

T=(Q==M);

PC+=2;

}



173

Example 1:

;R1 (32 bits) / R0 (16 bits) = R1 (16 bits):Unsigned

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

TST R0,R0 ;Zero division check

BT ZERO_DIV

CMP/HS R0,R1 ;Overflow check

BT OVER_DIV

DIV0U ;Flag initialization

.arepeat 16

DIV1 R0,R1 ;Repeat 16 times

.aendr

ROTCL R1

EXTU.W R1,R2 ;R1 = Quotient

Example 2:

;R1:R2 (64 bits)/R0 (32 bits) = R2 (32 bits): Unsigned

TST R0,R0 ;Zero division check

BT ZERO_DIV

CMP/HS R0,R1 ;Overflow check

BT OVER_DIV

DIV0U ;Flag initialization

.arepeat 32

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 ;R2 = Quotient



174

Example 3:

;R1 (16 bits)/R0 (16 bits) = R1 (16 bits): Signed

SHLL16 R0 ;Upper 16 bits = divisor, lower 16 bits = 0

EXTS.W R1,R1 ;Sign-extends the dividend to 32 bits

XOR R2,R2 ;R2 = 0

MOV R1,R3

ROTCL R3

SUBC R2,R1 ;Decrements if the dividend is negative

DIV0S R0,R1 ;Flag initialization

.arepeat 16

DIV1 R0,R1 ;Repeat 16 times

.aendr

EXTS.W R1,R1

ROTCL R1 ;R1 = quotient (ones complement)

ADDC R2,R1 ;Increments and takes the twos complement if the MSB of the
;quotient is 1

EXTS.W R1,R1 ;R1 = quotient (two’s complement)

Example 4:

;R2 (32 bits) / R0 (32 bits) = R2 (32 bits): Signed

MOV R2,R3

ROTCL R3

SUBC R1,R1 ;Sign-extends the dividend to 64 bits (R1:R2)

XOR R3,R3 ;R3 = 0

SUBC R3,R2 ;Decrements and takes the ones complement if the dividend is
;negative

DIV0S R0,R1 ;Flag initialization

.arepeat 32

ROTCL R2 ;Repeat 32 times

DIV1 R0,R1

.aendr

ROTCL R2 ;R2 = Quotient (one’s complement)

ADDC R3,R2 ;Increments and takes the two’s complement if the MSB of the
;quotient is 1. R2 = Quotient (two’s complement)



175

8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DMULS.L Rm,Rn With sign, Rn × Rm → MACH,
MACL

0011nnnnmmmm1101 2
(to 5)

—

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is a signed arithmetic
operation.

Operation:

DMULS(long m,long n) /* DMULS.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)R[n];

tempm=(long)R[m];

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

if ((long)(R[n]^R[m])<0) fnLmL=-1;

else fnLmL=0;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;



176

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if (fnLmL<0) {

Res2=~Res2;

if (Res0==0)

Res2++;

else

Res0=(~Res0)+1;

}

MACH=Res2;

MACL=Res0;

PC+=2;

}

Examples:

DMULS R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)



177

8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DMULU.L Rm,Rn Without sign, Rn × Rm →
MACH, MACL

0011nnnnmmmm0101 2 (to 5) —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the 64-bit results in the MACL and MACH register. The operation is an unsigned arithmetic
operation.

Operation:

DMULU(long m,long n) /* DMULU.L Rm,Rn */

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,temp1,temp2,temp3;

RnL=R[n]&0x0000FFFF;

RnH=(R[n]>>16)&0x0000FFFF;

RmL=R[m]&0x0000FFFF;

RmH=(R[m]>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

MACH=Res2;



178

MACL=Res0;

PC+=2;

}

Examples:

DMULU R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACH = H'FFFFFFFF, MACL = H'FFFF5556

STS MACH,R0 ;Operation result (top)

STS MACL,R0 ;Operation result (bottom)



179

8.2.22 DT (Decrement and Test): Arithmetic Instruction

Format Abstract Code Cycle T Bit

DT Rn Rn - 1 → Rn;
When Rn is 0, 1 → T,
when Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

Description: Decrements the contents of general register Rn by 1 and compares the results to 0
(zero). When the result is 0, the T bit is set to 1. When the result is not zero, the T bit is set to 0.

Operation:

DT(long n) /* DT Rn */

{

R[n]--;

if (R[n]==0) T=1;

else T=0;

PC+=2;

}

Example:

MOV #4,R5 ;Sets the number of loops.

LOOP:

ADD R0,R1

DT RS ;Decrements the R5 value and checks whether it has become 0.

BF LOOP ;Branches to LOOP is T=0. (In this example, loops 4 times.)



180

8.2.23 EXTS (Extend as Signed): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTS.B Rm,Rn Sign-extend Rm from byte → Rn 0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Sign-extend Rm from word → Rn 0110nnnnmmmm1111 1 —

Description: Sign-extends general register Rm data, and stores the result in Rn. If byte length is
specified, the bit 7 value of Rm is copied into bits 8 to 31 of Rn. If word length is specified, the bit
15 value of Rm is copied into bits 16 to 31 of Rn.

Operation:

EXTSB(long m,long n) /* EXTS.B Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00000080)==0) R[n]&=0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

EXTSW(long m,long n) /* EXTS.W Rm,Rn */

{

R[n]=R[m];

if ((R[m]&0x00008000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

Examples:

EXTS.B R0,R1 ;Before execution R0 = H'00000080

;After execution R1 = H'FFFFFF80

EXTS.W R0,R1 ;Before execution R0 = H'00008000

;After execution R1 = H'FFFF8000



181

8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction

Format Abstract Code Cycle T Bit

EXTU.B Rm,Rn Zero-extend Rm from byte → Rn 0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Zero-extend Rm from word → Rn 0110nnnnmmmm1101 1 —

Description: Zero-extends general register Rm data, and stores the result in Rn. If byte length is
specified, 0s are written in bits 8 to 31 of Rn. If word length is specified, 0s are written in bits 16
to 31 of Rn.

Operation:

EXTUB(long m,long n) /* EXTU.B Rm,Rn */

{

R[n]=R[m];

R[n]&=0x000000FF;

PC+=2;

}

EXTUW(long m,long n) /* EXTU.W Rm,Rn */

{

R[n]=R[m];

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

EXTU.B R0,R1 ;Before execution R0 = H'FFFFFF80

;After execution R1 = H'00000080

EXTU.W R0,R1 ;Before execution R0 = H'FFFF8000

;After execution R1 = H'00008000



182

8.2.25 JMP (Jump): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

JMP @Rm Rm → PC 0100nnnn00101011 2 —

Description: Branches unconditionally after executing the instruction following this JMP
instruction. The branch destination is an address specified by the 32-bit data in general register Rn.

Note: Since this is a delayed branch instruction, the instruction after JMP is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

Operation:

JMP(long m) /* JMP @Rm */

{

unsigned long temp;

temp=PC;

PC=R[m]+4;

Delay_Slot(temp+2);

}

Examples:

MOV.L JMP_TABLE,R0 ;Address of R0 = TRGET

JMP @R0 ;Branches to TRGET

MOV R0,R1 ;Executes MOV before branching

.align 4

JMP_TABLE: .data.l TRGET ;Jump table

.................

TRGET: ADD #1,R1 ;← Branch destination



183

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



184

8.2.26 JSR (Jump to Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

JSR @Rm PC → Rm, Rm → PC 0100nnnn00001011 2 —

Description: Branches to the subroutine procedure at a specified address after executing the
instruction following this JSR instruction. The PC value is stored in the PR. The jump destination
is an address specified by the 32-bit data in general register Rn. The PC points to the starting
address of the second instruction after JSR. The JSR instruction and RTS instruction are used for
subroutine procedure calls.

Note: Since this is a delayed branch instruction, the instruction after JSR is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction.

The PR used by the instruction immediately following this instruction is updated by this
instruction.

Also, if the instruction immediately following this instruction generates a re-execution exception
other than instruction fetch, the PR is updated by this instruction. Re-execute this instruction to
recover.

Operation:

JSR(long m) /* JSR @Rm */

{

PR=PC;

PC=R[m]+4;

Delay_Slot(PR+2);

}



185

Examples:

MOV.L JSR_TABLE,R0 ;Address of R0 = TRGET

JSR @R0 ;Branches to TRGET

XOR R1,R1 ;Executes XOR before branching

ADD R0,R1 ;← Return address for when the subroutine
;procedure is completed (PR data)

...........

.align 4

JSR_TABLE: .data.l TRGET ;Jump table

TRGET: NOP ;← Procedure entrance

MOV R2,R3

RTS ;Returns to the above ADD instruction

MOV #70,R1 ;Executes MOV before RTS

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



186

8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 5 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1 —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1 —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 1 —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 1 —

LDC Rm,MOD* Rm → MOD 0100mmmm01011110 3 —

LDC Rm,RE* Rm → RE 0100mmmm01111110 3 —

LDC Rm,RS* Rm → RS 0100mmmm01101110 3 —

LDC Rm,R0_BANK Rm → R0_BANK 0100mmmm10001110 1 —

LDC Rm,R1_BANK Rm → R1_BANK 0100mmmm10011110 1 —

LDC Rm,R2_BANK Rm → R2_BANK 0100mmmm10101110 1 —

LDC Rm,R3_BANK Rm → R3_BANK 0100mmmm10111110 1 —

LDC Rm,R4_BANK Rm → R4_BANK 0100mmmm11001110 1 —

LDC Rm,R5_BANK Rm → R5_BANK 0100mmmm11011110 1 —

LDC Rm,R6_BANK Rm → R6_BANK 0100mmmm11101110 1 —

LDC Rm,R7_BANK Rm → R7_BANK 0100mmmm11111110 1 —

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 7 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 1 —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 1 —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 1 —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 1 —

LDC.L @Rm+,MOD* (Rm) → MOD, Rm + 4 → Rm 0100mmmm01010111 5 —

LDC.L @Rm+,RE* (Rm) → RE, Rm + 4 → Rm 0100mmmm01110111 5 —

LDC.L @Rm+,RS* (Rm) → RS, Rm + 4 → Rm 0100mmmm01100111 5 —

LDC.L @Rm+,R0_BANK (Rm) → R0_BANK,
Rm + 4 → Rm

0100mmmm10000111 1 —

LDC.L @Rm+,R1_BANK (Rm) → R1_BANK,
Rm + 4 → Rm

0100mmmm10010111 1 —

LDC.L @Rm+,R2_BANK (Rm) → R2_BANK,
Rm + 4 → Rm

0100mmmm10100111 1 —

LDC.L @Rm+,R3_BANK (Rm) → R3_BANK,
Rm + 4 → Rm

0100mmmm10110111 1 —

Note: * SH3-DSP only.



187

Format Abstract Code Cycle T Bit

LDC.L @Rm+,R4_BANK (Rm) → R4_BANK,
Rm + 4 → Rm

0100mmmm11000111 1 —

LDC.L @Rm+,R5_BANK (Rm) → R5_BANK,
Rm + 4 → Rm

0100mmmm11010111 1 —

LDC.L @Rm+,R6_BANK (Rm) → R6_BANK,
Rm + 4 → Rm

0100mmmm11100111 1 —

LDC.L @Rm+,R7_BANK (Rm) → R7_BANK,
Rm + 4 → Rm

0100mmmm11110111 1 —

Notes: 1. Three cycles on the SH3-DSP.
2. Five cycles on the SH3-DSP.

Description: Stores source operand in control registers SR, GBR, VBR, SSR, SPC, MOD, RE,
and RS, or R0_BANK to R7_BANK. LDC and LDC.L, except for LDC Rm, GBR and LDC.L
@RM+, GBR, are privileged instructions and can be used in privileged mode only. If used in user
mode, they can cause illegal instruction exceptions. Note that LDC Rm, GBR and LDC.L @RM+,
GBR can be used in user mode.

The Rm_BANK operand is designated by the RB bit of the SR register. When the value of the RB
bit is 1, the R0_BANK1 to R7_BANK1 registers and the R8 to R15 registers are used as the Rn
operand, and the R0_BANK0 to R7_BANK0 registers are used as the Rm_BANK operand. When
the value of the RB bit is 0, the R0_BANK0 to R7_BANK0 registers and the R8 to R15 registers
are used as the Rn operand, and the R0_BANK1 to R7_BANK1 registers are used as the
Rm_BANK operand.

If the LDC Rm, SR instruction or LDC.L @RM+, SR instruction is located in a delayed slot
immediately following a delayed branch instruction, it is acknowledged as an illegal slot
instruction.

Operation:

LDCSR(long m) /* LDC Rm,SR */

{

SR=R[m]&0x0FFF0FFF;

PC+=2;

}

LDCGBR(long m) /* LDC Rm,GBR */

{

GBR=R[m];

PC+=2;

}



188

LDCVBR(long m) /* LDC Rm,VBR */

{

VBR=R[m];

PC+=2;

}

LDCSSR(long m) /* LDC Rm,SSR */

{

SSR=R[m]&0x700003F3;

PC+=2;

}

LDCSPC(long m) /* LDC Rm,SPC */

{

SPC=R[m];

PC+=2;

}

LDCRn_BANK(long m) /* LDC Rm,Rn_BANK */

{ /* n=0–7, */

Rn_BANK=R[m];

PC+=2;

}

LDCMSR(long m) /* LDC.L @Rm+,SR */

{

SR=Read_Long(R[m])&0x0FFF0FFF;

R[m]+=4;

PC+=2;

}

LDCMGBR(long m) /* LDC.L @Rm+,GBR */

{

GBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}



189

LDCMVBR(long m) /* LDC.L @Rm+,VBR */

{

VBR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMSSR(long m) /* LDC.L @Rm+,SSR */

{

SSR=Read_Long(R[m])&0x700003F3;

R[m]+=4;

PC+=2;

}

LDCMSPC(long m) /* LDC.L @Rm+,SPC */

{

SPC=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMRn_BANK(long m) /* LDC.L @Rm+,Rn_BANK */
/* n=0–7 */

{

Rn_BANK=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMOD(long m) /* LDC Rm,MOD */

{

MOD=R[m];

PC+=2;

}

LDCRE(long m) /* LDC Rm,RE */

{

RE=R[m];

PC+=2;

}



190

LDCRS(long m) /* LDC Rm,RS */

{

RS=R[m];

PC+=2;

}

LDCMMOD(long m) /* LDC.L @Rm+,MOD */

{

MOD=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMRE(long m) /* LDC.L @Rm+,RE */

{

RE=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDCMRS(long m) /* LDC.L @Rm+,RS */

{

RS=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDC R0,SR ;Before execution R0 = H'FFFFFFFF, SR = H'00000000

;After execution SR = H'700003F3

LDC.L @R15+,GBR ;Before execution R15 = H'10000000, @R15 + H'12345678,

GBR = H'EDCBA987

;After execution R15 = H'10000004, GBR = @H'10000000



191

8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit

LDRE @(disp,PC) disp × 2 + PC → RE 10001110dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat end register RE. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is –256 to +254 bytes.

Note: The effective address value designated for the RE reregister is different from the actual
repeat end address. Refer to table 8.23, RS and RE Design Rule, for more information.
When this instruction is arranged immediately after the delayed branch instruction, PC
becomes the "first address +2" of the branch destination.

Operation:

LDRE(long d) /* LDRE @(disp, PC) */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

RE=PC+(disp<<1);

PC+=2;

}

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.E ;

............



192

8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction
(SH3-DSP Only)

Format Abstract Code Cycle T Bit

LDRS @(disp,PC) disp × 2 + PC → RS 10001100dddddddd 3 —

Description: Stores the effective address of the source operand in the repeat start register RS. The
effective address is an address specified by PC + displacement. The PC is the address four bytes
after this instruction. The 8-bit displacement is sign-extended and doubled. Consequently, the
relative interval from the branch destination is –256 to +254 bytes.

Note: When the instructions of the repeat (loop) program are below 3, the effective address value
designated for the RS register is different from the actual repeat start address. Refer to
Table 8-23. "RS and RE setting rule", for more information. If this instruction is arranged
immediately after the delayed branch instruction, the PC becomes "the first address +2" of
the branch destination.

Operation:

LDRS(long d) /* LDRS @(disp, PC) */

{

long disp;

if ((d&0x80)==0) disp=(0x000000FF & (long)d);

else disp=(0xFFFFFF00 | (long)d);

RS=PC+(disp<<1);

PC+=2;

}

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.D ;

............



193

8.2.30 LDS (Load to System Register): System Control Instruction

Format Abstract Code Cycle T Bit

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 1 —

LDS Rm,DSR* Rm → DSR 0100mmmm01101010 1 —

LDS Rm,A0* Rm → A0 0100mmmm01111010 1 —

LDS Rm,X0* Rm → X0 0100mmmm10001010 1 —

LDS Rm,X1* Rm → X1 0100mmmm10011010 1 —

LDS Rm,Y0* Rm → Y0 0100mmmm10101010 1 —

LDS Rm,Y1* Rm → Y1 0100mmmm10111010 1 —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 —

LDS.L @Rm+,DSR* (Rm) → DSR, Rm + 4 → Rm 0100mmmm01100110 1 —

LDS.L @Rm+,A0* (Rm) → A0, Rm + 4 → Rm 0100mmmm01110110 1 —

LDS.L@Rm+,X0* (Rm) → X0,Rm+4 → Rm 0100nnnn10000110 1 —

LDS.L@Rm+,X1* (Rm) → X1,Rm+4 → Rm 0100nnnn10010110 1 —

LDS.L@Rm+,Y0* (Rm) → Y0,Rm+4 → Rm 0100nnnn10100110 1 —

LDS.L@Rm+,Y1* (Rm) → Y1,Rm+4 → Rm 0100nnnn10110110 1 —

Note: * SH3-DSP only.

Description: Stores the source operand into the system registers MACH, MACL, PR, DSR, A0,
X0, X1, Y0, or Y1.

Operation:

LDSMACH(long m) /* LDS Rm,MACH */

{

MACH=R[m];

if ((MACH&0x00000200)==0) MACH&=0x000003FF;

else MACH|=0xFFFFFC00;

PC+=2;

}



194

LDSMACL(long m) /* LDS Rm,MACL */

{

MACL=R[m];

PC+=2;

}

LDSPR(long m) /* LDS Rm,PR */

{

PR=R[m];

PC+=2;

}

LDSMMACH(long m) /* LDS.L @Rm+,MACH */

{

MACH=Read_Long(R[m]);

if ((MACH&0x00000200)==0) MACH&=0x000003FF;

else MACH|=0xFFFFFC00;

R[m]+=4;

PC+=2;

}

LDSMMACL(long m) /* LDS.L @Rm+,MACL */

{

MACL=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMPR(long m) /* LDS.L @Rm+,PR */

{

PR=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSDSR(long m) /* LDS Rm,DSR */

{

DSR=R[m]&0x0000000F;

PC+=2;

}



195

LDSA0(long m) /* LDS Rm,A0 */

{

A0=R[m];

if((A0&0x80000000)==0) A0G=0x00;

else A0G=0xFF;

PC+=2;

}

LDSX0(long m) /* LDS Rm, X0 */

{

X0=R[m];

PC+=2;

}

LDSX1(long m) /* LDS Rm, X1 */

{

X1=R[m];

PC+=2;

}

LDSY0(long m) /* LDS Rm, Y0 */

{

Y0=R[m];

PC+=2;

}

LDSY1(long m) /* LDS Rm, Y1 */

{

Y1=R[m];

PC+=2;

}

LDSMDSR(long m) /* LDS.L @Rm+,DSR */

{

DSR=Read_Long(R[m])&0x0000000F;

R[m]+=4;

PC+=2;

}

LDSMA0(long m) /* LDS.L @Rm+,A0 */

{

A0=Read_Long(R[m]);

if((A0&0x80000000)==0) A0G=0x00;

else A0G=0xFF;



196

R[m]+=4;

PC+=2;

}

LDSMX0(long m) /* LDS.L @Rm+,X0 */

{

X0=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMX1(long m) /* LDS.L @Rm+,X1 */

{

X1=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMY0(long m) /* LDS.L @Rm+,Y0 */

{

Y0=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

LDSMY1(long m) /* LDS.L @Rm+,Y1 */

{

Y1=Read_Long(R[m]);

R[m]+=4;

PC+=2;

}

Examples:

LDS R0,PR ;Before execution R0 = H'12345678, PR = H'00000000

;After execution PR = H'12345678

LDS.L @R15+,MACL ;Before execution R15 = H'10000000

;After execution R15 = H'10000004, MACL = @H'10000000



197

8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit

LDTLB PTEH/PTEL → TLB 0000000000111000 1 —

Description: Loads PTEH/PTEL registers to the translation lookaside buffer (TLB). The TLB is
indexed by the virtual address held in the PTEH register. The loaded set is designated by the
MMUCR.RC (MMUCR is an MMU control register and RC is a two bit field for a counter).
LDTLB is a privileged instruction and can be used in privileged mode only. If used in user mode,
it causes an illegal instruction exception.

Note: As LDTLB is for loading PTEH and PTEL to the TLB, the instruction should be issued
when MMU is off (MMUCR.AT = 0) or should be placed in the P1 or P2 space with MMU
enabled (see the MMU section of the applicable hardware manual for details). If the instruction is
issued in an exception handler, it should be at least two instructions prior to an RTE instruction
that terminates the handler.

Operation:

LDTLB()/*LDTLB*/

{

TLB_tag=PTEH;

TLB_data=PTEL;

PC+=2;

}

Examples:

MOV L @R0, R1 ;Load upper bits of page table entry to R1

MOV L R1, @R2 ;Load R1 to PTEH, R2 is PTEH address (H'FFFFFFF0)

MOV L @R3, R4 ;Load lower bits of page table entry to R4

MOV L R4, @R5 ;Load R4 to PTEL, R5 is PTEL address (H'FFFFFFF4)

LDTLB ;Load PTEH and PTEL registers to TLB



198

8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MAC.L @Rm+,@Rn+ Signed operation, (Rn) × (Rm) +
MAC → MAC
Rn + 4 → Rn, Rm + 4 → Rm

0000nnnnmmmm1111 2 (to 5) —

Description: Does signed multiplication of 32-bit operands obtained using the contents of general
registers Rm and Rn as addresses. The 64-bit result is added to contents of the MAC register, and
the final result is stored in the MAC register. Every time an operand is read, RM and Rn are
incremented by four.

When the S bit is cleared to 0, the 64-bit result is stored in the coupled MACH and MACL
registers. When bit S is set to 1, addition to the MAC register is a saturation operation of 48 bits
starting from the LSB. For the saturation operation, only the lower 48 bits of the MACL register
are enabled and the result is limited to between H'FFFF800000000000 (minimum) and
H'00007FFFFFFFFFFF (maximum).

Operation:

MACL(long m,long n) /* MAC.L @Rm+,@Rn+*/

{

unsigned long RnL,RnH,RmL,RmH,Res0,Res1,Res2;

unsigned long temp0,templ,temp2,temp3;

long tempm,tempn,fnLmL;

tempn=(long)Read_Long(R[n]);

R[n]+=4;

tempm=(long)Read_Long(R[m]);

R[m]+=4;

if ((long)(tempn^tempm)<0) fnLmL=-1;

else fnLmL=0;

if (tempn<0) tempn=0-tempn;

if (tempm<0) tempm=0-tempm;

temp1=(unsigned long)tempn;

temp2=(unsigned long)tempm;



199

RnL=temp1&0x0000FFFF;

RnH=(temp1>>16)&0x0000FFFF;

RmL=temp2&0x0000FFFF;

RmH=(temp2>>16)&0x0000FFFF;

temp0=RmL*RnL;

temp1=RmH*RnL;

temp2=RmL*RnH;

temp3=RmH*RnH;

Res2=0

Res1=temp1+temp2;

if (Res1<temp1) Res2+=0x00010000;

temp1=(Res1<<16)&0xFFFF0000;

Res0=temp0+temp1;

if (Res0<temp0) Res2++;

Res2=Res2+((Res1>>16)&0x0000FFFF)+temp3;

if(fnLm<0){

Res2=~Res2;

if (Res0==0) Res2++;

else Res0=(~Res0)+1;

}

if(S==1){

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=(MACH&0x0000FFFF);

if(((long)Res2<0)&&(Res2<0xFFFF8000)){

Res2=0x00008000;

Res0=0x00000000;

}



200

if(((long)Res2>0)&&(Res2>0x00007FFF)){

Res2=0x00007FFF;

Res0=0xFFFFFFFF;

};

MACH={Res2;

MACL=Res0;

}

else {

Res0=MACL+Res0;

if (MACL>Res0) Res2++;

Res2+=MACH

MACH=Res2;

MACL=Res0;

}

PC+=2;

}

Examples:

MOVA TBLM,R0 ;Table address

MOV R0,R1

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.L @R0+,@R1+

MAC.L @R0+,@R1+

STS MACL,R0 ;Store result into R0

...............

.align 2

TBLM .data.l H'1234ABCD

.data.l H'5678EF01

TBLN .data.l H'0123ABCD

.data.l H'4567DEF0



201

8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MAC.W @Rm+,@Rn+

MAC @Rm+,@Rn+

With sign, (Rn) × (Rm) + MAC →
MAC
Rn + 2 → Rn, Rm + 2 → Rm

0100nnnnmmmm1111 2
(to 5)

—

Description: Multiplies with sign 16-bit operands obtained using the contents of general registers
Rm and Rn as addresses. The 32-bit result is added to the contents of the MAC register, and the
final result is stored in the MAC register.

Each time an operand is read, Rm and Rn are each incremented by 2.

When the S bit is cleared to 0, the 64-bit result of the 16-bit ( 16-bit + 64-bit = 64-bit multiply and
accumulate calculation is stored in the coupled MACH and MACL registers.

When the S bit is set to 1, the 16-bit ( 16-bit + 32-bit = 32-bit multiply and accumulate calculation
involves addition to the MAC register using a saturation operation. For the saturation operation,
only the MACL register is enabled, and the result is limited to between H'80000000 (minimum)
and H'7FFFFFFF (maximum). If an overflow occurs, the LSB of the MACH register is set to 1. If
the overflow is in the negative direction, H'80000000 (the minimum value) is stored in the MACL
register, and if the overflow is in the positive direction, H'7FFFFFFF (the maximum value) is
stored in the MACL register.

Note: The normal number of cycles for execution is 3; however, succeeding instructions can be
executed in two cycles.

Operation:

MACW(long m,long n) /* MAC.W @Rm+,@Rn+*/

{

long tempm,tempn,dest,src,ans;

unsigned long templ;

tempn=(long)Read_Word(R[n]);

R[n]+=2;

tempm=(long)Read_Word(R[m]);

R[m]+=2;

templ=MACL;

tempm=((long)(short)tempn*(long)(short)tempm);

if ((long)MACL>=0) dest=0;

else dest=1;

if ((long)tempm>=0 {



202

src=0;

tempn=0;

}

else {

src=1;

tempn=0xFFFFFFFF;

}

src+=dest;

MACL+=tempm;

if ((long)MACL>=0) ans=0;

else ans=1;

ans+=dest;

if (S==1) {

if (ans==1) {

if (src==0 || src==2) MACH|=0x00000001;

if (src==0) MACL=0x7FFFFFFF;

if (src==2) MACL=0x80000000;

}

}

else {

MACH+=tempn;

if (templ>MACL) MACH+=1;

if ((MACH&0x00000200)==0) MACH&=0x000003FF;

else MACH|=0xFFFFFC00;

}

PC+=2;

}



203

Examples:

MOVA TBLM,R0 ;Table address

MOV R0,R1

MOVA TBLN,R0 ;Table address

CLRMAC ;MAC register initialization

MAC.W @R0+,@R1+

MAC.W @R0+,@R1+

STS MACL,R0 ;Store result into R0

...............

.align 2

TBLM .data.w H'1234

.data.w H'5678

TBLN .data.w H'0123

.data.w H'4567



204

8.2.34 MOV (Move Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

MOV.B Rm,@–Rn Rn – 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@–Rn Rn – 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@–Rn Rn – 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 —

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension →
Rn

0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension →
Rn

0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

Description: Transfers the source operand to the destination. When the operand is stored in
memory, the transferred data can be a byte, word, or longword. Loaded data from memory is
stored in a register after it is sign-extended to a longword.

Operation:

MOV(long m,long n) /* MOV Rm,Rn */

{

R[n]=R[m];

PC+=2;

}



205

MOVBS(long m,long n) /* MOV.B Rm,@Rn */

{

Write_Byte(R[n],R[m]);

PC+=2;

}

MOVWS(long m,long n) /* MOV.W Rm,@Rn */

{

Write_Word(R[n],R[m]);

PC+=2;

}

MOVLS(long m,long n) /* MOV.L Rm,@Rn */

{

Write_Long(R[n],R[m]);

PC+=2;

}

MOVBL(long m,long n) /* MOV.B @Rm,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL(long m,long n) /* MOV.W @Rm,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLL(long m,long n) /* MOV.L @Rm,Rn */

{

R[n]=Read_Long(R[m]);

PC+=2;

}



206

MOVBM(long m,long n) /* MOV.B Rm,@–Rn */

{

Write_Byte(R[n]–1,R[m]);

R[n]–=1;

PC+=2;

}

MOVWM(long m,long n) /* MOV.W Rm,@–Rn */

{

Write_Word(R[n]–2,R[m]);

R[n]–=2;

PC+=2;

}

MOVLM(long m,long n) /* MOV.L Rm,@–Rn */

{

Write_Long(R[n]–4,R[m]);

R[n]–=4;

PC+=2;

}

MOVBP(long m,long n) /* MOV.B @Rm+,Rn */

{

R[n]=(long)Read_Byte(R[m]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

if (n!=m) R[m]+=1;

PC+=2;

}

MOVWP(long m,long n) /* MOV.W @Rm+,Rn */

{

R[n]=(long)Read_Word(R[m]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

if (n!=m) R[m]+=2;

PC+=2;

}



207

MOVLP(long m,long n) /* MOV.L @Rm+,Rn */

{

R[n]=Read_Long(R[m]);

if (n!=m) R[m]+=4;

PC+=2;

}

MOVBS0(long m,long n) /* MOV.B Rm,@(R0,Rn) */

{

Write_Byte(R[n]+R[0],R[m]);

PC+=2;

}

MOVWS0(long m,long n) /* MOV.W Rm,@(R0,Rn) */

{

Write_Word(R[n]+R[0],R[m]);

PC+=2;

}

MOVLS0(long m,long n) /* MOV.L Rm,@(R0,Rn) */

{

Write_Long(R[n]+R[0],R[m]);

PC+=2;

}

MOVBL0(long m,long n) /* MOV.B @(R0,Rm),Rn */

{

R[n]=(long)Read_Byte(R[m]+R[0]);

if ((R[n]&0x80)==0) R[n]&0x000000FF;

else R[n]|=0xFFFFFF00;

PC+=2;

}

MOVWL0(long m,long n) /* MOV.W @(R0,Rm),Rn */

{

R[n]=(long)Read_Word(R[m]+R[0]);

if ((R[n]&0x8000)==0) R[n]&0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}



208

MOVLL0(long m,long n) /* MOV.L @(R0,Rm),Rn */

{

R[n]=Read_Long(R[m]+R[0]);

PC+=2;

}

Examples:

MOV R0,R1 ;Before execution R0 = H'FFFFFFFF, R1 = H'00000000

;After execution R1 = H'FFFFFFFF

MOV.W R0,@R1 ;Before execution R0 = H'FFFF7F80

;After execution @R1 = H'7F80

MOV.B @R0,R1 ;Before execution @R0 = H'80, R1 = H'00000000

;After execution R1 = H'FFFFFF80

MOV.W R0,@–R1 ;Before execution R0 = H'AAAAAAAA, R1 = H'FFFF7F80

;After execution R1 = H'FFFF7F7E, @R1 = H'AAAA

MOV.L @R0+,R1 ;Before execution R0 = H'12345670

;After execution R0 = H'12345674, R1 = @H'12345670

MOV.B R1,@(R0,R2) ;Before execution R2 = H'00000004, R0 = H'10000000

;After execution R1 = @H'10000004

MOV.W @(R0,R2),R1 ;Before execution R2 = H'00000004, R0 = H'10000000

;After execution R1 = @H'10000004



209

8.2.35 MOV (Move Immediate Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV #imm,Rn imm → sign
extension → Rn

1110nnnniiiiiiii 1 —

MOV.W @(disp,PC),Rn (disp × 2 + PC) → sign
extension → Rn

1001nnnndddddddd 1 —

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 —

Description: Stores immediate data, which has been sign-extended to a longword, into general
register Rn.

If the data is a word or longword, table data stored in the address specified by PC + displacement
is accessed. If the data is a word, the 8-bit displacement is zero-extended and doubled.
Consequently, the relative interval from the table is up to PC + 510 bytes. The PC points to the
starting address of the second instruction after this MOV instruction. If the data is a longword, the
8-bit displacement is zero-extended and quadrupled. Consequently, the relative interval from the
table is up to PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOV instruction, but the lowest two bits of the PC are corrected to B’00.

Note: The end address of the program area (module) or the second address after an unconditional
branch instruction are suitable for the start address of the table. If suitable table assignment is
impossible (for example, if there are no unconditional branch instructions within the area specified
by PC + 510 bytes or PC + 1020 bytes), the BRA instruction must be used to jump past the table.
When this MOV instruction is placed immediately after a delayed branch instruction, the PC
points to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVI(long i,long n) /* MOV #imm,Rn */

{

if ((i&0x80)==0) R[n]=(0x000000FF & (long)i);

else R[n]=(0xFFFFFF00 | (long)i);

PC+=2;

}



210

MOVWI(long d,long n) /* MOV.W @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=(long)Read_Word(PC+(disp<<1));

if ((R[n]&0x8000)==0) R[n]&=0x0000FFFF;

else R[n]|=0xFFFF0000;

PC+=2;

}

MOVLI(long d,long n) /* MOV.L @(disp,PC),Rn */

{

long disp;

disp=(0x000000FF & (long)d);

R[n]=Read_Long((PC&0xFFFFFFFC)+(disp<<2));

PC+=2;

}

Examples:

Address

1000 MOV #H'80,R1 ;R1 = H'FFFFFF80

1002 MOV.W IMM,R2 ;R2 = H'FFFF9ABC, IMM means @(H'08,PC)

1004 ADD #–1,R0

1006 TST R0,R0 ;← PC location used for address calculation for
;the MOV.W instruction

1008 MOVT R13

100A BRA NEXT ;Delayed branch instruction

100C MOV.L @(4,PC),R3 ;R3 = H'12345678

100E IMM .data.w H'9ABC

1010 .data.w H'1234

1012 NEXT JMP @R3 ;Branch destination of the BRA instruction

1014 CMP/EQ #0,R0 ;← PC location used for address calculation for
;the MOV.L instruction

.align 4

1018 .data.l H'12345678



211

8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd 1 —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 —

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in the peripheral module area. The data can be a byte, word, or longword, but only
the R0 register can be used.

A peripheral module base address is set to the GBR. When the peripheral module data is a byte,
the only change made is to zero-extend the 8-bit displacement. Consequently, an address within
+255 bytes can be specified. When the peripheral module data is a word, the 8-bit displacement is
zero-extended and doubled. Consequently, an address within +510 bytes can be specified. When
the peripheral module data is a longword, the 8-bit displacement is zero-extended and is
quadrupled. Consequently, an address within +1020 bytes can be specified. If the displacement is
too short to reach the memory operand, the above @(R0,Rn) mode must be used after the GBR
data is transferred to a general register. When the source operand is in memory, the loaded data is
stored in the register after it is sign-extended to a longword.

Note: The destination register of a data load is always R0. R0 cannot be accessed by the next
instruction until the load instruction is finished. The instruction order shown in figure 8-1 will give
better results.

MOV.B

AND

ADD

@(12, GBR), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(12, GBR), R0

#20, R1

#80, R0

Figure 8-1   Using R0 after MOV



212

Operation:

MOVBLG(long d) /* MOV.B @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Byte(GBR+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}

MOVWLG(long d) /* MOV.W @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(long)Read_Word(GBR+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLLG(long d) /* MOV.L @(disp,GBR),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=Read_Long(GBR+(disp<<2));

PC+=2;

}



213

MOVBSG(long d) /* MOV.B R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Byte(GBR+disp,R[0]);

PC+=2;

}

MOVWSG(long d) /* MOV.W R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Word(GBR+(disp<<1),R[0]);

PC+=2;

}

MOVLSG(long d) /* MOV.L R0,@(disp,GBR) */

{

long disp;

disp=(0x000000FF & (long)d);

Write_Long(GBR+(disp<<2),R[0]);

PC+=2;

}

Examples:

MOV.L @(2,GBR),R0 ;Before execution @(GBR + 8) = H'12345670

;After execution R0 = @H'12345670

MOV.B R0,@(1,GBR) ;Before execution R0 = H'FFFF7F80

;After execution @(GBR + 1) = H'FFFF7F80



214

8.2.37 MOV (Move Structure Data): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 —

MOV.W @(disp,Rm),R0 (disp × 2 + Rm) → sign
extension → R0

10000101mmmmdddd 1 —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 —

Description: Transfers the source operand to the destination. This instruction is suitable for
accessing data in a structure or a stack. The data can be a byte, word, or longword, but when a byte
or word is selected, only the R0 register can be used. When the data is a byte, the only change
made is to zero-extend the 4-bit displacement. Consequently, an address within +15 bytes can be
specified. When the data is a word, the 4-bit displacement is zero-extended and doubled.
Consequently, an address within +30 bytes can be specified. When the data is a longword, the
4-bit displacement is zero-extended and quadrupled. Consequently, an address within +60 bytes
can be specified. If the displacement is too short to reach the memory operand, the aforementioned
@(R0,Rn) mode must be used. When the source operand is in memory, the loaded data is stored in
the register after it is sign-extended to a longword.

Note: When byte or word data is loaded, the destination register is always R0. R0 cannot be
accessed by the next instruction until the load instruction is finished. The instruction order in
figure 8-2 will give better results.

MOV.B

AND

ADD

@(2, R1), R0

#80, R0

#20, R1

MOV.B

ADD

AND

@(2, R1), R0

#20, R1

#80, R0

Figure 8-2   Using R0 after MOV



215

Operation:

MOVBS4(long d,long n) /* MOV.B R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Byte(R[n]+disp,R[0]);

PC+=2;

}

MOVWS4(long d,long n) /* MOV.W R0,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Word(R[n]+(disp<<1),R[0]);

PC+=2;

}

MOVLS4(long m,long d,long n)

/* MOV.L Rm,@(disp,Rn) */

{

long disp;

disp=(0x0000000F & (long)d);

Write_Long(R[n]+(disp<<2),R[m]);

PC+=2;

}

MOVBL4(long m,long d) /* MOV.B @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Byte(R[m]+disp);

if ((R[0]&0x80)==0) R[0]&=0x000000FF;

else R[0]|=0xFFFFFF00;

PC+=2;

}



216

MOVWL4(long m,long d) /* MOV.W @(disp,Rm),R0 */

{

long disp;

disp=(0x0000000F & (long)d);

R[0]=Read_Word(R[m]+(disp<<1));

if ((R[0]&0x8000)==0) R[0]&=0x0000FFFF;

else R[0]|=0xFFFF0000;

PC+=2;

}

MOVLL4(long m,long d,long n)

/* MOV.L @(disp,Rm),Rn */

{

long disp;

disp=(0x0000000F & (long)d);

R[n]=Read_Long(R[m]+(disp<<2));

PC+=2;

}

Examples:

MOV.L @(2,R0),R1 ;Before execution @(R0 + 8) = H'12345670

;After execution R1 = @H'12345670

MOV.L R0,@(H'3C,R1) ;Before execution R0 = H'FFFF7F80

;After execution @(R1 + 60) = H'FFFF7F80



217

8.2.38 MOVA (Move Effective Address): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 —

Description: Stores the effective address of the source operand into general register R0. The 8-bit
displacement is zero-extended and quadrupled. Consequently, the relative interval from the
operand is PC + 1020 bytes. The PC points to the starting address of the second instruction after
this MOVA instruction, but the lowest two bits of the PC are corrected to B’00.

Note: If this instruction is placed immediately after a delayed branch instruction, the PC must
point to an address specified by (the starting address of the branch destination) + 2.

Operation:

MOVA(long d) /* MOVA @(disp,PC),R0 */

{

long disp;

disp=(0x000000FF & (long)d);

R[0]=(PC&0xFFFFFFFC)+(disp<<2);

PC+=2;

}

Examples:

Address .org H'1006

1006 MOVA STR,R0 ;Address of STR → R0

1008 MOV.B @R0,R1 ;R1 = “X” ← PC location after correcting the lowest
;two bits

100A ADD R4,R5 ;← Original PC location for address calculation for
;the MOVA instruction

.align 4

100C STR: .sdata “XYZP12”

...............

2002 BRA TRGET ;Delayed branch instruction

2004 MOVA @(0,PC),R0 ;Address of TRGET + 2 → R0

2006 NOP



218

8.2.39 MOVT (Move T Bit): Data Transfer Instruction

Format Abstract Code Cycle T Bit

MOVT Rn T → Rn 0000nnnn00101001 1 —

Description: Stores the T bit value into general register Rn. When T = 1, 1 is stored in Rn, and
when T = 0, 0 is stored in Rn.

Operation:

MOVT(long n) /* MOVT Rn */

{

R[n]=(0x00000001 & SR);

PC+=2;

}

Examples:

XOR R2,R2 ;R2 = 0

CMP/PZ R2 ;T = 1

MOVT R0 ;R0 = 1

CLRT ;T = 0

MOVT R1 ;R1 = 0



219

8.2.40 MUL.L (Multiply Long): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MUL.L Rm,Rn Rn × Rm → MACL 0000nnnnmmmm0111 2 (to 5) —

Description: Performs 32-bit multiplication of the contents of general registers Rn and Rm, and
stores the bottom 32 bits of the result in the MACL register. The MACH register data does not
change.

Operation:

MULL(long m,long n) /* MUL.L Rm,Rn */

{

MACL=R[n]*R[m];

PC+=2;

}

Examples:

MULL R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACL = H'FFFF5556

STS MACL,R0 ;Operation result



220

8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULS.W Rm,Rn
MULS Rm,Rn

Signed operation, Rn × Rm → MACL 0010nnnnmmmm1111 1 (to 3) —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is signed and the MACH register data
does not change.

Operation:

MULS(long m,long n) /* MULS Rm,Rn */

{

MACL=((long)(short)R[n]*(long)(short)R[m]);

PC+=2;

}

Examples:

MULS R0,R1 ;Before execution R0 = H'FFFFFFFE, R1 = H'00005555

;After execution MACL = H'FFFF5556

STS MACL,R0 ;Operation result



221

8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction

Format Abstract Code Cycle T Bit

MULU.W Rm,Rn
MULU Rm,Rn

Unsigned, Rn × Rm → MACL 0010nnnnmmmm1110 1 (to 3) —

Description: Performs 16-bit multiplication of the contents of general registers Rn and Rm, and
stores the 32-bit result in the MACL register. The operation is unsigned and the MACH register
data does not change.

Operation:

MULU(long m,long n) /* MULU Rm,Rn */

{

MACL=((unsigned long)(unsigned short)R[n]

*(unsigned long)(unsigned short)R[m]);

PC+=2;

}

Examples:

MULU R0,R1 ;Before execution R0 = H'00000002, R1 = H'FFFFAAAA

;After execution MACL = H'00015554

STS MACL,R0 ;Operation result



222

8.2.43 NEG (Negate): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

Description: Takes the two’s complement of data in general register Rm, and stores the result in
Rn. This effectively subtracts Rm data from 0, and stores the result in Rn.

Operation:

NEG(long m,long n) /* NEG Rm,Rn */

{

R[n]=0-R[m];

PC+=2;

}

Examples:

NEG R0,R1 ;Before execution R0 = H'00000001

;After execution R1 = H'FFFFFFFF



223

8.2.44 NEGC (Negate with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

NEGC Rm,Rn 0 – Rm – T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

Description: Subtracts general register Rm data and the T bit from 0, and stores the result in Rn.
If a borrow is generated, T bit changes accordingly. This instruction is used for inverting the sign
of a value that has more than 32 bits.

Operation:

NEGC(long m,long n) /* NEGC Rm,Rn */

{

unsigned long temp;

temp=0-R[m];

R[n]=temp-T;

if (0<temp) T=1;

else T=0;

if (temp<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;Sign inversion of R1 and R0 (64 bits)

NEGC R1,R1 ;Before execution R1 = H'00000001, T = 0

;After execution R1 = H'FFFFFFFF, T = 1

NEGC R0,R0 ;Before execution R0 = H'00000000, T = 1

;After execution R0 = H'FFFFFFFF, T = 1



224

8.2.45 NOP (No Operation): System Control Instruction

Format Abstract Code Cycle T Bit

NOP No operation 0000000000001001 1 —

Description: Increments the PC to execute the next instruction.

Operation:

NOP() /* NOP */

{

PC+=2;

}

Examples:

NOP ;Executes in one cycle



225

8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction

Format Abstract Code Cycle T Bit

NOT Rm,Rn Rm → Rn 0110nnnnmmmm0111 1 —

Description: Takes the one’s complement of general register Rm data, and stores the result in Rn.
This effectively inverts each bit of Rm data and stores the result in Rn.

Operation:

NOT(long m,long n) /* NOT Rm,Rn */

{

R[n]=~R[m];

PC+=2;

}

Examples:

NOT R0,R1 ;Before execution R0 = H'AAAAAAAA

;After execution R1 = H'55555555



226

8.2.47 OR (OR Logical) Logic Operation Instruction

Format Abstract Code Cycle T Bit

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm → (R0 +
GBR)

11001111iiiiiiii 3 —

Description: Logically ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be ORed with zero-extended 8-bit immediate
data, or 8-bit memory data accessed by using indirect indexed GBR addressing can be ORed with
8-bit immediate data.

Operation:

OR(long m,long n) /* OR Rm,Rn */

{

R[n]|=R[m];

PC+=2;

}

ORI(long i) /* OR #imm,R0 */

{

R[0]|=(0x000000FF & (long)i);

PC+=2;

}

ORM(long i) /* OR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp|=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}



227

Examples:

OR R0,R1 ;Before execution R0 = H'AAAA5555, R1 = H'55550000

;After execution R1 = H'FFFF5555

OR #H'F0,R0 ;Before execution R0 = H'00000008

;After execution R0 = H'000000F8

OR.B #H'50,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

;After execution @(R0,GBR) = H'F5



228

8.2.48 PREF (Prefetch Data to the Cache)

Format Abstract Code Cycle T Bit

PREF @Rn (Rn &0xfffffff0) → Cache

(Rn &0xfffffff0+4) → Cache

(Rn &0xfffffff0+8) → Cache

(Rn &0xfffffff0+C) → Cache

0000nnnn10000011 1 —

Description: Loads data to cache on software prefetching. 16-byte data containing the data
pointed by Rn (Cache 1 line) is loaded to the cache. Address Rn should be on longword boundary.

No address related error is detected in this instruction. In case of an error, the instruction operates
as NOP.

The destination is on-chip cache, therefore this instruction functions as an NOP instruction in
effect, that is, it never changes registers or processor status.

Operation:

PREF(long n) /*PREF*/

{

PC+=2;

}

Examples:

MOV.L SOFT_PF,R1 ;Address of R1 is SOFT_PF

PREF @R1 ;Load data from SOFT_PF to on-chip cache

.align 4

SOFT_PF: .data.1 H'12345678
.data.1 H'9ABCDEF0
.data.1 H'AAAA5555
.data.1 H'5555AAAA



229

8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

Description: Rotates the contents of general register Rn and the T bit to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-3).

LSBMSB

T
ROTCL

Figure 8-3   Rotate with Carry Left

Operation:

ROTCL(long n) /* ROTCL Rn */

{

long temp;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCL R0 ;Before execution R0 = H'80000000, T = 0

;After execution R0 = H'00000000, T = 1



230

8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

Description: Rotates the contents of general register Rn and the T bit to the  right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-4).

LSBMSB

T
ROTCR

Figure 8-4   Rotate with Carry Right

Operation:

ROTCR(long n) /* ROTCR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) temp=0;

else temp=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

if (temp==1) T=1;

else T=0;

PC+=2;

}

Examples:

ROTCR R0 ;Before execution R0 = H'00000001, T = 1

;After execution R0 = H'80000000, T = 1



231

8.2.51 ROTL (Rotate Left): Shift Instruction

Format Abstract Code Cycle T Bit

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

Description: Rotates the contents of general register Rn to the left by one bit, and stores the result
in Rn (figure 8-5). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

TROTL

Figure 8-5   Rotate Left

Operation:

ROTL(long n) /* ROTL Rn */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

if (T==1) R[n]|=0x00000001;

else R[n]&=0xFFFFFFFE;

PC+=2;

}

Examples:

ROTL R0 ;Before execution R0 = H'80000000, T = 0

;After execution R0 = H'00000001, T = 1



232

8.2.52 ROTR (Rotate Right): Shift Instruction

Format Abstract Code Cycle T Bit

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

Description: Rotates the contents of general register Rn to the right by one bit, and stores the
result in Rn (figure 8-6). The bit that is shifted out of the operand is transferred to the T bit.

LSBMSB

T
ROTR

Figure 8-6   Rotate Right

Operation:

ROTR(long n) /* ROTR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

if (T==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

ROTR R0 ;Before execution R0 = H'00000001, T = 0

;After execution R0 = H'80000000, T = 1



233

8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only)

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

RTE SSR → SR, SPC → PC 0000000000101011 4 —

Description: Returns from an exception routine. The PC and SR values are loaded from SPC and
SSR. The program continues from the address specified by the loaded PC value. RTE is a
privileged instruction and can be used in privileged mode only. If used in user mode, it causes an
illegal instruction exception.

Note: Since this is a delayed branch instruction, the instruction after RTE is executed before
branching.

No interrupts are accepted between this instruction and the one immediately following it. If the
instruction immediately following is a branch instruction, it is acknowledged as an illegal slot
instruction.

If this instruction is located in a delayed slot immediately following a delayed branch instruction,
it is acknowledged as an illegal slot instruction.

An instruction executed in a delayed slot immediately following this instruction uses the SR
restored by this instruction.

Make sure that an instruction executed in a delayed slot immediately following this instruction
does not cause an exception. Also, an instruction that manipulates the MD and BL bits of the SR
register, as well as the instruction following it, should be used with the multiplier disabled or with
fixed physical address space (P1 and P2).

Operation:

RTE() /* RTE */

{

unsigned long temp;

temp=PC;

PC=SPC;

SR=SSR;

Delay_Slot(temp+2);

}



234

Examples:

RTE ;Returns to the original routine

ADD #8,R15 ;Executes ADD before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



235

8.2.54 RTS (Return from Subroutine): Branch Instruction

Class: Delayed branch instruction

Format Abstract Code Cycle T Bit

RTS PR → PC 0000000000001011 2 —

Description: Returns from a subroutine procedure. The PC values are restored from the PR, and
the program continues from the address specified by the restored PC value. This instruction is used
to return to the program from a subroutine program called by a BSR or JSR instruction.

Note: Since this is a delayed branch instruction, the instruction after this RTS is executed before
branching. No interrupts are accepted between this instruction and the next instruction. If the next
instruction is a branch instruction, it is acknowledged as an illegal slot instruction. If this
instruction is located in a delayed slot immediately following a delayed branch instruction, it is
acknowledged as an illegal slot instruction. An instruction restoring the PR should be prior to an
RTS instruction. That restoring instruction should not be the delay slot of the RTS.

Operation:

RTS() /* RTS */

{

unsigned long temp;

temp=PC;

PC=PR+4;

Delay_Slot(temp+2);

}



236

Examples:

MOV.L TABLE,R3 ;R3 = Address of TRGET

JSR @R3 ;Branches to TRGET

NOP ;Executes NOP before branching

ADD R0,R1 ;← Return address for when the subroutine
;procedure is completed (PR data)

   .............

TABLE: .data.l TRGET ;Jump table

   .............

TRGET: MOV R1,R0 ;← Procedure entrance

RTS ;PR data → PC

MOV #12,R0 ;Executes MOV before branching

Note: In delayed branching, the branching operation itself takes place after the slot instruction
has been executed. However, execution of instructions (register updating, etc.) should
always be done in the sequence of delayed branch instruction followed by delayed slot
instruction. For example, even if a delayed slot updates a register in which the branching
destination address is stored, the contents of the register before updating will be used as
the branching destination address.



237

8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction (SH3-DSP Only)

Format Abstract Code Cycle T Bit

SETRC Rm LSW of Rm → RC (MSW of SR),
Repeat control flag → RF1, RF0

0100mmmm00010100 3 —

SETRC #imm imm → RC (MSW of SR),
Repeat control flag → RF1, RF0

10000010iiiiiiii 3 —

Description: Sets the repeat count to the SR register’s RC counter. When the operand is a register,
the bottom 12 bits are used as the repeat count. When the operand is an immediate data value, 8
bits are used as the repeat count. Set repeat control flags to RF1, RF0 bits of the SR register. Use
of the SETRC instruction is subject to any limitations. Refer to section 5.12, DSP Repeat (Loop)
Control, for more information.

Operation:

SETRC(long m) /* SETRC Rm */

{

long temp;

temp=(R[m] & 0x00000FFF)<<16;

SR&=0xF000FFF3;

SR|=temp;

RF1=Repeat_Control_Flag1;

RF0=Repeat_Control_Flag0;

PC+=2;

}

SETRCI(long i) /* SETRC #imm */

{

long temp;

temp=((long)i & 0x000000FF)<<16;

SR&=0xF000FFFF;

SR|=temp;

RF1=Repeat_Control_Flag1;

RF0=Repeat_Control_Flag0;

PC+=2;

}



238

SETRC #imm

7 0

SETRC Rn

imm

SR

8 bits

31 12 11 0

Rn

SR

1 ≤ imm  ≤ 255 1 ≤ Rm [11:0]  ≤ 4095

12 bits

31 27 23 16 15 0

0 8 bits 12 bits

31 27 16 15 0

Repeat control flag Repeat control flag

3 2 3 2

Figure 8-7   SETRC Instruction

Example:

LDRS STA ;Set repeat start address to RS.

LDRE END ;Set repeat end address to RE.

SETRC #32 ;Repeat 32 times from inst.A to inst.C.

inst.0 ;

STA: inst.A ;

inst.B ;

............

END: inst.C ;

inst.D ;



239

8.2.56 SETS (Set S Bit): System Control Instruction

Format Abstract Code Cycle T Bit

SETS 1 → S 0000000001011000 1 —

Description: Sets the S bit to 1.

Operation:

SETT() /* SETS */

{

S=1;

PC+=2;

}

Examples:

SETS ;Before execution S = 0

;After execution S = 1



240

8.2.57 SETT (Set T Bit): System Control Instruction

Format Abstract Code Cycle T Bit

SETT 1 → T 0000000000011000 1 1

Description: Sets the T bit to 1.

Operation:

SETT() /* SETT */

{

T=1;

PC+=2;

}

Examples:

SETT ;Before execution T = 0

;After execution T = 1



241

8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction

Format Abstract Code Cycle T Bit

SHAD Rm,Rn Rn << Rm → Rn (Rm ≥ 0)

Rn >> Rm → [MSB → Rn]

0100nnnnmmmm1100 2 —

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and the number of bits to be shifted.

• If the value of the Rm register is positive, the shift is to the left, if it is negative the shift is to the
right.

• The number of bits to be shifted is indicated by the five lower bits (bits 4 to 0) of the Rm
register. If the value is negative (MSB = 1), the Rm register is indicated with a complement of
2. The magnitude of left shift may be 0 to 31, and the magnitude of right shift may be 1 to 32.

0

MSB LSB

Rm ≥ 0

MSB

MSB LSB

Rm < 0

Figure 8-8   Shift Arithmetic Dynamically



242

Operation:

SHAD(long m,n) /* SHAD Rm,Rn */

{

long cont, sgn;

sgn = R[m] &0x80000000;

cnt = R[m] &0x0000001F;

if (sgn==0) R[n]<<=cnt;

else R[n]=(signed long)R[n]>>((~cnt+1) & 0x1F); /*shift

arithmetic right*/

PC+=2;

}

Examples:

SHAD R1,R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

;After execution R1 = H'FFFFFFEC, R2 = H'FFFFF801

SHAD R3,R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

;After execution R3 = H'00000014, R4 = H'80100000



243

8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction

Format Abstract Code Cycle T Bit

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

Description: Arithmetically shifts the contents of general register Rn to the left by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-9).

LSBMSB

T 0SHAL

Figure 8-9   Shift Arithmetic Left

Operation:

SHAL(long n) /* SHAL Rn (Same as SHLL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHAL R0 ;Before execution R0 = H'80000001, T = 0

;After execution R0 = H'00000002, T = 1



244

8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

Description: Arithmetically shifts the contents of general register Rn to the right by one bit, and
stores the result in Rn. The bit that is shifted out of the operand is transferred to the T bit
(figure 8-10).

LSBMSB

T
SHAR

Figure 8-10   Shift Arithmetic Right

Operation:

SHAR(long n) /* SHAR Rn */

{

long temp;

if ((R[n]&0x00000001)==0) T=0;

else T=1;

if ((R[n]&0x80000000)==0) temp=0;

else temp=1;

R[n]>>=1;

if (temp==1) R[n]|=0x80000000;

else R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHAR R0 ;Before execution R0 = H'80000001, T = 0

;After execution R0 = H'C0000000, T = 1



245

8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction

Format Abstract Code Cycle T Bit

SHLD Rm,Rn Rn << Rm → Rn (Rm ≥ 0)

Rn >> Rm → [0 → Rn]
(Rm < 0)

0100nnnnmmmm1101 1 —

Description: Arithmetically shifts the contents of general register Rn. General register Rm
indicates the shift direction and the number of bits to be shifted. The T bit is the last shifted bit of
Rn. If the value of the Rm register is positive, the shift is to the left, if it is negative the shift is to
the right. If the shift is to the right, a top bit of 0 is added.

The number of bits to be shifted is indicated by the five lower bits (bits 4 to 0) of the Rm register.
If the value is negative (MSB = 1), the Rm register is indicated with a complement of 2. The
magnitude of left shift may be 0 to 31, and the magnitude of right shift may be 1 to 32.

0

MSB LSB

Rm ≥ 0

0

MSB LSB

Rm < 0

Figure 8-11   Shift Logical Dynamically



246

Operation:

SHLD(long m,n) /* SHLD Rm,Rn */

{

long cont, sgn;

sgn = R[m]&0x80000000;

cnt = R[m]&0x0000001F);

if (sgn==0) R[n]<<=cnt;

else R[n]=R[n]>>((~cnt+1)&0x1F);

PC+=2;

}

Examples:

SHLD R1,R2 ;Before execution R1 = H'FFFFFFEC, R2 = H'80180000

;After execution R1 = H'FFFFFFEC, R2 = H'00000801

SHLD R3,R4 ;Before execution R3 = H'00000014, R4 = H'FFFFF801

;After execution R3 = H'00000014, R4 = H'80100000



247

8.2.62 SHLL (Shift Logical Left): Shift Instruction

Format Abstract Code Cycle T Bit

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

Description: Logically shifts the contents of general register Rn to the left by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 8-12).

LSBMSB

T 0SHLL

Figure 8-12   Shift Logical Left

Operation:

SHLL(long n) /* SHLL Rn (Same as SHAL) */

{

if ((R[n]&0x80000000)==0) T=0;

else T=1;

R[n]<<=1;

PC+=2;

}

Examples:

SHLL R0 ;Before execution R0 = H'80000001, T = 0

;After execution R0 = H'00000002, T = 1



248

8.2.63 SHLLn (Shift Logical Left n Bits): Shift Instruction

Format Abstract Code Cycle T Bit

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 —

Description: Logically shifts the contents of general register Rn to the left by 2, 8, or 16 bits, and
stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 8-13).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLL2

SHLL8

SHLL16

Figure 8-13   Shift Logical Left n Bits

Operation:

SHLL2(long n) /* SHLL2 Rn */

{

R[n]<<=2;

PC+=2;

}



249

SHLL8(long n) /* SHLL8 Rn */

{

R[n]<<=8;

PC+=2;

}

SHLL16(long n) /* SHLL16 Rn */

{

R[n]<<=16;

PC+=2;

}

Examples:

SHLL2 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'48D159E0

SHLL8 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'34567800

SHLL16 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'56780000



250

8.2.64 SHLR (Shift Logical Right): Shift Instruction

Format Abstract Code Cycle T Bit

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

Description: Logically shifts the contents of general register Rn to the right by one bit, and stores
the result in Rn. The bit that is shifted out of the operand is transferred to the T bit (figure 8-14).

LSBMSB

T0SHLR

Figure 8-14   Shift Logical Right

Operation:

SHLR(long n) /* SHLR Rn */

{

if ((R[n]&0x00000001)==0) T=0;

else T=1;

R[n]>>=1;

R[n]&=0x7FFFFFFF;

PC+=2;

}

Examples:

SHLR R0 ;Before execution R0 = H'80000001, T = 0

;After execution R0 = H'40000000, T = 1



251

8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction

Format Abstract Code Cycle T Bit

SHLR2 Rn Rn>>2 → Rn 0100nnnn00001001 1 —

SHLR8 Rn Rn>>8 → Rn 0100nnnn00011001 1 —

SHLR16 Rn Rn>>16 → Rn 0100nnnn00101001 1 —

Description: Logically shifts the contents of general register Rn to the right by 2, 8, or 16 bits,
and stores the result in Rn. Bits that are shifted out of the operand are not stored (figure 8-15).

0

0

0

MSB LSB

MSB LSB

MSB LSB

SHLR2

SHLR8

SHLR16

Figure 8-15   Shift Logical Right n Bits

Operation:

SHLR2(long n) /* SHLR2 Rn */

{

R[n]>>=2;

R[n]&=0x3FFFFFFF;

PC+=2;

}



252

SHLR8(long n) /* SHLR8 Rn */

{

R[n]>>=8;

R[n]&=0x00FFFFFF;

PC+=2;

}

SHLR16(long n) /* SHLR16 Rn */

{

R[n]>>=16;

R[n]&=0x0000FFFF;

PC+=2;

}

Examples:

SHLR2 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'048D159E

SHLR8 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'00123456

SHLR16 R0 ;Before execution R0 = H'12345678

;After execution R0 = H'00001234



253

8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit

SLEEP Sleep 0000000000011011 4 —

Description: Sets the CPU into power-down mode. In power-down mode, instruction execution
stops, but the CPU module status is maintained, and the CPU waits for an interrupt request. If an
interrupt is requested, the CPU exits the power-down mode and begins exception processing.

SLEEP is a privileged instruction and can be used in privileged mode only. If used in user mode, it
causes an illegal instruction exception.

Note: The number of cycles given is for the transition to sleep mode.

Operation:

SLEEP()/* SLEEP */

{

PC-=2;

Error(“Sleep Mode.”);

}

Examples:

SLEEP ;Enters power-down mode



254

8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only)

Format Abstract Code Cycle T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 —

STC SSR,Rn SSR → Rn 0000nnnn00110010 1 —

STC SPC,Rn SPC → Rn 0000nnnn01000010 1 —

STC MOD,Rn*1 MOD → Rn 0000nnnn01010010 1 —

STC RE,Rn*1 RE → Rn 0000nnnn01110010 1 —

STC RS,Rn*1 RS → Rn 0000nnnn01100010 1 —

STC R0_BANK,Rn R0_BANK → Rn 0000nnnn10000010 1 —

STC R1_BANK,Rn R1_BANK → Rn 0000nnnn10010010 1 —

STC R2_BANK,Rn R2_BANK → Rn 0000nnnn10100010 1 —

STC R3_BANK,Rn R3_BANK → Rn 0000nnnn10110010 1 —

STC R4_BANK,Rn R4_BANK → Rn 0000nnnn11000010 1 —

STC R5_BANK,Rn R5_BANK → Rn 0000nnnn11010010 1 —

STC R6_BANK,Rn R6_BANK → Rn 0000nnnn11100010 1 —

STC R7_BANK,Rn R7_BANK → Rn 0000nnnn11110010 1 —

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 1/2*2 —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 1/2*2 —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 1/2*2 —

STC.L SSR,@-Rn Rn – 4 → Rn, SSR → (Rn) 0100nnnn00110011 1/2*2 —

STC.L SPC,@-Rn Rn – 4 → Rn, SPC → (Rn) 0100nnnn01000011 1/2*2 —

STC.L MOD,@-Rn*1 Rn – 4 → Rn, MOD → (Rn) 0100nnnn01010011 2 —

STC.L RE,@-Rn*1 Rn – 4 → Rn, RE → (Rn) 0100nnnn01110011 2 —

STC.L RS,@-Rn*1 Rn – 4 → Rn, RS → (Rn) 0100nnnn01100011 2 —

STC.L R0_BANK,@-Rn Rn – 4 → Rn, R0_BANK →
(Rn)

0100nnnn10000011 2 —

STC.L R1_BANK,@-Rn Rn – 4 → Rn, R1_BANK →
(Rn)

0100nnnn10010011 2 —

STC.L R2_BANK,@-Rn Rn – 4 → Rn, R2_BANK →
(Rn)

0100nnnn10100011 2 —

STC.L R3_BANK,@-Rn Rn – 4 → Rn, R3_BANK →
(Rn)

0100nnnn10110011 2 —



255

Format Abstract Code Cycle T Bit

STC.L R4_BANK,@-Rn Rn – 4 → Rn, R4_BANK →
(Rn)

0100nnnn11000011 2 —

STC.L R5_BANK,@-Rn Rn – 4 → Rn, R5_BANK →
(Rn)

0100nnnn11010011 2 —

STC.L R6_BANK,@-Rn Rn – 4 → Rn, R6_BANK →
(Rn)

0100nnnn11100011 2 —

STC.L R7_BANK,@-Rn Rn – 4 → Rn, R7_BANK →
(Rn)

0100nnnn11110011 2 —

Notes: 1. SH3-DSP only.
2. Two cycles on the SH3-DSP.

Description: Stores data from control registers SR, GBR, VBR, SSR, SPC, MOD, RE and RS, or
R0_BANK to R7_BANK to a specified location. STC and STC.L, except for STC GBR, Rn and
STC.L GBR, @-Rn, are privileged instructions and can be used in privileged mode only. If used in
user mode, they can cause illegal instruction exceptions. Note that STC GBR, Rn and STC.L
GBR, @-Rn can be used in user mode.

The Rm_BANK operand is designated by the RB bit of the SR register. When the value of the RB
bit is 1, the R0_BANK1 to R7_BANK1 registers and the R8 to R15 registers are used as the Rn
operand, and the R0_BANK0 to R7_BANK0 registers are used as the Rm_BANK operand. When
the value of the RB bit is 0, the R0_BANK0 to R7_BANK0 registers and the R8 to R15 registers
are used as the Rn operand, and the R0_BANK1 to R7_BANK1 registers are used as the
Rm_BANK operand.

Operation:

STCSR(long n) /* STC SR,Rn */

{

R[n]=SR;

PC+=2;

}

STCGBR(long n) /* STC GBR,Rn */

{

R[n]=GBR;

PC+=2;

}



256

STCVBR(long n) /* STC VBR,Rn */

{

R[n]=VBR;

PC+=2;

}

STCSSR(long n) /* STC SSR,Rn */

{

R[n]=SSR;

PC+=2;

}

STCSPC(long n) /* STC SPC,Rn */

{

R[n]=SPC;

PC+=2;

}

STCRn_BANK(long n) /* STC Rn_BANK,Rm */

{ /* n=0–7 */

R[n]=Rn_BANK;

PC+=2;

}

STCMSR(long n) /* STC.L SR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

STCMGBR(long n) /* STC.L GBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],GBR);

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{



257

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

STCMSSR(long n) /* STC.L SSR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SSR);

PC+=2;

}

STCMSPC(long n) /* STC.L SPC,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SPC);

PC+=2;

}

STCMRm(long n) /* STC.L Rm_BANK,@-Rnn */

/* n=0–7 */

{

R[n]-=4;

Write_Long(R[n],Rm_BANK);

PC+=2;

}

STCMOD(long n) /* STC MOD,Rn */

{

R[n]=MOD;

PC+=2;

}

STCRE(long n) /* STC RE,Rn */

{

R[n]=RE;

PC+=2;

}



258

STCRS(long n) /* STC RS,Rn */

{

R[n]=RS;

PC+=2;

}

STCMVBR(long n) /* STC.L VBR,@-Rn */

{

R[n]-=4;

Write_Long(R[n],VBR);

PC+=2;

}

STCMMOD(long n) /* STC.L MOD,@-Rn */

{

R[n]-=4;

Write_Long(R[n],MOD);

PC+=2;

}

STCMRE(long n) /* STC.L RE,@-Rn */

{

R[n]-=4;

Write_Long(R[n],RE);

PC+=2;

}

STCMRS(long n) /* STC.L RS,@-Rn */

{

R[n]-=4;

Write_Long(R[n],SR);

PC+=2;

}

Examples:

STC SR,R0 ;Before execution R0 = H'FFFFFFFF, SR = H'00000000

;After execution R0 = H'00000000

STC.L GBR,@-R15 ;Before execution R15 = H'10000004

;After execution R15 = H'10000000, @R15 = GBR



259

8.2.68 STS (Store System Register): System Control Instruction

Format Abstract Code Cycle T Bit

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS DSR,Rn* DSR → Rn 0000nnnn01101010 1 —

STS A0,Rn* A0 → Rn 0000nnnn01111010 1 —

STS X0,Rn* X0→Rn 0000nnnn10001010 1 —

STS X1,Rn* X1→Rn 0000nnnn10011010 1 —

STS Y0,Rn* Y0→Rn 0000nnnn10101010 1 —

STS Y1,Rn* Y1→Rn 0000nnnn10111010 1 —

STS.L MACH,@–Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@–Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@–Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 1 —

STS.L DSR,@–Rn* Rn – 4 → Rn, DSR → (Rn) 0100nnnn01100010 1 —

STS.L A0,@–Rn* Rn – 4 → Rn, A0 → (Rn) 0100nnnn01100010 1 —

STS.L X0,@-Rn* Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 —

STS.L X1,@-Rn* Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 —

STS.L Y0,@-Rn* Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS.L Y1,@-Rn* Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

Note: * SH3-DSP only.

Description: Stores system registers MACH, MACL, PR, DSP, A0, X0, X1, Y0, and Y1 data into
a specified destination.

Note: In the case of system register MACH, the 32-bit contents is stored unchanged.

Operation:

STSMACH(long n) /* STS MACH,Rn */

{

R[n]=MACH;

if ((R[n]&0x00000200)==0)

R[n]&=0x000003FF;

else R[n]|=0xFFFFFC00;

PC+=2;

}



260

STSMACL(long n) /* STS MACL,Rn */

{

R[n]=MACL;

PC+=2;

}

STSPR(long n) /* STS PR,Rn */

{

R[n]=PR;

PC+=2;

}

STSMMACH(long n) /* STS.L MACH,@–Rn */

{

R[n]–=4;

if ((MACH&0x00000200)==0)

Write_Long(R[n],MACH&0x000003FF);

else Write_Long (R[n],MACH|0xFFFFFC00)

PC+=2;

}

STSMMACL(long n) /* STS.L MACL,@–Rn */

{

R[n]–=4;

Write_Long(R[n],MACL);

PC+=2;

}

STSMPR(long n) /* STS.L PR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],PR);

PC+=2;

}

STSDSR(long n) /* STS DSR,Rn */

{

R[n]=DSR;

PC+=2;

}



261

STSA0(long n) /* STS A0,Rn */

{

R[n]=A0;

PC+=2;

}

STSX0(long n) /* STS X0,Rn */

{

R[n]=X0;

PC+=2;

}

STSX1(long n) /* STS X1,Rn */

{

R[n]=X1;

PC+=2;

}

STSY0(long n) /* STS Y0,Rn */

{

R[n]=Y0;

PC+=2;

}

STSY1(long n) /* STS Y1,Rn */

{

R[n]=Y1;

PC+=2;

}

STSMDSR(long n) /* STS.L DSR,@–Rn */

{

R[n]–=4;

Write_Long(R[n],DSR);

PC+=2;

}



262

STSMA0(long n) /* STS.L A0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],A0);

PC+=2;

}

STSMX0(long n) /* STS.L X0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],X0);

PC+=2;

}

STSMX1(long n) /* STS.L X1,@–Rn */

{

R[n]–=4;

Write_Long(R[n],X1);

PC+=2;

}

STSMY0(long n) /* STS.L Y0,@–Rn */

{

R[n]–=4;

Write_Long(R[n],Y0);

PC+=2;

}

STSMY1(long n) /* STS.L Y1,@–Rn */

{

R[n]–=4;

Write_Long(R[n],Y1);

PC+=2;

}



263

Examples:

STS MACH,R0 ;Before execution R0 = H'FFFFFFFF, MACH = H'00000000

;After execution R0 = H'00000000

STS.L PR,@–R15 ;Before execution R15 = H'10000004

;After execution R15 = H'10000000, @R15 = PR



264

8.2.69 SUB (Subtract Binary): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

Description: Subtracts general register Rm data from Rn data, and stores the result in Rn. To
subtract immediate data, use ADD #imm,Rn.

Operation:

SUB(long m,long n) /* SUB Rm,Rn */

{

R[n]-=R[m];

PC+=2;

}

Examples:

SUB R0,R1 ;Before execution R0 = H'00000001, R1 = H'80000000

;After execution R1 = H'7FFFFFFF



265

8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUBC Rm,Rn Rn – Rm– T → Rn, Borrow → T 0011nnnnmmmm1010 1 Borrow

Description: Subtracts Rm data and the T bit value from general register Rn data, and stores the
result in Rn. The T bit changes according to the result. This instruction is used for subtraction of
data that has more than 32 bits.

Operation:

SUBC(long m,long n) /* SUBC Rm,Rn */

{

unsigned long tmp0,tmp1;

tmp1=R[n]-R[m];

tmp0=R[n];

R[n]=tmp1-T;

if (tmp0<tmp1) T=1;

else T=0;

if (tmp1<R[n]) T=1;

PC+=2;

}

Examples:

CLRT ;R0:R1(64 bits) – R2:R3(64 bits) = R0:R1(64 bits)

SUBC R3,R1 ;Before execution T = 0, R1 = H'00000000, R3 = H'00000001

;After execution T = 1, R1 = H'FFFFFFFF

SUBC R2,R0 ;Before execution T = 1, R0 = H'00000000, R2 = H'00000000

;After execution T = 1, R0 = H'FFFFFFFF



266

8.2.71 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction

Format Abstract Code Cycle T Bit

SUBV Rm,Rn Rn – Rm → Rn, Underflow → T 0011nnnnmmmm1011 1 Underflow

Description: Subtracts Rm data from general register Rn data, and stores the result in Rn. If an
underflow occurs, the T bit is set to 1.

Operation:

SUBV(long m,long n) /* SUBV Rm,Rn */

{

long dest,src,ans;

if ((long)R[n]>=0) dest=0;

else dest=1;

if ((long)R[m]>=0) src=0;

else src=1;

src+=dest;

R[n]-=R[m];

if ((long)R[n]>=0) ans=0;

else ans=1;

ans+=dest;

if (src==1) {

if (ans==1) T=1;

else T=0;

}

else T=0;

PC+=2;

}

Examples:

SUBV R0,R1 ;Before execution R0 = H'00000002, R1 = H'80000001

;After execution R1 = H'7FFFFFFF, T = 1

SUBV R2,R3 ;Before execution R2 = H'FFFFFFFE, R3 = H'7FFFFFFE

;After execution R3 = H'80000000, T = 1



267

8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction

Format Abstract Code Cycle T Bit

SWAP.B Rm,Rn Rm → Swap upper and lower
halves of lower 2 bytes → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1001 1 —

Description: Swaps the upper and lower bytes of the general register Rm data, and stores the
result in Rn. If a byte is specified, bits 0 to 7 of Rm are swapped for bits 8 to 15. The upper 16 bits
of Rm are transferred to the upper 16 bits of Rn. If a word is specified, bits 0 to 15 of Rm are
swapped for bits 16 to 31.

Operation:

SWAPB(long m,long n) /* SWAP.B Rm,Rn */

{

unsigned long temp0,temp1;

temp0=R[m]&0xffff0000;

temp1=(R[m]&0x000000ff)<<8;

R[n]=(R[m]&0x0000ff00)>>8;

R[n]=R[n]|temp1|temp0;

PC+=2;

}

SWAPW(long m,long n) /* SWAP.W Rm,Rn */

{

unsigned long temp;

temp=(R[m]>>16)&0x0000FFFF;

R[n]=R[m]<<16;

R[n]|=temp;

PC+=2;

}

Examples:

SWAP.B R0,R1 ;Before execution R0 = H'12345678

;After execution R1 = H'12347856

SWAP.W R0,R1 ;Before execution R0 = H'12345678

;After execution R1 = H'56781234



268

8.2.73 TAS (Test and Set): Logic Operation Instruction

Format Abstract Code Cycle T Bit

TAS.B @Rn When (Rn) is 0, 1 → T, 1 → MSB of (Rn) 0100nnnn00011011 3/4* Test
results

Note: * Four cycles on the SH3-DSP.

Description: Reads byte data from the address specified by general register Rn, and sets the T bit
to 1 if the data is 0, or clears the T bit to 0 if the data is not 0. Then, data bit 7 is set to 1, and the
data is written to the address specified by Rn. During this operation, the bus is not released.

Note: The destination of the TAS instruction should be placed in a non-cacheable space when
the cache is enabled.

Operation:

TAS(long n) /* TAS.B @Rn */

{

long temp;

temp=(long)Read_Byte(R[n]); /* Bus Lock enable */

if (temp==0) T=1;

else T=0;

temp|=0x00000080;

Write_Byte(R[n],temp); /* Bus Lock disable */

PC+=2;

}

Example:

_LOOP TAS.B @R7 ;R7 = 1000

BF _LOOP ;Loops until data in address 1000 is 0



269

8.2.74 TRAPA (Trap Always): System Control Instruction

Format Abstract Code Cycle T Bit

TRAPA #imm imm → TRA,

PC → SPC,

SR → SSR,

1 → SR.MD/BL/RB

0x160 → EXPEVT

VBR + H'00000100 → PC

11000011iiiiiiii 6/8* —

Note: * Eight cycles on the SH3-DSP.

Description: Starts the trap exception processing. The PC and SR values are saved in SPC and
SSR. Eight-bit immediate data is stored in the TRA registers (TRA9 to TRA2). The processor
goes into privileged mode (SR.MD = 1) with SR.BL = 1 and SR.RB = 1, that is, blocking
exceptions and masking interrupts, and selecting BANK1 registers (R0_BANK1 to R7_BANK1).
Exception code 0x160 is stored in the EXPEVT register (EXPEVT11 to EXPEVT0). The program
branches to an address (VBR+H'00000100). TRAPA and RTE are both used together for system
calls.

Note: If this instruction is located in a delayed slot immediately following a delayed branch
instruction, it is acknowledged as an illegal slot instruction.

Operation:

TRAPA(long i) /* TRAPA #imm */

{

long imm;

imm=(0x000000FF & i);

TRA=imm<<2;

SSR=SR;

SPC=PC;

SR.MD=1

SR.BL=1

SR.RB=1

EXPEVT=0x00000160;

PC=VBR+H'00000100;

}



270

8.2.75 TST (Test Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

TST Rm,Rn Rn & Rm, when result is 0,
1 → T

0010nnnnmmmm1000 1 Test
results

TST #imm,R0 R0 & imm, when result is 0,
1 → T

11001000iiiiiiii 1 Test
results

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

Description: Logically ANDs the contents of general registers Rn and Rm, and sets the T bit to 1
if the result is 0 or clears the T bit to 0 if the result is not 0. The Rn data does not change. The
contents of general register R0 can also be ANDed with zero-extended 8-bit immediate data, or the
contents of 8-bit memory accessed by indirect indexed GBR addressing can be ANDed with 8-bit
immediate data. The R0 and memory data do not change.

Operation:

TST(long m,long n) /* TST Rm,Rn */

{

if ((R[n]&R[m])==0) T=1;

else T=0;

PC+=2;

}

TSTI(long i) /* TEST #imm,R0 */

{

long temp;

temp=R[0]&(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}



271

TSTM(long i) /* TST.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp&=(0x000000FF & (long)i);

if (temp==0) T=1;

else T=0;

PC+=2;

}

Examples:

TST R0,R0 ;Before execution R0 = H'00000000

;After execution T = 1

TST #H'80,R0 ;Before execution R0 = H'FFFFFF7F

;After execution T = 1

TST.B #H'A5,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

;After execution T = 0



272

8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction

Format Abstract Code Cycle T Bit

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiiii 3 —

Description: Exclusive ORs the contents of general registers Rn and Rm, and stores the result in
Rn. The contents of general register R0 can also be exclusive ORed with zero-extended 8-bit
immediate data, or 8-bit memory accessed by indirect indexed GBR addressing can be exclusive
ORed with 8-bit immediate data.

Operation:

XOR(long m,long n) /* XOR Rm,Rn */

{

R[n]^=R[m];

PC+=2;

}

XORI(long i) /* XOR #imm,R0 */

{

R[0]^=(0x000000FF & (long)i);

PC+=2;

}

XORM(long i) /* XOR.B #imm,@(R0,GBR) */

{

long temp;

temp=(long)Read_Byte(GBR+R[0]);

temp^=(0x000000FF & (long)i);

Write_Byte(GBR+R[0],temp);

PC+=2;

}



273

Examples:

XOR R0,R1 ;Before execution R0 = H'AAAAAAAA, R1 = H'55555555

;After execution R1 = H'FFFFFFFF

XOR #H'F0,R0 ;Before execution R0 = H'FFFFFFFF

;After execution R0 = H'FFFFFF0F

XOR.B #H'A5,@(R0,GBR) ;Before execution @(R0,GBR) = H'A5

;After execution @(R0,GBR) = H'00



274

8.2.77 XTRCT (Extract): Data Transfer Instruction

Format Abstract Code Cycle T Bit

XTRCT Rm,Rn Rm: Center 32 bits of Rn → Rn 0010nnnnmmmm1101 1 —

Description: Extracts the middle 32 bits from the 64 bits of general registers Rm and Rn, and
stores the 32 bits in Rn (figure 8-16).

Rm Rn

Rn

MSB MSBLSB LSB

Figure 8-16   Extract

Operation:

XTRCT(long m,long n) /* XTRCT Rm,Rn */

{

unsigned long temp;

temp=(R[m]<<16)&0xFFFF0000;

R[n]=(R[n]>>16)&0x0000FFFF;

R[n]|=temp;

PC+=2;

}

Example:

XTRCT R0,R1 ;Before execution R0 = H'01234567, R1 = H'89ABCDEF

;After execution R1 = H'456789AB



275

8.3 Floating Point Instructions and FPU Related CPU Instructions
(SH-3E Only)

The functions used in the descriptions of the operation of FPU calculations are as follows.

long FPSCR;

int T;

int load_long(long *adress, *data)

{

          /* This function is defined in CPU part */

}

int store_long(long *adress, *data)

{

          /* This function is defined in CPU part */

}

int sign_of(long *src)

{

          return(*src >> 31);

}

int data_type_of(long *src)

{

float abs;

          abs = *src & 0x7fffffff;

          if(abs < 0x00800000) {

             if(sign_of (src) == 0) return(PZERO);

             else                   return(NZERO);

}

 else if((0x00800000 <= abs) && (abs < 0x7f800000))

                                    return(NORM);

 else if(0x7f800000 == abs) {

             if(sign_of (src) == 0) return(PINF);

             else                   return(NINF);

          }

 else if(0x00400000 & abs)          return(sNaN);

 else                               return(qNaN);

          }

}



276

clear_cause_VZ(){ FPSCR &= (~CAUSE_V & ~CAUSE_Z); }

set_V(){ FPSCR Ω= (CAUSE_V Ω FLAG_V); }

set_Z(){ FPSCR Ω= (CAUSE_Z Ω FLAG_Z); }

invalid(float *dest)

{

 set_V();

 if((FPSCR & ENABLE_V) == 0) qnan(dest);

 }

}

dz(float *dest, int sign)

{

 set_Z();

 if((FPSCR & ENABLE_Z) == 0) inf (dest,sign);

}

zero(float *dest, int sign)

{

             if(sign == 0)          *dest = 0x00000000;

             else                   *dest = 0x80000000;

}

int(float *dest, int sign)

{

             if(sign == 0)          *dest = 0x7f800000;

             else                   *dest = 0xff800000;

}

qnan(float *dest)

{

             *dest = 0x7fbfffff;

}



277

8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FABS FRn |FRn| → FRn 1111nnnn01011101 2 1 —

Description:  Obtains arithmetic absolute value (as a floating point number) of the contents of
floating point register FRn. The calculation result is stored in FRn.

Operation:

FABS(float *Frn)  /* FABS FRn */

{

 clear_cause_VZ();

 case(data_type_of(FRn))                    {

         NORM:     if(sign_of(FRn) == 0)    *FRn = *FRn;

                   else                     *FRn = -*FRn;

                                                             break;

         PZERO :

         NZERO :   zero(FRn,0);                              break;

         PINF  :

         NINF  :   inf(FRn,0);                               break;

         qnan  :   qnan(FRn);                                break;

         sNaN  :   invalid(FRn);                             break;

 }

 pc += 2;

}

FABS Special Cases

FRn NORM +0 –0 +INF –INF qNaN sNaN

FABS(FRn) ABS +0 +0 +INF +INF qNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Examples:

         FABS  FR2 ; Floating point absolute value

; Before execution FR2=H'C0800000/*–4 in base 10*/

; After execution FR2=H'40800000/*4 in base 10*/



278

8.3.2 FADD (Floating Point Add): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FADD FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 2 1 —

Description:  Arithmetically adds (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FADD (float *FRm,FRn)                       /* FADD FRm,FRn */

{

       clear_cause_VZ();

       if((data_type_of(FRm) = = sNaN)      ||

                (data_type_of(FRn) = = sNaN))             invalid(FRn);

       else if((data_type_of(FRm) = = qNaN) ||

                (data_type_of(FRn) = = qNaN))             qnan(FRn);

       else case(data_type_of(FRm))         {

   NORM:

     case(data_type_of(FRn))                {

        PINF      :        inf(FRn,0);                    break;

        NINF      :        inf(FRn,1);                    break;

        default   :        *FRn = *FRn + *FRm;            break;

    }                                                     break;

   PZERO:

     case(data_type_of(FRn))                {

        NORM      :        *FRn = *FRn + *FRm;            break;

        PZERO     :

        NZERO     :        zero(FRn,0);                   break;

        PINF      :        inf(FRn,0);                    break;

        NINF      :        inf(FRn,1);                    break;

     }                                                    break;

   NZERO:

     case(data_type_of(FRn)){

        NORM      :        *FRn = *FRn + *FRm;            break;

        PZERO     :        zero(FRn,0);                   break;

        NZERO     :        zero(FRn,1);                   break;

        PINF      :        inf(FRn,0);                    break;

        NINF      :        inf(FRn,1);                    break;



279

     }                                                    break;

   PINF:

     case(data_type_of(FRn))                {

        NINF      :        invalid(FRn);                  break;

        default   :        inf(FRn,0);                    break;

     }                                                    break;

   NINF:

     case(data_type_of(FRn)){

        PINF      :        invalid(FRn);                  break;

        default   :        inf(FRn,1);                    break;

     }                                                    break;

  }

    pc += 2;

}

FADD Special Cases

FRm FRn

NORM +0 –0 +INF –INF qNaN sNaN

NORM ADD –INF

+0 +0

–0 –0

+INF +INF Invalid

–INF –INF Invalid –INF

qNaN qNaN

sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation



280

Examples:

FADD   FR2,FR3           ; Floating point add

                         ; Before execution: FR2=H'40400000/*3 in base 10*/

                         ; FR3=H'3F800000/*1 in base 10*/

                         ; After execution: FR2=H'40400000

                         ; FR3=H'40800000/*4 in base 10*/

FADD   FR5,FR4           ;

                         ; Before execution: FR5=H'40400000/*3 in base 10*/

                         ; FR4=H'C0000000/*–2 in base 10*/

                         ; After execution: FR5=H'40400000

                         ; FR4=H'3F800000/*1 in base 10*/



281

8.3.3 FCMP (Floating Point Compare): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FCMP/EQ FRm,FRn (FRn==FRm)?
1:0 → T

1111nnnnmmmm0100 2 1 Comparison
result

FCMP/GT FRm,FRn (FRn>  FRm)?
1:0 → T

1111nnnnmmmm0101 2 1 Comparison
result

Description:  Arithmetically compares (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result (true/false) is written to the T bit.

Operation:

FCMP_EQ(float *FRm,FRn)    /* FCMP/EQ FRm,FRn */

{

           clear_cause_VZ();

           if (fcmp_chk(FRm,FRn) = = INVALID) {fcmp_invalid(0); }

           else if(fcmp_chk(FRm,FRn) = = EQ)        T = 1;

           else                                     T = 0;

           pc += 2;

}

FCMP_GT(float *FRm,FRn)    /* FCMP/GT FRm,FRn */

{

           clear_cause_VZ();

           if (fcmp_chk(FRm,FRn)==INVALID)||{fcmp_chk(FRm,FRn)==UO)){

           fcmp_invalid(0):}

           else if(fcmp_chk(FRm,FRn) = = GT)        T = 1;

           else                              T = 0;

           pc += 2;

}

fcmp_chk(float *FRm,*FRn)

{

           if((data_type_of(FRm) == sNaN) ||

            (data_type_of(FRn) == sNaN))     return(INVALID);

   else    if((data_type_of(FRm) == qNaN) ||

           (data_type_of(FRn) == qNaN))      return(UO);

  else     case(data_type_of(FRm))             {

           NORM             :case(data_type_of(FRn))          {

                            PINF             :return(GT);       break;



282

                            NINF             :return(NOTGT);    break;

                            default          :                  break;

           }                                                    break;

           PZERO            :

           NZERO     :      case(data_type_of(FRn))     {

                            PZERO            :

                            NZERO            :return(EQ);       break;

                            PINF             :return(GT);       break;

                            NINF             :return(NOTGT);    break;

                            default          :                  break;

           }                                                    break;

           PINF      :      case(data_type_of(FRn))     {

                            PINF             :return(EQ)        break;

                            default          :return(NOTGT);    break;

           }                                                    break;

           NINF      :      case(data_type_of(FRn))     {

                            NINF             :return(EQ);       break;

                            default          :return(GT);       break;

           }                                                    break;

  }

  if(*FRn = = *FRm)                          return(EQ);

  else if(*FRn > *FRm)                       return(GT);

  else                                       return(NOTGT);

}

fcmp_invalid(int cmp_flag)

{

  set_V();

  if((FPSCR & ENABLE_V) = = 0)  T = cmp_flag;

}



283

FCMP Special Cases

FRm FRn

NORM +0 –0 +INF –INF qNaN sNaN

NORM CMP GT !GT

+0 EQ

–0

+INF !GT EQ

–INF GT EQ

qNaN UO

sNaN Invalid

Notes: 1. UO if result is FCMP/EQ, invalid if result is FCMP/GT.
2. Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Note: Four comparison operations that are independent of each other are defined in the IEEE
standard, but the SH-3E supports FCMP/EQ and FCMP/GT only. However, all
comparison conditions can be supported by using these two FCMP instructions in
combination with the BT and BF instructions.

        (FRm = = FRn)           fcmp/eq FRm, FRn ; bt

        (FRm ! = FRn)           fcmp/eq FRm, FRn ; bf

        (FRm < FRn)             fcmp/gt FRm, FRn ; bt

        (FRm <= FRn)            fcmp/gt FRn, FRm ; bt

        (FRm > FRn)             fcmp/gt FRn, FRm ; bt

        (FRm >= FRn)            fcmp/gt FRm, FRn ; bf

Unorder FRm, FRn                fcmp/eq FRm, FRm ; bf

Examples:

  FCMP/EQ:

        FLDI1         FR6 ;FR6=H'3F800000/*1 in base 10*/

        FLDI1         FR7 ;FR7=H'3F800000

        CLRT ;T Bit =0

        FCMP/EQ       FR6,FR7 ; Floating point compare, equal

        BF            TRGET_F ; Don't branch (T=1)

        NOP

        BT/S          TRGET_T ; Branch

        FADD          FR6,FR7 ; Delay slot, FR7=H'40000000/*2 in base 10*/



284

        NOP

TRGET_F FCMP/EQ       FR6,FR7

        BT/S  TRGET_T ; Don't branch (T=0)

        FLDI1         FR7 ; Delay slot

TRGET_T FCMP/EQ       FR6,FR7 ; T bit = 0

        BF TRGET_F ; Branch first time only

        NOP ;FR6=FR7=H'3F800000/*1 in base 10*/

        .END

  FCMP/GT:

        FLDI1         FR2 ;FR2=H'3F800000/*1 in base 10*/

        FLDI1         FR7

        FADD          FR2,FR7 ;FR7=H'40000000/*2 in base 10*/

        CLRT ; T bit = 0

        FCMP/GT       FR2,FR7 ; Floating point compare, greater than

        BT/S          TRGET_T ; Branch (T=1)

        FLDI1         FR7

TRGET_T FCMP/GT       FR2,FR7 ; T bit = 0

        BT            TRGET_T ; Don't branch (T=0)

        .END



285

8.3.4 FDIV (Floating Point Divide): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FDIV FRm, FRn FRn/FRm → FRn 1111nnnnmmmm0011 14 13 —

Description:  Arithmetically divides (as floating point numbers) the contents of floating point
register FRn by the contents of floating point register FRm. The calculation result is stored in FRn.

Operation:

FDIV(float *FRm,*FRn)   /* FDIV FRm,FRn       */

{

       clear_cause_VZ();

       if((data_type_of(FRm) = = sNaN) | |

            (data_type_of(FRn) = = sNaN))     invalid(FRn);

       else if((data_type_of(FRm) = = qNaN) | |

            (data_type_of(FRn) = = qNaN))     qnan(FRn);

       else case((data_type_of(FRm)           {

       NORM  :

       case(data_type_of(FRn))                {

             PINF     :

             NINF     :  inf(FRn,sign_of(FRm)^sign_of(FRn)); break;

             default  :  *FRn =*FRn / *FRm; break;

       } break;

       PZERO :

       NZERO :

       case(data_type_of(FRn))                {

             PZERO    :

             NZERO    :  invalid(FRn); break;

             PINF     :

             NINF     :  inf(Fn,Sign_of(FRm)^sign_of(FRn)); break;

             default  :  dz(FRn,sign_of(FRm)^sign_of(FRn)); break;

       } break;

       PINF  :

       NINF  :

       case(data_type_of(FRn))                {

             PINF     :

             NINF     :  invalid(FRn); break;

             default  :zero (FRn,sign_of(FRm)^sign_of(FRn)); break



286

break;

       }

       pc += 2;

}

FDIV Special Cases

FRm FRn

NORM +0 –0 +INF –INF qNaN sNaN

NORM DIV 0

+0 DZ Invalid INF

–0

+INF 0 +0 –0 Invalid

–INF –0 +0

qNaN qNaN

sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation, divide by zero

Examples:

FDIV    FR6, FR5 ; Floating point divide

; Before execution: ;FR5=H'40800000/*4 in base 10*/

; ;FR6=H'40400000/*3 in base 10*/

; After execution: ;FR5=H'3FAAAAAA/*1.33... in base 10*/

; ;FR6=H'40400000



287

8.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 2 1 —

Description:  Loads the floating point number 0 (0x00000000) in floating point register FRn.

Operation:

FLDI0(float *FRn) /* FLDI0 FRn */

{

           *FRn = 0x00000000;

           pc += 2;

}

Exceptions:  None

Examples:

FLDI0     FR1 ; Load immediate 0

; Before execution: FR1=x (don't care)

; After execution: FR1=00000000



288

8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 2 1 —

Description:  Loads the floating point number 1 (0x3F800000) in floating point register Frn.

Operation:

FLDI1(float *FRn) /* FLDI1 FRn */

{

         *FRn = 0x3F800000;

         pc += 2;

}

Exceptions:  None

Examples:

FLDI1    FR2 ; Load immediate 1

; Before execution: FR2=x (don't care)

; After execution: FR2=H'3F800000/*1 in base 10*/



289

8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 2 1 —

Description:  Loads the contents of floating point register FRm to system register FPUL.

Operation:

FLDS(float *FRm,*FPUL) /* FLDS FRm,FPUL */

{

           *FPUL = *FRm;

           pc += 2;

}

Exceptions:  None

Examples:

;Before execution of FLDS and FSTS:

FLDI1    FR6 ; FR6=H'3F800000/*1 in base 10*/

FLDI0    FR2 ; FR2=0

;After execution of FLDS and FSTS:

FLDS     FR6, FPUL ; FPUL=H'3F800000

FSTS     FPUL, FR2 ; FR2= H'3F800000



290

8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 2 1 —

Description:  Interprets the contents of FPUL as an integer value and converts it into a floating
point number. The result is stored in floating point register FRn.

Operation:

FLOAT(int,*FPUL,float *FRn) /* FLOAT FRn */

{

            clear_cause_VZ();

            *FRn = (float)*FPUL;

            pc += 2;

}

Exceptions:  None

Examples:

;Floating Point Convert from Integer

;Before execution of FLOAT instruction:

MOV.L    #H'00000003,R1 ; R1=H'00000003

FLDI0    FR2 ; FR2=0

;After execution of FLOAT instruction:

LDS      R1, FPUL ; FPUL=H'00000003

FLOAT    FPUL, FR2 ; FR2=H'40400000/*3 in base 10*/



291

8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FMAC FR0,
FRm,FRn

FR0 × FRm+FRn → FRn 1111nnnnmmmm1110 2 1 —

Description:  Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FR0 and FRm. To this calculation result is added the contents of floating point register
FRn, and the result is stored in FRn.

Operation:

FMAC(float *FR0,*FRm,*FRn) /* FMAC FR0,FRm,FRn */

{

long       tmp_FPSCR;

float      *tmp_FMUL = *FRm;

           FMUL(F0,tmp_FMUL);

           pc -=2; /* correct pc */

           tmp_FPSCR = FPSCR; /* save cause field for FR0*FRm */

           FADD(tmp_FMUL,FRn);

           FPSCR |= tmp_FPSCR; /* reflect cause field for F0*FRm */

}



292

FMAC Special Cases

FRn FR0 FRm

+NORM –NORM +0 –0 +INF –INF qNaN sNaN

NORM NORM MAC INF

0 Invalid

+INF +INF –INF Invalid +INF –INF

–INF –INF +INF –INF +INF

+0 NORM MAC INF

0 +0 Invalid

+INF +INF –INF Invalid +INF –INF

–INF –INF +INF –INF +INF

–0 +NORM MAC +0 –0 +INF –INF

–NORM –0 +0 –INF +INF

+0 +0 –0 +0 –0 Invalid

–0 –0 +0 –0 +0

+INF +INF –INF Invalid +INF –INF

–INF –INF +INF –INF +INF

+INF +NORM +INF Invalid

–NORM +INF

0 Invalid

+INF Invalid +INF

–INF Invalid +INF +INF

–INF +NORM –INF –INF

–NORM

0

+INF Invalid Invalid –INF

–INF –INF –INF Invalid

qNaN 0 Invalid

INF Invalid

!sNaN

!NaN qNaN qNaN

All types sNaN

sNaN All types Invalid

Note: Non-normalized values are treated as zero.



293

Exceptions:  Invalid operation

Examples:

FMAC FR0, FR3, FR5 ;Floating point multiply accumulate

FR0*FR3+FR5->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

; FR5=H'3F800000/*1 in base 10*/

;After execution: FR0=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

; FR5=H'41100000/*9 in base 10*/

FMAC FR0, FR0, FR5 ;FR0*FR0+FR5->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'3F800000/*1 in base 10*/

;After execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'40A00000/*5 in base 10*/

FMAC FR0, FR5, FR0 ;FR0*FR5+FR0->FR5

;Before execution: FR0=H'40000000/*2 in base 10*/

; FR5=H'40A00000/*5 in base 10*/

;After execution: FR0=H'41400000/*12 in base 10*/

; FR5=H'40A00000/*5 in base 10*/



294

8.3.10 FMOV (Floating Point Move): Floating Point Instruction

Format Abstract Code
Latency
(Wait Time) Cycles T Bit

1.FMOV  FRm,FRn FRm → FRn 1111nnnnmmmm1100 2 1 —

2.FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 2 1 —

3.FMOV.S FRm, @Rn FRm → (Rn) 1111nnnnmmmm1010 2 1 —

4.FMOV.S @Rm+,FRn (Rm) → FRn,

Rm+=4

1111nnnnmmmm1001 2 1 —

5.FMOV.S FRm,@-Rn Rn-=4,

FRm → (Rn)

1111nnnnmmmm1011 2 1 —

6.FMOV.S
  @(R0,Rm),FRn

(R0+Rm) → FRn 1111nnnnmmmm0110 2 1 —

7.FMOV.S FRm,
  @(R0,Rn)

FRm → (R0+Rn) 1111nnnnmmmm0111 2 1 —

Description:

1. Moves the contents of floating point register FRm to floating point register FRn.

2. Loads the contents of the memory addresses specified by general-use register Rm to floating
point register FRn.

3. Stores the contents of floating point register FRm in the memory address position specified by
general-use register Rm.

4. Loads the contents of the memory addresses specified by general-use register Rm to floating
point register FRn. After the load completes successfully, increments the value of Rm by 4.

5. Stores the contents of floating point register FRm in the memory address position specified by
general-use register Rn-4. After the store completes successfully, the decremented value (Rn-
4) becomes the value of Rm.

6. Loads the contents of the memory addresses specified by general-use registers Rm and R0 to
floating point register FRn.

7. Stores the contents of floating point register FRm in the memory address position specified by
general-use registers Rn and R0.



295

Operation:

FMOV(float *FRm,*FRn)       /* FMOV.S FRm,FRn */

{

           *FRn = *FRm;

           pc += 2;

}

FMOV_LOAD(long *Rm,float *FRn)                /* FMOV @Rm,FRn */

{           if(load_long(Rm,FRn)  !=Address_Error)

            load_long(Rm,FRn);

            pc += 2;

}

FMOV_STORE(float *FRm,long *Rn)               /* FMOV.S FRm,@Rn */

{           if(store_long(FRm,tmp_address)  !=Address_Error)

            store_long(FRm,Rn);

            pc += 2;

}

FMOV_RESTORE(long *Rm,float *FRn)             /* FMOV.S @Rm+,FRn */

{           if(load_long(Rm,FRn)  !=Address_Error)

            *Rm += 4;

            pc += 2;

}

FMOV_SAVE(float *FRm,long *Rn)                /*FMOV.S FRm,@-Rn */

{

long        *tmp_address =*Rn -4;

            if(store_long(FRm,tmp_address)  !=Address_Error)

            Rn = tmp_address;

            pc += 2;

}

FMOV_LOAD_index(long *Rm, long *R0, float *FRn)/* FMOV.S @(R0,Rm),FRn*/

{

            if (load_long(&(*Rm+*R0),FRn),  ! = Address_Error);

            pc += 2;

}

FMOV_STORE_index(float *FRm,long *R0, long *Rn)/* FMOV.S FRm,@(R0,Rn)*/



296

{

            if (store_long(FRm,&((*Rn+*R0)),  ! = Address_Error);

            pc += 2;

}

Exceptions:  Address error

Examples:

FMOV.S   @R1, FR2 ;Load

;Before execution: @R1=H'00ABCDEF

; FR2=0

;After execution: @R1=H'00ABCDEF

; FR2=H'00ABCDEF

FMOV.S   FR2, @R3 ;Store

;Before execution: @R3=0

; FR2=H'40800000

;After execution: @R3=H'40800000

; FR2=H'40800000

FMOV.S   @R3+,FR3 ;Restore

;Before execution: R3=H'0C700028

; @R3=H'40800000

; FR3=0

;After execution: R3=H'0C70002C

; FR3=H'40800000

FMOV.S   FR4, @-R3 ;Save

;Before execution: R3=H'0C700044

; @R3=0

; FR4=H'01234567

;After execution: R3=H'0C700040

; @R3=H'01234567

; FR4=H'01234567

FMOV.S   @(R0, R3), FR4 ;Load with index

;Before execution: R0=H'00000004

; R3=H'0C700040



297

; @H'0C700044=H'00ABCDEF

; FR=4

;After execution: R0=H'00000004

; R3=H'0C700040

; FR4=H'00ABCDEF

FMOV.S   FR5, @(R0,R3) ;Store with index

;Before execution: R0=H'00000028

; R3=H'0C700040

; @H'0C700068=0

; FR5=H'76543210

;After execution: R0=H'00000028

; R3=H'0C700040

; @H'0C700068=H'76543210

FMOV.S   FR5, FR6 ;Register file contents

;Before execution: FR5=H'76543210

; FR6=x(don't care)

;After execution: FR5=H'76543210

; FR6=H'76543210



298

8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 2 1 —

Description:  Arithmetically multiplies (as floating point numbers) the contents of floating point
registers FRm and FRn. The calculation result is stored in FRn.

Operation:

FMUL(float *FRm,*FRn) /* FMUL FRm,FRn */

{

           clear_cause_VZ();

           if((data_type_of(FRm) = = sNaN)       ||

                      (data_type_of(FRn) = = sNaN))    invalid(FRn);

           else if((data_type_of(FRm) = = qNaN) ||

                      (data_type_of(FRn) = = qNaN))    qnan(FRn);

else case(data_type_of(FRm)  {

           NORM       :

           case(data_type_of(FRn))  {

                    PINF   :

                    NINF   : inf(FRn,sign_of(FRm)^sign_of(FRn)); break;

                    default: *FRn=(*FRn)*(*FRm);                 break;

           }                                                     break;

           PZERO    :

           NZERO    :

           case(data_type_of(FRn))  {

                    PINF   :

                    NINF   : invalid(FRn);                       break;

                    default: zero(FRn,sign_of(FRm)^sign_of(FRn)); break;

           }                                                     break;

           PINF     :

           NINF     :

           case(data_type_of(FRn))  {

                    PZERO  :

                    NZERO  : invalid(FRn);                       break;

                    default:inf (FRn,sign_of(FRm)^sign_of(FRn)); break

           }                                                     break;

  }



299

  pc += 2;

}

FMUL Special Cases

FRm FRn

NORM +0 –0 +INF –INF qNaN sNaN

NORM MUL 0 INF

+0 0 +0 –0 Invalid

–0 –0 +0

+INF INF Invalid +INF –INF

–INF –INF +INF

qNaN qNaN

sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Examples:

FMUL    FR2, FR3 ;Floating point multiply

;Before execution: FR2=H'40000000/*2 in base 10*/

; FR3=H'40800000/*4 in base 10*/

;After execution: FR2=H'40000000

; FR3=H'41000000/*8 in base 10*/



300

8.3.12 FNEG (Floating Point Negate): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FNEG FRn -FRn → FRn 1111nnnn01001101 2 1 —

Description:  Arithmetically negates (as a floating point number) the contents of floating point
register FRn. The calculation result is stored in FRn.

Operation:

FNEG(float *FRn)        /* FNEG FRn */

{

           clear_cause_VZ();

           case(data_type_of(FRn))        {

                         qNaN    :        qnan(FRn);       break;

                         sNaN    :        invalid(FRn);    break;

                         default :        *FRn = -(*Frn);  break;

  }

  pc += 2;

}

FNEG Special Cases

FRn NORM +0 –0 +INF –INF qNaN sNaN

FNEG(FRn) NEG –0 +0 –INF +INF qNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Examples:

FNEG    FR2 ;Floating point negate

;Before execution: FR2=H'40800000/*4 in base 10*/

;After execution: FR2=H'C0800000/*–4 in base 10*/



301

8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FSQRT FRn FRn → FRn 1111nnnn01101101 14 13 —

Description:  Arithmetically obtains (as a floating point number) the square root of the contents of
floating point register FRn. The calculation result is stored in FRn.

Operation:

FSQRT(float *FRn)    /* FSQRT FRn */

{

           clear_cause_VZ();

           case(data_type_of(FRn))  {

           NORM      :  if(sign_of(FRn) = = 0)

                               *FRn = sqrt(*FRn);

                       else invalid(FRn); break;

           PZERO     :

           NZERO     :

           PINF      :         *FRn = *FRn; break;

           NINF      :         invalid(FRn); break;

           qNaN      :         qnan(FRn); break;

           sNaN      :         invalid(FRn); break;

           }

           pc += 2;

}

FSQRT Special Cases

FRn +NORM –NORM +0 –0 +INF –INF qNaN sNaN

FSQRT(FRn) SQRT Invalid +0 –0 +INF Invalid qNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Examples:

FSQRT    FR4 ;Floating point square root

;Before execution: ;FR4=H'40400000/*3 in base 10*/

;After execution: ;FR4=H'3FDDB3D7/*1.7320 in base 10*/



302

8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 2 1 —

Description:  Copies the contents of system register FPUL to floating point register FRn.

Operation:

FSTS(float *FRn,*FPUL)        /* FSTS FPUL,FRn */

{

           *FRn = *FPUL;

           pc += 2;

}

Exceptions:  None

Examples:

MOV.L   #H'00000002, R2 ;Before execution of FSTS instruction: ;R2=H'00000002

FLDI0   FR5 ;FR5=0

LDS     R2,FPUL ;After execution of FSTS instruction: ;R2=H'00000002

FSTS    FPUL, R5 ;FR5= H'00000002



303

8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction

Format Abstract Code Latency Cycles T Bit

FSUB FRm, FRn FRn-FRm → FRn 1111nnnnmmmm0001 2 1 —

Description:  Arithmetically subtracts (as floating point numbers) the contents of floating point
register FRm from contents of floating point register FRn. The calculation result is stored in FRn.

Operation:

FSUB(float *FRm,FRn)                       /* FSUB FRm,FRn */

{

      clear_cause_VZ();

      if((data_type_of(FRm) = = sNaN)      | |

       (data_type_of(FRn) = = sNaN))                 invalid(FRn);

      else if((data_type_of(FRm) = = qNaN) | |

       (data_type_of(FRn) = = qNaN))                 qnan(FRn);

  else case(data_type_of(FRm))             {

      NORM      :

    case(data_tyoe_of(FRn))  {

      PINF      :            inf(FRn,0);             break;

      NINF      :            inf(FRn,1);             break;

      default   :            *FRn = *FRn - *FRm;     break;

    }                                                break;

    PZERO       :

    case(data_type_of(FRn))  {

      NORM      :            *FRn = *FRn- *FRm;      break;

      PZERO     :            zero(FRn,0);            break;

      NZERO     :            zero(FRn,1);            break;

      PINF      :            inf(FRn,0);             break;

      NINF      :            inf(FRn,1);             break;

    }                                                break;

    NZERO       :

    case(data_type_of(FRn))  {

      NORM      :            *FRn = *FRn - *FRm; break;

      PZERO     :

      NZERO     :            zero(FRn,0);            break;

      PINF      :            inf(FRn,0);             break;



304

      NINF      :            inf(FRn,1);             break;

    }                                                break;

    PINF        :

    case(data_type_of(FRn))  {

      NINF      :            invalid(FRn);           break;

      default   :            inf(FRn,1);             break;

    }                                                break;

      NINF      :

    case(data_type_of(FRn))  {

      PINF      :            invalid(FRn);           break;

      default   :            inf(FRn,0);             break;

    }                                                break;

    }

    pc += 2;

}

FSUB Special Cases

FRm FRn

NORM +0 –0 +INF –INF qNaN sNaN

NORM SUB +INF –INF

+0 –0

–0 +0

+INF –INF Invalid

–INF +INF Invalid

qNaN qNaN

sNaN Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation



305

Examples:

FSUB    FR0, FR3 ;Floating point subtract

;Before execution: ;FR0=H'3F800000/*1 in base 10*/

; ;FR3=H'40E00000/*7 in base 10*/

;After execution: ;FR0=H'3F800000/*1 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/

FSUB    FR3, FR2 ;

;Before execution: ;FR2=H'40800000/*4 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/

;After execution: ;FR2=H'C0000000/*–2 in base 10*/

; ;FR3=H'40C00000/*6 in base 10*/



306

8.3.16 FTRC (Floating Point Truncate And Convert To Integer): Floating Point
Instruction

Format Abstract Code Latency Cycles T Bit

FTRC FRm, FPUL (long)FRm → FPUL 1111nnnn00111101 2 1 —

Description:  Interprets the contents of floating point register FRm as a floating point number and
converts it to an integer by truncating everything after the decimal point. The calculation result is
stored in FRn.

Operation:

#define N_INT_RANGE 0xCF000000 /* 01.000000 * 2^16 */

#define P_INT_RANGE 0x47FFFFFF /* 1.fffffe * 2^30 */

FTRC(float *FRm,int *FPUL) /* FTRC FRm,FPUL */

{

       clear_cause_VZ();

       case(ftrc_type_of(FRm))  {

       NORM      :      *FPUL = (long)(*FRm); break;

       PINF      :      ftrc_invalid(0); break;

       NINF      :      ftrc_invalid(1); break;

  }

  pc += 2;

}

int ftrc_type_of(long *src)

{

long abs;

       abs = *src & 0x7FFFFFF;

  if(sign_of(src) = = 0)       {

        if(abs > 0x7F800000)   return(NINF); /* NaN*/

   else if(abs > P_INT_RANGE)  return(PINF); /* out of range,+INF */

   else                        return(NORM); /* +0,+NORM */

   }

  else  {

        if(*src > N_INT_RANGE) return(NINF);/* out of range ,+INF,NaN*/

        else                   return(NORM); /* -0,-NORM*/

   }

}



307

ftrc_invalid(long *dest,int sign)

{

  set_V();

  if((FPSCR & ENABLE_V) = = 0) {

       if(sign = = 0)    *dest = 0x7FFFFFFF;

       else              *dest = 0x80000000;

   }

}

FTRC Special Cases

FRn NORM +0 –0 positive
out of
range

negative
out of
rarge

+INF -INF qNaN sNaN

FTRC
(FRn)

TRC 0 0 7FFFFFFF 80000000 Invalid
+MAX
Invalid

–MAX
Invalid

–MAX
Invalid

–MAX
Invalid

Note: Non-normalized values are treated as zero.

Exceptions:  Invalid operation

Examples:

MOV.L   #H'402ED9EB, R2

LDS     R2, FPUL

FSTS    FPUL, FR6 ;FR6=H'402ED9EB/*2.7320 in base 10*/

FTRC    FR6, FPUL

STS     FPUL, R2 ;R2=H'00000002/*2 in base 10*/

;Before execution of FTRC and STS:

;     R2=H'402ED9EB

;     FR6=H'402ED9EB

;After execution of FTRC and STS:

;     R2=H'00000002

;     FR6=H'402ED9EB



308

8.3.17 LDS (Load to System Register): FPU Related CPU Instruction

Format Abstract Code Latency Cycles T Bit

1.LDS  Rm, FPUL Rm → FPUL 0100nnnn01011010 2 1 —

2.LDS.L@Rm+,FPUL (Rm) → FPUL,

Rm+=4

0100nnnn01010110 2 1 —

3.LDS  Rm,FPSCR Rm → FPSCR 0100nnnn01101010 3 1 —

4.LDS.L @Rm+,FPSCR (Rm) → FPSCR,

Rm+=4

0100nnnn01100110 3 1 —

Description:

1. Moves the contents of general-use register Rm to system register FPUL.

2. Loads the contents of the memory addresses specified by general-use register Rm to system
register FPUL. After the load completes successfully, increments the value of Rm by 4.

3. Moves the contents of general-use register Rm to system register FPSCR. Previously defined
bits in FPSCR are not changed.

4. Loads the contents of the memory addresses specified by general-use register Rm to system
register FPSCR. After the load completes successfully, increments the value of Rm by 4.
Previously defined bits in FPSCR are not changed.

Operation:

#define FPSCR_MASK 0x00018C60

LDS(long *Rm,*FPUL) /* LDS Rm,FPUL */

{

            *FPUL = *Rm;

            pc += 2;

}

LDS_RESTORE(long *Rm, *FPUL) /* LDS.L @Rm+,FPUL */

{

           if(load_long(Rm,FPUL) != Address_Error) *Rm += 4 ;

           pc += 2;

}

LDS(long *Rm,*FPSCR) /* LDS Rm,FPSCR */

{

           *FPSCR = *Rm & FPSCR_MASK;

           pc += 2;



309

}

LDS_RESTORE(long *Rm, *FPSCR) /* LDS.L @Rm+,FPSCR */

{

           long *tmp_FPSCR;

           if(load_long(Rm, tmp_FPSCR) != Address_Error){

                             *FPSCR =*tmp_FPSCR & FPSCR_MASK;

                             *Rm += 4 ;

           }

           pc += 2;

}

Exceptions:  Address error

Examples:

•  LDS

Example 1

MOV.L   #H'12345678, R2 ;Before execution of LDS and FSTS instructions:

; R2=H'12345678

FLDI0   FR3 ; FR3=0

LDS     R2, FPUL ;After execution of LDS and FSTS instructions:

; R2=H'12345678

FSTS    FPUL, FR3 ; FR3= H'12345678

Example 2

MOV.L   #H'00040801, R4 ;After execution of LDS instruction:

LDS     R4, FPSCR ;FPSCR=00040801

•  LDS.L

Example 1

LDI0    FR0 ;Before execution of LDS.L and FSTS instructions:

MOV.L   #H'87654321, R4 ; FR0=0

MOV.L   #H'0C700128, R8 ; R8=0C700128

MOV.L   R4,@R8 ;After execution of LDS.L and FSTS instructions:

LDS.L   @R8+, FPUL ; FR0=87654321

FSTS    FPUL, FR0 ; R8=0C70012C



310

Example 2

MOV.L   #H'00040C01, R4 ;Before execution of LDS.L instruction:

MOV.L   #H'0C700134, R8 ; R8=0C700134

MOV.L   R4,@R8 ;After execution of LDS.L instruction:

; R8=0C700138

LDS.L   @R8+, FPSCR ; FPSCR=00040C01



311

8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction

Format Abstract Code
Latency
(Wait Time) Cycles T Bit

1.STS  FPUL,Rn FPUL → Rn 0000nnnn01011010 2 1 —

2.STS.L FPUL,@-Rn Rn -= 4,

FPUL → @(Rn)

0100nnnn01010010 2 1 —

3.STS FPSCR,Rn FPSCR → Rn 0000nnnn01101010 3 1 —

4.STS.L FPSCR,@-Rn Rn -= 4,

FPSCR → @(Rn)

0100nnnn01100010 3 1 —

Description:

1. Moves the contents of system register FPUL to general-use register Rn.

2. Stores contents of system register FPUL at the memory address position specified by general-
use register Rn-4. After the store completes successfully, the decremented value becomes the
value of Rn.

3. Moves the contents of system register FPSCR to general-use register Rn.

4. Stores contents of system register FPSCR at the memory address position specified by
general-use register Rn-4. After the store completes successfully, the decremented value
becomes the value of Rn.

Operation:

STS(long *FPUL,*Rn) /* STS.L FPUL,Rn */

{

           *Rn = *FPUL;

           pc += 2;

}

STS_SAVE(long *FPUL,*Rn) /* STS.L FPUL,@-Rn */

{

long *tmp_address = *Rn - 4;

           if(store_long(FPUL,tmp_address) != Address_Error)

           Rn = tmp_address;

           pc += 2;

}

STS(long *FPSCR,*Rn) /* STS FPSCR,Rn */

{

           *Rn = *FPSCR;



312

           pc += 2;

}

STS STore from FPU System register

STS_RESTORE long *FPSCR,*Rn) /* STS.L FPSCR,@-Rn */

{

long *tmp_address = *Rn - 4;

           if(store_long(FPSCR tmp_address) != Address_Error)

           Rn = tmp_address

           pc += 2;

}

Exceptions:  Address error

Examples:

•  STS

Example 1

MOV.L   #H'12ABCDEF, R12

LDS.L   @R12, FPUL

STS     FPUL, R13

;After execution of STS instruction:

;      R13 = 12ABCDEF

Example 2

STS     FPSCR, R2

;After execution of STS instruction:

;      Contents of FPSCR at that point stored in R2 register

•  STS.L

Example 1

MOV.L    #H'0C700148, R7

STS      FPUL, @-R7

;Before execution of STS.L instruction:

; R7 = H'0C700148

;After execution of STS.L instruction:



313

; R7 = H'0C700144, contents of FPUL saved at

address H'0C700144

; location H'0C700144

Example 2

MOV.L    #H'0C700154, R8

STS.L    FPSCR, @-R8

;After execution of STS.L instruction:

; Contents of FPSCR saved at address H'0C700150



314

8.4 DSP Data Transfer Instructions (SH3-DSP Only)

Table 8-1 lists the DSP data transfer instructions in alphabetical order.

Table 8-1 DSP Data Transfer Instructions in Alphabetical Order

Instruction Operation Code Cycles
DC
Bit

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 —

MOVS.L @As,Ds (As)→Ds 111101AADDDD0110 1 —

MOVS.L @As+,Ds (As)→Ds,As+4→As 111101AADDDD1010 1 —

MOVS.L
@As+Ix,Ds

(As)→Ds,As+Ix→As 111101AADDDD1110 1 —

MOVS.L Ds,
@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 —

MOVS.L Ds,@As Ds→(As) 111101AADDDD0111 1 —

MOVS.L Ds,@As+ Ds→(As),As+4→As 111101AADDDD1011 1 —

MOVS.L
Ds,@As+Ix

Ds→(As),As+Ix→As 111101AADDDD1111 1 —

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 —

MOVS.W @As,Ds (As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0100 1 —

MOVS.W @As+,Ds (As)→MSW of
Ds,0→LSW of Ds,
As+2→As

111101AADDDD1000 1 —

MOVS.W
@As+Ix,Ds

(As)→MSW of
Ds,0→LSW of Ds,
As+Ix→As

111101AADDDD1100 1 —

MOVS.W
Ds,@-As

As–2→As,MSW of
Ds→(As)

111101AADDDD0001 1 —

MOVS.W Ds,@As MSW of Ds→(As) 111101AADDDD0101 1 —

MOVS.W Ds,@As+ MSW of
Ds→(As),As+2→As

111101AADDDD1001 1 —

MOVS.W
Ds,@As+Ix

MSW of
Ds→(As),As+Ix→As

111101AADDDD1101 1 —

MOVX.W @Ax,Dx (Ax)→MSW of
Dx,0→LSW of Dx

111100A*D*0*01** 1 —

MOVX.W @Ax+,Dx (Ax)→MSW of
Dx,0→LSW of
Dx,Ax+2→Ax

111100A*D*0*10** 1 —



315

Table 8-1 DSP Data Transfer Instructions in Alphabetical Order (cont)

Instruction Operation Code Cycles
DC
Bit

MOVX.W
@Ax+Ix,Dx

(Ax)→MSW of
Dx,0→LSW of
Dx,Ax+Ix→Ax

111100A*D*0*11** 1 —

MOVX.W Da,@Ax MSW of Da→(Ax) 111100A*D*1*01** 1 —

MOVX.W Da,@Ax+ MSW of
Da→(Ax),Ax+2→Ax

111100A*D*1*10** 1 —

MOVX.W
Da,@Ax+Ix

MSW of
Da→(Ax),Ax+Ix→Ax

111100A*D*1*11** 1 —

MOVY.W @Ay,Dy (Ay)→MSW of
Dy,0→LSW of Dy

111100*A*D*0**01 1 —

MOVY.W @Ay+,Dy (Ay)→MSW of
Dy,0→LSW of Dy,
Ay+2→Ay

111100*A*D*0**10 1 —

MOVY.W
@Ay+Iy,Dy

(Ay)→MSW of
Dy,0→LSW of Dy,
Ay+Iy→Ay

111100*A*D*0**11 1 —

MOVY.W Da,@Ay MSW of Da→(Ay) 111100*A*D*1**01 1 —

MOVY.W Da,@Ay+ MSW of
Da→(Ay),Ay+2→Ay

111100*A*D*1**10 1 —

MOVY.W
Da,@Ay+Iy

MSW of
Da→(Ay),Ay+Iy→Ay

111100*A*D*1**11 1 —

NOPx No Operation 1111000*0*0*00** 1 —

NOPY No Operation 111100*0*0*0**00 1 —

Note: MSW = High-order word of operand
LSW = Low-order word of operand

X and Y Data Transfers (MOVX.W and MOVY.W)

These instructions use the XDB and YDB buses to access X and Y memory. Areas other than X
and Y memory cannot be accessed. Memory is accessed in word units. Since independent bus is
used, it does not create access contention with instruction fetches (using the LDB bus).

X and Y data transfer instructions are executed regardless of conditions even when the data
operation instruction executed in parallel has conditions.

Figure 8-17 shows the load and store operations in X and Y data transfers.



316

Instruction code
 for X data transfer

operation

R4 [Ax]
R5 [Ax]

R6 [Ay]
R7 [Ay]

Control for
X memory

Control for
Y memory

ABx ABy

31 0 31 0

15 1 15 1

X data
memory
4 kbytes

Y data
memory
4 kbytes

XAB 15 bits

YAB 15 bits

16 bits

16 bits

XDB

YDB

X_MEM Y_MEM

X R/W Y R/W

X_MEM, Y_MEM: Select signals for X and Y data memory

Instruction code
 for Y data transfer

operation

DSP data
register

X0/X1, A0/A1
input/output

control

DSP data
register
Y0/Y1, A0/A1
input/output
control

Figure 8-17   Load and Store Operations in X and Y Data Transfers

X memory data transfer operation is shown below. Y memory data transfers are the same.

if ( !NOP ) {

X_MEM=1; XAB=ABx; X R/W=1;

if ( load operation ) {

DX[31:16]=XDB;

DX[15:0] =0x0000; /* Dx is X0 or X1 */

}

else {XDB=Dx[31:16];X R/W=0;} /* Dx is A0 or A1 */

}

else { X_MEM=0; XAB=Unknown; }



317

Single Data Transfers (MOVS.W and MOVS.L)

Single data transfers are instructions that load to and store from the DSP register. They are like
system register load and store instructions. Data transfers between the DSP register and memory
use the LAB and LDB buses. Like CPU core instructions, data accesses can create access
contention with instruction memory accesses.

Single data transfers can use either word or longword data. Figure 8-18 shows the load and store
operations in single data transfers.

WL LS

MAB

Memory

Control is
SuperH core

Control

31 0

31 0

32 bits

32 bits

LAB

LDB

R2 [As]
R3 [As]
R4 [As]
R5 [As]

Instruction code for single
data transfer operation

DSP data register
input/output control

Figure 8-18   Load and Store Operations in Single Data Transfers

Load and store operations in single data transfers are shown below.



318

LAB = MAB;

if ( Ms!=NLS @@ W/L is word access {/* MOVS.W */

if (LS==load) {

if (DS!=A0G @@ Ds!=A1G){

Ds[31:16] = LDB[15:0]; Ds[15:0] = 0x0000;

if (Ds==A0) A0G[7:0] = LDB[15];

if (Ds==A1) A1G[7:0] = LDB[15];

}

else Ds[7:0] = LDB[7:0] /* Ds is A0G or A1G */

}

else { /* Store */

if (DS!=A0G @@ Ds!=A1G) LDB[15:0] = Ds[31:16];

/* Ds is A0G or A1G */

else LDB[15:0] = Ds[7:0] with 8-bit sign extension

}

}

else if ( MA!=NLS @@ W/L is longword access ) { /* MOVS.L */

if (LS==load {

if (Ds!=A0G @@ Ds!=A1G) {

Ds[31:0] = LDB[31:0];

if (Ds==A0) A0G[7:0] = LDB[31];

if (Ds==A1) A1G[7:0] = LDB[31];

}

else Ds[7:0] = LDB[7:0] /* Ds is A0G or A1G */

}

else { /* Store */

if (DS!=A0G @@ Ds!=A1G) LDB[31:0] = Ds[31:0]

/* Ds is A0G or A1G */

else LDB[31:0] = Ds[7:0] with 24-bit sign extension

}

}

This section explains the breakdown of instructions, descriptions, etc. given in the rest of this
section.



319

Table 8-2 Sample Description (Name): Classification

Format Abstract Code Cycle DC Bit

Assembler input
format.

A brief description of
operation

Displayed in
order MSB ↔
LSB

All DSP
instructions
execute in 1
cycle

The status of
the DC bit
after the
instruction is
executed

Format:

[if cc] OP.Sz  SRC1,SRC2,DEST

[if cc]: Condition (unconditional, DCT, or DCF)
OP: Operation code
Sz: Size
SRC1: Source 1 operand
SRC2: Source 2 operand
DEST: Destination

Table 8-3 Operation Summary

Operation Description

→, ← Direction of transfer

(xx) Memory operand

DC Flag bits in the DSR

& Logical AND of each bit

| Logical OR of each bit

^ Exclusive OR of each bit

~ Logical NOT of each bit

<<n, >>n n-bit shift

MSW Most significant word (bits 16-31)

LSW Least significant word (bits 0-15)

[n1:n2] Bits n1 to n2

Instruction Code: Shows the source register and destination register.



320

X Data Transfer Instructions:

A(Ax): 0=R4, 1=R5
D(destination, Dx): 0=X0, 1=X1
D (source, Da): 0=A0, 1=A1

Y Data Transfer Instructions:

A(Ay): 0=R6, 1=R7
D(destination, Dy): 0=Y0, 1=Y1
D (source, Da): 0=A0, 1=A1

Single Data Transfer Instructions:

AA(As): 0=R4, 1=R5, 2=R2, 3=R3
DDDD(Ds): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, D=A1G, E=M1
F=A0G

DSP Operation Instructions:

iiiiiii(imm): –32 to +32
ee(Se): 0=X0, 1=X1, 2=Y0, 3=A1
ff(Sf): 0=Y0, 1=Y1, 2=X0, 3=A1
xx(Sx): 0=X0, 1=X1, 2=A0, 3=A1
yy(Sy): 0=Y0, 1=Y1, 2=M0, 3=M1
gg(Dg): 0=M0, 1=M1, 2=A0, 3=A1
uu(Du): 0=X0, 1=Y0, 2=A0, 3=A1
zzzz(Dz): 5=A1, 7=A0, 8=X0, 9=X1, A=Y0, B=Y1, C=M0, E=M1

DC Bit:

Update: Updated according to the operation result and the specifications of the CS (condition
select) bits.
—: Not updated.

Description: Description of operation

Notes: Notes on using the instruction

Operation: Operation written in C language.

Examples: Examples are written in assembler mnemonics and describe status before and after
executing the instruction.



321

8.4.1 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer
Instruction

Format Abstract Code Cycle DC Bit

MOVS.W
@-As,Ds

As–2→As,(As)→MSW of
Ds,0→LSW of Ds

111101AADDDD0000 1 —

MOVS.W @As,Ds (As)→MSW of Ds,0→LSW of Ds 111101AADDDD0100 1 —

MOVS.W @As+,Ds (As)→MSW of Ds,0→LSW of
Ds, As+2→As

111101AADDDD1000 1 —

MOVS.W @As+Ix,Ds (As)→MSW of Ds,0→LSW of
Ds, As+Ix→As

111101AADDDD1100 1 —

MOVS.W
Ds,@-As

As–2→As,MSW of Ds→(As) 111101AADDDD0001 1 —

MOVS.W Ds,@As MSW of Ds→(As) 111101AADDDD0101 1 —

MOVS.W Ds,@As+ MSW of Ds→(As),As+2→As 111101AADDDD1001 1 —

MOVS.W Ds,@As+Ix MSW of Ds→(As),As+Ix→As 111101AADDDD1101 1 —

MOVS.L
@-As,Ds

As–4→As,(As)→Ds 111101AADDDD0010 1 —

MOVS.L @As,Ds (As)→Ds 111101AADDDD0110 1 —

MOVS.L @As+,Ds (As)→Ds,As+4→As 111101AADDDD1010 1 —

MOVS.L @As+Ix,Ds (As)→Ds,As+Ix→As 111101AADDDD1110 1 —

MOVS.L Ds,
@-As

As–4→As,Ds→(As) 111101AADDDD0011 1 —

MOVS.L Ds,@As Ds→(As) 111101AADDDD0111 1 —

MOVS.L Ds,@As+ Ds→(As),As+4→As 111101AADDDD1011 1 —

MOVS.L Ds,@As+Ix Ds→(As),As+Ix→As 111101AADDDD1111 1 —

Description: Transfers the source operand data to the destination. Transfer can be from memory
to register or register to memory. The transferred data can be a word or longword. When a word is
transferred, the source operand is in memory, and the destination operand is a register, the word
data is loaded to the top word of the register and the bottom word is cleared with zeros. When the
source operand is a register and the destination operand is memory, the top word of the register is
stored as the word data . In a longword transfer, the longword data is transferred. When the
destination operand is a register with guard bits, the sign is extended and stored in the guard bits.

Note: When one of the guard bit registers A0G and A1G is the source operand for store
processing, the data is output to the bottom 8 bits (bits 0–7) and the top 24 bits (bits 31–8)
become undefined.



322

Operation: See figure 8-19.

Memory to register Register to memory

As As

Any memory area Any memory area

31 0 31 0

Post update Post update

Ds All 0 DsS

31 16 0 031 16

LDB[15:0]

Cleared

–2, 0,
+2, +lx

Ignored

Memory to register Register to memory

As As

Any memory area Any memory area

31 0 31 0

Post update Post update

Ds DsS

31 0 031

LDB[31:0]

Longword data transfer

Word data transfer

Sign extension

Sign extension

–2, 0,
+2, +lx

–4, 0,
+4, +lx

–4, 0,
+4, +lx

15 15

Figure 8-19   The MOVS Instruction

Examples:

MOVS.W @R4+,A0;Before execution: R4=H'00000400, @R4=H'8765, A0=H'123456789A

;After execution: R4=H'00000402, A0=H'FF87650000

MOVS.L A1, @-R3 ;Before execution: R3=H'00000800, A1=H'123456789A

;After execution: R3=H'000007FC, @(H'000007FC)=H'3456789A



323

8.4.2 MOVX (Move between X Memory and DSP Register): DSP Data Transfer
Instruction

Format Abstract Code Cycle DC Bit

MOVX.W @Ax,Dx (Ax)→MSW of Dx,0→LSW of Dx 111100A*D*0*01** 1 —

MOVX.W @Ax+,Dx (Ax)→MSW of Dx,0→LSW of
Dx,Ax+2→Ax

111100A*D*0*10** 1 —

MOVX.W @Ax+Ix,Dx (Ax)→MSW of Dx,0→LSW of
Dx,Ax+Ix→Ax

111100A*D*0*11** 1 —

MOVX.W Da,@Ax MSW of Da→(Ax) 111100A*D*1*01** 1 —

MOVX.W Da,@Ax+ MSW of Da→(Ax),Ax+2→Ax 111100A*D*1*10** 1 —

MOVX.W Da,@Ax+Ix MSW of Da→(Ax),Ax+Ix→Ax 111100A*D*1*11** 1 —

Note: "*" of the instruction code is MOVY instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for X
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation: See figure 8-20.

Memory to register Register to memory

Ax Ax

X memory X memory

31 0 31 0

Post update Post update

Dx All 0 DaS

31 16 0 031 16

XDB[15:0]

Cleared

0, +2,
+lx

0, +2,
+lx

Ignored
1515

Figure 8-20   The MOVX Instruction

Examples:

MOVX.W @R4+,X0;Before execution: R4=H'08010000, @R4=H'5555, X0=H'12345678

;After execution: R4=H'08010002, X0=H'55550000



324

8.4.3 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer
Instruction

Format Abstract Code Cycle DC Bit

MOVY.W @Ay,Dy (Ay)→MSW of Dy,0→LSW of
Dy

111100*A*D*0**01 1 —

MOVY.W @Ay+,Dy (Ay)→MSW of Dy,0→LSW of
Dy, Ay+2→Ay

111100*A*D*0**10 1 —

MOVY.W @Ay+Iy,Dy (Ay)→MSW of Dy,0→LSW of
Dy, Ay+Iy→Ay

111100*A*D*0**11 1 —

MOVY.W Da,@Ay MSW of Da→(Ay) 111100*A*D*1**01 1 —

MOVY.W Da,@Ay+ MSW of Da→(Ay),Ay+2→Ay 111100*A*D*1**10 1 —

MOVY.W Da,@Ay+Iy MSW of Da→(Ay),Ay+Iy→Ay 111100*A*D*1**11 1 —

Note: "*" of the instruction code is MOVX instruction designation area.

Description: Transfers the source operand data to the destination operand. Transfer can be from
memory to register or register to memory. The transferred data can only be word length for Y
memory. When the source operand is in memory, and the destination operand is a register, the
word data is loaded to the top word of the register and the bottom word is cleared with zeros.
When the source operand is a register and the destination operand is memory, the word data is
stored in the top word of the register.

Operation:

See figure 8-21.

Memory to register Register to memory

Ay Ay

Y memory Y memory

31 0 31 0

Post update Post update

Dy All 0 DaS

31 16 0 031 16

YDB[15:0]

Cleared

0, +2,
+ly

0, +2,
+ly

Ignored
15 15

Figure 8-21   The MOVY Instruction



325

Examples:

MOVY.W A0, @R6+,R9 ;Before execution: R6=H'08020000, R9=H'00000006, 
A0=H'123456789A

;After execution: R6=H'08020006, @(H'08020000)=H'3456



326

8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction

Format Abstract Code Cycle DC Bit

NOPX No Operation 1111000*0*0*00** 1 —

Description: No access operation for X memory.

8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

Format Abstract Code Cycle DC Bit

NOPY No Operation 111100*0*0*0**00 1 —

Description: No access operation for Y memory.



327

8.5 DSP Operation Instructions

The DSP operation instructions are listed below in alphabetical order. See section 8.4, DSP Data
Transfer Instructions: Classification, for an explanation of the format and symbols used in this
description.

Table 8-4 Alphabetical Listing of DSP Operation Instructions

Instruction Operation Code Cycles DC Bit

PABS Sx,Dz If Sx≥0, Sx→Dz

If Sx<0, 0–Sx→Dz

111110**********

10001000xx00zzzz

1 Update

PABS Sy,Dz If Sy≥0, Sy→Dz

If Sy<0, 0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update

PADD Sx,Sy,Dz Sx + Sy→Dz 111110**********

10110001xxyyzzzz

1 Update

DCT PADD
Sx,Sy,Dz

If DC = 1, Sx + Sy→Dz;
if 0, nop

111110**********

10110010xxyyzzzz

1 —

DCF PADD
Sx,Sy,Dz

If DC = 0, SX + Sy–Dz;
if 1, nop

111110**********

10110011xxyyzzzz

1 —

PADD Sx,Sy,Du

PMULS Se,Sf,Dg

Sx + Sy→Du;

MSW of Se × MSW of Sf→Dg

111110**********

0111eeffxxyygguu

1 Update*

PADDC Sx,Sy,Dz Sx + Sy + DC→Dz 111110**********

10110000xxyyzzzz

1 Update

PAND Sx,Sy,Dz Sx & Sy→Dz; clear LSW of Dz 111110**********

10010101xxyyzzzz

1 Update

DCT PAND
Sx,Sy,Dz

If DC = 1, SX & SY→Dz, clear
LSW of Dz; if 0, nop

111110**********

10010110xxyyzzzz

1 —

DCF PAND
Sx,Sy,Dz

If DC = 0, SX & SY→Dz, clear
LSW of Dz; if 1, nop

111110**********

10010111xxyyzzzz

1 —

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update

DCT PCLR Dz If DC = 1, H'00000000 →Dz;
if 0, nop

111110**********

100011100000zzzz

1 —

DCF PCLR Dz If DC = 0, H'00000000→Dz;
if 1, nop

111110**********

100011110000zzzz

1 —



328

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

PCMP Sx,Sy Sx – Sy 111110**********

10000100xxyy0000

1 Update

PCOPY Sx,Dz Sx→Dz 111110**********

11011001xx00zzzz

1 Update

PCOPY Sy,Dz Sy→Dz 111110**********

1111100100yyzzzz

1 Update

DCT PCOPY Sx,Dz If DC = 1, Sx→Dz; if 0, nop 111110**********

11011010xx00zzzz

1 —

DCT PCOPY Sy,Dz If DC = 1, Sy→Dz; if 0, nop 111110**********

1111101000yyzzzz

1 —

DCF PCOPY Sx,Dz If DC = 0, Sx→Dz; if 1, nop 111110**********

11011011xx00zzzz

1 —

DCF PCOPY Sy,Dz If DC = 0, Sy→Dz; if 1, nop 111110**********

1111101100yyzzzz

1 —

PDEC Sx,Dz MSW of Sx–1→MSW of Dz,
clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update

PDEC Sy,Dz MSW of Sy–1→MSW of Dz,
clear LSW of Dz

111110**********

10101001xx00zzzz

1 Update

DCT PDEC Sx,Dz If DC = 1, MSW of Sx–1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10001010xx00zzzz

1 —

DCT PDEC Sy,Dz If DC = 1, MSW of Sy–1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10101010xx00zzzz

1 —

DCF PDEC Sx,Dz If DC = 0, MSW of Sx–1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10001011xx00zzzz

1 —

DCF PDEC Sy,Dz If DC = 0, MSW of Sy–1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10101011xx00zzzz

1 —

PDMSB Sx,Dz Sx data MSB position → MSW
of Dz, clear LSW of Dz

111110**********

10011101xx00zzzz

1 Update

PDMSB Sy,Dz Sy data MSB position → MSW
of Dz, clear LSW of Dz

111110**********

1011110100yyzzzz

1 Update



329

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

DCT PDMSB Sx,Dz If DC = 1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 —

DCT PDMSB Sy,Dz If DC = 1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 —

DCF PDMSB Sx,Dz If DC = 0, Sx data MSB
position → MSW of Dz, clear
LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 —

DCF PDMSB Sy,Dz If DC = 0, Sy data MSB
position → MSW of Dz, clear
LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 —

PINC Sx,Dz MSW of Sx + 1→ MSW of Dz,
clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update

PINC Sy,Dz MSW of Sy + 1→ MSW of Dz,
clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update

DCT PINC Sx,Dz If DC = 1, MSW of Sx + 1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

10011010xx00zzzz

1 —

DCT PINC Sy,Dz If DC = 1, MSW of Sy + 1→
MSW of Dz, clear LSW of Dz;
if 0, nop

111110**********

1011101000yyzzzz

1 —

DCF PINC Sx,Dz If DC = 0, MSW of Sx + 1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

10011011xx00zzzz

1 —

DCF PINC Sy,Dz If DC = 0, MSW of Sy + 1→
MSW of Dz, clear LSW of Dz;
if 1, nop

111110**********

1011101100yyzzzz

1 —

PLDS Dz,MACH Dz→MACH 111110**********

111011010000zzzz

1 —

PLDS Dz,MACL Dz→MACL 111110**********

111111010000zzzz

1 —

DCT PLDS
Dz,MACH

If DC = 1, Dz→MACH;

if 0, nop

111110**********

111011100000zzzz

1 —

DCT PLDS
Dz,MACL

If DC = 1, Dz→MACL;

if 0, nop

111110**********

111111100000zzzz

1 —

DCF PLDS
Dz,MACH

If DC = 0, Dz→MACH;

if 1, nop

111110**********

111011110000zzzz

1 —



330

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

DCF PLDS
Dz,MACL

If DC = 0, Dz→MACL;

if 1, nop

111110**********

111111110000zzzz

1 —

PMULS Se,Sf,Dg MSW of Se × MSW of Sf→Dg 111110**********

0100eeff0000gg00

1 —

PNEG Sx,Dz 0 – Sx → Dz 111110**********

11001001xx00zzzz

1 Update

PNEG Sy,Dz 0 – Sy → Dz; 111110**********

1110100100yyzzzz

1 Update

DCT PNEG Sx,Dz If DC = 1, 0 – Sx→Dz;

if 0, nop

111110**********

11001010xx00zzzz

1 —

DCT PNEG Sy,Dz If DC = 1, 0 – Sy→Dz;

if 0, nop

111110**********

1110101000yyzzzz

1 —

DCF PNEG Sx,Dz If DC = 0, 0 – Sx→Dz;

if 1, nop

111110**********

11001011xx00zzzz

1 —

DCF PNEG Sy,Dz If DC = 0, 0 – Sy→Dz;

if 1, nop

111110**********

1110101100yyzzzz

1 —

POR Sx,Sy,Dz Sx | Sy→Dz, clear LSW of Dz 111110**********

10110101xxyyzzzz

1 Update

DCT POR
Sx,Sy,Dz

If DC = 1, Sx|Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 —

DCF POR
Sx,Sy,Dz

If DC = 0, Sx|Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 —

PRND Sx,Dz Sx + H'00008000→Dz,
clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update

PRND Sy,Dz Sy + H'00008000→Dz,
clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update

PSHA Sx,Sy,Dz If Sy≥0, Sx<<Sy→Dz;
if Sy<0, Sx>>Sy→Dz

111110**********

10010001xxyyzzzz

1 Update

DCT PSHA
Sx,Sy,Dz

If DC = 1 & Sy≥0, Sx<<Sy→Dz;
if DC = 1 & Sy<0, Sx>>Sy→Dz;
if DC = 0, nop

111110**********

10010010xxyyzzzz

1 —



331

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

DCF PSHA
Sx,Sy,Dz

If DC = 0 & Sy≥0, Sx<<Sy→Dz;
if DC = 0 & Sy<0, Sx>>Sy→Dz;
if DC = 1, nop

111110**********

10010011xxyyzzzz

1 —

PSHA #imm,Dz If imm≥0, Dz<<imm→Dz;
if imm<0, Dz>>imm→Dz

111110**********

00001iiiiiiizzzz

1 Update

PSHL Sx,Sy,Dz If Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz; if Sy<0,
Sx>>Sy → Dz,
clear LSW of Dz

111110**********

10000001xxyyzzzz

1 Update

DCT PSHL
Sx,Sy,Dz

If DC=1 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz;
 if DC=1 & Sy<0, Sx>>Sy →
Dz, clear LSW of Dz; if DC=0,
nop

111110**********

10000010xxyyzzzz

1 —

DCF PSHL
Sx,Sy,Dz

If DC=0 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz; if DC=0 &
Sy<0, Sx>>Sy → Dz, clear
LSW of Dz; if DC=1, nop

111110**********

10000011xxyyzzzz

1 —

PSHL #imm,Dz If imm≥0, Dz<<imm → Dz,
clear LSW of Dz; if imm<0,
Dz>>imm → Dz, clear LSW of
Dz

111110**********

00000iiiiiiizzzz

1 Update

PSTS MACH,Dz MACH → Dz 111110**********

110011010000zzzz

1 —

PSTS MACL,Dz MACL → Dz 111110**********

110111010000zzzz

1 —

DCT PSTS
MACH,Dz

If DC=1, MACH → Dz; if 0, nop 111110**********

110011100000zzzz

1 —

DCT PSTS
MACL,Dz

If DC=1, MACL → Dz; if 0, nop 111110**********

110111100000zzzz

1 —

DCF PSTS
MACH,Dz

If DC = 0, MACH→Dz;
if 1, nop

111110**********

110011110000zzzz

1 —

DCF PSTS
MACL,Dz

If DC = 0, MACL→Dz;
if 1, nop

111110**********

110111110000zzzz

1 —



332

Table 8-4 Alphabetical Listing of DSP Operation Instructions (cont)

Instruction Operation Code Cycles DC Bit

PSUB Sx,Sy,Dz Sx–Sy→Dz 111110**********

10100001xxyyzzzz

1 Update

DCT PSUB
Sx,Sy,Dz

If DC = 1, Sx – Sy→Dz;
if 0, nop

111110**********

10100010xxyyzzzz

1 —

DCF PSUB
Sx,Sy,Dz

If DC = 0, Sx – Sy→Dz;
if 1, nop

111110**********

10100011xxyyzzzz

1 —

PSUB Sx,Sy,Du

PMULS Se,Sf,Dg

Sx – Sy→Du;
MSW of Se × MSW of Sf→Dg

111110**********

0110eeffxxyygguu

1 Update

PSUBC Sx,Sy,Dz Sx–Sy–DC→Dz 111110**********

10100000xxyyzzzz

1 Update

PXOR Sx,Sy,Dz Sx ^ Sy→Dz, clear LSW of Dz 111110**********

10100101xxyyzzzz

1 Update

DCT PXOR
Sx,Sy,Dz

If DC = 1, Sx ^ Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 —

DCF PXOR
Sx,Sy,Dz

If DC = 0, Sx ^ Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 —

Note: Updated based on the PADD operation results

The DC bit in the DSR register is updated in accordance with the result of a DSP instruction and
the specification of the status selection bit (CS).  In addition to the DC bit, the DSR register also
contains four status indication flags (V, N, Z, and GT).  The operation of each bit is described
below.  In the later descriptions of instruction operation for each DSP operation, the following
operation contents are used as subroutine modules.

Operation contents (1) Fix-point borrow DC bit

/* SH-DSP: DSP Engine:  fixed_pt_dc_always_borrow.c

Set DSR's DC Bit to borrow bit regardless the status of CS[2:0] bits */

{

/* DC update policy: don't care the status of DSPCSBITS */

DSPDCBIT = borrow_bit;

DSPGTBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

DSPZBIT  = zero_bit;

DSPNBIT  = negative_bit;

DSPVBIT  = overflow_bit;



333

}

Operation contents (2) Fixed-point carry DC bit

/* SH-DSP: DSP Engine:  fixed_pt_dc_always_carry.c

Set DSR's DC Bit to carry bit regardless the status of CS[2:0] bits */

{

/* DC update policy: don't care the status of DSPCSBITS */

DSPDCBIT = carry_bit;

DSPGTBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

DSPZBIT  = zero_bit;

DSPNBIT  = negative_bit;

DSPVBIT  = overflow_bit;

}

Operation contents (3) Fixed-point negative value DC bit

/* SH-DSP: DSP Engine:  fixed_pt_minus_dc_bit.c

Fixed Point Minus(-) Operation: Set DC Bit in DSR */

{

switch (DSPCSBITS) {

case 0x0: /* Borrow Mode */

DSPDCBIT = borrow_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = ~(negative_bit ^ overflow_bit);



334

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

DSPGTBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

DSPZBIT  = zero_bit;

DSPNBIT  = negative_bit;

DSPVBIT  = overflow_bit;

}

Operation contents (4) Fixed-point overflow prevention function (saturated operation)

/* SH-DSP: DSP Engine:  Set to maximum non-overflow value if overlow

fixed_pt_overflow_protection.c */

{

if(SBIT && overflow_bit) { /* Overflow Protection Enable & overflow */

if(DSP_ALU_DSTG_BIT7==0) { /* positive value */

if((DSP_ALU_DSTG_LSB8!=0x0) || (DSP_ALU_DST_MSB!=0)) {

DSP_ALU_DSTG= 0x0;

DSP_ALU_DST = 0x7fffffff;

}

}

else { /* negative value */

if((DSP_ALU_DSTG_LSB8!=0xff) || (DSP_ALU_DST_MSB!=1)) {

DSP_ALU_DSTG= 0xff;

DSP_ALU_DST = 0x80000000;

}

}

    overflow_bit = 0; /* No more overflow when protected */

    }

}

Operation contents (5) Fixed-point positive value DC bit

/* SH-DSP: DSP Engine:  fixed_pt_plus_dc_bit.c

Fixed Point Plus(+) Operation: Set DC Bit in DSR /*

{

switch (DSPCSBITS) {



335

case 0x0: /* Carry Mode */

DSPDCBIT = carry_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = ~(negative_bit ^ overflow_bit);

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

DSPGTBIT = ~((negative_bit ^ overflow_bit) | zero_bit);

DSPZBIT  = zero_bit;

DSPNBIT  = negative_bit;

DSPVBIT  = overflow_bit;

}

Operation contents (6) Fixed-point operation unconditional DC bit update

/* SH-DSP: DSP Engine: Fixed Point Unconditional Update

fixed_pt_unconditional_update.c

    1. Write back to the Destination Register

    2. update negative_bit and zero_bit. */

/* negative_bit = MSB of ALU's 40-bit result.

zero_bit     = if(ALU's 40-bit result==0)

sign-extend to A0/1G[31:8] */

{



336

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if (ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if (ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

}

Operation contents (7) Integer negative value DC bit

/* SH-DSP: DSP Engine:  integer_minus_dc_bit.c

Integer Minus(-) Operation: Set DC Bit in DSR */

#include "fixed_pt_minus_dc_bit.c"

Operation contents (8) Integer overflow prevention function (saturated operation)

/* SH-DSP: DSP Engine:  Set to maximum non-overflow value if overlow

integer_overflow_protection.c */

#include "fixed_pt_overflow_protection.c"

Operation contents (9) Integer positive value DC bit

/* SH-DSP: DSP Engine: integer_plus_dc_bit.c

Integer Plus(+) Operation: Set DC Bit in DSR */

#include "fixed_pt_plus_dc_bit.c"

Operation contents (10) Integer unconditional DC bit update

/* SH-DSP: DSP Engine: Integer Operation Unconditional Update

integer_unconditional_update.c

    1. Write back to the Destination Register

    2. update negative_bit and zero_bit.

negative_bit = MSB of ALU's 24-bit(g-bit and hw) result.

zero_bit = if(ALU's g-bit & hw==0)



337

Spec 1.1: Clear ALU Integer operation's LSW. */

{

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if (ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST_HW==0) & (DSP_ALU_DSTG_LSB8==0);

}

Operation contents (11) Logical operation DC bit

/* SH-DSP: DSP Engine: logical_dc_bit.c

Logical Operation: Set DC Bit in DSR */

{

switch (DSPCSBITS) {

case 0x0: /* Carry Mode */

DSPDCBIT = 0;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = 0;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = 0;

break;



338

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = 0;

break;

case 0x6: /* Reserved */

case 0x7: /* Reserved */

break;

}

        DSPGTBIT = 0;

        DSPZBIT  = zero_bit;

        DSPNBIT  = negative_bit;

        DSPVBIT  = 0;

}

Operation contents (12) Shift operation DC bit

/* SH-DSP: DSP Engine: Shift_dc_bit.c

Shift Operation: Set DC Bit in DSR */

{

switch (DSPCSBITS) {

case 0x0: /* Carry Mode */

DSPDCBIT = carry_bit;

break;

case 0x1: /* Negative Value Mode */

DSPDCBIT = negative_bit;

break;

case 0x2: /* Zero Value Mode */

DSPDCBIT = zero_bit;

break;

case 0x3: /* Overflow Mode */

DSPDCBIT = overflow_bit;

break;

case 0x4: /* Signed Greater Than Mode */

DSPDCBIT = 0;

break;

case 0x5: /* Signed Greater Than or Equal Mode */

DSPDCBIT = 0;

break;

case 0x6: /* Reserved */



339

case 0x7: /* Reserved */

break;

}

DSPGTBIT = 0;

DSPZBIT  = zero_bit;

DSPNBIT  = negative_bit;

DSPVBIT  = overflow_bit;

}



340

8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PABS Sx,Dz If Sx≥0,Sx→Dz

If Sx<0,0–Sx→Dz

111110**********

10001000xx00zzzz

1 Update

PABS Sy,Dz If Sy≥0,Sy→Dz

If Sy<0,0–Sy→Dz

111110**********

1010100000yyzzzz

1 Update

Description: Finds absolute values. When the Sx and Sy operands are positive, the contents of the
operands are transferred to the Dz operand. If the value is negative, the amounts of the Sx and Sy
operand contents are subtracted from 0 and stored in the Dz operand.

The DC bit of the DSR register are updated according to the specifications of the CS bits. The N,
Z, V, and GT bits of the DSR register are updated.

Operation:

{

DSP_ALU_SRC1 = 0;

DSP_ALU_SRC1G= 0;

if (EX2_DSP_BIT13==0) { /* 0 +/- Sx -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC2  = X0;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

case 0x1: DSP_ALU_SRC2  = X1;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

break;

case 0x2: DSP_ALU_SRC2  = A0;

DSP_ALU_SRC2G = A0G;

break;

case 0x3: DSP_ALU_SRC2  = A1;

DSP_ALU_SRC2G = A1G;

break;

}

}

else  { /* 0 +/- Sy -> Dz */



341

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

if(DSP_ALU_SRC2G_BIT7==0) { /* positive value */

DSP_ALU_DST = 0x0 + DSP_ALU_SRC2;

carry_bit = 0;

DSP_ALU_DSTG_LSB8= 0x0 + DSP_ALU_SRC2G_LSB8 + carry_bit;

}

else { /* negative value */

DSP_ALU_DST = 0x0 - DSP_ALU_SRC2;

borrow_bit = 1;

DSP_ALU_DSTG_LSB8= 0x0 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

}

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_unconditional_update.c"

if(DSP_ALU_SRC2G_BIT7==0) {

#include "fixed_pt_plus_dc_bit.c"

}

else {

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_minus_dc_bit.c"

}

}



342

break;

Examples:

PABS X0, M0 NOPX NOPY ;Before execution: X0 = H'33333333, M0 = H'12345678

;After execution: X0 = H'33333333, M0 = H'33333333

PABS X1, X1 NOPX NOPY ;Before execution: X1 = H'DDDDDDDD

;After execution: X1 = H'22222223

DC bit is updated depending on the state of CS [2:0].



343

8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PADD Sx,Sy,Dz Sx+Sy→Dz 111110**********

10110001xxyyzzzz

1 Update

DCT PADD Sx,Sy,Dz if DC=1,Sx+Sy→Dz if 0,nop 111110**********

10110010xxyyzzzz

1 —

DCF PADD Sx,Sy,Dz if DC=0,Sx+Sy→Dz if 1,nop 111110**********

10110011xxyyzzzz

1 —

Description: Adds the contents of the Sx and Sy operands and stores the result in the Dz operand.
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

{

switch (EX2_SX) {

 case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {



344

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_plus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}



345

break;

Examples:

PADD X0,Y0,A0 NOPX NOPY ;Before execution: X0 = H'22222222, Y0 = H'33333333, 
A0 = H'123456789A

;After execution: X0 = H'22222222, Y0 = H'33333333, 
A0 = H'0055555555

In case of unconditional execution, the DC bit is updated depending on 
the state of the CS [2:0] bit immediately before the operation.



346

8.5.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation
Instruction

Format Abstract Code Cycle DC Bit

PADD Sx,Sy,Du Sx + Sy→Du 111110********** 1 Update

PMULS Se,Sf,Dg MSW of Se × MSW of Sf→Dg 0111eeffxxyygguu

Description: Adds the contents of the Sx and Sy operands and stores the result in the Du operand.
The contents of the top word of the Se and Sf operands are multiplied as signed and the result
stored in the Dg operand. These two processes are executed simultaneously in parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Note: Since the PMULS is fixed decimal point multiplication, the operation result is different
from that of MULS even though the source data is the same.

Operation:

{

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry

_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "../d_3operand.d/fixed_pt_overflow_protection.c"

switch (EX2_DU) {

 case 0x0:

X0  = DSP_ALU_DST;

negative_bit = DSP_ALU_DSTG_BIT7

zero_bit = (DSP_ALU_DST==0)&(DSP_ALU_DSTG_LSB8==0);

break;

 case 0x1:

Y0  = DSP_ALU_DST;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0)&(DSP_ALU_DSTG_LSB8==0);



347

break;

 case 0x2:

A0  = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG

_LSB8==0);

break;

 case 0x3:

A1  = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG

_LSB8==0);

break;

}

#include "../d_3operand.d/fixed_pt_plus_dc_bit.c"

}

break;

Examples:

PADD A0,M0,A0 PMULS X0,YO,MO NOPX NOPY

;Before execution: X0 = H'00020000, Y0 = H'00030000,

M0 = H'22222222, A0 = H'0055555555

;After execution: X0 = H'00020000, Y0 = H'00030000,

M0 = H'0000000C, A0 = H'0077777777

The DC bit is updated based on the result of the PADD operation, 
depending on  the state of CD [2:0].



348

8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PADDC Sx, Sy, Dz Sx + Sy + DC → Dz 111110**********
10110000xxyyzzzz

1 Carry

Description: Adds the contents of the Sx and Sy operands to the DC bit and stores the result in the
Dz operand. The DC bit of the DSR register is updated as the carry flag. The N, Z, V, and GT bits
of the DSR register are also updated.

Note: The DC bit is updated as the carry flag after execution of the PADDC instruction
regardless of the CS bits.

Operation:

{

switch (EX2_SX) {

 case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

 case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

 case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;



349

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else   DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2 + DSPDCBIT;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

    (DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_dc_always_carry.c"

}

break;

Example:

CS[2:0]=***: Always operate as Carry or Borrow mode, regardless of the status
of the DC bit.

PADDC X0,Y0,M0  NOPX  NOPY ;Before execution: X0 = H'B3333333, Y0 = H'55555555

M0 = H'12345678, DC = 0

;After execution: X0 = H'B3333333, Y0 = H'55555555

M0 = H'08888888, DC = 1

PADDC X0,Y0,M0  NOPX  NOPY ;Before execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'12345678, DC = 1

;After execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'88888889, DC = 0

DC bit is updated depending on the state of CS [2:0].



350

8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction

Format Abstract Code Cycle DC Bit

PAND Sx,Sy,Dz Sx & Sy→Dz; clear LSW of
Dz

111110**********

10010101xxyyzzzz

1

DCT PAND
Sx,Sy,Dz

If DC = 1, SX & SY→Dz,
clear LSW of Dz; if 0, nop

111110**********

10010110xxyyzzzz

1 —

DCF PAND
Sx,Sy,Dz

If DC = 0, SX & SY→Dz,
clear LSW of Dz; if 1, nop

111110**********

10010111xxyyzzzz

1 —

Description: Does an AND of the upper word of the Sx operand and the upper word of the Sy
operand, stores the result in the upper word of the Dz operand, and clears the bottom word of the
Dz operand with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed.
When conditions are specified for DCT and DCF, the instruction is executed when those
conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

Operation:

{

switch (EX2_SX) {

 case 0x0: DSP_ALU_SRC1  = X0;

break;

 case 0x1: DSP_ALU_SRC1  = X1;

break;

 case 0x2: DSP_ALU_SRC1  = A0;

break;

 case 0x3: DSP_ALU_SRC1  = A1;

break;

}

switch (EX2_SY) {

 case 0x0: DSP_ALU_SRC2  = Y0;

break;



351

 case 0x1: DSP_ALU_SRC2  = Y1;

break;

 case 0x2: DSP_ALU_SRC2  = M0;

break;

 case 0x3: DSP_ALU_SRC2  = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW & DSP_ALU_SRC2_HW;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard

bits */

else if (ex2_dz_no==1) A1G = 0x0;

carry_bit    = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit     = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

#include "logical_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard

bits */

else if (ex2_dz_no==1) A1G = 0x0;

}

}

break;



352

Example:

PAND X0,Y0,A0  NOPX  NOPY ;Before execution:X0 = H'33333333, Y0 = H'55555555

A0 = H'123456789A

;After execution: X0 = H'33333333, Y0 = H'55555555

A0 = H'0011110000

In case of unconditional execution, the DC bit is updated depending 
on the state of the CS [2:0] bit immediately before the operation.



353

8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PCLR Dz H'00000000→Dz 111110**********

100011010000zzzz

1 Update

DCT PCLR Dz if DC = 1, H'00000000→Dz

if 0, nop

111110**********

100011100000zzzz

1 —

DCF PCLR Dz if DC = 0, H'00000000→Dz

if 1, nop

111110**********

100011110000zzzz

1 —

Description: Clears the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction is
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The Z bit of the DSR register is set to 1. The N, V, and GT bits are
cleared to 0. The DC, N, Z, V, and GT bits are not updated when conditions are specified, even if
the conditions are TRUE.

Operation:

{ /* 0 + 0 -> Dz */

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG[ex2_dz_no] = 0x0;

if (ex2_dz_no==0) A0G = 0x0;

else if (ex2_dz_no==1) A1G = 0x0;

carry_bit = 0;

negative_bit = 0;

zero_bit = 1;

overflow_bit = 0;

#include "fixed_pt_plus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = 0x0;

}

}



354

break;

Example:

PCLR A0  NOPX  NOPY ;Before execution: A0 = H'FF87654321

;After execution: A0 = H'0000000000

In case of unconditional execution, the DC bit is updated 
depending on the state of the CS [2:0].



355

8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PCMP Sx, Sy Sx–Sy 111110**********

10000100xxyy0000

1 Update

Description: Subtracts the contents of the Sy operand from the Sx operand. The DC bit of the
DSR register is updated according to the specifications for the CS bits. The N, Z, V, and GT bits
of the DSR register are also updated.

Operation:

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}



356

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

  else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

   (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_LSB8==0);

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_minus_dc_bit.c"

}

break;

Examples:

PCMP X0, Y0 NOPX NOPY ;Before execution: X0 = H'22222222, Y0 = H'33333333

;After execution: X0 = H'22222222, Y0 = H'33333333

N = 1, Z = 0, V = 0, GT = 0

DC bit is updated depending on the state of CS [2:0].



357

8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PCOPY Sx,Dz Sx→Dz 111110**********

11011001xx00zzzz

1 Update

PCOPY Sy,Dz Sy→Dz 111110**********

1111100100yyzzzz

1 Update

DCT PCOPY
Sx,Dz

if DC = 1, Sx→Dz if 0, nop 111110**********

11011010xx00zzzz

1 —

DCT PCOPY
Sy,Dz

if DC = 1, Sy→Dz if 0, nop 111110**********

1111101000yyzzzz

1 —

DCF PCOPY
Sx,Dz

if DC = 0, Sx→Dz if 1, nop 111110**********

11011011xx00zzzz

1 —

DCF PCOPY
Sy,Dz

if DC = 0, Sy→Dz if 1, nop 111110**********

1111101100yyzzzz

1 —

Description: Stores the Sx and Sy operands in the Dz operand. When conditions are specified for
DCT and DCF, the instruction is executed when those conditions are TRUE. When they are
FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits are also updated. The DC, N, Z, V, and
GT bits are not updated when conditions are specified, even if the conditions are TRUE.

Operation:

{ /* Sx + 0 -> Dz */

if (EX2_DSP_BIT13==0) { /* Sx + 0 -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;



358

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

DSP_ALU_SRC2 = 0;

DSP_ALU_SRC2G= 0;

}

else  { /* 0 + Sy -> Dz */

DSP_ALU_SRC1 = 0;

DSP_ALU_SRC1G= 0;

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

DSP_ALU_DST = DSP_ALU_SRC1 + DSP_ALU_SRC2;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

  (DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 + carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_plus_dc_bit.c"



359

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

Examples:

PCOPY X0, A0 NOPX NOPY ;Before execution: X0 = H'55555555, A0 = H'FFFFFFFF

;After execution: X0 = H'55555555, A0 = H'0055555555

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



360

8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PDEC Sx,Dz MSW of Sx–1→MSW of Dz,
clear LSW of Dz

111110**********

10001001xx00zzzz

1 Update

PDEC Sy,Dz MSW of Sy–1→MSW of Dz,
clear LSW of Dz

111110**********

1010100100yyzzzz

1 Update

DCT PDEC Sx,Dz If DC = 1, MSW of Sx–1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10001010xx00zzzz

1 —

DCT PDEC Sy,Dz If DC = 1, MSW of Sy–1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1010101000yyzzzz

1 —

DCF PDEC Sx,Dz If DC = 0, MSW of Sx–1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10001011xx00zzzz

1 —

DCF PDEC Sy,Dz If DC = 0, MSW of Sy–1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1010101100yyzzzz

1 —

Description: Subtracts 1 from the top word of the Sx and Sy operands, stores the result in the
upper word of the Dz operand, and clears the bottom word of the Dz operand with zeros. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Note: The bottom word of the destination register is ignored when the DC bit is updated.

Operation:

{

DSP_ALU_SRC2 = 0x1;

DSP_ALU_SRC2G= 0x0;

if (EX2_DSP_BIT13==0) {  /* MSW of Sx -1 -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;



361

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

}

else { /* MSW of Sy -1 -> Dz */

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC1  = Y0;

break;

case 0x1: DSP_ALU_SRC1  = Y1;

break;

case 0x2: DSP_ALU_SRC1  = M0;

break;

case 0x3: DSP_ALU_SRC1  = M1;

break;

}

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW - 1;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU

_DST_MSB) |

 (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 -

borrow_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);



362

#include "integer_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "integer_unconditional_update.c"

#include "integer_minus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

Example:

PDEC X0,M0  NOPX  NOPY ;Before execution: X0 = H'0052330F, M0 = H'12345678

;After execution: X0 = H'0052330F, M0 = H'00510000

PDEC X1,X1  NOPX  NOPY ;Before execution: X1 = H'FC342855

;After execution: X1 = H'FC330000

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



363

8.5.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PDMSB Sx,Dz Sx data MSB position →
MSW of Dz, clear LSW of Dz

111110**********

10011101xx00zzzz

1 Update

PDMSB Sy,Dz Sy data MSB position →
MSW of Dz, clear LSW of Dz

111110**********

1011110100yyzzzz

1 Update

DCT PDMSB Sx,Dz If DC = 1, Sx data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

10011110xx00zzzz

1 —

DCT PDMSB Sy,Dz If DC = 1, Sy data MSB
position → MSW of Dz,
clear LSW of Dz; if 0, nop

111110**********

1011111000yyzzzz

1 —

DCF PDMSB Sx,Dz If DC = 0, Sx data MSB
position → MSW of Dz, clear
LSW of Dz; if 1, nop

111110**********

10011111xx00zzzz

1 —

DCF PDMSB Sy,Dz If DC = 0, Sy data MSB
position → MSW of Dz, clear
LSW of Dz; if 1, nop

111110**********

1011111100yyzzzz

1 —

Description: Finds the first position to change in the lineup of Sx and Sy operand bits and stores
the bit position in the Dz operand. When conditions are specified for DCT and DCF, the
instruction is executed when those conditions are TRUE. When they are FALSE, the instruction is
not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

{

DSP_ALU_SRC2 = 0x0;

DSP_ALU_SRC2G= 0x0;

if (EX2_DSP_BIT13==0) { /*  msb(Sx) -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;



364

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

}

else { /* msb(Sy) -> Dz */

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC1  = Y0;

break;

case 0x1: DSP_ALU_SRC1  = Y1;

break;

case 0x2: DSP_ALU_SRC1  = M0;

break;

case 0x3: DSP_ALU_SRC1  = M1;

break;

}

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else   DSP_ALU_SRC1G = 0x0;

}

{

short int i;

unsigned char msb, src1g;

unsigned long src1=DSP_ALU_SRC1;

msb= DSP_ALU_SRC1G_BIT7;

src1g=(DSP_ALU_SRC1G_LSB8 << 1);

for(i=38;((msb==(src1g>>7))&&(i>=32));i--) { src1g <<= 1; }

if(i==31)  {

for(i;((msb==(src1>>31))&&(i>=0));i--) { src1 <<= 1; }

}

DSP_ALU_DST = 0x0;



365

DSP_ALU_DST_HW = (short int) (30-i);

if (DSP_ALU_DST_MSB) DSP_ALU_DSTG_LSB8 = 0xff;

else DSP_ALU_DSTG_LSB8 = 0x0;

}

carry_bit = 0;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

overflow_bit= 0;

#include "integer_unconditional_update.c"

#include "integer_plus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0;        /* clear LSW */

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

Example:

PDMSB X0,M0  NOPX  NOPY ;Before execution: X0 = H'0052330F, M0 = H'12345678

;After execution: X0 = H'0052330F, M0 = H'00080000

PDMSB X1,X1  NOPX  NOPY ;Before execution: X1 = H'FC342855

;After execution: X1 = H'00050000

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



366

8.5.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation
Instruction

Format Abstract Code Cycle DC Bit

PINC Sx,Dz MSW of Sx + 1→ MSW of
Dz, clear LSW of Dz

111110**********

10011001xx00zzzz

1 Update

PINC Sy,Dz MSW of Sy + 1→ MSW of
Dz, clear LSW of Dz

111110**********

1011100100yyzzzz

1 Update

DCT PINC Sx,Dz If DC = 1, MSW of Sx + 1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

10011010xx00zzzz

1 —

DCT PINC Sy,Dz If DC = 1, MSW of Sy + 1→
MSW of Dz, clear LSW of
Dz; if 0, nop

111110**********

1011101000yyzzzz

1 —

DCF PINC Sx,Dz If DC = 0, MSW of Sx + 1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

10011011xx00zzzz

1 —

DCF PINC Sy,Dz If DC = 0, MSW of Sy + 1→
MSW of Dz, clear LSW of
Dz; if 1, nop

111110**********

1011101100yyzzzz

1 —

Description: Adds 1 to the top word of the Sx and Sy operands, stores the result in the upper word
of the Dz operand, and clears the bottom word of the Dz operand with zeros. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Note: The bottom word of the destination register is ignored when the DC bit is updated.

Operation:

{

DSP_ALU_SRC2 = 0x1;

DSP_ALU_SRC2G= 0x0;

if (EX2_DSP_BIT13==0) { /* MSW of Sx +1 -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;



367

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

}

else { /* MSW of Sy +1 -> Dz */

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC1  = Y0;

break;

case 0x1: DSP_ALU_SRC1  = Y1;

break;

case 0x2: DSP_ALU_SRC1  = M0;

break;

case 0x3: DSP_ALU_SRC1  = M1;

break;

  }

  if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

  else DSP_ALU_SRC1G = 0x0;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW + 1;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 +

carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);



368

#include "integer_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "integer_unconditional_update.c"

#include "integer_plus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match

*/

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0;        /* clear LSW */

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

Example:

PINC X0,M0  NOPX  NOPY ;Before execution: X0 = H'0052330F, M0 = H'12345678

;After execution: X0 = H'0052330F, M0 = H'00530000

PINC X1,X1  NOPX  NOPY ;Before execution: X1 = H'FC342855

;After execution: X1 = H'FC350000

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



369

8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction

Format Abstract Code Cycle DC Bit

PLDS Dz,MACH Dz→MACH 111110**********

111011010000zzzz

1 —

PLDS Dz,MACL Dz→MACL 111110**********

111111010000zzzz

1 —

DCT PLDS Dz,MACH if DC = 1, Dz→MACH

if 0, nop

111110**********

111011100000zzzz

1 —

DCT PLDS Dz,MACL if DC = 1, Dz→MACL

if 0, nop

111110**********

111111100000zzzz

1 —

DCF PLDS Dz,MACH if DC = 0, Dz→MACH

if 1, nop

111110**********

111011110000zzzz

1 —

DCF PLDS Dz,MACL if DC = 0, Dz→MACL

if 1, nop

111110**********

111111110000zzzz

1 —

Description: Stores the Dz operand in the MACH and MACL registers. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

The DC, N, Z, V, and GT bits of the DSR register are not updated.

Note: Though PSTS, MOVX, and MOVY can be designated in parallel, their execution may
take two cycles.

Operation:

{ /* Dz -> MACH */

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

MACH = DSP_REG[ex2_dz_no] ;

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

MACH = DSP_REG[ex2_dz_no] ;

}

}

break;

/* SH-DSP: DSP Engine:  Local Data Move Operation: LoaD System register



370

plds_macl.c

rev 1.0 24 May 1995, EY  */

{ /* Dz -> MACL */

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

MACL = DSP_REG[ex2_dz_no] ;

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

MACL = DSP_REG[ex2_dz_no] ;

}

}

break;

Example:

PLDS A0,MACH  NOPX NOPY ;Before execution: A0 = H'123456789A, MACH = H'66666666

;After execution: A0 = H'123456789A, MACH = H'3456789A



371

8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PMULS
Se,Sf,Dg

MSW of Se × MSW of Sf→Dg 111110**********

0100eeff0000gg00

1 —

Description: The contents of the top word of the Se and Sf operands are multiplied as signed and
the result stored in the Dg operand. The DC, N, Z, V, and GT bits of the DSR register are not
updated.

Note: Since PMULS is fixed decimal point multiplication, the operation result is different from
that of MULS even though the source data is the same.

Examples:

PMULS X0,Y0,M0 NOPX NOPY ;Before execution: X0 = H'00010000, Y0 = H'00020000, 
M0 = H'33333333

;After execution: X0 = H'00010000, Y0 = H'00020000, 
M0 = H'00000004

PMULS X1,Y1,A0 NOPX NOPY ;Before execution: X1 = H'FFFE2222, Y1 = H'0001AAAA,
A0 = H'4444444444

;After execution: X1 = H'FFFE2222, Y1 = H'0001AAAA,
A0 = H'FFFFFFFFFC



372

8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PNEG Sx,Dz 0 – Sx→Dz 111110**********

11001001xx00zzzz

1 Update

PNEG Sy,Dz 0 – Sy→Dz 111110**********

1110100100yyzzzz

1 Update

DCT PNEG Sx,Dz if DC = 1, 0 – Sx→Dz

if 0, nop

111110**********

11001010xx00zzzz

1 —

DCT PNEG Sy,Dz if DC = 1, 0 – Sy→Dz

if 0, nop

111110**********

1110101000yyzzzz

1 —

DCF PNEG Sx,Dz if DC = 0, 0 – Sx→Dz

if 1, nop

111110**********

11001011xx00zzzz

1 —

DCF PNEG Sy,Dz if DC = 0, 0 – Sy→Dz

if 1, nop

111110**********

1110101100yyzzzz

1 —

Description: Reverses the sign. Subtracts the Sx and Sy operands from 0 and stores the result in
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

{

DSP_ALU_SRC1 = 0;

DSP_ALU_SRC1G= 0;

if (EX2_DSP_BIT13==0) {  /* 0 - Sx -> Dz */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC2  = X0;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else   DSP_ALU_SRC2G = 0x0;

break;

case 0x1: DSP_ALU_SRC2  = X1;

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;



373

else   DSP_ALU_SRC2G = 0x0;

break;

case 0x2: DSP_ALU_SRC2  = A0;

DSP_ALU_SRC2G = A0G;

break;

case 0x3: DSP_ALU_SRC2  = A1;

DSP_ALU_SRC2G = A1G;

break;

}

}

else  { /* 0 - Sy -> Dz */

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

}

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB)

&& !DSP_ALU_DST_MSB) |

(DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 -
borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_minus_dc_bit.c"



374

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

Examples:

PNEG X0,A0 NOPX NOPY ;Before execution: X0 = H'55555555, A0 = H'A987654321

;After execution: X0 = H'55555555, A0 = H'FFAAAAAAAB

PNEG X1,Y1 NOPX NOPY ;Before execution: Y1 = H'99999999

;After execution: Y1 = H'66666667

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



375

8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction

Format Abstract Code Cycle DC Bit

POR Sx,Sy,Dz Sx | Sy→Dz, clear LSW of Dz 111110**********

10110101xxyyzzzz

1 Update

DCT POR
Sx,Sy,Dz

If DC = 1, Sx | Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10110110xxyyzzzz

1 —

DCF POR
Sx,Sy,Dz

If DC = 0, Sx | Sy→Dz,
clear LSW of Dz; if 1, nop

111110**********

10110111xxyyzzzz

1 —

Description: Takes the OR of the top word of the Sx operand and the top word of the Sy operand,
stores the result in the top word of the Dz operand, and clears the bottom word of Dz with zeros.
When Dz is a register that has guard bits, the guard bits are also zeroed. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

Operation:

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

break;

case 0x2: DSP_ALU_SRC1  = A0;

break;

case 0x3: DSP_ALU_SRC1  = A1;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;



376

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW | DSP_ALU_SRC2_HW;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0;        /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0;    /* clear Guard

bits */

else if (ex2_dz_no==1) A1G = 0x0;

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

#include "logical_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard

bits */

else if (ex2_dz_no==1) A1G = 0x0;

}

}

break;



377

Example:

POR X0,Y0,A0  NOPX NOPY ;Before execution: X0 = H'33333333, Y0 = H'55555555

A0 = H'123456789A

;After execution: X0 = H'33333333, Y0 = H'55555555

A0 = H'127777789A

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



378

8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PRND Sx,Dz Sx + H'00008000→Dz

clear LSW of Dz

111110**********

10011000xx00zzzz

1 Update

PRND Sy,Dz Sy + H'00008000→Dz

clear LSW of Dz

111110**********

1011100000yyzzzz

1 Update

Description: Does rounding. Adds the immediate data H'00008000 to the contents of the Sx and
Sy operands, stores the result in the upper word of the Dz operand, and clears the bottom word of
Dz with zeros.

The DC bit of the DSR register is updated according to the specifications for the CS bits. The N,
Z, V, and GT bits of the DSR register are also updated.

Operation:

{

DSP_ALU_SRC2 = 0x00008000;

DSP_ALU_SRC2G= 0x0;

if (EX2_DSP_BIT13==0) { /* Sx + H'00008000 -> Dz; clr Dz

LW */

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

}



379

else  { /* Sy + H'00008000 -> Dz; clr Dz LW */

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC1  = Y0;

break;

case 0x1: DSP_ALU_SRC1  = Y1;

break;

case 0x2: DSP_ALU_SRC1  = M0;

break;

case 0x3: DSP_ALU_SRC1  = M1;

break;

}

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

}

DSP_ALU_DST = (DSP_ALU_SRC1 + DSP_ALU_SRC2) & MASKFFFF0000;

carry_bit = ((DSP_ALU_SRC1_MSB | DSP_ALU_SRC2_MSB) & !DSP_ALU

_DST_MSB) |

(DSP_ALU_SRC1_MSB & DSP_ALU_SRC2_MSB);

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 + DSP_ALU_SRC2G_LSB8 +

carry_bit;

overflow_bit= PLUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_plus_dc_bit.c"

}

break;



380

Example:

PRND X0,M0  NOPX  NOPY ;Before execution: X0 = H'0052330F, M0 = H'12345678

;After execution: X0 = H'0052330F, M0 = H'00520000

PRND X1,X1  NOPX  NOPY ;Before execution: X1 = H'FC34C087

;After execution: X1 = H'FC350000

DC bit is updated depending on the state of CS [2:0].



381

8.5.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift
Instruction

Format Abstract Code Cycle DC Bit

PSHA Sx,Sy,Dz if Sy> = 0, Sx<<Sy→Dz

if Sy<0, Sx>>Sy–>Dz

111110**********

10010001xxyyzzzz

1 Update

DCT PSHA
Sx,Sy,Dz

if DC = 1 & Sy> = 0,

Sx<<Sy→Dz

if DC = 1 & Sy<0,

Sx>>Sy→Dz

if DC = 0, nop

111110**********

10010010xxyyzzzz

1 Update

DCF PSHA
Sx,Sy,Dz

if DC = 0 & Sy> = 0,

Sx<<Sy–>Dz

if DC = 0 & Sy<0,

Sx>>Sy→Dz

if DC = 1, nop

111110**********

10010011xxyyzzzz

1 —

PSHA #Imm,Dz if Imm> = 0,

Dz<<Imm→Dz

if Imm<0, Dz>>Imm→Dz

111110**********

00010iiiiiiizzzz

1 —

Description: Arithmetically shifts the contents of the Sx or Dz operand and stores the result in the
Dz operand. The amount of the shift is specified by the Sy operand or the immediate value Imm
operand. When the shift amount is positive, it shifts left. When the shift amount is negative, it
shifts right. When conditions are specified for DCT and DCF, the instruction is executed when
those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

< When register operand is used >

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1 = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;



382

case 0x1: DSP_ALU_SRC1 = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2 = Y0 & MASK007F0000;

break;

case 0x1: DSP_ALU_SRC2 = Y1 & MASK007F0000;

break;

case 0x2: DSP_ALU_SRC2 = M0 & MASK007F0000;

break;

case 0x3: DSP_ALU_SRC2 = M1 & MASK007F0000;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

if((DSP_ALU_SRC2_HW & MASK0040)==0) { /* Left Shift

0<=cnt<=32 */

char cnt = (DSP_ALU_SRC2_HW & MASK003F);

if(cnt > 32) {

printf("¥nPSHA Sz,Sy,Dz Error! Shift %2X exceed range.

¥n",cnt);

exit();

}

DSP_ALU_DST  = DSP_ALU_SRC1 << cnt;

DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt) |

(DSP_ALU_SRC1 >> (32-cnt))) & MASK000000FF;

carry_bit = ((DSP_ALU_DSTG & MASK00000001)==0x1);

}



383

else   { /* Right Shift 0< cnt <=32 */

char cnt = ((~DSP_ALU_SRC2_HW & MASK003F)+1);

if(cnt > 32) {

printf("¥nPSHA Sz,Sy,Dz Error! shift -%2X exceed range.¥n",cnt);

exit();

}

if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */

DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<

(32-8)));

DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);

}

else {

DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<

(32-cnt)));

}

DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8 >> cnt-- ;

carry_bit = (((DSP_ALU_SRC1 >> cnt) & MASK00000001)==0x1);

}

/* overflow_bit = !(POS_NOT_OV || NEG_NOT_OV); /* do overflow detection */

/* #include "fixed_pt_overflow_protection.c" /* do overflow protection; V=0
*/

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "shift_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}



384

}

break;

<When according to immediate operand>

{

unsigned short tmp_imm;

DSP_ALU_SRC1=DSP_REG[ex2_dz_no];

switch (ex2_dz_no) {

case 0x0: DSP_ALU_SRC1G = A0G;

break;

case 0x1: DSP_ALU_SRC1G = A1G;

break;

default: if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G =

0x0;

}

tmp_imm = ((EX2_LW >> 4) & MASK0000007F); /* bit[10:4] */

if((tmp_imm & MASK0040)==0) { /* Left Shift 0<= cnt <=32 */

char cnt = (tmp_imm & MASK003F);

if(cnt > 32) {

printf("¥nPSHA Dz,#Imm,Dz Error! #Imm=%7X exceed range

¥n",tmp_imm);

exit();

}

DSP_ALU_DST  = DSP_ALU_SRC1 << cnt;

DSP_ALU_DSTG = ((DSP_ALU_SRC1G << cnt) |

(DSP_ALU_SRC1 >> (32-cnt))) & MASK000000FF;

carry_bit = ((DSP_ALU_DSTG & MASK00000001)==0x1);

}

else   { /* Right Shift 0< cnt <=32 */

char cnt = ((~tmp_imm & MASK003F)+1);

if(cnt > 32) {

printf("¥nPSHL Dz,#Imm,Dz Error! #Imm=%7X exceed range

¥n",tmp_imm);



385

exit();

}

if((cnt>8) && DSP_ALU_SRC1G_BIT7) { /* MSB copy */

DSP_ALU_DST=((DSP_ALU_SRC1>>8) | (DSP_ALU_SRC1G<<

(32-8)));

DSP_ALU_DST=(long) DSP_ALU_DST >> (cnt-8);

}

else {

DSP_ALU_DST=((DSP_ALU_SRC1>>cnt)|(DSP_ALU_SRC1G<<

(32-cnt)));

}

DSP_ALU_DSTG_LSB8 = (char) DSP_ALU_SRC1G_LSB8 >>  cnt-

-;

carry_bit = (((DSP_ALU_SRC1 >> cnt) & MASK00000001)==0x1);

}

/* overflow_bit = !(POS_NOT_OV || NEG_NOT_OV); /* do overflow detection */

/* #include "fixed_pt_overflow_protection.c"  /* do overflow

protection; V=0 */

{ /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "shift_dc_bit.c"

}

}

break;



386

Examples:

PSHA X0,Y0,A0 NOPX NOPY ;Before execution: X0 = H'88888888, Y0 = H'00020000, 
A0 = H'123456789A

;After execution: X0 = H'88888888, Y0 = H'00020000, 
A0 = H'FE22222222

PSHA X0,Y0,X0 NOPX NOPY ;Before execution: X0 = H'33333333, Y0 = H'FFFF0000

;After execution: X0 = H'19999999, Y0 = H'FFFE0000

PSHA #-5,A1 NOPX NOPY ;Before execution: A1 = H'AAAAAAAAAA

;After execution: A1 = H'FD55555555

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



387

8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction

Format Abstract Code Cycle DC Bit

PSHL Sx,Sy,Dz If Sy≥0, Sx<<Sy → Dz,
clear LSW of Dz; if Sy<0,
Sx>>Sy → Dz,
clear LSW of Dz

111110**********

10000001xxyyzzzz

1 Update

DCT PSHL Sx,Sy,Dz If DC=1 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz;
 if DC=1 & Sy<0, Sx>>Sy →
Dz, clear LSW of Dz;
if DC=0, nop

111110**********

10000010xxyyzzzz

1 —

DCF PSHL Sx,Sy,Dz If DC=0 & Sy≥0, Sx<<Sy →
Dz, clear LSW of Dz; if DC=0
& Sy<0, Sx>>Sy → Dz, clear
LSW of Dz; if DC=1, nop

111110**********

10000011xxyyzzzz

1 —

PSHL #imm,Dz If imm≥0, Dz<<imm → Dz,
clear LSW of Dz; if imm<0,
Dz>>imm → Dz,
clear LSW of Dz

111110**********

00000iiiiiiizzzz

1 Update

Description: Logically shifts the top word contents of the Sx or Dz operand, stores the result in
the top word of the Dz operand, and clears the bottom word of the Dx operand with zeros. When
Dz is a register that has guard bits, the guard bits are also zeroed. The amount of the shift is
specified by the Sy operand or the immediate value Imm operand. When the shift amount is
positive, it shifts left. When the shift amount is negative, it shifts right. When conditions are
specified for DCT and DCF, the instruction is executed when those conditions are TRUE. When
they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

<When register operand is used>

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

break;



388

case 0x2: DSP_ALU_SRC1  = A0;

break;

case 0x3: DSP_ALU_SRC1  = A1;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0 & MASK003F0000;

break;

case 0x1: DSP_ALU_SRC2  = Y1 & MASK003F0000;

break;

case 0x2: DSP_ALU_SRC2  = M0 & MASK003F0000;

break;

case 0x3: DSP_ALU_SRC2  = M1 & MASK003F0000;

break;

}

if((DSP_ALU_SRC2_HW & MASK0020)==0) { /* Left Shift

0<=cnt<=16 */

char cnt = (DSP_ALU_SRC2_HW & MASK001F);

if(cnt > 16) {

printf("PSHL Sx,Sy,Dz Error! Shift %2X exceed range

¥n",cnt);

exit();

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW << cnt--;

carry_bit = (((DSP_ALU_SRC1_HW << cnt) & MASK8000)==

0x8000);

}

else   { /* Right Shift 0<cnt<=16 */

char cnt = ((~DSP_ALU_SRC2_HW & MASK000F)+1);

if(cnt > 16) {

printf("PSHL Sx,Sy,Dz Error! Shift -%2X exceed range

¥n",cnt);

exit();

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW >> cnt--;

carry_bit = (((DSP_ALU_SRC1_HW >> cnt) & MASK0001)==0x1);

}



389

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard bits */

else if (ex2_dz_no==1) A1G = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

#include "shift_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard bits */

else if (ex2_dz_no==1) A1G = 0x0;

}

}

break;

<When according to immediate operand>

{

unsigned short tmp_imm;

DSP_ALU_SRC1=DSP_REG[ex2_dz_no];

switch (ex2_dz_no) {

case 0x0: DSP_ALU_SRC1G = A0G;

break;

case 0x1: DSP_ALU_SRC1G = A1G;

break;

default: if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G =

0x0;

}

tmp_imm = ((EX2_LW >> 4) & MASK0000003F); /* bit[9:4] */

if((tmp_imm & MASK0020)==0) { /* Left Shift 0<= cnt <16 */



390

char cnt = (tmp_imm & MASK001F);

if(cnt > 16) {

printf("PSHL Dz,#Imm,Dz Error! #Imm=%6X exceed range

¥n",tmp_imm);

exit();

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW << cnt--;

carry_bit = (((DSP_ALU_SRC1_HW << cnt) & MASK8000)==

0x8000);

}

else   { /* Right Shift 0< cnt <=16 */

char cnt = ((~tmp_imm & MASK001F)+1);

if(cnt > 16) {

printf("PSHL Dz,#Imm,Dz Error! #Imm=%6X exceed range

¥n",tmp_imm);

exit();

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW >> cnt--;

carry_bit = (((DSP_ALU_SRC1_HW >> cnt) & MASK0001)==0x1);

}

{ /* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard bits */

else if (ex2_dz_no==1) A1G = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

#include "shift_dc_bit.c"

}

}

break;



391

Examples:

PSHL X0,Y0,A0 NOPX NOPY ;Before execution: X0 = H'22222222, Y0 = H'00030000, 
A0 = H'123456789A

;After execution: X0 = H'22222222, Y0 = H'00030000, 
A0 = H'0011100000

PSHL X1,Y1,X1 NOPX NOPY ;Before execution: X1 = H'CCCCCCCC, Y1 = H'FFFE0000

;After execution: X1 = H'33330000, Y1 = H'FFFE0000

PSHL #7,A1 NOPX NOPY ;Before execution: A1 = H'55555555

;After execution: A1 = H'AA800000

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



392

8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction

Format Abstract Code Cycle DC Bit

PSTS MACH,Dz MACH→Dz 111110**********

110011010000zzzz

1 —

PSTS MACL,Dz MACL→Dz 111110**********

110111010000zzzz

1 —

DCT PSTS MACH,Dz if DC = 1, MACH→Dz

if 0, nop

111110**********

110011100000zzzz

1 —

DCT PSTS MACL,Dz if DC = 1, MACL→Dz

if 0, nop

111110**********

110111100000zzzz

1 —

DCF PSTS MACH,Dz if DC = 0, MACH→Dz

if 1, nop

111110**********

110011110000zzzz

1 —

DCF PSTS MACL,Dz if DC = 0, MACL→Dz

if 1, nop

111110**********

110111110000zzzz

1 —

Description: Stores the contents of the MACH and MACL registers in the Dz operand. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed. The DC, N, Z, V, and GT bits of
the DSR register are not updated.

Note: Though PSTS, MOVX and MOVY can be designated in parallel, their execution may take
2 cycles.

Operation:

/* MACH -> Dz */

{

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG[ex2_dz_no] = MACH;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}



393

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = MACH;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;

/* MACL -> Dz */

{

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG[ex2_dz_no] = MACL;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = MACL;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;



394

}

}

}

break;

Examples:

PSTS MACH,A0 NOPX NOPY ;Before execution: A0 = H'123456789A, MACH = H'88888888

;After execution: A0 = H'FF88888888, MACH = H'88888888



395

8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PSUB Sx,Sy,Dz Sx – Sy→Dz 111110**********

10100001xxyyzzzz

1 Update

DCT PSUB Sx,Sy,Dz if DC = 1,

Sx – Sy→Dz if 0, nop

111110**********

10100010xxyyzzzz

1 —

DCF PSUB Sx,Sy,Dz if DC = 0,

Sx – Sy→Dz if 1, nop

111110**********

10100011xxyyzzzz

1 —

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result in
the Dz operand. When conditions are specified for DCT and DCF, the instruction is executed
when those conditions are TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are updated. The DC,
N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Operation:

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1  = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1  = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {



396

case 0x0: DSP_ALU_SRC2  = Y0;

break;

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU_DST_MSB) |

 (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 - borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_minus_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG[ex2_dz_no] = DSP_ALU_DST;

if(ex2_dz_no==0) {

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

}

else if(ex2_dz_no==1) {

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

}

}

}

break;



397

Examples:

PSUB X0,Y0,A0 NOPX NOPY ;Before execution: X0 = H'55555555, Y0 = H'33333333, 
A0 = H'123456789A

;After execution: X0 = H'55555555, Y0 = H'33333333, 
A0 = H'0022222222

In case of unconditional execution, the DC bit is updated depending on 
the state of CS [2:0].



398

8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic
Operation Instruction

Format Abstract Code Cycle DC Bit

PSUB Sx,Sy,Du Sx – Sy→Du 111110********** 1 Update

PMULS Se,Sf,Dg MSW of Se × MSW of
Sf→Dg

0110eeffxxyygguu

Description: Subtracts the contents of the Sy operand from the Sx operand and stores the result in
the Du operand. The contents of the top word of the Se and Sf operands are multiplied as signed
and the result stored in the Dg operand. These two processes are executed simultaneously in
parallel.

The DC bit of the DSR register is updated according to the results of the ALU operation and the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated
according to the results of the ALU operation.

Operation:

{

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2;

carry_bit=((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB)&& !DSP_ALU_DST_MSB)|

  (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8=DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 -

borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "../d_3operand.d/fixed_pt_overflow_protection.c"

switch (EX2_DU) {

case 0x0:

X0  = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);

break;

case 0x1:

Y0  = DSP_ALU_DST;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST==0);



399

break;

case 0x2:

A0  = DSP_ALU_DST;

A0G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A0G = A0G | MASKFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG_

LSB8==0);

break;

case 0x3:

A1  = DSP_ALU_DST;

A1G = DSP_ALU_DSTG & MASK000000FF;

if(DSP_ALU_DSTG_BIT7) A1G = A1G | MASKFFFFFF00;

negative_bit = DSP_ALU_DSTG_BIT7;

zero_bit = (DSP_ALU_DST==0) & (DSP_ALU_DSTG

_LSB8==0);

break;

}

#include "../d_3operand.d/fixed_pt_minus_dc_bit.c"

}

break;

Examples:

PSUB A0,M0,A0 PMULS X0,Y0, M0 NOPX NOPY

;Before execution: X0 = H'00020000, Y0 = H'FFFE0000,
M0 = H'33333333, A0 = H'0022222222

;After execution: X0 = H'00020000, Y0 = H'FFFE0000, 
M0 = H'FFFFFFF8, A0 = H'55555555



400

8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction

Format Abstract Code Cycle DC Bit

PSUBC
Sx,Sy,Dz

Sx – Sy – DC→Dz 111110**********

10100000xxyyzzzz

1 Borrow

Description: Subtracts the contents of the Sy operand and the DC bit from the Sx operand and
stores the result in the Dz operand. The DC bit of the DSR register is updated as the borrow flag.
The N, Z, V, and GT bits of the DSR register are also updated.

Note: After the PSUBC instruction is executed, the DC bit is updated as the borrow flag without
regard to the CS bit.

Operation:

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else   DSP_ALU_SRC1G = 0x0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

if (DSP_ALU_SRC1_MSB) DSP_ALU_SRC1G = 0xff;

else   DSP_ALU_SRC1G = 0x0;

break;

case 0x2: DSP_ALU_SRC1 = A0;

DSP_ALU_SRC1G = A0G;

break;

case 0x3: DSP_ALU_SRC1 = A1;

DSP_ALU_SRC1G = A1G;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2 = Y0;

break;

case 0x1: DSP_ALU_SRC2 = Y1;

break;

case 0x2: DSP_ALU_SRC2 = M0;

break;



401

case 0x3: DSP_ALU_SRC2 = M1;

break;

}

if (DSP_ALU_SRC2_MSB) DSP_ALU_SRC2G = 0xff;

else DSP_ALU_SRC2G = 0x0;

DSP_ALU_DST = DSP_ALU_SRC1 - DSP_ALU_SRC2 - DSPDCBIT;

carry_bit =((DSP_ALU_SRC1_MSB | !DSP_ALU_SRC2_MSB) && !DSP_ALU

_DST_MSB)

  | (DSP_ALU_SRC1_MSB & !DSP_ALU_SRC2_MSB);

borrow_bit = !carry_bit;

DSP_ALU_DSTG_LSB8 = DSP_ALU_SRC1G_LSB8 - DSP_ALU_SRC2G_LSB8 -

borrow_bit;

overflow_bit= MINUS_OP_G_OV || !(POS_NOT_OV || NEG_NOT_OV);

#include "fixed_pt_overflow_protection.c"

#include "fixed_pt_unconditional_update.c"

#include "fixed_pt_dc_always_borrow.c"

}

break;

Example:

CS[2:0]=***: Always Carry or Borrow Mode

PSUBC X0,Y0,M0  NOPX  NOPY ;Before execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'0012345678, DC = 0

;After execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'FFDDDDDDDE, DC = 1

PSUBC X0,Y0,M0  NOPX  NOPY ;Before execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'0012345678, DC = 1

;After execution: X0 = H'33333333, Y0 = H'55555555

M0 = H'FFDDDDDDDD, DC = 1



402

8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction

Format Abstract Code Cycle DC Bit

PXOR Sx,Sy,Dz Sx ^ Sy→Dz, clear LSW of
Dz

111110**********

10100101xxyyzzzz

1 Update

DCT PXOR Sx,Sy,Dz if DC = 1, Sx^Sy→Dz,
clear LSW of Dz; if 0, nop

111110**********

10100110xxyyzzzz

1 —

DCF PXOR Sx,Sy,Dz if DC = 0, Sx^Sy→Dz clear
LSW of Dz; if 1, nop

111110**********

10100111xxyyzzzz

1 —

Description: Takes the exclusive OR of the top word of the Sx operand and the top word of the
Sy operand, stores the result in the top word of the Dz operand, and clears the bottom word of Dz
with zeros. When Dz is a register that has guard bits, the guard bits are also zeroed. When
conditions are specified for DCT and DCF, the instruction is executed when those conditions are
TRUE. When they are FALSE, the instruction is not executed.

When conditions are not specified, the DC bit of the DSR register is updated according to the
specifications for the CS bits. The N, Z, V, and GT bits of the DSR register are also updated. The
DC, N, Z, V, and GT bits are not updated when conditions are specified, even if the conditions are
TRUE.

Note: The bottom word of the destination register and the guard bits are ignored when the DC bit
is updated.

Operation:

{

switch (EX2_SX) {

case 0x0: DSP_ALU_SRC1  = X0;

break;

case 0x1: DSP_ALU_SRC1  = X1;

break;

case 0x2: DSP_ALU_SRC1  = A0;

break;

case 0x3: DSP_ALU_SRC1  = A1;

break;

}

switch (EX2_SY) {

case 0x0: DSP_ALU_SRC2  = Y0;

break;



403

case 0x1: DSP_ALU_SRC2  = Y1;

break;

case 0x2: DSP_ALU_SRC2  = M0;

break;

case 0x3: DSP_ALU_SRC2  = M1;

break;

}

DSP_ALU_DST_HW = DSP_ALU_SRC1_HW ^ DSP_ALU_SRC2_HW;

if(DSP_UNCONDITIONAL_UPDATE) { /* unconditional operation */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard bits */

else if (ex2_dz_no==1)  A1G = 0x0;

carry_bit = 0x0;

negative_bit = DSP_ALU_DST_MSB;

zero_bit = (DSP_ALU_DST_HW==0);

overflow_bit = 0x0;

#include "logical_dc_bit.c"

}

else if(DSP_CONDITION_MATCH) { /* conditional operation and match */

DSP_REG_WD[ex2_dz_no*2] = DSP_ALU_DST_HW;

DSP_REG_WD[ex2_dz_no*2+1] = 0x0; /* clear LSW */

if (ex2_dz_no==0) A0G = 0x0; /* clear Guard bits */

else if (ex2_dz_no==1)  A1G = 0x0;

}

}

break;



404

Example:

PXOR X0,Y0,A0  NOPX  NOPY ;Before execution: X0 = H'33333333, Y0 = H'55555555

A0 = H'123456789A

;After execution: X0 = H'33333333, Y0 = H'55555555

A0 = H'0066660000

In case of unconditional execution, the DC bit is updated depending 
on the state of CS [2:0].



405

Section 9   Processing States

9.1 State Transitions

The CPU has five processing states: reset, exception processing, bus release, program execution
and power-down. The transitions between the states are shown in figure 9-1.

From any state except 
when power-on reset*

From any state when
manual reset*

Manual reset*

RESET = 1, 
or RESETP = 1

RESET = 1, 
or RESETM = 1

Power-on
reset*

Power-on reset
state

Manual reset
state

Module standby function

Note: SH-3 (SH7702, SH7707, SH7708), SH-3E:
Power-on reset: RESET = 0, BREQ = 1
Manual reset: RESET = 0, BREQ = 0
SH-3 (SH7709), SH3-DSP:
Power-on reset: RESETP = 0
Manual reset: RESETM = 0

Bus-released state

Sleep mode Standby mode

Exception-handling state

Hardware standby function

Interrupt

Bus request

Bus request 
clearance

Exception 
interrupt

End of exception 
transition 
processing

Bus 
request

Bus 
request 
clearance

SLEEP 
  instruction 
     with STBY 
        bit set

Interrupt

Reset state

Power-down state

         SLEEP 
      instruction 
   with STBY 
bit cleared

Figure 9-1   Transitions between Processing States



406

9.1.1 Reset State

In the reset state, the CPU is reset. On the SH-3 (SH7702, SH7707, SH7708) and SH-3E, this
occurs when the RESET pin goes low. When the BREQ pin is high, the result is a power-on reset;
when it is low, a manual reset occurs. On the SH-3 (SH7709) and SH3-DSP, a power-on reset
occurs when the RESETP pin is low, and a manual reset occurs when the RESETM pin is low.

9.1.2 Exception Processing State

The exception processing state is a transient state that occurs when the CPU’s processing state
flow is altered by exception processing sources such as resets, general exceptions, or interrupts.

For a reset, the CPU branches to H'A0000000 and starts executing the user-created exception
process program.

For a general exception or interrupt, the program counter (PC) is saved in the save program
counter (SPC), and the status register (SR) is saved in the save status register (SSR). The CPU
then branches to the starting address of the user-created exception service routine by adding the
content of the vector base address and the vector offset, thereby starting program execution state.

9.1.3 Program Execution State

In the program execution state, the CPU sequentially executes the program.

9.1.4 Power-Down State

In the power-down state, the CPU operation halts and power consumption declines. The SLEEP
instruction places the CPU in the power-down state. This state has four modes and function: sleep
mode, standby mode, hardware standby mode, and module standby function. See section 9.2 for
more details.

9.1.5 Bus Release State

In the bus release state, the CPU releases access rights to the bus to the device that has requested
them.

9.2 Power-Down State

In addition to the ordinary program execution states, the CPU also has a power-down state in
which CPU operation halts and power consumption is lowered (table 9-1). There are four power-
down state modes and function: sleep mode, standby mode, hardware standby mode, and module
standby function.

9.2.1 Sleep Mode

When the standby bit (STBY) of the standby control register (STBCR) is cleared to 0 and the
SLEEP instruction executed, the CPU enters the sleep mode. In sleep mode, the CPU halts but the



407

contents of the CPU and cache registers are maintained. Operation of the on-chip peripheral
modules continues.

Returning from the sleep mode is accomplished using a reset or an interrupt. The CPU first enters
the exception processing mode and then makes the transition to the normal program execution
mode.

9.2.2 Standby Mode

When the standby bit (STBY) of the standby control register (STBCR) is set to 1 and the SLEEP
instruction executed, the CPU enters the standby mode. In standby mode, the functioning of the
CPU, the on-chip peripheral modules, and oscillator halt. However, the contents of the CPU and
cache registers are maintained.

Returning from the standby mode is accomplished using a reset or an interrupt. If a reset is used,
the CPU enters the exception processing mode after the oscillator stabilization time has elapsed
and then makes the transition to the normal program execution mode. If an interrupt is used, the
CPU enters the exception processing mode after the oscillator stabilization time set in WDT has
elapsed and then makes the transition to the normal program execution mode.

In this mode, power consumption drops markedly, since the oscillator stops.

9.2.3 Hardware Standby Mode

The CPU enters the hardware standby mode when the CA pin is set to low level. As with the
standby modes initiated using the SLEEP command, the hardware standby mode, all modules
other than those which function using the RTC clock halt.

9.2.4 Module Standby Function

The timer (TMU), real-time clock (RTC), and serial communication interface (SCI) each have a
module standby function.

When the module stop bit of the standby control register (STBCR) is set to 1, the supply of the
clock to the corresponding modules is halted. This function can be used to reduce power
consumption both in the normal program execution mode and in the sleep mode.

When the module standby function is being used, the status of the external pins of the on-chip
peripheral modules differs depending on the module. The external pins of the TMU maintain their
status prior to standby. The external pins of the SCI are reset.

To cancel the module standby function, either clear the MSTP bits to 0 or perform a reset.



408

Table 9-1 Power-Down State

State

Mode
Entering
Procedure

Oscil-
lator CPU

CPU
Reg-
ister

On-Chip
Memory

On-Chip
Peripheral
Modules Pins

External
Memory

Canceling
Procedure

Sleep
mode

Execute
SLEEP
instruction
when STBY bit
of STBCR is
cleared to 0

Run Halt Held Held Run Held Refresh 1. Interrupt

2. Reset

Standby
mode

Execute
SLEEP
instruction with
STBY bit set
to 1 in STBCR

Halt Halt Held Held Halt* Held Self-
refresh

1. Interrupt

2. Reset

Hardware
standby
mode

Set CA pin to
low level

Halt Halt Held Held Halt* Held Self-
refresh

Module
standby
function

Set MSTP bit
of STBCR to 1

Run Run Held Held Specified
module halts

Held Refresh 1. Set MSTP
bit to 0

2. Reset

Note: * Differs depending on the on-chip peripheral module. Refer to the Hardware Manual for
the SH-3, SH-3E, and SH3-DSP for details.



409

Section 10   Pipeline Operation

This section describes the operation of the pipelines for each instruction. This information is
provided to allow calculation of the required number of CPU instruction execution states (system
clock cycles).

10.1 Basic Configuration of Pipelines

10.1.1 Five-Stage Pipeline

Pipelines are composed of the following five stages:

• IF (Instruction fetch) Fetches instruction from the memory stored in the program.

• ID (Instruction decode) Decodes the instruction fetched.

• EX (Instruction execution) Does data operations and address calculations according to the
results of decoding.

• MA (Memory access) Accesses data in memory in conjunction with instructions that
involve memory access.
For instructions that do not involve memory access, the resulting
data is maintained as is and MA is expressed in lowercase letters as
"ma".

• WB (Write back) Returns the results of the memory access (data) to a register in
conjunction with instructions that involve memory access.
For instructions that do not involve memory access, the data
maintained in the ma stage is returned to the register.

Instructions are executed using a pipeline consisting of five stages. The various instruction stages
flow with the execution of the instructions and form this pipeline. This means that at any given
moment, five instructions are being executed simultaneously. The basic flow of the pipeline is
shown in Figure 10-1. Each period during which a single stage is executed is called a slot and is
indicated using the “↔” symbol.

All instructions have at least three stages: IF, ID, and EX. Some also have stages MA and WB.
Also, the way the pipeline flows varies with the type of instruction, with some containing two MA
stages, some including access to the multiplier (mm), and so on. There can also be contention, for
example, between IF and MA. If contention occurs, the flow of the pipeline changes.



410

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

Time

  Slot

Instruction
stream

Figure 10-1   Basic Structure of Pipeline Flow

10.1.2 Slot and Pipeline Flow

The time period in which a single stage operates is called a slot. Slots must follow the rules
described below.

Instruction Execution

Each stage (IF, ID, EX, MA, WB) of an instruction must be executed in one slot. Two or more
stages cannot be executed within one slot (figure 10-2), with exception of WB and MA.

Instruction 1

Instruction 2

IF ID

IF

EX

ID EX MA WB

  Slot

Note: * ID and EX of instruction 1 are being executed in the same slot.

Figure 10-2   Impossible Pipeline Flow 1

Slot Sharing

A maximum of one stage from another instruction may be set per slot, and that stage must be
different from the stage of the first instruction. Identical stages from two different instructions may
never be executed within the same slot (figure 10-3).



411

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

IF ID

IF

EX

ID

IF

MA

EX

ID

IF

WB

MA

EX

ID

IF

WB

MA

EX

ID

WB

MA

EX

WB

MA WB

  Slot

Note: * Same stage of another instruction is being executed in same slot.

Figure 10-3   Impossible Pipeline Flow 2

10.1.3 Number of Cycles Required for Execution of One Slot

The number of states (system clock cycles) S for the execution of one slot is calculated with the
following conditions:

• S = (the cycles of the stage with the highest number of cycles of all instruction stages contained
in the slot)

This means that the instruction with the longest stage stalls others with shorter stages.

• The number of execution cycles for each stage:

— IF The number of memory access cycles for instruction fetch

— ID Always one cycle

— EX Always one cycle

— MA The number of memory access cycles for data access

— WB Always one cycle

As an example, figure 10-4 shows the flow of a pipeline in which the IF (memory access for
instruction fetch) of instructions 1 and 2 are two cycles, the MA (memory access for data access)
of instruction 1 is three cycles and all others are one cycle. The dashes indicate the instruction is
being stalled. Refer to the Hardware Manual for information on the number of clock cycles in each
case.

Instruction 1

Instruction 2

(2)

IF

(2)

ID

IF

—

IF

(1)

EX

ID

MA

EX —

Slot

(3)

MA

—

(1)

WB

MA

(1)

 

WB

MAIF
Number of cycles

Figure 10-4   Slots Requiring Multiple Cycles



412

10.1.4 Number of Instruction Execution Cycles

The number of instruction execution cycles is counted based on the interval between execution of
EX stages. The number of cycles between the start of the EX stage for instruction 1 and the start of
the EX stage for the following instruction (instruction 2) is the execution time for instruction 1.
Figure 10-5 shows an example of the way in which the number of instruction execution cycles is
counted.

In this example, the flow of the pipeline is such that the EX stage interval between instructions 1
and 2 is two cycles. Therefore, the execution time for instruction 1 is two cycles. Also, the EX
stage interval between instructions 2 and 3 is three cycles, so the execution time for instruction 2 is
three cycles. If a program ends with instruction 3, the execution time for instruction 3 would be
calculated as the interval between the EX stage of instruction 3 and the EX stage of a hypothetical
instruction 4 following instruction 3, using MOV Rm, Rn. In this example, the execution time for
instruction 3 is two cycles. The execution time for instructions 1 through 3 is therefore seven
cycles (2 + 3 + 2 = 7).

In this example, the MA of instruction 1 and the IF of instruction 4 are in contention. For
information on operation when MA and IF are in contention, refer to section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

Instruction 1

Instruction 2

Instruction 3

(Instruction 4

(2)

IF

(2)

ID

IF

—

IF

(2)

EX

EXID

IDIF

—

—

IF

—

—

—

 Number of cycles

IF MA MA MA

WB

WB

WB

— —

EX—

— IF

(1)(1)

ID

(1)

MA

EX

(4)

:   MOV Rm, Rn )

Slot

ma

Figure 10-5   How Instruction Execution Cycles Are Counted



413

10.2 Contention

Contention occurs in the following seven situations. When contention occurs in a particular stage,
that stage is stored and the next and subsequent slots are executed.

(1) Contention between instruction fetch (IF) and memory access (MA)

(2) Contention caused by a memory load instruction

(3) Contention caused by an SR update instruction

(4) Contention caused by accessing the multiplier

(5) FPU contention (SH-3E only)

(6) Contention between DSP data operation instruction and store instruction (SH3-DSP only)

(7) Contention between a transfer between DSP registers and a memory load or store operation
(SH3-DSP only)

10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)

Basic Operation when IF and MA Are in Contention

The IF and MA stages both access memory, so they cannot operate simultaneously. If the IF and
MA stages both try to access memory within the same slot, the IF stage is stored and the next slot
is executed. However, if contention with another MA stage occurs in the next slot, the IF stage is
again stored and the next slot is executed. Figure 10-6 illustrates operation when IF and MA are in
contention.



414

             Slot

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

A

if

B

ID

IF

C

EX

ID

if

D

MA

EX

ID

IF

E

WB

ma

EX

ID

if

: (When MA and IFare in contention, the following occurs:)

F

WB

ma

EX

ID

G

WB

ma

EX

WB

             Slot

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

A

if

B

ID

IF

C

EX

ID

if

D

MA

EX

ID

—

E

WB

ma

EX

IF

•  IF stored at D

F

WB

ma

ID

if

G

WB

EX

ID

ma

EX

WB

(a) When there is no subsequent MA stage

             Slot

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

A

if

B

ID

IF

C

EX

ID

if

D

MA

EX

ID

IF

E

WB

MA

EX

ID

if

• MA of instruction 1 and IF of
instruction 4 contend at D

• MA of instruction 1 and IF of
instruction 4 contend at D

: (When MA and IFare in contention, the following occurs:)

F

WB

ma

EX

ID

G

WB

ma

EX

WB

             Slot

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

A

if

B

ID

IF

C

EX

ID

if

D

MA

EX

—

—

E

WB

MA

ID

—

•  ID and IF stored at D

•  IF stored at E

F

WB

EX

IF

G

ma

ID

if

WB

EX

ID

ma

EX

WB

(b) When there is a subsequent MA stage

Figure 10-6   Operation when IF and MA Are in Contention



415

The operation when there is contention between IF and MA and no subsequent MA stage is shown
in (a) of Figure 10-6. IF and MA are in contention in slot D. In this case, the IF stage is stored and
the following slot, E, is executed. In slot E ma and IF are in contention, but the IF stage is not
stored because the ma stage does not generate a bus cycle.

The operation when there is contention between IF and MA and there is a subsequent MA stage is
shown in (b) of Figure 10-6. There are MA stages in slots D and E, and MA is in contention with
IF in slot D. In this case, the ID and IF of slot D are stored and then executed in slot E. However,
contention between IF and MA occurs again in slot E, so the IF stage is stored again and then
executed in the next slot, F.

Relationship between IF and the Location of Instructions in Memory

When the instruction is located in memory, the SuperH microcomputer accesses the memory in
32-bit units. The SuperH microcomputer instructions are all fixed at 16 bits, so basically 2
instructions can be fetched in a single IF stage access. Whether an IF fetches one or two
instructions depends on the memory location (word or longword boundary).

If an instruction is located on a longword boundary, an IF can get two instructions at each
instruction fetch. The IF of the next instruction does not generate a bus cycle to fetch an
instruction from memory. Since the next instruction IF also fetches two instructions, the
instruction IFs after that do not generate a bus cycle either.

This means that IFs of instructions that are located so they start from the longword boundaries
within instructions located in memory (the position when the bottom two bits of the instruction
address are 00 is A1 = 0 and A0 = 0) also fetch two instructions. The IF of the next instruction
does not generate a bus cycle. IFs that do not generate bus cycles are written in lower case as “if”.
These ifs always take one cycle.

When branching results in a fetch from an instruction located so it starts from the word boundaries
(the position when the bottom two bits of the instruction address are 10 is A1 = 1, A0 = 0), the bus
cycle of the IF fetches only the specified instruction more than one of said instructions. The IF of
the next instruction thus generates a bus cycle, and fetches two instructions. Figure 10-7 illustrates
these operations.



416

Instruction 2
... Instruction 3

Instruction 4
... Instruction 5

IF

if

EX

ID

IF

EX

ID EX

ID EX

... Instruction 1 ID

if

ID EXIF

 Slot

Instruction 6

Instru-
ction 1

Instru-
ction 2

Instru-
ction 3

Instru-
ction 4

Instru-
ction 5

Instru-
ction 6 ID EXif

IF

if

Bus cycle 
generated

:  No bus cycle

32 bits

(Memory)

... Instruction 2

... Instruction 3

Instruction 4
... Instruction 5

IF EX

IF ID EX

ID EX

ID

if

ID EXIF

Slot

Instruction 6 ID EXif

IF

if

Bus cycle 
generated

:  No bus cycle

Instru-
ction 2

Instru-
ction 3

Instru-
ction 4

Instru-
ction 5

Instru-
ction 6

Fetching from an instruction (instruction 1) located on a long word boundary

Fetching from an instruction (instruction 2) located on a word boundary

:

: 

Figure 10-7   Relationship between IF and Location of Instructions in Memory

Relationship between Position of Instructions Located in Memory and Contention between
IF and MA

When an instruction is located in memory, there are instruction fetch stages (“if”, written in lower
case) that do not generate bus cycles as explained in section 10.4.2 above. When an if is in
contention with an MA, the slot will not split, as it does when an IF and an MA are in contention,
because ifs and MAs can be executed simultaneously. Such slots execute in the number of cycles
the MA requires for memory access, as illustrated in figure 10-8.

When programming, avoid contention of MA and IF whenever possible and pair MAs with ifs to
increase the instruction execution speed. Instructions that have 4 (5)-stage pipelines of IF, ID, EX,
MA, (WB) prevent stalls when they are located, so they start from the longword boundaries in
memory (the position when the bottom 2 bits of instruction address are 00 is A1 = 0 and A0 = 0)
because the MA of the instruction falls in the same slot as ifs that follow.



417

             Slot

Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

Notes: 1.

2.

MA in slot A is in contention with if, so no store occurs; MA in slot B is in contention with IF,
so a store occurs.
In slot C ma and IF are in contention, so no store occurs.

IF ID

if

EX

ID

IF

MA

EX

ID

if

A B C

WB

MA

EX

ID

—

WB

EX

ID

WB

ma

EX

IF

WB

ma

ID

if

IF
if

ma

EX

WB

Instruction 3

Instruction 1

Instruction 5

Instruction 4

Instruction 2

Instruction 6

:  Store

:  Do not store

32 bits

Figure 10-8   Relationship between the Location of Instructions in Memory and Contention
between IF and MA

10.2.2 Effects of Memory Load Instructions on Pipelines

Instructions that involve loading from memory access data in memory at the MA stage of the
pipeline. In the case of a load instruction (instruction 1) and the following instruction (instruction
2), the EX stage of instruction 2 starts before the MA stage of instruction 1 ends.

When instruction 2 uses the same data that instruction 1 is loading, the contents of that register
will not be ready, so any slot containing the MA of instruction and EX of instruction 2 will split.
No split occurs, however, when instruction 2 is MAC @Rm+,@Rn+ and the destinations of Rm
and load instruction 1 were the same.

The number of cycles in the slot generated by the split is the number of MA cycles plus the
number of IF (or if) cycles, as illustrated in figure 10-9. This means the execution speed will be
lowered if the instruction that will use the results of the load instruction is placed immediately
after the load instruction. The instruction that uses the result of the load instruction will not slow
down the program if placed one or more instructions after the load instruction.

Slot

Load instruction 1 (MOV.W @R0,R1)

Instruction 2

Instruction 3

Instruction 4

IF ID

IF

EX

ID

IF

 WB

EX

ID

IF

ma

EX

ID

WB

·····

·····

MA

—

—

—

(ADD    R1,R2)

Figure 10-9   Effects of Memory Load Instructions on the Pipeline



418

10.2.3 Contention due to SR Update Instructions

Instructions (SR update instructions) that overwrite the M, Q, S, and T bits of the status register
(SR) use the WB stage of the pipeline. If an instruction (instruction 2) that reads SR comes
immediately after such an instruction, the data to be read is not yet ready and the EX stage of
instruction 2 is stalled until the overwriting of the data in SR is complete. However, in the case of
instructions that overwrite all the bits of SR, such as LDC Rm,SR; LDC.L@Rm+,SR; or RTE, no
stall occurs due to the contention. The instructions that reads SR are STC SR,Rn; STC.L SR,@-
Rn; and TRAPA. The status of the pipeline when a stall occurs is shown in Figure 10-10.

As the above makes clear, writing a program in such a way that an instruction that reads SR occurs
immediately after an instruction that updates SR will cause the speed of execution to be reduced.
If the instruction that reads SR occurs at least three instructions after the instruction that updates
SR, no slowdown results.

SR update instruction 1 (SETT)

Instruction 2 (STC SR, R1)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

—

—

WB

—

—

—

EX ma WB

IF

Slot

ID ma

—

ID EX . . .

. . .ID

B CA

Figure 10-10   Affect on Pipeline of SR Update Instructions

10.2.4 Multiplier Access Contention

A multiplier-type instruction (multiply/accumulate calculations, multiplier instructions), an
instruction in which the multiply and accumulate registers (MACH, MACL) are accessed, can
cause a contention in the multiplier access.

In the multiplier instruction, the multiplier takes action regardless of the slots after the ending of
the last MA. In the double precision (64 bytes) type multiplier instruction and the
multiply/accumulate calculations instruction, the multiplier takes action in three states. In the
single precision (32 bytes) type multiplier instruction, the action is taken in two states.

When MA (when there are two, the first MA takes precedence) of the multiplier instruction
(multiply/accumulate calculations, multiplier instruction) contends with the multiplier access
(mm) of the preceding multiplier instruction, the MA bus cycle is extended until the mm ends. The
extended MA then becomes one slot.

The MA instruction which accesses the multiply/accumulate register (MACH, MACL) also
accesses the multiplier. Similar to the multiplier instruction, the MA bus cycle is extended until
the mm of the preceding multiplier-type instruction ends, and the extended MA becomes one slot.
In particular, in the instruction (STS, STS.L), which reads out the multiply/accumulate register



419

(MACH, MACL,MA) is extended until one slot has elapsed after the ending of the mm, the
extended MA becomes one slot.

On the other hand, when the instruction has two MAs, the succeeding ID instruction is stalled for a
one-slot period.

Because the multiplier-type instruction and the multiply/accumulate register access instruction
both have MA cycles, a contention with IF may develop.

Examples of multiplier access contention are shown in figures 10-10 and 10-11. In these cases, the
contention between MA and IF is not taken into consideration.

MAC.L

Next instruction

IF

IF

EX

— ID

IF —

MAC.L

Slot

ID

EX M A MA mm mm mm

— — ID EX

MA mmMA mmmm

Figure 10-11   Contention between Two MAC.L Instructions

STS.L

Next instruction

IF

IF

EX

— ID

IF ID

MAC.L

Slot

ID

EX M A

— — — EX

MA mmMA mmmm

Figure 10-12   Contention between the MAC.L and STS.L Instructions



420

10.2.5 FPU Contention (SH-3E Only)

In addition to the LDS and STS instructions, which move data between the CPU and FPU, loading
and storing floating point numbers also uses the MA stage of the pipeline. Consequently, such
instructions create contention with the IF stage.

If the register to which the result of a floating point arithmetic calculation instruction, the FMOV
instruction, or a floating point number load instruction is stored is read by the next instruction, the
execution of this instruction (the next instruction) is delayed by one slot cycle (Figure 10-13).

Next floating point instruction
(FMOV FR2, FR2)

IF

IF

E1

DF —

SF

E1 E2 SF

Slot
Floating point arithmetic

calculation instruction
(FADD FR1, FR2)

ID E2

Figure 10-13   FPU Contention 1

If the LDS or LDS.L instruction is used to change the value of FPSCR, the execution of the next
instruction (if it is a floating point instruction) is delayed by one slot cycle (Figure 10-14).

Floating point arithmetic
calculation instruction

(FADD FR4, FR5)

IF

IF

E1

DF — —

SF

E1 E2 SF

Slot
Instruction 1

(LDS R2, FPSCR) ID E2

Figure 10-14   FPU Contention 2

If the preceding instruction was a floating point arithmetic calculation instruction (using the STS
or STS.L instruction), the execution of an instruction that reads the value of FPSCR is delayed by
one slot cycle (Figure 10-15).

Instruction 2
(STS FPSCR, R3)

IF

IF

E1

DF — —

SF

E1 E2 SF

Slot
Floating point arithmetic

calculation instruction
(FADD FR6, FR9)

ID E2

Figure 10-15   FPU Contention 3



421

The FDIV and FSQRT instructions require 13 cycles in the E1 stage. During this period, no other
floating point instruction may enter the E1 stage. If another floating point instruction is
encountered before the FDIV or FSQRT instruction has finished using the E1 stage, the fixed slot
duration for the execution of that instruction is delayed, and the instruction enters the E1 stage
only after the FDIV or FSQRT instruction has entered the E2 stage (Figure 10-16).

Floating point instruction
(FMOV FR8, FR10)

IF

IF

E1E1 . . .

DF . . . . . .

SF

E1 E2 SF

Slot
Instruction 1

(FDIV FR6, FR7) ID E2

Figure 10-16   FPU Contention 4

However, if contention arises because the preceding FDIV or FSQRT instruction and the FPU
calculation which follows it use the same register, the FDIV or FSQRT instruction enters the E1
stage after the execution of the SF instruction.

Floating point instruction
(FADD F1, F3)

IF

IF

E1E1 . . .

DF . . . . . . . . .

SF

E1 E2 SF

Slot
Instruction 1
(FSQRT F1) ID E2

Figure 10-17   FPU Contention 5



422

10.2.6 Contention between DSP Data Operation Instructions and Store Instructions (SH3-
DSP Only)

When DSP operations are executed by the DSP unit and the results are stored in memory by the
next instruction, contention occurs just as with memory load instructions. In such cases, the data
store of the MA stage of the following instruction is extended until the data operation of the
WB/DSP stage of the previous instruction ends. Since the operation is executed in the EX stage by
the CPU core, however, no stall cycle is produced. Figure 10-18 shows the relationship between
DSP unit data operation instructions and store instructions; figure 10-19 shows the relationship to
the CPU core.

Instruction 1 (PADD X0,Y0,A0)

Instruction 3

Instruction 4

IF

IF

EX

ID MA W/D

IF

W/D

ID

IF ID

:  Slot

Instruction 2 (MOVX A0,@Ra)

ID MA

EX MA W/D

EX MA W/D

EX —

—

—

Figure 10-18   Relationship between DSP Engine Operation Instructions and Store
Instructions

Instruction 2 (MOV Rb,@Rc)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

:  Slot

Instruction 1 (ADD Ra,Rb) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 10-19   Relationship between CPU Core Operation Instructions and Store
Instructions



423

10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only)

When data is loaded from memory to the destination register and the register is then specified as
the source operand for a following store instruction, the preceding instruction’s load is executed in
the WB/DSP stage and the following instruction’s store is executed in the MA stage. These stages
are executed in exactly the same cycle. Nevertheless, they do not contend. The CPU core and DSP
unit use the same data transfer method. In this case, when the data input to the internal bus is
stored to the destination register, the same data is simultaneously output again to the internal bus.
In the end, the store instruction’s output operation never actually happens.

Instruction 2 (MOV.L Rn,@Rb)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

:  Slot

Instruction 1 (MOV.L @Ra,Rn) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 10-20   Relationship between Load and Store Instructions in the CPU Core

Instruction 2 (MOVS.L Ds,@R5)

Instruction 3

Instruction 4

IF

IF

EX

ID

IF

W/D

EX

ID

IF ID

:  Slot

Instruction 1 (MOVS.L @R4,Ds) ID MA

EX MA W/D

MA W/D

EX MA W/D

Figure 10-21   Relationship between Load and Store Instructions in the DSP Unit



424

10.3 Programming Guidelines

10.3.1 Correspondence between Contention and Instructions

The types of correspondence between contention and instructions can be summarized as follows.

(1) Instructions that do not cause contention

(2) Instructions where a memory access (MA) causes contention with an instruction fetch (IF)

(3) Instructions where a write back (WB) to SR causes contention with a SR update

(4) Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a write back (WB) to memory causes contention with a memory load

(5) Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a write back (WB) to SR causes contention with a SR update

(6) Instructions where a memory access (MA) causes contention with an instruction fetch (IF),
and in addition a multiplier access (mm) causes contention with the multiplier.

(7) Instructions where a memory access (MA) causes contention with an instruction fetch (IF), a
multiplier access (mm) causes contention with the multiplier, and in addition a write back
(WB) causes contention with a memory load

(8) Instructions that cause contention with the MOVX.W, MOVS.W, or MOVS.L instruction



425

Table 10-1 shows the correspondence between types of contention and instructions.

Table 10-1 Types of Contention and Instructions

Contention Cycles Stages Instructions

None 1 5 Inter-register transfer instructions

1 5 Inter-register operations (except
multiplier type instructions)

1 5 Inter-register logic operation
instructions

1 5 Shift instructions

3/1 3 Conditional branch instructions

2/1 3 Delayed conditional branch instruction

2 3 Unconditional branch instructions

2 5 Unconditional branch instructions (PR)

1 5 System control instructions

1 3 NOP instruction

5 5 LDC instruction (SR)

7 7 LDC.L instruction

4 5 RTE instruction

6 6 TRAP instruction

4 6 SLEEP instruction

1 5 DSP data operation instructions
MOVX.W (load) and MOVY.W (load)
instructions

•  MA contends with IF 1 4 Memory store instructions

1 5 Memory store instructions (pre-
decrement)

1 4 Cache instruction

3 6 Memory logic operation instruction

1 4 LDTLB instruction

1 5 STS.L instruction (PR)

1 5 STC.L instruction (excluding bank
registers)

2 6 STC.L instruction (bank registers)

1 5 MOVS.W (load) and MOVS.L (load)
instructions

•  Causes DSP operation
contention

1 4 MOVX.W (store) and MOVS.L (store)
instructions



426

Table 10-1 Types of Contention and Instructions (cont)

Contention Cycles Stages Instructions

•  Contention caused by SR
update

1 5 Arithmetic calculation instructions
between SR updated registers
(excluding instructions involving
multiplication)

1 5 Logical calculation instructions
between SR updated registers

1 5 SR update shift instructions

1 5 SR update system control instructions

•  MA contends with IF 1 5 Memory load instructions
•  Causes memory load contention 1 5 LDS.L instruction (PR)

1 5 LDC.L instruction

•  MA contends with IF
•  Contention caused by SR

3 7 SR update memory logical calculation
instructions

update 3 7 TAS instruction

•  MA contends with IF
•  Causes multiplier contention

2 (to 5)* 8 Multiply and accumulate calculation
instructions

2 (to 5)* 8 Double-length multiply and accumulate
calculation instructions

1 (to 3)* 6 Multiplication instructions (excluding
PWULS)

2 (to 5)* 8 Double-length multiplication
instructions

1 4 Register to MAC transfer instructions

1 4 Memory to MAC transfer instructions

1 5 MAC to memory transfer instructions

•  MA contends with IF
•  Causes DSP operation

contention

1 4 MOVS.W (store) and MOVS.L (store)
instructions

•  MA contends with IF
•  Causes multiplier contention
•  Causes memory load contention
•  Causes DSP operation

contention

1 5 MAC/DSP to register transfer
instructions

•  Causes MOVX.W, MOVS.W, or
MOVS.L instruction

1 5 PLDS and PSTS instructions

Note: * Indicates the normal number of cycles. The figures in parentheses are the cycles when 
contention also occurs with the previous instruction.



427

10.3.2 Increasing Instruction Execution Speed

To improve instruction execution speed, consider the following when programming:

• To prevent contention between MA and IF, locate instructions that have MA stages so they start
from the longword boundaries of on-chip memory (the position when the bottom two bits of the
instruction address are 00 is A1 = 0 and A0 = 0) wherever possible.

• The instruction that immediately follows an instruction that loads from memory should not use
the same destination register as the load instruction. This will avoid causing contention with the
memory load triggered by the write back (WB).

• Locate two instructions that do not read SR immediately after any instruction that overwrites the
M, Q, S, and T bits of SR. This will prevent contention with SR update instructions from
occurring.

• Locate instructions that use the multiplier nonconsecutively (excluding PWULS).

• Immediately following a data operation using the DSP unit, do not use an instruction that
transfers data to memory or the CPU core from the register where the operation result is stored.
By placing some other instruction in between, contention can be avoided.

• Do not use MOVX.W, MOVS.W, or MOVS.L to perform a memory store immediately
following a PLDS or PSTS instruction using the DSP unit. Also, do not specify a PLDS or
PSTS instruction in parallel with a memory store instruction using MOVX.W.

10.3.3 Number of Cycles

These instructions are designed to require only one cycle for execution. Of these one-cycle
instructions, some never cause contention and some can cause contention.

Some instructions may require two or more cycles even if no contention occurs. Instructions that
require two or more cycles include instructions that execute access memory twice or more, such as
branching instructions that update the branching destination address, memory logical calculation
instructions, and certain system control instructions. Further examples include instructions that
access both memory and the multiplier, such as multiplication instructions and accumulate-and-
add instructions.

Among instructions that require two or more cycles, some never cause contention and some can
cause contention.

In order to create efficient programs, it is essential to keep in mind the need to increase execution
speed by avoiding contention and also to use instructions that require few cycles to execute.



428

10.4 Operation of Instruction Pipelines

This section describes the operation of the instruction pipelines. By combining these with the rules
described so far, the way pipelines flow in a program and the number of instruction execution
cycles can be calculated.

In the following figures, “Instruction A” refers to the instruction being discussed. When “IF” is
written in the instruction fetch stage, it may refer to either “IF” or “if”. When there is contention
between IF and MA, the slot will  split, but the manner of the split is not discussed in the tables,
with a few exceptions. When a slot has split, see section 10.2, Contention between Instruction
Fetch (IF) and Memory Access (MA). Base your response on the rules for pipeline operation given
there.

Table 10-2 shows the number of instruction stages and number of execution cycles as follows:

• Type: Given by function

• Category: Categorized by differences in instruction operation

• Instructions: Gives a mnemonic for the instruction concerned

• Cycles: The number of execution cycles when there is no contention

• Stages: The number of stages in the instruction

• Contention: Indicates the contention that occurs



429

Table 10-2 Number of Instruction Stages and Execution Cycles

Type Category Instruction Cycles Stages Contention

Data
transfer
instructions

Register-
register
transfer
instructions

MOV #imm,Rn

MOV Rm,Rn

MOVA @(disp,PC),R0

MOVT Rn

SWAP.B Rm,Rn

SWAP.W Rm,Rn

XTRCT Rm,Rn

1 5 —

Memory
load
instructions

MOV.W @(disp,PC),Rn

MOV.L @(disp,PC),Rn

MOV.B Rm,@Rn

MOV.W Rm,@Rn

MOV.L Rm,@Rn

MOV.B @Rm+,Rn

MOV.W @Rm+,Rn

MOV.L @Rm+,Rn

MOV.B @(disp,Rm),R0

MOV.W @(disp,Rm),R0

MOV.L @(disp,Rm),Rn

MOV.B @(R0,Rm),Rn

MOV.W @(R0,Rm),Rn

MOV.L @(R0,Rm),Rn

MOV.B @(disp,GBR),R0

MOV.W @(disp,GBR),R0

MOV.L @(disp,GBR),R0

1 5 • Contention occurs
if the instruction
placed
immediately after
this one uses the
same destination
register

• MA contends with
IF

Memory
store
instructions

MOV.B @Rm,Rn

MOV.W @Rm,Rn

MOV.L @Rm,Rn

MOV.B R0,@(disp,Rn)

MOV.W R0,@(disp,Rn)

MOV.L Rm,@(disp,Rn)

1 4 • MA contends with
IF



430

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

Data
transfer
instructions
(cont)

Memory
store
instructions
(cont)

MOV.B Rm,@(R0,Rn)

MOV.W Rm,@(R0,Rn)

MOV.L Rm,@(R0,Rn)

MOV.B R0,@(disp,GBR)

MOV.W R0,@(disp,GBR)

MOV.L R0,@(disp,GBR)

1 4 • MA contends
with IF

Memory
store
instructions
(pre-
decrement)

MOV.B Rm,@-Rm

MOV.W Rm,@-Rm

MOV.L Rm,@-Rm

1 5 • MA contends
with IF

Cache
instruction

PREF @Rn 1/2*1 4 • MA contends
with IF

Arithmetic
instructions

Arithmetic
operation
instruction
between
registers
(excluding
multiply
instructions)

ADD Rm,Rn

ADD #imm,Rn

EXTS.B Rm,Rn

EXTS.W Rm,Rn

EXTU.B Rm,Rn

EXTU.W Rm,Rn

NEG Rm,Rn

SUB Rm,Rn

1 5 —

SR update
arithmetic
operation
instruction
between
registers
(excluding
multiply
instructions)

ADDC Rm,Rn

ADDV Rm,Rn

CMP/EQ #imm,R0

CMP/EQ Rm,Rn

CMP/HS Rm,Rn

CMP/GE Rm,Rn

CMP/HI Rm,Rn

CMP/GT Rm,Rn

CMP/PL Rn

CMP/PZ Rn

CMP/STR Rm,Rn

1 5 • Contention
occurs if the
instruction
following this
instruction, or
the instruction
after that, reads
from SR.



431

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

Arithmetic
instructions
(cont)

SR update
arithmetic
operation
instruction
between
registers
(excluding
multiply
instructions)

DIV1 Rm,Rn

DIV0S Rm,Rn

DIV0U

DT Rn

NEGC Rm,Rn

SUBC Rm,Rn

SUBV Rm,Rn

1 5 • Contention
occurs if the
instruction
following this
instruction, or
the instruction
after that, reads
from SR.

Multiply/
accumulate
instruction

MAC.W @Rm+,@Rn+ 2 (to 5)*2 8 • Causes
multiplier
contention

• MA contends
with IF

Double
length/
multiply
accumulate
instruction

MAC.L @Rm+,@Rn+ 2 (to 5)*2 8 • Causes
multiplier
contention

• MA contends
with IF

Multiplic-
ation
instruction

MULS.W Rm,Rn

MULU.W Rm,Rn

1 (to 3)*2 6 • Causes
multiplier
contention

• MA contends
with IF

Double
length
multipli-
cation
instructions

DMULS.L Rm,Rn

DMULU.L Rm,Rn

2 (to 5)*2 8 • Causes
multiplier
contention

• MA contends
with IF



432

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

Logic
operation
instructions

Register to
register
logic
operation
instructions

AND Rm,Rn

AND #imm,R0

NOT Rm,Rn

OR Rm,Rn

OR #imm,R0

XOR Rm,Rn

XOR #imm,R0

1 5 —

Logical
calculation
instructions
between
SR updated
registers

TST Rm,Rn

TST #imm,R0

1 5 • Contention
occurs if the
instruction
following this
instruction, or
the instruction
after that, reads
from SR

Memory
logic
operations
instructions

AND.B #imm,@(R0,GBR)

OR.B #imm,@(R0,GBR)

XOR.B #imm,@(R0,GBR)

3 6 • MA contends
with IF

SR update
memory
logical
calculation
instructions

TST.B #imm,@(R0,GBR) 3 7 • Contention
occurs if the
instruction
following this
instruction, or
the instruction
after that, reads
from SR

• MA contends
with IF

TAS
instruction

TAS.B @Rn 3/4*3 7 • MA contends
with IF



433

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

Shift
instructions

Shift
instructions

SHLL2 Rn

SHLR2 Rn

SHLL8 Rn

SHLR8 Rn

SHLL16 Rn

SHLR16 Rn

SHAD Rm,Rn

SHLD Rm,Rn

1 5 —

SR update
shift
instructions

ROTL Rn

ROTR Rn

ROTCL Rn

ROTCR Rn

SHAL Rn

SHAR Rn

SHLL Rn

SHLR Rn

1 5 • Contention
occurs if the
instruction
following this
instruction, or
the instruction
after that, reads
from SR

Branch
instructions

Conditional
branch
instructions

BF label

BT label

3/1*4 3 —

Delayed
conditional
branch
instructions

BF/S label

BT/S label

2/1*4 3 —

Uncondi-
tional
branch
instructions

BRA label

BRAF Rm

JMP @Rm

RTS

2 3 —

Uncondi-
tional
branch
instructions
(PR)

BSR label

BSRF Rm

JSR @Rm

2 5 —



434

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions

System
control ALU
instructions

LDC Rm,GBR

LDC Rm,VBR

LDC Rm,SSR

LDC Rm,SPC

LDC Rm,MOD

LDC Rm,RE

LDC Rm,RS

LDC Rm,R0_BANK

LDC Rm,R1_BANK

LDC Rm,R2_BANK

LDC Rm,R3_BANK

LDC Rm,R4_BANK

LDC Rm,R5_BANK

LDC Rm,R6_BANK

LDC Rm,R7_BANK

1/3*5 5 —

SETRC Rm

SETRC #imm

LDRE @(disp,PC)

LDRS @(disp,PC)

3 5

LDS Rm,PR

STC SR,Rn

STC GBR,Rn

STC VBR,Rn

STC SSR,Rn

STC SPC,Rn

STC MOD,Rn

STC RE,Rn

STC RS,Rn

STC R0_BANK,Rn

STC R1_BANK,Rn

STC R2_BANK,Rn

STC R3_BANK,Rn

STC R4_BANK,Rn

1 5



435

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions
(cont)

System
control ALU
instructions

STC R5_BANK,Rn

STC R6_BANK,Rn

STC R7_BANK,Rn

STS PR,Rn

1 5 —

SR update
system
control
instructions

CLRS

CLRT

SETS

SETT

1 5 • Contention occurs
if the instruction
following this
instruction, or the
instruction after
that, reads from
SR

LDTLB
instruction

LDTLB 1 4 • MA contends with
IF

NOP
instruction

NOP 1 3 —

LDC
instructions
(SR)

LDC Rm,SR 5 5 —

LDC.L
instructions
(SR)

LDC.L @Rm+,SR 7 7 —

LDS.L
instructions
(PR)

LDS.L @Rm+,PR 1 5 • Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

STS.L
instruction
(PR)

STS.L PR,@–Rn 1 5 • MA contends with
IF



436

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions
(cont)

LDC.L
instructions

LDC.L @Rm+,GBR

LDC.L @Rm+,VBR

LDC.L @Rm+,SSR

LDC.L @Rm+,SPC

LDC.L @Rm+,MOD

LDC.L @Rm+,RE

LDC.L @Rm+,RS

LDC.L @Rm+,R0_BANK

LDC.L @Rm+,R1_BANK

LDC.L @Rm+,R2_BANK

LDC.L @Rm+,R3_BANK

LDC.L @Rm+,R4_BANK

LDC.L @Rm+,R5_BANK

LDC.L @Rm+,R6_BANK

LDC.L @Rm+,R7_BANK

1/5*6 5 • Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

STC.L
instructions

STC.L SR,@–Rn

STC.L GBR,@–Rn

STC.L VBR,@–Rn

STC.L SSR,@–Rn

STC.L SPC,@–Rn

STC.L MOD,@-Rn

STC.L RE,@-Rn

STC.L RS,@-Rn

1/2*1 5 • MA contends with
IF

STC.L R0_BANK,@–Rn

STC.L R1_BANK,@–Rn

STC.L R2_BANK,@–Rn

STC.L R3_BANK,@–Rn

STC.L R4_BANK,@–Rn

STC.L R5_BANK,@–Rn

STC.L R6_BANK,@–Rn

STC.L R7_BANK,@–Rn

2 6 • MA contends with
IF



437

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions
(cont)

Register →
MAC/DSP
transfer
instruction

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

LDS Rm,DSR

LDS Rm,A0

LDS Rm,X0

LDS Rm,X1

LDS Rm,Y0

LDS Rm,Y1

1 4 • Contention occurs
with multiplier

• MA contends with
IF

Memory →
MAC/DSP
transfer
instructions

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

LDS.L @Rm+,DSR

LDS.L @Rm+,A0

LDS.L @Rm+,X0

LDS.L @Rm+,X1

LDS.L @Rm+,Y0

LDS.L @Rm+,Y1

1 4 • Contention occurs
with multiplier

• MA contends with
IF

MAC/DSP
→ register
transfer
instruction

STS MACH,Rn

STS MACL,Rn

STS DSR,Rn

STS A0,Rn

STS X0,Rn

STS X1,Rn

STS Y0,Rn

STS Y1,Rn

1 5 • Contention occurs
with multiplier

• Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

MAC/DSP
→ memory
transfer
instruction

STS.L MACH,@–Rn

STS.L MACL,@–Rn

STS.L DSR,@–Rn

STS.L A0,@–Rn

STS.L X0,@–Rn

STS.L X1,@–Rn

STS.L Y0,@–Rn

STS.L Y1,@–Rn

1 5 • Contention occurs
with multiplier

• MA contends with
IF



438

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control

RTE
instruction

RTE 4 5 —

instructions
(cont)

TRAP
instruction

TRAPA #imm 6/8*7 6/8*7 —

SLEEP
instruction

SLEEP 4 6 —

Register →
MAC/DSP
transfer
instruction

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

LDS Rm,DSR

LDS Rm,A0

LDS Rm,X0

LDS Rm,X1

LDS Rm,Y0

LDS Rm,Y1

4 1 • Causes multiplier
contention

• MA contends with
IF

Memory →
MAC/DSP
transfer
instructions

LDS.L @Rm+,MACH

LDS.L @Rm+,MACL

LDS.L @Rm+,DSR

LDS.L @Rm+,A0

LDS.L @Rm+,X0

LDS.L @Rm+,X1

LDS.L @Rm+,Y0

LDS.L @Rm+,Y1

4 1 • Causes multiplier
contention

• MA contends with
IF

MAC/DSP
→ register
transfer
instruction

STS MACH,Rn

STS MACL,Rn

STS DSR,Rn

STS A0,Rn

STS X0,Rn

STS X1,Rn

STS Y0,Rn

STS Y1,Rn

5 1 • Causes multiplier
contention

• Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF



439

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions
(cont)

MAC/DSP
→ memory
transfer
instruction

STS.L MACH,@–Rn

STS.L MACL,@–Rn

STS.L DSR,@–Rn

STS.L A0,@–Rn

STS.L X0,@–Rn

STS.L X1,@–Rn

STS.L Y0,@–Rn

STS.L Y1,@–Rn

4 1 • Causes multiplier
contention

• MA contends with
IF

RTE
instruction

RTE 5 4 —

TRAP
instruction

TRAPA#imm 9 8 —

SLEEP
instruction

SLEEP 3 3 —

Register →
DSP
transfer
instructions

CLRMAC

LDS Rm,MACH

LDS Rm,MACL

1 4 • Causes multiplier
contention

• MA contends with
IF

LDS Rm,DSR

LDS Rm,A0

LDS Rm,X0

LDS Rm,X1

LDS Rm,Y0

LDS Rm,Y1

1 4 —

Memory →
DSP
transfer
instructions

LDS.L@Rm+,MACH

LDS.L@Rm+,MACL

1 4 • Causes multiplier
contention

• MA contends with
IF

DS.L @Rm+,DSR

DS.L @Rm+,A0

DS.L @Rm+,X0

DS.L @Rm+,X1

DS.L @Rm+,Y0

DS.L @Rm+,Y1

1 4 —



440

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

System
control
instructions
(cont)

DSP →
register
transfer
instructions

STS MACH,Rn

STS MACL,Rn

STS DSR,Rn

STS A0,Rn

STS X0,Rn

STS X1,Rn

STS Y0,Rn

STS Y1,Rn

1 5 • Causes multiplier
contention

• Contention occurs
when an
instruction that
uses the same
destination
register is placed
immediately after
this instruction

• MA contends with
IF

• Causes
contention with
DSP operation.

DSP →
memory
transfer
instructions

STS.LMACH,@-Rn

STS.LMACL,@-Rn

1 4 • Causes multiplier
contention

• MA contends with
IF

STS.LDSR,@-Rn

STS.LA0,@-Rn

STS.LX0,@-Rn

STS.LX1,@-Rn

STS.LY0,@-Rn

STS.LY1,@-Rn

1 4 —

RTE
instruction

RTE 4 5 —

TRAP
instruction

TRAPA#imm 8 9 —

SLEEP
instruction

SLEEP 3 3 —

DSP data
transfer
instructions

X memory
load
instructions

NOPX

MOVX.W @Ax,Dx

MOVX.W @Ax+,Dx

MOVX.W @Ax+Ix,Dx

1 5 —

X memory
store
instructions

MOVX.W Da,@Ax

MOVX.W Da,@Ax+

MOVX.W Da,@Ax+Ix

1 4 • Causes
contention with
DSP operation.



441

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

DSP data
transfer
instructions
(cont)

Y memory
load
instructions

NOPY

MOVY.W @Ay,Dy

MOVY.W @Ay+,Dy

MOVY.W @Ay+Ix,Dy

1 5 —

Y memory
store
instructions

MOVY.W Da,@Ay

MOVY.W Da,@Ay+

MOVY.W Da,@Ay+Iy

1 4 • Causes
contention with
DSP operation.

Single load
instructions

MOVS.W @-As,Ds

MOVS.W @As,Ds

MOVS.W @As+,Ds

MOVS.W @As+Is,Ds

MOVS.L @-As,Ds

MOVS.L @As,Ds

MOVS.L @As+,Ds

MOVS.L @As+Is,Ds

1 5 • MA contends with
IF

Single store
instructions

MOVS.W Ds,@-As

MOVS.W Ds,@As

MOVS.W Ds,@As+

MOVS.W Ds,@As+Is

MOVS.L Ds,@-As

MOVS.L Ds,@As

MOVS.L Ds,@As+

MOVS.L Ds,@As+Is

1 5 • MA contends with
IF

• Causes
contention with
DSP operation.

DSP
operation
instructions

PADD Sx,Sy,Dz(Du)

DCT PADD Sx,Sy,Dz

DCF PADD Sx,Sy,Dz

PSUB Sx,Sy,Dz(Du)

DCT PSUB Sx,Sy,Dz

DCF PSUB Sx,Sy,Dz

PCOPY Sx,Dz

DCT PCOPY Sx,Dz

DCF PCOPY Sx,Dz

1 5 —



442

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

DSP
operation
instructions
(cont)

PCOPY Sy,Dz

DCT PCOPY Sy,Dz

DCF PCOPY Sy,Dz

PDMSB Sx,Dz

DTC PDMSB Sx,Dz

DCF PDMSB Sx,Dz

PDMSB Sy,Dz

DCT PDMSB Sy,Dz

DCF PDMSB Sy,Dz

PINC Sx,Dz

DCT PINC Sx,Dz

DCF PINC Sx,Dz

PINC Sy,Dz

DCT PINC Sy,Dz

DCF PINC Sy,Dz

PNEG Sx,Dz

DCT PNEG Sx,Dz

DCF PNEG Sx,Dz

PNEG Sy,Dz

DCT PNEG Sy,Dz

DCF PNEG Sy,Dz

PDEC Sx,Dz

DTC PDEC Sx,Dz

DCF PDEC Sx,Dz

PDEC Sy,Dz

DTC PDEC Sy,Dz

DCF PDEC Sy,Dz

PCLR Dz

DCT PCLR Dz

DCF PCLR DZ

1 5 —



443

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

DSP
operation
instructions
(cont)

PADDC Sx,Sy,Dz

PSUBC Sx,Sy,Dz

PCMP Sx,Sy

PABS Sx,Dz

PABS Sy,Dz

PRNDSx,Dz

PRNDSy,Dz

1 5 —

POR Sx,Sy,Dz

DCT POR Sx,Sy,Dz

DCF POR Sx,Sy,Dz

PAND Sx,Sy,Dz

DCT PAND Sx,Sy,Dz

DCF PAND Sx,Sy,Dz

PXOR Sx,Sy,Dz

DCT PXOR Sx,Sy,Dz

DCF PXOR Sx,Sy,Dz

1 5 —

Shift
instructions

PSHA Sx,Sy,Dz

DCT PSHA Sx,Sy,Dz

DCF PSHA Sx,Sy,Dz

PSHA #imm,Dz

PSHL Sx,Sy,Dz

DCT PSHL Sx,Sy,Dz

DCF PSHL Sx,Sy,Dz

PSHL #imm,Dz

1 5 —

PMULS Se,Sf,Dg 1 5 —



444

Table 10-2 Number of Instruction Stages and Execution Cycles (cont)

Type Category Instruction Cycles Stages Contention

DSP
operation
instructions
(cont)

PSTS MACH,Dz

DTC PSTS MACH,Dz

DCF PSTS MACH,Dz

PSTS MACL,Dz

DCT PSTS MACL,Dz

DCF PSTS MACL,Dz

PLDS Dz,MACH

DCT PLDS Dz,MACH

DCF PLDS Dz,MACH

PLDS Dz,MACL

DCT PLDS Dz,MACL

DCF PLDS Dz,MACL

1 5 • Contends with
MOVX.W,
MOVS.W, and
MOVS.L

Notes: 1. Two cycles on the SH3-DSP.
2. Indicates the normal minimum number of execution states (the number in parentheses

is the number of cycles when there is contention with following instructions).
3. Four cycles on the SH3-DSP.
4. One state when there is no branch.
5. Three cycles on the SH3-DSP.
6. Five cycles on the SH3-DSP.
7. Eight cycles and eight stages on the SH3-DSP.



445

10.4.1 Data Transfer Instructions

(1) Register to Register Transfer Instructions

Instruction Types:

MOV         #imm, Rn

MOV         Rm, Rn

MOVA        @(disp, PC), R0

MOVT        Rn

SWAP.B      Rm, Rn

SWAP.W      Rm, Rn

XTRCT       Rm, Rn

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

WB

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-22   Register to Register Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, Ex, ma, and WB. In the ma stage nothing happens and
the data is retained. The data is written to the register in the WB stage.



446

(2) Memory Load Instructions

Instruction Types:

MOV.W       @(disp, PC), Rn

MOV.L       @(disp, PC), Rn

MOV.B       @Rm, Rn

MOV.W       @Rm, Rn

MOV.L       @Rm, Rn

MOV.B       @Rm+, Rn

MOV.W       @Rm+, Rn

MOV.L       @Rm+, Rn

MOV.B       @(disp, Rm), R0

MOV.W       @(disp, Rm), R0

MOV.L       @(disp, Rm), Rn

MOV.B       @(R0, Rm), Rn

MOV.W       @(R0, Rm), Rn

MOV.L       @(R0, Rm), Rn

MOV.B       @(disp, GBR), R0

MOV.W       @(disp, GBR), R0

MOV.L       @(disp, GBR), R0

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

  Slot

Instruction A ID MB
.....

.....

WB

......

Figure 10-23   Memory Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB (figure 10-23). If an instruction that uses
the same destination register as this instruction is placed immediately after it, contention will
occur  (see section 10.2.2, Effects of Memory Load Instructions on Pipelines). Also, see section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA), with reference to
contention between the MA and IF stages of these instructions.



447

(3) Memory Store Instructions

Instruction Types:

MOV.B       Rm, @Rn

MOV.W       Rm, @Rn

MOV.L       Rm, @Rn

MOV.B       R0, @(disp, Rn)

MOV.W       R0, @(disp, Rn)

MOV.L       Rm, @(disp, Rn)

MOV.B       Rm, @(R0, Rn)

MOV.W       Rm, @(R0, Rn)

MOV.L       Rm, @(R0, Rn)

MOV.B       R0, @(disp, GBR)

MOV.W       R0, @(disp, GBR)

MOV.L       R0, @(disp, GBR)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

ID

IF

EX

ID EX

 Slot

Instruction A ID MA
.....

.....

......

Figure 10-24   Memory Store Instructions Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA (figure 10-24). Data is not returned to the
register so there is no WB stage. See section 10.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.



448

(4) Memory Store Instruction (Pre-decrement)

Instruction Types:

MOV.B Rm,@-Rn

MOV.W Rm,@-Rn

MOV.L Rm,@-Rn

Pipeline:

Slot

Instruction A

Next instruction

Third instruction in series

·····

IF ID

IF

EX

ID

IF

MA

EX

ID

WB

·····

EX ·····

Figure 10-25   Memory Store Instruction (Pre–decrement) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA, and WB. In the WB stage the decremented
value is written to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.



449

(5) Cache Instruction

Instruction Types:

PREF @Rn

Pipeline:

IF ID

IF

EX

ID

IF

MA

EX

ID

·····

EX ·····

Slot

PREF

Next instruction

Third instruction in series

·····

Figure 10-26   Cache Instruction Pipeline

Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. There is no WB stage because no data is
returned to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.

On the SH3-DSP, the ID of the next instruction is stored one slot behind.



450

10.4.2 Arithmetic Instructions

(1) Arithmetic Instructions between Registers (Except Multiplication Instructions)

Instruction Types:

ADD        Rm, Rn

ADD        #imm, Rn

EXTS.B     Rm, Rn

EXTS.W     Rm, Rn

EXTU.B     Rm, Rn

EXTU.W     Rm, Rn

NEG        Rm, Rn

SUB        Rm, Rn

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

WB

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-27   Arithmetic Instructions between Registers (Except Multiplication
Instructions) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the calculation result is retained. The result is written to the register in the WB stage.



451

(2) Arithmetic Calculation Instructions between SR Updated Registers (Excluding 
Instructions Involving Multiplication)

Instruction Types:

ADDC        Rm,Rn

ADDV        Rm,Rn

CMP/EQ      #imm,R0

CMP/EQ      Rm,Rn

CMP/HS      Rm,Rn

CMP/GE      Rm,Rn

CMP/HI      Rm,Rn

CMP/GT      Rm,Rn

CMP/PL      Rn

CMP/PZ       Rn

CMP/STR      Rm,Rn

DIV1         Rm,Rn

DIV0S        Rm,Rn

DIV0U

DT           Rn

NEGC         Rm,Rn

SUBC         Rm,Rn

SUBV         Rm,Rn

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

WB

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-28   Pipeline for Arithmetic Calculation Instructions between SR Updated
Registers (Excluding Instructions Involving Multiplication)

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the calculation result is retained. The result is written to the register in the WB stage. Contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR. (See section 10.2.3, Contention due to SR Update Instructions.)



452

(3) Multiply/Accumulate Instruction

Instruction Type:

MAC.W      @Rm+, @Rn+

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

— ID

IF ID

MAC.W ID

EX

EX

MA

MA

  Slot

WB

WB

MA mmMA mmmm

.....

Figure 10-29   Multiply/Accumulate Instruction Pipeline

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-29). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for three cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.W instruction is stalled for one slot. The two MAs of the MAC.W
instruction, when they contend with IF, split the slots as described in section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.W instruction, the MAC.W
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates
normally. When an instruction that uses the multiplier comes after the MAC instruction,
contention occurs with the multiplier, so operation is not as normal (see 10.2.4 Multiplier Access
Contention).

Note: * On the SH3-DSP there are seven stages: IF, ID, EX, MA, MA, mm, and mm.



453

(4) Double-Length Multiply/Accumulate Instruction

Instruction Type:

MAC.L      @Rm+, @Rn+

Pipeline:

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

MAC.L ID

EX

EX

MA

MA

Slot

WB

WB

MA mmMA mmmm

......

Figure 10-30   Multiply/Accumulate Instruction Pipeline

Operation Description:

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-30). The
second MA reads the memory and accesses the multiplier. The mm indicates that the multiplier is
operating. The mm operates for three cycles after the final MA ends, regardless of slot. The ID of
the instruction after the MAC.L instruction is stalled for one slot. The two MAs of the MAC.L
instruction, when they contend with IF, split the slots as described in section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA).

When an instruction that does not use the multiplier follows the MAC.L instruction, the MAC.L
instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX, MA, MA. In
such cases, the ID of the next instruction simply stalls one slot and thereafter the pipeline operates
normally. When an instruction that uses the multiplier comes after the MAC.L instruction,
contention occurs with the multiplier, so operation is not as normal (see 10.2.4 Multiplier Access
Contention).

Note: * On the SH3-DSP there are nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm.



454

(5) Multiplication Instructions

Instruction Types:

MULS.W      Rm, Rn

MULU.W      Rm, Rn

Pipeline:

Next instruction

Third instruction

IF

IF

EX

ID

IF ID

Instruction A ID

EX

EX

MA

MA

Slot

WB

WB

MA mm mm

......

Figure 10-31   Multiplication Instruction Pipeline

Operation Description:

The pipeline has six stages: IF, ID, EX, MA, mm, and mm (figure 10-31). The MA accesses the
multiplier. The mm indicates that the multiplier is operating. The mm operates for two cycles after
the MA ends, regardless of the slot. The MA of the MULS.W instruction, if it contends with IF,
operates as described in section 10.2.1, Contention between Instruction Fetch (IF) and Memory
Access (MA).

When an instruction that does not use the multiplier comes after the MULS.W instruction, the
MULS.W instruction may be considered to be a four-stage pipeline instruction of IF, ID, EX, and
MA. In such cases, it operates like a normal pipeline. When an instruction that uses the multiplier
come after the MULS.W instruction, however, contention occurs with the multiplier, so operation
is not as normal (see 10.2.4 Multiplier Access Contention).



455

(6) Double-Length Multiplication Instructions

Instruction Types:

DMULS.L     Rm, Rn

DMULU.L     Rm, Rn

MUL.L       Rm, Rn

Pipeline:

Next instruction

Third instruction

IF

IF

EX

— ID

IF ID

Instruction A ID

EX

EX

MA

MA

Slot

WB

WB

MA mmMA mmmm

......

Figure 10-32   Multiplication Instruction Pipeline

Operation Description:

The pipeline has eight stages*: IF, ID, EX, MA, MA, mm, mm, and mm (figure 10-32). The MA
accesses the multiplier. The mm indicates that the multiplier is operating. The mm operates for
three cycles after the MA ends, regardless of slot. The ID of the instruction following the
DMULS.L instruction is stalled for 1 slot (see the description of the multiply/accumulate
instruction). The two MA stages of the DMULS.L instruction, when they contend with IF, split the
slot as described in section 10.2.1, Contention between Instruction Fetch (IF) and Memory Access
(MA).

When an instruction that does not use the multiplier comes after the DMULS.L instruction, the
DMULS.L instruction may be considered to be a five-stage pipeline instruction of IF, ID, EX,
MA, and MA. In such cases, it operates like a normal pipeline. When an instruction that uses the
multiplier come after the DMULS.L instruction, however, contention occurs with the multiplier,
so operation is not as normal (see 10.2.4 Multiplier Access Contention).

Note: * On the SH3-DSP there are nine stages: IF, ID, EX, MA, MA, mm, mm, mm, and mm.



456

10.4.3 Logic Operation Instructions

(1) Register to Register Logic Operation Instructions

Instruction Types:

AND         Rm, Rn

AND         #imm, R0

NOT         Rm, Rn

OR          Rm, Rn

OR          #imm, R0

XOR         Rm, Rn

XOR         #imm, R0

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

WB

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-33   Register to Register Logic Operation Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the calculation result is retained. The result is written to the register in the WB stage.



457

(2) Logical Calculation Instructions between SR Updated Registers

Instruction Types:

TST         Rm,Rn

TST         #imm,R0

Pipeline:

Next instruction

Slot

Third instruction in series
·····

IF

IF

EX ma WB

IF ID

TST ID

EX .....
ID EX .....

Figure 10-34   Pipeline for Logical Calculation Instructions between SR Updated Registers

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the calculation result is retained. The result is written to the register in the WB stage. Contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).



458

(3) Memory Logic Operations Instructions

Instruction Types:

AND.B       #imm, @(R0, GBR)

OR.B        #imm, @(R0, GBR)

XOR.B       #imm, @(R0, GBR)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

—

IF

—

ID EX

Instruction A ID

EX
.....

EXMA MA
.....

Slot

ID

.....

Figure 10-35   Memory Logic Operation Instruction Pipeline

Operation Description:

The pipeline has six stages: IF, ID, EX, MA, EX, and MA (figure 10-35). The ID of the next
instruction stalls for 2 slots. The MAs of these instructions contend with IF (see 10.2.1 Contention
between Instruction Fetch (IF) and Memory Access (MA).



459

(4) SR Update Memory Logical Calculation Instructions

Instruction Type:

TST.B      #imm,@(R0,GBR)

Pipeline:

Next instruction

Third instruction in series
·····

IF

—

EX MA EX MA WB

IF ID EX

TST.B ID

Slot

.....
ID EXIF — .....

Figure 10-36   SR Updated Memory Logical Calculation Instruction Pipeline

Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, EX, MA, and WB. The result is written to
the T bit of SR in the WB stage. The MA of the TST instruction contends with IF. (See section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA).) Also, contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).



460

(5) TAS Instruction

Instruction Type:

TAS.B      @Rn

Pipeline:

Next instruction

Third instruction in series
·····

IF

EX

EX MA MA MA WB

IDIF EX

TAS.B ID

Slot

.....
— —IF ID .....

Figure 10-37   TAS Instruction Pipeline

Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, MA, MA, and WB. The result is written to
the T bit of SR in the WB stage. The MA of the TST instruction contends with IF (see section
10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)). Also, contention
occurs if the instruction immediately following this instruction, or the instruction after that, reads
from SR (see section 10.2.3, Contention due to SR Update Instructions).

On the SH3-DSP, the ID of the next instruction is stored three slots behind.



461

10.4.4 Shift Instructions

(1) Shift Instructions

Instruction Types:

SHLL2       Rn

SHLR2       Rn

SHLL8       Rn

SHLR8       Rn

SHLL16      Rn

SHLR16      Rn

SHAD        Rm,Rn

SHLD        Rm,Rn

Pipeline:

Next instruction

Third instruction in series
·····

IF EX ma WB

IDIF EX

Instruction A ID

Slot

.....
ID EXIF .....

Figure 10-38   Shift Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the shift result is retained. The result is written to the register in the WB stage.



462

(2) SR Update Shift Instructions

Instruction Types:

ROTL        Rn

ROTR        Rn

ROTCL       Rn

ROTCR       Rn

SHAL        Rn

SHAR        Rn

SHLL        Rn

SHLR        Rn

Pipeline:

Next instruction

Third instruction in series
·····

IF EX ma WB

IDIF EX

Instruction A ID

Slot

.....
ID EXIF .....

Figure 10-39   SR Updated Shift Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the result is retained. The result is written to the register in the WB stage. Contention occurs if the
instruction immediately following this instruction, or the instruction after that, reads from SR (see
section 10.2.3, Contention due to SR Update Instructions).



463

10.4.5 Branch Instructions

(1) Conditional Branch Instructions

Instruction Types:

BF         label

BT         label

Pipeline/Operation Description:

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.
Conditionally branched instructions are not delay branched.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The two instructions after the
conditional branch instruction (instruction A) are fetched but discarded. The branch
destination instruction begins its fetch from the slot following the slot which has the EX stage
of instruction A (figure 10-40).

Next instruction

Third instruction in series

IF

IF

EX

IF —

Instruction A ID

—

Slot

Branch destination — IF ID EX .....

..... IF ID EX .....

(Fetched but discarded)

(Fetched but discarded)

.....

Figure 10-40   Branch Instruction when Condition is Satisfied



464

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 10-41).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

Slot

..... IF ID EX .....

.....

EX

EX .....

.....

Figure 10-41   Branch Instruction when Condition is Not Satisfied



465

(2) Delayed Conditional Branch Instructions

Instruction Types:

BF/S        label

BT/S        label

Pipeline/Operation Description:

The pipeline has three stages: IF, ID, and EX. Condition verification is performed in the ID stage.

1. When condition is satisfied

The branch destination address is calculated in the EX stage. The instruction after the
conditional branch instruction (instruction A) is fetched and executed, but the instruction after
that is fetched and discarded. The branch destination instruction begins its fetch from the slot
following the slot which has the EX stage of instruction A (figure 10-42).

Next instruction

Third instruction in series

IF

IF

EX

IF —

Instruction A ID

Slot

Branch destination IF ID EX .....

..... IF ID EX .....

(Fetched but discarded)

.....

— ID EX ·····

Figure 10-42   Branch Instruction when Condition is Satisfied



466

2. When condition is not satisfied

If it is determined that conditions are not satisfied at the ID stage, the EX stage proceeds
without doing anything. The next instruction also executes a fetch (figure 10-43).

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

ID

Slot

..... IF ID EX .....

.....

EX

EX .....

.....

Figure 10-43   Branch Instruction when Condition is Not Satisfied



467

(3) Unconditional Branch Instructions

Instruction Types:

BRA         label

BRAF        Rm

JMP         @Rm

RTS

Pipeline:

IF ID

IF

EX

—

IF

 ID

 —

IF

EX

(Fetch but then data is discarded)

ID

IF

·····

EX

ID

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

Branch destination

·····

Figure 10-44   Unconditional Branch Instruction Pipeline

Operation Description:

The pipeline has three stages: IF, ID, and EX (figure 10-44). Unconditionally branched
instructions are delay branched. The branch destination address is calculated in the EX stage. The
instruction following the unconditional branch instruction (instruction A), that is, the delay slot
instruction is not fetched and discarded as the conditional branch instructions are, but is then
executed. Note that the ID slot of the delay slot instruction does stall for one cycle. The branch
destination instruction starts its fetch from the slot after the slot that has the EX stage of
instruction A.



468

(4) Unconditional Branch Instructions (PR)

Instruction Types:

BSR         label

BSRF        Rm

JSR         @Rm

Pipeline:

IF ID

IF

EX

—

IF

ma

 ID

 —

IF

WB

EX

(Fetch but then data is discarded)

ID

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-45   Unconditional Branch Instruction (PR) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. Unconditionally branched
instructions are delay branching. The instruction following the unconditional branch instruction
(instruction A), that is, the delay slot instruction, is fetched and executed. However, the instruction
after that is fetched and discarded. The branch destination instruction starts its fetch from the slot
after the slot that has the EX stage of instruction A.



469

10.4.6 System Control Instructions

(1) System Control ALU Instructions

Instruction Types:

LDC   Rm, GBR

LDC   Rm, VBR

LDC   Rm, SSR

LDC   Rm, SPC

LDC   Rm, MOD

LDC   Rm, RE

LDC   Rm, RS

LDC   Rm, R0_BANK

LDC   Rm, R1_BANK

LDC   Rm, R2_BANK

LDC   Rm, R3_BANK

LDC   Rm, R4_BANK

LDC   Rm, R5_BANK

LDC   Rm, R6_BANK

LDC   Rm, R7_BANK

LDS   Rm, PR

STC   SR, Rn

STC   GBR, Rn

STC   VBR, Rn

STC   SSR, Rn

STC   SPC, Rn

STC   MOD, Rn

STC   RE, Rn

STC   RS, Rn

STC   R0_BANK, Rn

STC   R1_BANK, Rn

STC   R2_BANK, Rn

STC   R3_BANK, Rn

STC   R4_BANK, Rn

STC   R5_BANK, Rn

STC   R6_BANK, Rn

STC   R7_BANK, Rn

STS   PR, Rn

LDRE    @(disp,PC)(SH3-DSP only)

LDRS    @(disp,PC)(SH3-DSP only)

SETRC   Rm (SH3-DSP only)

SETRC   #imm (SH3-DSP only)

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

WB

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-46   System Control ALU Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, TD, EX, ma, and WB.  In the EX stage, the data calculation
is completed via ALU.  In the ma stage nothing happens and the result is retained.  The result is
written to the register in the WB stage.

On the SH3-DSP, the ID of the instruction following the LDC, LDRE, LDRS, and SETRC
instruction is stored two slots behind.



470

(2) SR Update System Control Instructions

Instruction Types:

CLRS

CLRT

SETS

SETT

Pipeline:

IF ID

IF

EX

ID

IF

ma

EX

ID

IF

WB

·····

EX

ID

·····

EX ·····

Slot

Instruction A

Next instruction

Third instruction in series

·····

Figure 10-47   SR Update System Control Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, ma, and WB. In the ma stage nothing happens and
the data to be transferred is retained. The data is written to the register in the WB stage.
Contention occurs if the instruction immediately following this instruction, or the instruction after
that, reads from SR (see section 10.2.3, Contention due to SR Update Instructions).



471

(3) LDTLB Instruction

Instruction Type:

LDTLB

Pipeline:

IF ID

IF

EX

ID

IF

MA

EX

ID

·····

EX ·····

Slot

LDTLB

Next instruction

Third instruction in series

·····

Figure 10-48   LDTLB Instruction Pipeline

Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. There is no WB stage because no data is
returned to the register. See section 10.2.1, Contention between Instruction Fetch (IF) and
Memory Access (MA), with reference to contention between the MA and IF stages of these
instructions.

(4) NOP Instruction

Instruction Type:

NOP

Pipeline:

IF ID

IF

EX

ID

IF

EX

ID

·····

EX ·····

Slot

NOP

Next instruction

Third instruction in series

·····

Figure 10-49   NOP Instruction Pipeline

Operation Description:

The pipeline ends after three stages: IF, ID, and EX.



472

(5) LDC Instruction (SR)

Instruction Type:

LDC       Rm,SR

Pipeline:

IF ID EX EX EX

IF ID

IF

EX

ID

·····

EX

Slot

LDC

Next instruction

Third instruction in series

·····

Figure 10-50   LDC Instruction (SR) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, EX, and EX. The data is written to SR in the last
EX stage. The IF of the next instruction starts from the slot after the slot that has the EX stage of
instruction A.

(6) LDC.L Instructions (SR)

Instruction Type:

LDC.L      @Rm+, SR

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX MA EX EX EX

IF ID

LDC.L ID

Slot

.....
ID EX .....

Figure 10-51   LDC.L Instruction (SR) Pipeline

Operation Description:

The pipeline ends after seven stages: IF, ID, EX, MA, EX, EX, and EX. The data is written to SR
in the last EX stage. The IF of the next instruction starts from the slot after the slot that has the
final EX stage of instruction A.



473

(7) LDS.L Instruction (PR)

Instruction Type:

LDS.L      @Rm+, PR

Next instruction

Third instruction in series

IF

IF

EX

IF ID

LDS.L ID

Slot

EX .....
ID

MA

EX .....
WB

.....

Figure 10-52   LDS.L Instructions (PR) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. Contention occurs if this instruction
is followed by an instruction that uses the same destination register (see section 10.2.2, Effects of
Memory Load Instructions on Pipelines). Also, The MA of this instruction contends with IF (see
section 10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)).

(8) STS.L Instruction (PR)

Instruction Type:

STS.L      PR, @–Rn

Next instruction

Third instruction in series

IF

IF

EX

IF ID

STS.L ID

Slot

EX .....
ID

MA

EX .....

.....

Figure 10-53   STS.L Instruction (PR) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The WB stage writes the
decremented value to the register. The MA of this instruction contends with IF (see section 10.2.1,
Contention between Instruction Fetch (IF) and Memory Access (MA)).



474

(9) LDC.L Instructions

Instruction Types:

LDC.L      @Rm+, GBR

LDC.L      @Rm+, VBR

LDC.L      @Rm+, SSR

LDC.L      @Rm+, SPC

LDC.L      @Rm+, MOD (SH3-DSP only)

LDC.L      @Rm+, RE (SH3-DSP only)

LDC.L      @Rm+, RS (SH3-DSP only)

LDC.L      @Rm+, R0_BANK

LDC.L      @Rm+, R1_BANK

LDC.L      @Rm+, R2_BANK

LDC.L      @Rm+, R3_BANK

LDC.L      @Rm+, R4_BANK

LDC.L      @Rm+, R5_BANK

LDC.L      @Rm+, R6_BANK

LDC.L      @Rm+, R7_BANK

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX MA WB

IF ID

LDC.L ID

Slot

EX .....
ID EX ..... .....

Figure 10-54   LDC.L Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. Contention occurs if this instruction
is followed by an instruction that uses the same destination register (see section 10.2.2, Effects of
Memory Load Instructions on Pipelines). Also, The MA of this instruction contends with IF (see
section 10.2.1, Contention between Instruction Fetch (IF) and Memory Access (MA)).

On the SH3-DSP, the ID of the instruction following the LDC instruction is stored four slots
behind.



475

(10) STC.L Instructions (Excluding Bank Registers)

Instruction Types:

STC.L      SR, @–Rn

STC.L      GBR, @–Rn

STC.L      VBR, @–Rn

STC.L      SSR, @–Rn

STC.L      SPC, @–Rn

STC.L      MOD,@-Rn (SH3-DSP only)

STC.L      RE,@-Rn (SH3-DSP only)

STC.L      RS,@-Rn (SH3-DSP only)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

IF ID

STC.L ID

ID

Slot

EX ..........
EX

MA WB
..... .....

.....

Figure 10-55   STC.L Instruction (Excluding Bank Register) Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The WB stage writes the
decremented value to the register. The MA of this instruction contends with IF (see section 10.2.1,
Contention between Instruction Fetch (IF) and Memory Access (MA)).

On the SH3-DSP, the ID of the instruction following the LDC instruction is stored one slot
behind.



476

(11) STC.L Instructions (Bank Registers)

Instruction Types:

STC.L      R0_BANK,@–Rn

STC.L      R1_BANK,@–Rn

STC.L      R2_BANK,@–Rn

STC.L      R3_BANK,@–Rn

STC.L      R4_BANK,@–Rn

STC.L      R5_BANK,@–Rn

STC.L      R6_BANK,@–Rn

STC.L      R7_BANK,@–Rn

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX EX MA

IF ID

STC.L ID

Slot

EX .....
— ID EX .....

Figure 10-56   STC.L Instruction (Bank Register) Pipeline

Operation Description:

The pipeline ends after six stages: IF, ID, EX, EX, MA and WB. The ID of the next instruction is
stalled one cycle. These instructions cause contention with IF (see section 10.2.1, Contention
between Instruction Fetch (IF) and Memory Access (MA)).



477

(12) Register → MAC/DSP Transfer Instructions

Instruction Types:

CLRMAC

LDS         Rm, MACH

LDS         Rm, MACL

LDS         Rm, DSR (SH3-DSP only)

LDS         Rm, A0 (SH3-DSP only)

LDS         Rm, X0 (SH3-DSP only)

LDS         Rm, X1 (SH3-DSP only)

LDS         Rm, Y0 (SH3-DSP only)

LDS         Rm, Y1 (SH3-DSP only)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

IF ID

Instruction A ID

Slot

EX .....
ID

MA

EX .....

.....

Figure 10-57   Register → MAC Transfer Instruction Pipeline

Operation Description:

The pipeline ends after four stages: IF, ID, EX, and MA. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier Access
Contention).



478

(13) Memory → MAC Transfer Instructions

Instruction Types:

LDS.L       @Rm+, MACH

LDS.L       @Rm+, MACL

LDS.L       @Rm+, DSR (SH3-DSP only)

LDS.L       @Rm+, A0 (SH3-DSP only)

LDS.L       @Rm+, X0 (SH3-DSP only)

LDS.L       @Rm+, X1 (SH3-DSP only)

LDS.L       @Rm+, Y0 (SH3-DSP only)

LDS.L       @Rm+, Y1 (SH3-DSP only)

Next instruction

Third instruction in series

IF

IF

EX

IF ID

LDS.L ID

Slot

EX .....
ID

MA

EX .....

.....

Figure 10-58   Memory → MAC Transfer Instruction Pipeline

The pipeline ends after four stages: IF, ID, EX, and MA. The MA stage is used to access memory
and the multiplier. This MA contends with IF. (See section 10.2.1, Contention between Instruction
Fetch (IF) and Memory Access (MA).) Also, if one of these instructions is followed by an
instruction that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier
Access Contention).



479

(14) MAC/DSP → Register Transfer Instructions

Instruction Types:

STS         MACH, Rn

STS         MACL, Rn

STS         DSR, Rn (SH3-DSP only)

STS         A0, Rn (SH3-DSP only)

STS         X0, Rn (SH3-DSP only)

STS         X1, Rn (SH3-DSP only)

STS         Y0, Rn (SH3-DSP only)

STS         Y1, Rn (SH3-DSP only)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

IF ID

STS ID

Slot

EX .....
ID

MA

EX .....
WB

.....

Figure 10-59   MAC → Register Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the same destination register or an instruction that uses the multiplier, multiplier
contention will result (see section 10.2.2, Effects of Memory Load Instructions on Pipelines, and
section 10.2.4, Multiplier Access Contention).



480

(15) MAC → Memory Transfer Instructions

Instruction Types:

STS.L       MACH, @–Rn

STS.L       MACL, @–Rn

STS.L       DSR, @–Rn (SH3-DSP only)

STS.L       A0, @–Rn (SH3-DSP only)

STS.L       X0, @–Rn (SH3-DSP only)

STS.L       X1, @–Rn (SH3-DSP only)

STS.L       Y0, @–Rn (SH3-DSP only)

STS.L       Y1, @–Rn (SH3-DSP only)

Pipeline:

Next instruction

Third instruction in series

IF

IF

EX

IF ID

STS.L ID

Slot

EX .....
ID

MA WB

EX .....

.....

Figure 10-60   MAC → Memory Transfer Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, MA and WB. The MA stage is used to access the
multiplier. This MA contends with IF (see section 10.2.1, Contention between Instruction Fetch
(IF) and Memory Access (MA)). Also, if one of these instructions is followed by an instruction
that uses the multiplier, multiplier contention will result (see section 10.2.4, Multiplier Access
Contention).



481

(16) RTE Instruction

Instruction Type:

RTE

Pipeline:

Delay slot

Branch destination

IF

IF

EX

— (Fetch but then data is discarded)

RTE ID

Slot

IF ID EX .....

—

EX

— —

IF — —

EX

ID EX .....

.....

Figure 10-61   RTE Instruction Pipeline

Operation Description:

The pipeline ends after five stages: IF, ID, EX, EX, and EX. RTE is a delayed branch instruction.
The instruction following the RTE instruction, that is, the delay slot instruction, is fetched and
executed. However, the instruction after that is fetched and discarded. The IF of the branch
destination instruction starts from the slot after the slot that has the final EX stage of RTE.



482

(17) TRAP Instruction

Instruction Type:

TRAPA      #imm

..... .....

Next instruction

Third instruction in series

IF

IF (Fetch but then data is discarded)

EX

IF (Fetch but then data is discarded)

TRAPA ID EX EX

EX .....

..... .....
IF IDBranch destination

EX

.....IF ID

Slot

...... .....

Figure 10-62   TRAP Instruction Pipeline

The pipeline has six stages*: IF, ID, EX, EX, EX, and EX (figure 10-62). TRAP is not a delayed
branch instruction. The two instructions after the TRAP instruction are fetched, but they are
discarded without being executed. The IF of the branch destination instruction starts from the next
slot of the last EX of the TRAP instruction.

Note: * On the SH3-DSP there are eight stages: IF, ID, EX, EX, EX, EX, EX, and EX.



483

(18) SLEEP Instruction

Instruction Type:

SLEEP

Pipeline:

Next instruction

IF

IF

EX EX EX EXSLEEP ID

Slot

.....

Figure 10-63   SLEEP Instruction Pipeline

Operation Description:

The pipeline has three stages: IF, ID, and EX (figure 10-63). It is issued until the IF of the next
instruction. After the SLEEP instruction is executed, the CPU enters sleep mode or standby mode.



484

10.4.7 Exception Processing

(1) Interrupt Exception Processing

Instruction Type:

Interrupt exception processing

Pipeline:

EX .....
Next instruction

Branch destination

IF EXInterrupt ID EX EX EX

IF ID
.....

.....

.....IF ID

Slot

IF

......

Figure 10-64   Interrupt Exception Processing Pipeline

Operation Description:

The interrupt is received during the ID stage of the instruction and everything after the ID stage is
replaced by the interrupt exception processing sequence. The pipeline has six stages: IF, ID, EX,
EX, EX, and EX (figure 10-64). Interrupt exception processing is not a delayed branch. In
interrupt exception processing, an overrun fetch (IF) occurs. In branch destination instructions, the
IF starts from the slot following the final EX in the interrupt exception processing.

Interrupt sources are NMI, IRL, and on-chip peripheral module interrupts. Refer to the Hardware
Manual for details.



485

(2) Address Error Exception Processing

Instruction Type:

Address error exception processing

Pipeline:

EX .....
Next instruction

Branch destination

IF EXInterrupt ID EX EXEX

IF ID
.....

.....

.....IF ID

Slot

IF

.......

Figure 10-65   Address Error Exception Processing Pipeline

Operation Description:

The address error is received during the ID stage of the instruction and everything after the ID
stage is replaced by the address error exception processing sequence. The pipeline has six stages:
IF, ID, EX, EX, EX, and EX (figure 10-65). Address error exception processing is not a delayed
branch. In address error exception processing, an overrun fetch (IF) occurs. In branch destination
instructions, the IF starts from the slot following the final EX in the address error exception
processing.

Address errors are caused by instruction fetches and by data reads or writes. Fetching an
instruction from an odd address or fetching an instruction from an on-chip peripheral register
causes an instruction fetch address error. Accessing word data from other than a word boundary,
accessing longword data from other than a longword boundary, and accessing an on-chip
peripheral register 8-bit space by longword cause a read or write address error. Refer to the
Hardware Manual for details.



486

(3) TLB Related Exception Processing

Instruction Type:

TLB related exception processing

Pipeline:

IF ID

IF

EX EX EX EX

IF ID

IF

EX

ID

·····

ID ·····

Slot

TLB related exception

Next instruction

Branch destination

·····

Figure 10-66   TLB Related Exception Processing Pipeline

Operation Description:

If a TLB related exception is received in the instruction's ID stage, the portion following the ID
stage is replaced by the TLB related exception processing sequence.

The pipeline ends after six stages: IF, ID, EX, EX, EX, and EX. TLB related exception processing
is not a delayed branch. In TLB related exception processing, an overrun fetch (IF) occurs. In
branch destination instructions, the IF starts from the slot after the slot that has the final EX stage
of the TLB related exception processing.

TLB related exceptions include TLB error, TLB invalid, TLB initial write, and TLB protection
exceptions. Refer to the Hardware Manual for details.



487

(4) Illegal Instruction Exception Processing

Instruction Type:

Illegal instruction exception processing

EX .....
Next instruction

IF EXIllegal instruction ID EX EX

IF ID

EX

.....

.....

.....

.....

.....IF ID

Slot

IF

Branch destination
......

Figure 10-67   Illegal Instruction Exception Processing Pipeline

The illegal instruction is received during the ID stage of the instruction and everything after the ID
stage is replaced by the illegal instruction exception processing sequence. The pipeline has six
stages: IF, ID, EX, EX, EX, and EX (figure 10-67). Illegal instruction exception processing is not
a delayed branch. In illegal instruction exception processing, an overrun fetch (IF) occurs.
Whether there is an IF only in the next instruction or in the one after that as well depends on the
instruction that was to be executed. In branch destination instructions, the IF starts from the slot
following the final EX in the illegal instruction exception processing.

Illegal instruction exception processing is caused by ordinary illegal instructions and by
instructions with illegal slots. When undefined code placed somewhere other than the slot directly
after the delayed branch instruction (called the delay slot) is decoded, ordinary illegal instruction
exception processing occurs. When undefined code placed in the delay slot is decoded or when an
instruction placed in the delay slot to rewrite the program counter is decoded, an illegal slot
instruction occurs. Refer to the Hardware Manual for details.



488

10.4.8 Pipeline for FPU Instructions (SH-3E Only)

Next instruction

Subsequent instruction

IF

IF

E1

IF ID

Instruction A DF

Slot

EX .....
ID

E2

EX .....

.....

Figure 10-68   FPU Pipeline During Data Transfer between Floating Point Register and
Register

Next instruction

Subsequent instruction

IF

IF

E1

IF ID

Instruction A DF

Slot

EX .....
ID

E2 SF

EX .....

.....

Figure 10-69   FPU Pipeline During Floating Point Load

Next instruction

Subsequent instruction

IF

IF

E1

IF ID

Instruction A DF

Slot

EX .....
ID

E2

EX .....

.....

Figure 10-70   FPU Pipeline During Floating Point Store

Next instruction

Subsequent instruction

IF

IF

E1

IF ID

Instruction A DF

 Slot

EX .....
ID EX .....

.....

Figure 10-71   FPU Pipeline During Floating Point Compare



489

Next instruction

Subsequent instruction

IF

IF

E1

IF ID

Instruction A DF

Slot

EX .....
ID

E2

EX .....

.....

Figure 10-72   FPU Pipeline During Floating Point Arithmetic Calculation Instruction
(Excluding FDIV and FSQRT)

Next instruction

Case 1: Next Instruction is FPU Instruction

Subsequent instruction

IF

IF

E1

DF

IF

—

DF E1 SF

Instruction A DF

—

E2

E1E1 E1 SFE2.....

—

Slot

— E1 E2 SF

Next instruction

Case 2: Next Instruction is CPU Instruction and Subsequent Instruction is FPU Instruction

Notes: 1.
2.
3.

FDIV and FSQRT require 13 cycles in the E1 stage.
The next instruction enters the CPU pipeline, it is deleted from the FPU pipeline after the DF stage.
Even if there are two to twelve CPU instructions between FDIV (or FSQRT) and the next FPU
instructions, the situation is still interpreted in the same way as Case 2.

Subsequent instruction

IF

IF

E1

DF

— E1 SF

Instruction A DF

E2IF DF — —

E1E1 E1 SFE2.....
Slot

Figure 10-73   FPU Pipeline During FDIV and FSQRT Instructions



490

10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)

(1)  X Memory and Y Memory Load Instructions

Instruction Types:

NOPX

MOVX.W   @Ax,Dx

MOVX.W   @Ax+,Dx

MOVX.W   @Ax+Ix,Dx

Pipeline:

Slot

InstructionA

Next instruction

Subsequent instruction

· · · · · ·

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Figure 10-74   X Memory and Y Memory Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, IF, EX, MA, and WB/DSP. Data is transferred via the X bus, so
there is no contention with the IF of other instructions.



491

(2)  Y Memory Load Instructions

Instruction Types:

NOPY

MOVY.W   @Ay,Dy

MOVY.W   @Ay+,Dy

MOVY.W   @Ay+Iy,Dy

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-75   Y Memory Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. Data is transferred via the Y bus, so
there is no contention with the IF of other instructions.

(3)  X Memory Store Instructions

Instruction Types:

MOVX.W   Da,@Ax

MOVX.W   Da,@Ax+

MOVX.W   Da,@Ax+Ix

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

MA

EX

←→←→

······

←→

······

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-76   X Memory Store Instruction Pipeline



492

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to access the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP
Only)).



493

(4)  Y Memory Store Instructions

Instruction Types:

MOVY.W   Da,@Ay

MOVY.W   Da,@Ay+

MOVY.W   Da,@Ay+Iy

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

MA

EX

←→←→

······

←→

······

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-77   Y Memory Store Instruction Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to access the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP
Only)).



494

(5)  Single Load Instructions

Instruction Types:

MOVS.W   @-As,Ds

MOVS.W   @As,Ds

MOVS.W   @As+,Ds

MOVS.W   @As+Is,Ds

MOVS.L   @-As,Ds

MOVS.L   @As,Ds

MOVS.L   @As+,Ds

MOVS.L   @As+Is,Ds

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-78   Single Load Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. No contention occurs even if another
instruction uses the destination register of this instruction.



495

(6)  Single Store Instructions

Instruction Types:

MOVS.W   Ds,@-As

MOVS.W   Ds,@As

MOVS.W   Ds,@As+

MOVS.W   Ds,@As+Is

MOVS.L   Ds,@-As

MOVS.L   Ds,@As

MOVS.L   Ds,@As+

MOVS.L   Ds,@As+I

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

MA

EX

←→←→

······

←→

······

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-79   Single Store Instruction Pipeline

Operation Description:

The pipeline has four stages: IF, ID, EX, and MA. If this instruction attempts to store the DSP
operation result immediately after a DSP operation instruction, contention occurs (see section
10.2.6, Contention between DSP Data Operation Instructions and Store Instructions (SH3-DSP
Only)).



496

10.4.10 DSP Operation Instructions (SH3-DSP Only)

(1)  ALU Arithmetic Operation Instructions

Instruction Types:

         PADD Sx, Sy,Dz(Du)                  PNEG Sx,Dz

DCT      PADD Sx, Sy,Dz         DCT          PNEG Sx,Dz

DCF      PADD Sx, Sy,Dz         DCF          PNEG Sx,Dz

         PSUB Sx, Sy,Dz(Du)                  PNEG Sy,Dz

DCT      PSUB Sx, Sy,Dz         DCT          PNEG Sy,Dz

DCF      PSUB Sx, Sy,Dz         DCF          PNEG Sy,Dz

         PCOPY Sx,Dz                         PDEC Sx,Dz

DCT      PCOPY Sx,Dz            DCT          PDEC Sx,Dz

DCF      PCOPY Sx,Dz            DCF          PDEC Sx,Dz

         PCOPY Sy,Dz                         PDEC Sy,Dz

DCT      PCOPY Sy,Dz            DCT          PDEC Sy,Dz

DCF      PCOPY Sy,Dz            DCF          PDEC Sy,Dz

         PDMSB Sx,Dz                         PCLR Dz

DCT      PDMSB Sx,Dz            DCT          PCLR Dz

DCF      PDMSB Sx,Dz            DCF          PCLR Dz

         PDMSB Sy,Dz                         PADDC Sx,Sy,Dz

DCT      PDMSB Sy,Dz                         PSUBC Sx,Sy,Dz

DCF      PDMSB Sy,Dz                         PCMP Sx,Sy

         PINC Sx,Dz                          PABS Sx,Dz

DCT      PINC Sx,Dz                          PABS Sy,Dz

DCF      PINC Sx,Dz                          PRND Sx,Dz

         PINC Sy,Dz                          PRND Sy,Dz

DCT      PINC Sy,Dz

DCF      PINC Sy,Dz

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-80   ALU Arithmetic Operation Instruction Pipeline



497

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.

(2)  ALU Logical Operation Instructions

Instruction Types:

         POR Sx,Sy,Dz

DCT      POR Sx,Sy,Dz

DCF      POR Sx,Sy,Dz

         PAND Sx,Sy,Dz

DCT      PAND Sx,Sy,Dz

DCF      PAND Sx,Sy,Dz

         PXOR Sx,Sy,Dz

DCT      PXOR Sx,Sy,Dz

DCF      PXOR Sx,Sy,Dz

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-81   ALU Logical Operation Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.



498

(3)  ALU Logical Operation Instructions

Instruction Types:

         PSHA Sx,Sy,Dz

DCT      PSHA Sx,Sy,Dz

DCF      PSHA Sx,Sy,Dz

         PSHA #Imm,Dz

         PSHL Sx,Sy,Dz

DCT      PSHL Sx,Sy,Dz

DCF      PSHL Sx,Sy,Dz

         PSHL #Imm,Dz

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-82   ALU Logical Operation Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change.



499

(4)  Signed Multiplication Instruction

Instruction Types:

PMULS Se,Sf,Dg

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-83   Signed Multiplication Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP.



500

(5)  Register Transfer Instructions

Instruction Types:

         PSTS MACH,Dz

DCT      PSTS MACH,Dz

DCF      PSTS MACH,Dz

         PSTS MACL,Dz

DCT      PSTS MACL,Dz

DCF      PSTS MACL,Dz

         PLDS Dz,MACH

DCT      PLDS Dz,MACH

DCF      PLDS Dz,MACH

         PLDS Dz,MACL

DCT      PLDS Dz,MACL

DCF      PLDS Dz,MACL

Pipeline:

←→

IF

←→

ID

IF

←→

EX

ID

IF

←→

MA

EX

ID

←→

WB/DSP

MA

EX

←→←→

WB/DSP

←→

WB/DSP

MA

Slot

Instruction A

Next instruction

Subsequent instruction

· · · · · ·

Figure 10-84   Register Transfer Instruction Pipeline

Operation Description:

The pipeline has five stages: IF, ID, EX, MA, and WB/DSP. If the condition of a conditional
operation instruction is not satisfied, the WB/DSP stage is not executed (no operation), but the
pipeline does not change. If a memory load is performed in parallel with this instruction using
MOVX.W, MOVS.W, or MOVX.L, contention occurs. Contention also occurs if a memory store
is performed immediately after this instruction using MOVX.W, MOVS.W, or MOVX.L (see
section 10.2.7, Contention between DSP Register Transfer and Memory Load/Store Operations
(SH3-DSP Only)).



501

Appendix A   Instruction Code

A.1 Instruction Set by Addressing Mode

Table A-1 Instruction Set by Addressing Mode

Types

Addressing Mode Category Sample Instruction SH-3 SH-3E
SH3-
DSP

No operand — NOP 11 11 11

Direct register Destination operand only MOVT Rn 18 23 18
addressing Source and destination operand ADD Rm,Rn 36 44 36

Transfer to control register or system
register

LDC Rm,SR 16 19 26

Transfer from control register or
system register

STS MACH,Rn 16 19 25

Indirect register Source operand only JMP @Rn 3 3 3
addressing Destination operand only TAS.B @Rn 1 1 1

Data transfer direct from register MOV.L Rm,@Rn 6 8 6

Post-increment indirect Multiply/accumulate operation MAC.W @Rm+,@Rn+ 2 2 2
register addressing Data transfer direct from register MOV.L @Rm+,Rn 3 4 3

Load to control register or system
register

LDC.L @Rm+,SR 16 18 25

Pre-decrement indirect Data transfer direct from register MOV.L Rm,@–Rn 3 4 3
register addressing Store from control register or system

register
STC.L SR,@–Rn 16 18 25

Indirect register addressing
with displacement

Data transfer direct to register MOV.L Rm,
@(disp,Rn)

6 6 6

Indirect indexed register
addressing

Data transfer direct to register MOV.L Rm,@(R0,Rn) 6 8 6

Indirect GBR addressing
with displacement

Data transfer direct to register MOV.L R0,
@(disp,GBR)

6 6 6

Indirect indexed GBR
addressing

Immediate data transfer AND.B #imm,
@(R0,GBR)

4 4 4

PC relative addressing with
displacement

Data transfer direct to register MOV.L @(disp,PC),
Rn

3 3 5

PC relative addressing
with Rn

Branch instruction BRAF Rn 2 2 2

PC relative addressing Branch instruction BRA disp 6 6 6

Immediate addressing Load to register FLDI0 FRn 0 2 0

Arithmetic logical operations direct
with register

ADD #imm,Rn 7 7 7

Specify exception processing vector TRAPA #imm 1 1 1

Load to control register SETRC #imm 0 0 1

Total: 189 220 227



502

A.1.1 No Operand

Table A-2 No Operand

Instruction Operation Code Cycles T Bit

CLRS 0 → S 0000000001001000 1 —

CLRT 0 → T 0000000000001000 1 0

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

DIV0U 0 → M/Q/T 0000000000011001 1 0

LDTLB PTEH/PTEL → TLB 0000000000111000 1 —

NOP No operation 0000000000001001 1 —

RTE Delayed branching,
SSR/SPC  → SR/PC

0000000000101011 4 —

RTS Delayed branching, PR → PC 0000000000001011 2 —

SETS 1 → S 0000000001011000 1 —

SETT 1 → T 0000000000011000 1 1

SLEEP Sleep 0000000000011011 4 —



503

A.1.2 Direct Register Addressing

Table A-3 Destination Operand Only

Instruction Operation Code Cycles T Bit

CMP/PL Rn Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

DT Rn Rn – 1 → Rn, when Rn is 0, 1
→ T.  When Rn is nonzero, 0
→ T

0100nnnn00010000 1 Comparison
result

FABS FRn* abs(FRn → FRn 1111nnnn01011101 1 —

FLOAT FPUL,
FRn*

(float)FPUL → FRn 1111nnnn00101101 1 —

FNEG FRn* –1.0 × FRn → FRn 1111nnnn01001101 1 —

FSQRT FRn* sqrt(FRn) → FRn 1111nnnn01101101 13 —

FTRC FRm,
FPUL*

(long)FRm → FPUL 1111mmmm00111101 1 —

MOVT Rn T → Rn 0000nnnn00101001 1 —

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU. These
instructions are available only on the SH-3E.



504

Table A-4 Source and Destination Operand

Instruction Operation Code Cycles T Bit

ADD Rm,Rn Rn + Rm → Rn 0011nnnnmmmm1100 1 —

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/HS Rm,Rn When unsigned and Rn ≥
Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn ≥
Rm, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/HI Rm,Rn When unsigned and Rn >
Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/GT Rm,Rn When signed and Rn >
Rm, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals
a bytes in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn x
Rm → MACH, MACL

0011nnnnmmmm1101 2
(to 5)*2

—

DMULU.L Rm,Rn Unsigned operation of Rn
× Rm → MACH, MACL

0011nnnnmmmm0101 2
(to 5)*2

—

EXTS.B Rm,Rn Sign – extend Rm from
byte → Rn

0110nnnnmmmm1110 1 —

EXTS.W Rm,Rn Sign – extend Rm from
word → Rn

0110nnnnmmmm1111 1 —

EXTU.B Rm,Rn Zero – extend Rm from
byte → Rn

0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Zero – extend Rm from
word → Rn

0110nnnnmmmm1101 1 —

FADD FRm,
FRn*1

FRm + FRn → FRn 1111nnnnmmmm0000 1 —



505

Table A-4 Source and Destination Operand (cont)

Instruction Operation Code Cycles T Bit

FCMP/EQ FRm,
FRn*1

FRn = FRm, 1 → T 1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm,
FRn*1

FRn > FRm, 1 → T 1111nnnnmmmm0101 1 Comparison
result

FDIV FRm,
FRn*1

FRn/FRm → FRm 1111nnnnmmmm0011 13 —

FMAC FR0,Frm
FRn*1

(FR0 × FRm) + FRn → FRn 1111nnnnmmmm1110 1 —

FMOV FRm,
FRn*1

FRm → FRn 1111nnnnmmmm1100 1 —

FMUL FRm,
FRn*1

FRn × FRm → FRn 1111nnnnmmmm0010 1 —

FSUB FRm,
FRn*1

FRn – FRm → FRn 1111nnnnmmmm0001 1 —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 2
(to 5)*2

—

MULS.W Rm,Rn With sign, Rn × Rm → MAC 0010nnnnmmmm1111 1
(to 3)*2

—

MULU.W Rm,Rn Unsigned, Rn × Rm →
MAC

0010nnnnmmmm1110 1
(to 3)*2

—

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

NEGC Rm,Rn 0 – Rm – T → Rn,
Borrow → T

0110nnnnmmmm1010 1 Borrow

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

SHAD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm →
(MSB→)Rn

0100nnnnmmmm1100 1 —

SHLD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm →
(0→)Rn

0100nnnnmmmm1101 1 —

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

SUBC Rm,Rn Rn – Rm – T → Rn,
Borrow → T

0011nnnnmmmm1010 1 Borrow



506

Table A-4 Source and Destination Operand (cont)

Instruction Operation Code Cycles T Bit

SUBV Rm,Rn Rn – Rm → Rn,
Underflow → T

0011nnnnmmmm1011 1 Underflow

SWAP.B Rm,Rn Rm → Swap upper and
lower halves of lower 2
bytes → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → Swap upper and
lower word → Rn

0110nnnnmmmm1001 1 —

TST Rm,Rn Rn & Rm, when result is 0,
1 → T

0010nnnnmmmm1000 1 Test results

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XTRCT Rm,Rn Rm: Center 32 bits of Rn →
Rn

0010nnnnmmmm1101 1 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).



507

Table A-5 Load and Store with Control Register or System Register

Instruction Operation Code Cycles T Bit

FLDS FRm,FPUL*1 FRm → FPUL 1111mmmm00011101 1 —

LDC Rm,SR Rm → SR 0100mmmm00001110 5 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1/3*2 —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1/3*2 —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 1/3*2 —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 1/3*2 —

LDC Rm,MOD*3 Rm → MOD 0100mmmm01011110 3 —

LDC Rm,RE*3 Rm → RE 0100mmmm01111110 3 —

LDC Rm,RS*3 Rm → RS 0100mmmm01101110 3 —

LDC Rm,R0_BANK Rm → R0_BANK 0100mmmm10001110 1/3*2 —

LDC Rm,R1_BANK Rm → R1_BANK 0100mmmm10011110 1/3*2 —

LDC Rm,R2_BANK Rm → R2_BANK 0100mmmm10101110 1/3*2 —

LDC Rm,R3_BANK Rm → R3_BANK 0100mmmm10111110 1/3*2 —

LDC Rm,R4_BANK Rm → R4_BANK 0100mmmm11001110 1/3*2 —

LDC Rm,R5_BANK Rm → R5_BANK 0100mmmm11011110 1/3*2 —

LDC Rm,R6_BANK Rm → R6_BANK 0100mmmm11101110 1/3*2 —

LDC Rm,R7_BANK Rm → R7_BANK 0100mmmm11111110 1/3*2 —

LDS Rm,FPSCR*1 Rm → FPSCR 0100mmmm01101010 1 —

LDS Rm,FPUL*1 Rm → FPUL 0100mmmm01011010 1 —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —

LDS Rm,PR Rm → PR 0100mmmm00101010 1 —

LDS Rm,DSR*3 Rm → DSR 0100mmmm01101010 1 —

LDS Rm,A0*3 Rm → A0 0100mmmm01111010 1 —

LDS Rm,X0*3 Rm → X0 0100mmmm10001010 1 —

LDS Rm,X1*3 Rm → X1 0100mmmm10011010 1 —

LDS Rm,Y0*3 Rm → Y0 0100mmmm10101010 1 —

LDS Rm,Y1*3 Rm → Y1 0100mmmm10111010 1 —

SETRC Rm*3 LSW of Rm → RC (MSW of SR),
Repeat control flag → RF1, RF0

0100mmmm00010100 3 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. Three cycles on the SH3-DSP.
3. CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.



508

Table A-6 Load and Store from Control Register or System Register

Instruction Operation Code Cycles T Bit

FSTS FPUL,FRn*1 FPUL → FRn 1111nnnn01011010 1 —

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 —

STC SSR,Rn SSR → Rn 0000nnnn00110010 1 —

STC SPC,Rn SPC → Rn 0000nnnn01000010 1 —

STC MOD,Rn*2 MOD → Rn 0000nnnn01010010 1 —

STC RE,Rn*2 RE → Rn 0000nnnn01110010 1 —

STC RS,Rn*2 RS → Rn 0000nnnn01100010 1 —

STC R0_BANK,Rn R0_BANK→ Rn 0000nnnn10000010 1 —

STC R1_BANK,Rn R1_BANK→ Rn 0000nnnn10010010 1 —

STC R2_BANK,Rn R2_BANK→ Rn 0000nnnn10100010 1 —

STC R3_BANK,Rn R3_BANK→ Rn 0000nnnn10110010 1 —

STC R4_BANK,Rn R4_BANK→ Rn 0000nnnn11000010 1 —

STC R5_BANK,Rn R5_BANK→ Rn 0000nnnn11010010 1 —

STC R6_BANK,Rn R6_BANK→ Rn 0000nnnn11100010 1 —

STC R7_BANK,Rn R7_BANK→ Rn 0000nnnn11110010 1 —

STS FPSCR,Rn*1 FPSCR → Rn 1111nnnn01101010 1 —

STS FPUL,Rn*1 FPUL → Rn 1111nnnn01011010 1 —

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS DSR,Rn*2 DSR → Rn 0000nnnn01101010 1 —

STS A0,Rn*2 A0 → Rn 0000nnnn01111010 1 —

STS X0,Rn*2 X0→Rn 0000nnnn10001010 1 —

STS X1,Rn*2 X1→Rn 0000nnnn10011010 1 —

STS Y0,Rn*2 Y0→Rn 0000nnnn10101010 1 —

STS Y1,Rn*2 Y1→Rn 0000nnnn10111010 1 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.



509

A.1.3 Indirect Register Addressing

Table A-7 Source Operand Only

Instruction Operation Code Cycles T Bit

JMP @Rn Delayed branching, Rn → PC 0100nnnn00101011 2 —

JSR @Rn Delayed branching,
PC → Rn, Rn → PC

0100nnnn00001011 2 —

PREF @Rn (Rn) → cache 0000nnnn10000011 1 —

Note: * Two cycles on the SH3-DSP.

Table A-8 Destination Operand Only

Instruction Operation Code Cycles T Bit

TAS.B @Rn When (Rn) is 0, 1 → T,
1 → MSB of (Rn)

0100nnnn00011011 3 Test
results

Note: * Four cycles on the SH3-DSP.

Table A-9 Data Transfer Direct to Register

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@Rn* FRm → (FRn) 1111nnnnmmmm1010 1 —

FMOV.S @Rm,FRn* (Rm) → FRn 1111nnnnmmmm1000 1 —

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.



510

A.1.4 Post-Increment Indirect Register Addressing

Table A-10 Multiply/Accumulate Operation

Instruction Operation Code Cycles T Bit

MAC.L @Rm+,@Rn+ Signed operation of (Rn) ×
(Rm) + MAC → MAC

0000nnnnmmmm1111 2 (to 5)* —

MAC.W @Rm+,@Rn+ Signed operation of (Rn) ×
(Rm) + MAC → MAC

0100nnnnmmmm1111 2 (to 5)* —

Note: * Normal minimum number of execution states (the number in parenthesis is the number
of states when there is contention with preceding/following instructions).

Table A-11 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV.S @Rm+,FRn* (Rm) → FRn, Rm + 4 → Rm 1111nnnnmmmm1001 1 —

MOV.B @Rm+,Rn (Rm) → sign extension →
Rn, Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) → sign extension →
Rn, Rm + 2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

Table A-12 Load to Control Register or System Register

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 7 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 1/5*2 —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 1/5*2 —

LDC.L @Rm+,SSR (Rm) → SSR,
Rm + 4 → Rm

0100mmmm00110111 1/5*2 —

LDC.L @Rm+,SPC (Rm) → SPC,  Rm + 4 → Rm 0100mmmm01000111 1/5*2 —

LDC.L @Rm+,MOD*3 (Rm) → MOD, Rm + 4 → Rm 0100mmmm01010111 5 —

LDC.L @Rm+,RE*3 (Rm) → RE, Rm + 4 → Rm 0100mmmm01110111 5 —

LDC.L @Rm+,RS*3 (Rm) → RS, Rm + 4 → Rm 0100mmmm01100111 5 —

LDC.L @Rm+,R0_
BANK

(Rm) → R0_BANK,
Rm + 4 → Rm

0100mmmm10000111 1/5*2 —



511

Table A-12 Load to Control Register or System Register (cont)

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,R1_
BANK

(Rm) → R1_BANK,
Rm + 4 → Rm

0100mmmm10010111 1/5*2 —

LDC.L @Rm+,R2_
BANK

(Rm) → R2_BANK,
Rm + 4 → Rm

0100mmmm10100111 1/5*2 —

LDC.L @Rm+,R3_
BANK

(Rm) → R3_BANK,
Rm + 4 → Rm

0100mmmm10110111 1/5*2 —

LDC.L @Rm+,R4_
BANK

(Rm) → R4_BANK,
Rm + 4 → Rm

0100mmmm11000111 1/5*2 —

LDC.L @Rm+,R5_
BANK

(Rm) → R5_BANK,
Rm + 4 → Rm

0100mmmm11010111 1/5*2 —

LDC.L @Rm+,R6_
BANK

(Rm) → R6_BANK,
Rm + 4 → Rm

0100mmmm11100111 1/5*2 —

LDC.L @Rm+,R7_
BANK

(Rm) → R7_BANK,
Rm + 4 → Rm

0100mmmm11110111 1/5*2 —

LDS.L @Rm+,FPSCR*1 (Rm) → FPSCR,
Rm + 4 → Rm

0100mmmm01100110 1 —

LDS.L @Rm+,FPUL*1 (Rm) → FPUL,
Rm + 4 → Rm

0100mmmm01010110 1 —

LDS.L @Rm+,MACH (Rm) → MACH,
@Rm + 4 → Rm

0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL,
@Rm + 4 → Rm

0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR, @Rm + 4 → Rm 0100mmmm00100110 1 —

LDS.L @Rm+,DSR*3 (Rm) → DSR, Rm + 4 → Rm 0100mmmm01100110 1 —

LDS.L @Rm+,A0*3 (Rm) → A0, Rm + 4 → Rm 0100mmmm01110110 1 —

LDS.L @Rm+,X0*3 (Rm) → X0,Rm+4 → Rm 0100nnnn10000110 1 —

LDS.L @Rm+,X1*3 (Rm) → X1,Rm+4 → Rm 0100nnnn10010110 1 —

LDS.L @Rm+,Y0*3 (Rm) → Y0,Rm+4 → Rm 0100nnnn10100110 1 —

LDS.L @Rm+,Y1*3 (Rm) → Y1,Rm+4 → Rm 0100nnnn10110110 1 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. Five cycles on the SH3-DSP.
3. CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.



512

A.1.5 Pre-Decrement Indirect Register Addressing

Table A-13 Data Transfer Direct from Register

Instruction Operation Code Cycles T Bit

FMOV.S FRm,@–Rn* Rn – 4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 1 —

MOV.B Rm,@–Rn Rn – 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@–Rn Rn – 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@–Rn Rn – 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

Table A-14 Store from Control Register or System Register

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 1/2*1 —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 1/2*1 —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 1/2*1 —

STC.L SSR,@–Rn Rn–4 → Rn,  SSR → (Rn) 0100nnnn00110011 1/2*1 —

STC.L SPC,@–Rn Rn–4 → Rn,  SPC → (Rn) 0100nnnn01000011 1/2*1 —

STC.L MOD,@-Rn*3 Rn – 4 → Rn, MOD → (Rn) 0100nnnn01010011 2 —

STC.L RE,@-Rn*3 Rn – 4 → Rn, RE → (Rn) 0100nnnn01110011 2 —

STC.L RS,@-Rn*3 Rn – 4 → Rn, RS → (Rn) 0100nnnn01100011 2 —

STC.L R0_BANK,
@–Rn

Rn–4 → Rn,
R0_BANK → (Rn)

0100nnnn10000011 2 —

STC.L R1_BANK,
@–Rn

Rn–4 → Rn,
R1_BANK → (Rn)

0100nnnn10010011 2 —

STC.L R2_BANK,
@–Rn

Rn–4 → Rn,
R2_BANK → (Rn)

0100nnnn10100011 2 —

STC.L R3_BANK,
@–Rn

Rn–4 → Rn,
R3_BANK → (Rn)

0100nnnn10110011 2 —

STC.L R4_BANK,
@–Rn

Rn–4 → Rn,
R4_BANK → (Rn)

0100nnnn11000011 2 —

STC.L R5_BANK,
@–Rn

Rn–4 → Rn,
R5_BANK → (Rn)

0100nnnn11010011 2 —

STC.L R6_BANK,
@–Rn

Rn–4 → Rn,
R6_BANK → (Rn)

0100nnnn11100011 2 —

STC.L R7_BANK,
@–Rn

Rn–4 → Rn,
R7_BANK → (Rn)

0100nnnn11110011 2 —



513

Table A-14 Store from Control Register or System Register (cont)

Instruction Operation Code Cycles T Bit

STS.L FPSCR,@–Rn* Rn – 4 → Rn, FPSCR → (Rn) 0100nnnn01100010 1 —

STS.L FPUL,@–Rn* Rn – 4 → Rn, FPUL → (Rn) 0100nnnn01010010 1 —

STS.L MACH,@–Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@–Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@–Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 1 —

STS.L DSR,@–Rn*3 Rn – 4 → Rn, DSR → (Rn) 0100nnnn01100010 1 —

STS.L A0,@–Rn*3 Rn – 4 → Rn, A0 → (Rn) 0100nnnn01100010 1 —

STS.L X0,@-Rn*3 Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 —

STS.L X1,@-Rn*3 Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 —

STS.L Y0,@-Rn*3 Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS.L Y1,@-Rn*3 Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

2. Two cycles on the SH3-DSP.
3. CPU instructions to provide support for DSP functions. These instructions can only be

used with the SH3-DSP.

A.1.6 Indirect Register Addressing with Displacement

Table A-15 Indirect Register Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp,Rn) R0 → (disp + Rn) 10000001nnnndddd 1 —

MOV.L Rm,@(disp,Rn) Rm → (disp + Rn) 0001nnnnmmmmdddd 1 —

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 —

MOV.W @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000101mmmmdddd 1 —

MOV.L @(disp,Rm),Rn (disp + Rm) → Rn 0101nnnnmmmmdddd 1 —



514

A.1.7 Indirect Indexed Register Addressing

Table A-16 Indirect Indexed Register Addressing

Instruction Operation Code Cycles T Bit

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

FMOV.S FRm,@(R0,Rn)* FRm → (R0 + Rn) 1111nnnnmmmm0111 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign
extension → Rn

0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

FMOV.S @(R0,FRm),FRm* (R0 + Rn) → FRn 1111nnnnmmmm0110 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.

A.1.8 Indirect GBR Addressing with Displacement

Table A-17 Indirect GBR Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) R0 → (disp + GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) R0 → (disp + GBR) 11000010dddddddd 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd 1 —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) →
R0

11000110dddddddd 1 —



515

A.1.9 Indirect Indexed GBR Addressing

Table A-18 Indirect Indexed GBR Addressing

Instruction Operation Code Cycles T Bit

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm →
(R0 + GBR)

11001111iiiiiiii 3 —

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiii 3 —

A.1.10 PC Relative Addressing with Displacement

Table A-19 PC Relative Addressing with Displacement

Instruction Operation Code Cycles T Bit

MOV.W @(disp,PC),Rn (disp × 2 + PC) → sign
extension → Rn

1001nnnndddddddd 1 —

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 —

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 —

LDRS @(disp,pc)* disp × 2+PC→RS 10001100dddddddd 3 —

LDRE @(disp,pc)* disp × 2+PC→RE 10001110dddddddd 3 —

Note: * SH3-DSP instructions.

A.1.11 PC Relative Addressing

Table A-20 PC Relative Addressing with Rm

Instruction Operation Code Cycles T Bit

BRAF Rm Delayed branch, Rm + PC → PC 0000mmmm00100011 2 —

BSRF Rm Delayed branch, PC → PR, Rm + PC →
PC

0000mmmm00000011 2 —



516

Table A-21 PC Relative Addressing

Instruction Operation Code Cycles T Bit

BF label When T = 0, disp × 2 + PC → PC;
when T = 1, nop

10001011dddddddd 3/1 —

BF/S label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001111dddddddd 2/1* —

BT label When T = 1, disp × 2 + PC → PC;
when T = 1, nop

10001001dddddddd 3/1 —

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001101dddddddd 2/1* —

BRA label Delayed branching, disp × 2 + PC →
PC

1010dddddddddddd 2 —

BSR label Delayed branching, PC → PR,
disp × 2 + PC → PC

1011dddddddddddd 2 —

Note: * One state when it does not branch.

A.1.12 Immediate

Table A-22 Load to Register

Instruction Operation Code Cycles T Bit

FLDI0 FRn* 0.0 → FRn 1111nnnn10001101 1 —

FLDI1 FRn* 1.0 → FRn 1111nnnn10011101 1 —

Note: * Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instructions are available only on the SH-3E.



517

Table A-23 Arithmetic Logical Operations Direct with Register

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + #imm → Rn 0111nnnniiiiiiii 1 —

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

CMP/EQ #imm,R0 When R0 = imm, 1 →
T

10001000iiiiiiii 1 Comparison
result

MOV #imm,Rn #imm → sign extension
→ Rn

1110nnnniiiiiiii 1 —

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

TST #imm,R0 R0 & imm, when result
is 0, 1 → T

11001000iiiiiiii 1 Test results

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

Table A-24 Specify Exception Processing Vector

Instruction Operation Code Cycles T Bit

TRAPA #imm imm →  TRA, PC → SPC, SR → SSR,
1 → SR.MD/BL/RB, 0x160 →
EXPEVT VBR + H'00000100 → PC

11000011iiiiiiii 6/8* —

Note: * Eight cycles on the SH3-DSP.

Table A-25 Load to Control Register

Instruction Operation Code Cycles T Bit

SETRC #imm imm→RC(SR[23:16]),
zeros→SR[27:24]

10000010iiiiiiii 3 —

Note: * SH3-DSP instruction.



518

A.2 Instruction Sets by Instruction Format

Tables A-26 to A-57 list instruction codes and execution cycles by instruction formats.

Table A-26 Instruction Sets by Format

Types

Format Category Sample Instruction SH-3 SH-3E
SH3-
DSP

0 — NOP 11 11 11

n Direct register addressing MOVT Rn 18 18 18

Direct register addressing
(store with control or system registers)

STS MACH,Rn 18 18 25

Indirect register addressing TAS @Rn 1 1 1

Pre-decrement indirect register addressing STC.L SR,@–Rn 16 18 25

Floating point instruction FABS FRn — 7 —

m Direct register addressing
(load with control or system registers)

LDC Rm,SR 16 18 26

PC relative addressing with Rm BRAF Rm 2 2 2

Indirect register addressing JMP @Rm 2 2 2

Post-increment indirect register addressing LDC.L @Rm+,SR 16 18 25

Floating point instruction FLDS FRm,FPUL — 2 —

nm Direct register addressing ADD Rm,Rn 36 36 36

Indirect register addressing MOV.L Rm,@Rn 6 6 6

Post-increment indirect register addressing
(multiply/accumulate operation)

MAC.W @Rm+,@Rn+ 2 2 2

Post-increment indirect register addressing MOV.L @Rm+,Rn 3 3 3

Pre-decrement indirect register addressing MOV.L Rm,@–Rn 3 3 3

Indirect indexed register addressing MOV.L Rm,@(R0,Rn) 6 6 6

Floating point instruction FADD FRm,FRn — 14 —

md Indirect register addressing with displacement MOV.B @(disp,Rm),R0 2 2 2

nd4 Indirect register addressing with displacement MOV.B R0,@(disp,Rn) 2 2 2

nmd Indirect register addressing with displacement MOV.L Rm,@(disp,Rn) 2 2 2

d Indirect GBR addressing with displacement MOV.L R0,@(disp,GBR) 6 6 6

Indirect PC addressing with displacement MOVA @(disp,PC),R0 1 1 3

PC relative addressing BF label 4 4 4

d12 PC relative addressing BRA label 2 2 2

Note: * The figures in parentheses (  ) are the totals excluding the SH-3E instructions.



519

Table A-26 Instruction Sets by Format (cont)

Types

Format Category Sample Instruction SH-3 SH-3E
SH3-
DSP

nd8 PC relative addressing with displacement MOV.L @(disp,PC),Rn 2 2 2

i Indirect indexed GBR addressing AND.B #imm,@(R0,GBR) 4 4 4

Immediate addressing (arithmetic and logical
operations direct with register)

AND #imm,R0 5 5 5

Immediate addressing
(specify exception processing vector)

TRAPA #imm 1 1 1

Load to control register (SH3-DSP only) SETRC #imm — — 1

ni Immediate addressing (direct register
arithmetic operations and data transfers )

ADD #imm,Rn 2 2 2

Total: 189 220 227

A.2.1 0 Format

Table A-27 0 Format

Instruction Operation Code Cycles T Bit

CLRS 0 → S 0000000001001000 1 —

CLRT 0 → T 0000000000001000 1 0

CLRMAC 0 → MACH, MACL 0000000000101000 1 —

DIV0U 0 → M/Q/T 0000000000011001 1 0

LDTLB PTEH/PTEL → TLB 0000000000111000 1 —

NOP No operation 0000000000001001 1 —

RTE Delayed branch,
SSR/SPC → SR/PC

0000000000101011 4 —

RTS Delayed branching, PR → PC 0000000000001011 2 —

SETS 1 → S 0000000001011000 1 —

SETT 1 → T 0000000000011000 1 1

SLEEP Sleep 0000000000011011 4* —

Note: * This is number of states until a transition is made to the Sleep state.



520

A.2.2 n Format

Table A-28 Direct Register

Instruction Operation Code Cycles T Bit

CMP/PL Rn Rn > 0, 1 → T 0100nnnn00010101 1 Comparison
result

CMP/PZ Rn Rn ≥ 0, 1 → T 0100nnnn00010001 1 Comparison
result

DT Rn Rn – 1 → Rn, when Rn is 0, 1 →
T.  When Rn is nonzero, 0 → T

0100nnnn00010000 1 Comparison
result

MOVT Rn T → Rn 0000nnnn00101001 1 —

ROTL Rn T ← Rn ← MSB 0100nnnn00000100 1 MSB

ROTR Rn LSB → Rn → T 0100nnnn00000101 1 LSB

ROTCL Rn T ← Rn ← T 0100nnnn00100100 1 MSB

ROTCR Rn T → Rn → T 0100nnnn00100101 1 LSB

SHAL Rn T ← Rn ← 0 0100nnnn00100000 1 MSB

SHAR Rn MSB → Rn → T 0100nnnn00100001 1 LSB

SHLL Rn T ← Rn ← 0 0100nnnn00000000 1 MSB

SHLR Rn 0 → Rn → T 0100nnnn00000001 1 LSB

SHLL2 Rn Rn << 2 → Rn 0100nnnn00001000 1 —

SHLR2 Rn Rn >> 2 → Rn 0100nnnn00001001 1 —

SHLL8 Rn Rn << 8 → Rn 0100nnnn00011000 1 —

SHLR8 Rn Rn >> 8 → Rn 0100nnnn00011001 1 —

SHLL16 Rn Rn << 16 → Rn 0100nnnn00101000 1 —

SHLR16 Rn Rn >> 16 → Rn 0100nnnn00101001 1 —



521

Table A-29 Direct Register (Store with Control and System Registers)

Instruction Operation Code Cycles T Bit

STC SR,Rn SR → Rn 0000nnnn00000010 1 —

STC GBR,Rn GBR → Rn 0000nnnn00010010 1 —

STC VBR,Rn VBR → Rn 0000nnnn00100010 1 —

STC SSR,Rn SSR → Rn 0000nnnn00110010 1 —

STC SPC,Rn SPC → Rn 0000nnnn01000010 1 —

STC MOD,Rn*2 MOD → Rn 0000nnnn01010010 1 —

STC RE,Rn*2 RE → Rn 0000nnnn01110010 1 —

STC RS,Rn*2 RS → Rn 0000nnnn01100010 1 —

STC R0_BANK,Rn R0_BANK→ Rn 0000nnnn10000010 1 —

STC R1_BANK,Rn R1_BANK→ Rn 0000nnnn10010010 1 —

STC R2_BANK,Rn R2_BANK→ Rn 0000nnnn10100010 1 —

STC R3_BANK,Rn R3_BANK→ Rn 0000nnnn10110010 1 —

STC R4_BANK,Rn R4_BANK→ Rn 0000nnnn11000010 1 —

STC R5_BANK,Rn R5_BANK→ Rn 0000nnnn11010010 1 —

STC R6_BANK,Rn R6_BANK→ Rn 0000nnnn11100010 1 —

STC R7_BANK,Rn R7_BANK→ Rn 0000nnnn11110010 1 —

STS FPSCR,Rn*1 FPSCR→ Rn 0000nnnn01101010 1 —

STS FPUL,Rn*1 FPUL→ Rn 0000nnnn01011010 1 —

STS MACH,Rn MACH → Rn 0000nnnn00001010 1 —

STS MACL,Rn MACL → Rn 0000nnnn00011010 1 —

STS PR,Rn PR → Rn 0000nnnn00101010 1 —

STS DSR,Rn*2 DSR → Rn 0000nnnn01101010 1 —

STS A0,Rn*2 A0 → Rn 0000nnnn01111010 1 —

STS X0,Rn*2 X0→Rn 0000nnnn10001010 1 —

STS X1,Rn*2 X1→Rn 0000nnnn10011010 1 —

STS Y0,Rn*2 Y0→Rn 0000nnnn10101010 1 —

STS Y1,Rn*2 Y1→Rn 0000nnnn10111010 1 —

Notes: 1. SH-3E instructions.
2. SH3-DSP instructions.

Table A-30 Indirect Register

Instruction Operation Code Cycles T Bit

TAS.B @Rn When (Rn) is 0, 1 → T,
1 → MSB of (Rn)

0100nnnn00011011 3/4* Test results

Note: * Four cycles on the SH3-DSP.



522

Table A-31 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit

STC.L SR,@-Rn Rn – 4 → Rn, SR → (Rn) 0100nnnn00000011 1/2*2 —

STC.L GBR,@-Rn Rn – 4 → Rn, GBR → (Rn) 0100nnnn00010011 1/2*2 —

STC.L VBR,@-Rn Rn – 4 → Rn, VBR → (Rn) 0100nnnn00100011 1/2*2 —

STC.L SSR,@–Rn Rn–4 → Rn,  SSR → (Rn) 0100nnnn00110011 1/2*2 —

STC.L SPC,@–Rn Rn–4 → Rn,  SPC → (Rn) 0100nnnn01000011 1/2*2 —

STC.L MOD,@-Rn*3 Rn – 4 → Rn, MOD → (Rn) 0100nnnn01010011 2 —

STC.L RE,@-Rn*3 Rn – 4 → Rn, RE → (Rn) 0100nnnn01110011 2 —

STC.L RS,@-Rn*3 Rn – 4 → Rn, RS → (Rn) 0100nnnn01100011 2 —

STC.L R0_BANK,@–Rn Rn–4 → Rn, R0_BANK → (Rn) 0100nnnn10000011 2 —

STC.L R1_BANK,@–Rn Rn–4 → Rn, R1_BANK → (Rn) 0100nnnn10010011 2 —

STC.L R2_BANK,@–Rn Rn–4 → Rn, R2_BANK → (Rn) 0100nnnn10100011 2 —

STC.L R3_BANK,@–Rn Rn–4 → Rn, R3_BANK → (Rn) 0100nnnn10110011 2 —

STC.L R4_BANK,@–Rn Rn–4 → Rn, R4_BANK → (Rn) 0100nnnn11000011 2 —

STC.L R5_BANK,@–Rn Rn–4 → Rn, R5_BANK → (Rn) 0100nnnn11010011 2 —

STC.L R6_BANK,@–Rn Rn–4 → Rn, R6_BANK → (Rn) 0100nnnn11100011 2 —

STC.L R7_BANK,@–Rn Rn–4 → Rn, R7_BANK → (Rn) 0100nnnn11110011 2 —

STS.L FPSCR,@-Rn*1 Rn–4 → Rn, FPSCR → @Rn 0100nnnn01100010 1 —

STS.L FPUL,@-Rn*1 Rn–4 → Rn, FPUL → @Rn 0100nnnn01010010 1 —

STS.L MACH,@–Rn Rn – 4 → Rn, MACH → (Rn) 0100nnnn00000010 1 —

STS.L MACL,@–Rn Rn – 4 → Rn, MACL → (Rn) 0100nnnn00010010 1 —

STS.L PR,@–Rn Rn – 4 → Rn, PR → (Rn) 0100nnnn00100010 1 —

STS.L DSR,@–Rn*3 Rn – 4 → Rn, DSR → (Rn) 0100nnnn01100010 1 —

STS.L A0,@–Rn*3 Rn – 4 → Rn, A0 → (Rn) 0100nnnn01100010 1 —

STS.L X0,@-Rn*3 Rn–4→Rn,X0→(Rn) 0100nnnn10000010 1 —

STS.L X1,@-Rn*3 Rn–4→Rn,X1→(Rn) 0100nnnn10010010 1 —

STS.L Y0,@-Rn*3 Rn–4→Rn,Y0→(Rn) 0100nnnn10100010 1 —

STS.L Y1,@-Rn*3 Rn–4→Rn,Y1→(Rn) 0100nnnn10110010 1 —

Notes: 1. SH-3E instructions.
2. Two cycles on the SH3-DSP.
3. SH3-DSP instructions.



523

Table A-32 Floating Point Instructions (SH-3E Only)

Instruction Operation Code Cycles T Bit

FABS FRn  FRn →  FRn 1111nnnn01011101 1 —

FLDI0 FRn H'00000000 → FRn 1111nnnn10001101 1 —

FLDI1 FRn H'3F800000 → FRn 1111nnnn10011101 1 —

FLOAT FPUL,FRn (float)FPUL → FRn 1111nnnn00101101 1 —

FNEG FRn —FRn → FRn 1111nnnn01001101 1 —

FSQRT FRn √ FRn → FRn 1111nnnn01101101 13 —

FSTS FPUL,FRn FPUL → FRn 1111nnnn00001101 1 —

A.2.3 m Format

Table A-33 Direct Register (Load from Control and System Registers)

Instruction Operation Code Cycles T Bit

LDC Rm,SR Rm → SR 0100mmmm00001110 5 LSB

LDC Rm,GBR Rm → GBR 0100mmmm00011110 1/3*2 —

LDC Rm,VBR Rm → VBR 0100mmmm00101110 1/3*2 —

LDC Rm,SSR Rm → SSR 0100mmmm00111110 1/3*2 —

LDC Rm,SPC Rm → SPC 0100mmmm01001110 1/3*2 —

LDC Rm,MOD*3 Rm → MOD 0100mmmm01011110 3 —

LDC Rm,RE*3 Rm → RE 0100mmmm01111110 3 —

LDC Rm,RS*3 Rm → RS 0100mmmm01101110 3 —

LDC Rm,R0_BANK Rm → R0_BANK 0100mmmm10001110 1/3*2 —

LDC Rm,R1_BANK Rm → R1_BANK 0100mmmm10011110 1/3*2 —

LDC Rm,R2_BANK Rm → R2_BANK 0100mmmm10101110 1/3*2 —

LDC Rm,R3_BANK Rm → R3_BANK 0100mmmm10111110 1/3*2 —

LDC Rm,R4_BANK Rm → R4_BANK 0100mmmm11001110 1/3*2 —

LDC Rm,R5_BANK Rm → R5_BANK 0100mmmm11011110 1/3*2 —

LDC Rm,R6_BANK Rm → R6_BANK 0100mmmm11101110 1/3*2 —

LDC Rm,R7_BANK Rm → R7_BANK 0100mmmm11111110 1/3*2 —

LDS Rm,FPSCR*1 Rm → FPSCR 0100nnnn01101010 1 —

LDS Rm,FPUL*1 Rm → FPUL 0100nnnn01011010 1 —

LDS Rm,MACH Rm → MACH 0100mmmm00001010 1 —

LDS Rm,MACL Rm → MACL 0100mmmm00011010 1 —



524

Table A-33 Direct Register (Load from Control and System Registers) (cont)

Instruction Operation Code Cycles T Bit

LDS Rm,PR Rm → PR 0100mmmm00101010 1 —

LDS Rm,DSR*3 Rm → DSR 0100mmmm01101010 1 —

LDS Rm,A0*3 Rm → A0 0100mmmm01111010 1 —

LDS Rm,X0*3 Rm → X0 0100mmmm10001010 1 —

LDS Rm,X1*3 Rm → X1 0100mmmm10011010 1 —

LDS Rm,Y0*3 Rm → Y0 0100mmmm10101010 1 —

LDS Rm,Y1*3 Rm → Y1 0100mmmm10111010 1 —

SETRC #imm*3 imm→RC(SR[23:16]),
zeros→SR[27:24]

10000010iiiiiiii 3 —

Notes: 1. SH-3E instructions.
2. Three cycles on the SH3-DSP.
3. SH3-DSP instructions.

Table A-34 PC Relative Addressing with Rm

Instruction Operation Code Cycles T Bit

BRAF Rm Delayed branch, Rm + PC → PC 0000mmmm00100011 2 —

BSRF Rm Delayed branch, PC → PR,
Rm + PC → PC

0000mmmm00000011 2 —

Table A-35 Indirect Register

Instruction Operation Code Cycles T Bit

JMP @Rm Delayed branch, Rm → PC 0100mmmm00101011 2 —

JSR @Rm Delayed branch, PC → PR, Rm → PC 0100mmmm00001011 2 —

Table A-36 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,SR (Rm) → SR, Rm + 4 → Rm 0100mmmm00000111 7 LSB

LDC.L @Rm+,GBR (Rm) → GBR, Rm + 4 → Rm 0100mmmm00010111 1/5*2 —

LDC.L @Rm+,VBR (Rm) → VBR, Rm + 4 → Rm 0100mmmm00100111 1/5*2 —

LDC.L @Rm+,SSR (Rm) → SSR, Rm + 4 → Rm 0100mmmm00110111 1/5*2 —

LDC.L @Rm+,SPC (Rm) → SPC, Rm + 4 → Rm 0100mmmm01000111 1/5*2 —



525

Table A-36 Indirect Post-Increment Register (cont)

Instruction Operation Code Cycles T Bit

LDC.L @Rm+,MOD*3 (Rm) → MOD, Rm + 4 → Rm 0100mmmm01010111 5 —

LDC.L @Rm+,RE*3 (Rm) → RE, Rm + 4 → Rm 0100mmmm01110111 5 —

LDC.L @Rm+,RS*3 (Rm) → RS, Rm + 4 → Rm 0100mmmm01100111 5 —

LDC.L @Rm+,R0_
BANK

(Rm) → R0_BANK,
Rm + 4 → Rm

0100mmmm10000111 1/5*2 —

LDC.L @Rm+,R1_
BANK

(Rm) → R1_BANK,
Rm + 4 → Rm

0100mmmm10010111 1/5*2 —

LDC.L @Rm+,R2_
BANK

(Rm) → R2_BANK,
Rm + 4 → Rm

0100mmmm10100111 1/5*2 —

LDC.L @Rm+,R3_
BANK

(Rm) → R3_BANK,
Rm + 4 → Rm

0100mmmm10110111 1/5*2 —

LDC.L @Rm+,R4_
BANK

(Rm) → R4_BANK,
Rm + 4 → Rm

0100mmmm11000111 1/5*2 —

LDC.L @Rm+,R5_
BANK

(Rm) → R5_BANK,
Rm + 4 → Rm

0100mmmm11010111 1/5*2 —

LDC.L @Rm+,R6_
BANK

(Rm) → R6_BANK,
Rm + 4 → Rm

0100mmmm11100111 1/5*2 —

LDC.L @Rm+,R7_
BANK

(Rm) → R7_BANK,
Rm + 4 → Rm

0100mmmm11110111 1/5*2 —

LDS.L @Rm+,FPSCR*1 @Rm → FPSCR,
Rm + 4 → Rm

0100nnnn01100110 1 —

LDS.L @Rm+,FPUL*1 @Rm → FPUL, Rm + 4 → Rm 0100nnnn01010110 1 —

LDS.L @Rm+,MACH (Rm) → MACH, Rm + 4 → Rm 0100mmmm00000110 1 —

LDS.L @Rm+,MACL (Rm) → MACL, Rm + 4 → Rm 0100mmmm00010110 1 —

LDS.L @Rm+,PR (Rm) → PR, Rm + 4 → Rm 0100mmmm00100110 1 —

LDS.L @Rm+,DSR*3 (Rm) → DSR, Rm + 4 → Rm 0100mmmm01100110 1 —

LDS.L @Rm+,A0*3 (Rm) → A0, Rm + 4 → Rm 0100mmmm01110110 1 —

LDS.L@Rm+,X0*3 (Rm) → X0,Rm+4 → Rm 0100nnnn10000110 1 —

LDS.L@Rm+,X1*3 (Rm) → X1,Rm+4 → Rm 0100nnnn10010110 1 —

LDS.L@Rm+,Y0*3 (Rm) → Y0,Rm+4 → Rm 0100nnnn10100110 1 —

LDS.L@Rm+,Y1*3 (Rm) → Y1,Rm+4 → Rm 0100nnnn10110110 1 —

Notes: 1. SH-3E instructions.
2. Five cycles on the SH3-DSP.
3. The instruction of SH3-DSP.



526

Table A-37 Floating Point Instructions (SH-3E Only)

Instruction Operation Code Cycles T Bit

FLDS FRm,FPUL FRm → FPUL 1111nnnn00011101 1 —

FTRC FRm,FPUL (long)FRm → FPUL 1111nnnn00111101 1 —

A.2.4 nm Format

Table A-38 Direct Register

Instruction Operation Code Cycles T Bit

ADD Rm,Rn Rm + Rn → Rn 0011nnnnmmmm1100 1 —

ADDC Rm,Rn Rn + Rm + T → Rn,
carry → T

0011nnnnmmmm1110 1 Carry

ADDV Rm,Rn Rn + Rm → Rn,
overflow → T

0011nnnnmmmm1111 1 Overflow

AND Rm,Rn Rn & Rm → Rn 0010nnnnmmmm1001 1 —

CMP/EQ Rm,Rn When Rn = Rm, 1 → T 0011nnnnmmmm0000 1 Comparison
result

CMP/HS Rm,Rn When unsigned and Rn ≥
Rm, 1 → T

0011nnnnmmmm0010 1 Comparison
result

CMP/GE Rm,Rn When signed and Rn ≥
Rm, 1 → T

0011nnnnmmmm0011 1 Comparison
result

CMP/HI Rm,Rn When unsigned and Rn >
Rm, 1 → T

0011nnnnmmmm0110 1 Comparison
result

CMP/GT Rm,Rn When signed and Rn >
Rm, 1 → T

0011nnnnmmmm0111 1 Comparison
result

CMP/STR Rm,Rn When a byte in Rn equals
a byte in Rm, 1 → T

0010nnnnmmmm1100 1 Comparison
result

DIV1 Rm,Rn 1 step division (Rn ÷ Rm) 0011nnnnmmmm0100 1 Calculation
result

DIV0S Rm,Rn MSB of Rn → Q, MSB of
Rm → M, M ^ Q → T

0010nnnnmmmm0111 1 Calculation
result

DMULS.L Rm,Rn Signed operation of Rn ×
Rm → MACH, MACL

0011nnnnmmmm1101 2
(to 5)*

—

DMULU.L Rm,Rn Unsigned operation of Rn
× Rm → MACH, MACL

0011nnnnmmmm0101 2
(to 5)*

—

EXTS.B Rm,Rn Sign-extend Rm from byte
→ Rn

0110nnnnmmmm1110 1 —



527

Table A-38 Direct Register (cont)

Instruction Operation Code Cycles T Bit

EXTS.W Rm,Rn Sign-extend Rm from word → Rn 0110nnnnmmmm1111 1 —

EXTU.B Rm,Rn Zero-extend Rm from byte → Rn 0110nnnnmmmm1100 1 —

EXTU.W Rm,Rn Zero-extend Rm from word → Rn 0110nnnnmmmm1101 1 —

MOV Rm,Rn Rm → Rn 0110nnnnmmmm0011 1 —

MUL.L Rm,Rn Rn × Rm → MAC 0000nnnnmmmm0111 2
(to 5)*

—

MULS Rm,Rn With sign, Rn × Rm → MAC 0010nnnnmmmm1111 1
(to 3)*

—

MULU Rm,Rn Unsigned, Rn × Rm → MAC 0010nnnnmmmm1110 1
(to 3)*

—

NEG Rm,Rn 0 – Rm → Rn 0110nnnnmmmm1011 1 —

NEGC Rm,Rn 0 – Rm – T → Rn, Borrow → T 0110nnnnmmmm1010 1 Borrow

NOT Rm,Rn ~Rm → Rn 0110nnnnmmmm0111 1 —

OR Rm,Rn Rn | Rm → Rn 0010nnnnmmmm1011 1 —

SHAD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm → [MSB→Rn]

0100nnnnmmmm1100 1 —

SHLD Rm,Rn Rn ≥ 0; Rn << Rm → Rn
Rn < 0; Rn >> Rm → [0→Rn]

0100nnnnmmmm1101 1 —

SUB Rm,Rn Rn – Rm → Rn 0011nnnnmmmm1000 1 —

SUBC Rm,Rn Rn – Rm – T → Rn, Borrow → T 0011nnnnmmmm1010 1 Borrow

SUBV Rm,Rn Rn – Rm → Rn, Underflow → T 0011nnnnmmmm1011 1 Under-
flow

SWAP.B Rm,Rn Rm → Swap upper and lower
halves of lower 2 bytes → Rn

0110nnnnmmmm1000 1 —

SWAP.W Rm,Rn Rm → Swap upper and lower
word → Rn

0110nnnnmmmm1001 1 —

TST Rm,Rn Rn & Rm, when result is 0, 1 → T 0010nnnnmmmm1000 1 Test
results

XOR Rm,Rn Rn ^ Rm → Rn 0010nnnnmmmm1010 1 —

XTRCT Rm,Rn Rm: Center 32 bits of Rn → Rn 0010nnnnmmmm1101 1 —

Note: * Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).



528

Table A-39 Indirect Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@Rn Rm → (Rn) 0010nnnnmmmm0000 1 —

MOV.W Rm,@Rn Rm → (Rn) 0010nnnnmmmm0001 1 —

MOV.L Rm,@Rn Rm → (Rn) 0010nnnnmmmm0010 1 —

MOV.B @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0000 1 —

MOV.W @Rm,Rn (Rm) → sign extension → Rn 0110nnnnmmmm0001 1 —

MOV.L @Rm,Rn (Rm) → Rn 0110nnnnmmmm0010 1 —

Table A-40 Indirect Post-Increment Register (Multiply/Accumulate Operation)

Instruction Operation Code Cycles T Bit

MAC.L @Rm+,@Rn+ Signed operation of (Rn) ×
(Rm) + MAC → MAC,
Rn + 4 → Rn, Rm + 4 → Rm

0000nnnnmmmm1111 2 (to 5)* —

MAC.W @Rm+,@Rn+ Signed operation of (Rn) ×
(Rm) + MAC → MAC,
Rn + 2 → Rn, Rm + 2 → Rm

0100nnnnmmmm1111 2 (to 5)* —

Note: * Normal minimum number of execution states (the number in parentheses is the number
of states when there is contention with preceding/following instructions).

Table A-41 Indirect Post-Increment Register

Instruction Operation Code Cycles T Bit

MOV.B @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 1 → Rm

0110nnnnmmmm0100 1 —

MOV.W @Rm+,Rn (Rm) → sign extension → Rn,
Rm + 2 → Rm

0110nnnnmmmm0101 1 —

MOV.L @Rm+,Rn (Rm) → Rn, Rm + 4 → Rm 0110nnnnmmmm0110 1 —

Table A-42 Indirect Pre-Decrement Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@–Rn Rn – 1 → Rn, Rm → (Rn) 0010nnnnmmmm0100 1 —

MOV.W Rm,@–Rn Rn – 2 → Rn, Rm → (Rn) 0010nnnnmmmm0101 1 —

MOV.L Rm,@–Rn Rn – 4 → Rn, Rm → (Rn) 0010nnnnmmmm0110 1 —



529

Table A-43 Indirect Indexed Register

Instruction Operation Code Cycles T Bit

MOV.B Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0100 1 —

MOV.W Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0101 1 —

MOV.L Rm,@(R0,Rn) Rm → (R0 + Rn) 0000nnnnmmmm0110 1 —

MOV.B @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1100 1 —

MOV.W @(R0,Rm),Rn (R0 + Rm) → sign extension → Rn 0000nnnnmmmm1101 1 —

MOV.L @(R0,Rm),Rn (R0 + Rm) → Rn 0000nnnnmmmm1110 1 —

Table A-44 Floating Point Instructions (SH-3E Only)

Instruction Operation Code Cycles T Bit

FADD FRm,FRn FRn+FRm → FRn 1111nnnnmmmm0000 1 —

FCMP/EQ FRm,FRn (FRn=FRm)? 1:0 → T 1111nnnnmmmm0100 1 Comparison
result

FCMP/GT FRm,FRn (FRn>FRm)? 1:0 → T 1111nnnnmmmm0101 1 Comparison
result

FDIV FRm,FRn FRn/FRm → FRn 1111nnnnmmmm0011 13 —

FMAC FR0,FRm,FRn FR0×FRm+FRn → FRn 1111nnnnmmmm1110 1 —

FMOV FRm,FRn FRm → FRn 1111nnnnmmmm1100 1 —

FMOV.S @(R0,Rm),FRn (R0+Rm) → FRn 1111nnnnmmmm0110 1 —

FMOV.S @Rm+,FRn (Rm) → FRn,Rm+4 →
Rm

1111nnnnmmmm1001 1 —

FMOV.S @Rm,FRn (Rm) → FRn 1111nnnnmmmm1000 1 —

FMOV.S Frm,@(R0,Rn) (FRm) → (R0+Rn) 1111nnnnmmmm0111 1 —

FMOV.S FRm,@-Rn Rn-4 → Rn, FRm → (Rn) 1111nnnnmmmm1011 1 —

FMOV.S FRm,@Rn FRm → (Rn) 1111nnnnmmmm1010 1 —

FMUL FRm,FRn FRn × FRm → FRn 1111nnnnmmmm0010 1 —

FSUB FRm,FRn FRn-FRm → FRn 1111nnnnmmmm0001 1 —

A.2.5 md Format

Table A-45 md Format

Instruction Operation Code Cycles T Bit

MOV.B @(disp,Rm),R0 (disp + Rm) → sign
extension → R0

10000100mmmmdddd 1 —

MOV.W @(disp,Rm),R0 (disp × 2+ Rm) → sign
extension → R0

10000101mmmmdddd 1 —



530

A.2.6 nd4 Format

Table A-46 nd4 Format

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,Rn) R0 → (disp + Rn) 10000000nnnndddd 1 —

MOV.W R0,@(disp,Rn) R0 → (disp × 2 + Rn) 10000001nnnndddd 1 —

A.2.7 nmd Format

Table A-47 nmd Format

Instruction Operation Code Cycles T Bit

MOV.L Rm,@(disp,Rn) Rm → (disp × 4 + Rn) 0001nnnnmmmmdddd 1 —

MOV.L @(disp,Rm),Rn (disp × 4 + Rm) → Rn 0101nnnnmmmmdddd 1 —

A.2.8 d Format

Table A-48 Indirect GBR with Displacement

Instruction Operation Code Cycles T Bit

MOV.B R0,@(disp,GBR) R0 → (disp + GBR) 11000000dddddddd 1 —

MOV.W R0,@(disp,GBR) R0 → (disp × 2 + GBR) 11000001dddddddd 1 —

MOV.L R0,@(disp,GBR) R0 → (disp × 4 + GBR) 11000010dddddddd 1 —

MOV.B @(disp,GBR),R0 (disp + GBR) → sign
extension → R0

11000100dddddddd 1 —

MOV.W @(disp,GBR),R0 (disp × 2 + GBR) →
sign extension → R0

11000101dddddddd 1 —

MOV.L @(disp,GBR),R0 (disp × 4 + GBR) → R0 11000110dddddddd 1 —

Table A-49 PC Relative with Displacement

Instruction Operation Code Cycles T Bit

MOVA @(disp,PC),R0 disp × 4 + PC → R0 11000111dddddddd 1 —

LDRS @(disp,pc)* disp × 2+PC→RS 10001100dddddddd 3 —

LDRE @(disp,pc)* disp × 2+PC→RE 10001110dddddddd 3 —

Note: * SH3-DSP instructions.



531

Table A-50 PC Relative

Instruction Operation Code Cycles T Bit

BF label When T = 0, disp × 2 + PC →
PC; when T = 1, nop

10001011dddddddd 3/1 —

BF/S label If T = 0, disp × 2 + PC → PC;
if T = 1, nop

10001111dddddddd 2/1* —

BT label When T = 1, disp × 2 + PC →
PC; when T = 0, nop

10001001dddddddd 3/1 —

BT/S label If T = 1, disp × 2 + PC → PC;
if T = 0, nop

10001101dddddddd 2/1*

Note: * One state when it does not branch.

A.2.9 d12 Format

Table A-51 d12 Format

Instruction Operation Code Cycles T Bit

BRA label Delayed branching, disp × 2 + PC → PC 1010dddddddddddd 2 —

BSR label Delayed branching, PC → PR,
disp × 2 + PC → PC

1011dddddddddddd 2 —

A.2.10 nd8 Format

Table A-52 nd8 Format

Instruction Operation Code Cycles T Bit

MOV.W @(disp,PC),Rn (disp × 2 + PC) → sign
extension → Rn

1001nnnndddddddd 1 —

MOV.L @(disp,PC),Rn (disp × 4 + PC) → Rn 1101nnnndddddddd 1 —

A.2.11 i Format

Table A-53 Indirect Indexed GBR

Instruction Operation Code Cycles T Bit

AND.B #imm,@(R0,GBR) (R0 + GBR) & imm →
(R0 + GBR)

11001101iiiiiiii 3 —

OR.B #imm,@(R0,GBR) (R0 + GBR) | imm →
(R0 + GBR)

11001111iiiiiiii 3 —

TST.B #imm,@(R0,GBR) (R0 + GBR) & imm,
when result is 0, 1 → T

11001100iiiiiiii 3 Test
results

XOR.B #imm,@(R0,GBR) (R0 + GBR) ^ imm →
(R0 + GBR)

11001110iiiiiiii 3 —



532

Table A-54 Immediate (Arithmetic Logical Operation with Direct Register)

Instruction Operation Code Cycles T Bit

AND #imm,R0 R0 & imm → R0 11001001iiiiiiii 1 —

CMP/EQ #imm,R0 When R0 = imm, 1 →
T

10001000iiiiiiii 1 Comparison
results

OR #imm,R0 R0 | imm → R0 11001011iiiiiiii 1 —

TST #imm,R0 R0 & imm, when result
is 0, 1 → T

11001000iiiiiiii 1 Test results

XOR #imm,R0 R0 ^ imm → R0 11001010iiiiiiii 1 —

Table A-55 Immediate (Specify Exception Processing Vector)

Instruction Operation Code Cycles T Bit

TRAPA #imm imm →  TRA, PC → SPC, SR →
SSR, 1 → SR.MD/BL/RB, 0x160 →
EXPEVT, VBR + H'00000100 → PC

11000011iiiiiiii 6/8* —

Note: * Eight cycles on the SH3-DSP.

Table A-56 Load to Control Register (SH3-DSP Only)

Instruction Operation Code Cycles T Bit

SETRC #imm imm→RC(SR[23:16]),
zeros→SR[27:24]

10000010iiiiiiii 3 —

A.2.12 ni Format

Table A-57 ni Format

Instruction Operation Code Cycles T Bit

ADD #imm,Rn Rn + #imm → Rn 0111nnnniiiiiiii 1 —

MOV #imm,Rn #imm → sign extension → Rn 1110nnnniiiiiiii 1 —



533

A.3 Operation Code Map

Table A-58 Operation Code Map

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB MD: 00 MD: 01 MD: 10 MD: 11

0000 Rn Fx 0000

0000 Rn Fx 0001

0000 Rn 00MD 0010 STC SR,Rn STC GBR,Rn STC VBR,Rn STC SSR,Rn

0000 Rn 01MD 0010 STC SPC,Rn STC MOD,Rn*2 STC RS,Rn*2 STC RE,Rn*2

0000 Rn 10MD 0010 STC R0_BANK,Rn STC R1_BANK,Rn STC R2_BANK,Rn STC R3_BANK,Rn

0000 Rn 11MD 0010 STC R4_BANK,Rn STC R5_BANK,Rn STC R6_BANK,Rn STC R7_BANK,Rn

0000 Rn 00MD 0011 BSRF Rm BRAF Rm

0000 Rm 10MD 0011 PREF @Rm

0000 Rn Rm 01MD MOV.B Rm,

@(R0,Rn)

MOV.W Rm,

@(R0,Rn)

MOV.L Rm,

@(R0,Rn)

MUL.L Rm,Rn

0000 0000 00MD 1000 CLRT SETT CLRMAC LDTLB

0000 0000 01MD 1000 CLRS SETS

0000 0000 Fx 1001 NOP DIVOU

0000 0000 Fx 1010

0000 0000 Fx 1011 RTS SLEEP RTE

0000 Rn Fx 1000

0000 Rn Fx 1001 MOVT Rn

0000 Rn 00MD 1010 STS MACH,Rn STS MACL,Rn STS PR,Rn

0000 Rn 01MD 1010 STS FPUL,Rn*1 STS FPSCR,Rn*1

STS DSR,Rn*2

STS A0,Rn*2

0000 Rn 10MD 1010 STS X0,Rn*2 STS X1,Rn*2 STS Y0,Rn*2 STS Y1,Rn*2

0000 Rn Fx 1011

0000 Rn Rm 11MD MOV.B

@(R0,Rm),Rn

MOV.W

@(R0,Rm),Rn

MOV.L

@(R0,Rm),Rn

MAC.L

@Rm+,@Rn+

0001 Rn Rm disp MOV.L Rm,@(disp:4,Rn)

0010 Rn Rm 00MD MOV.B Rm,@Rn MOV.W Rm,@Rn MOV.L Rm,@Rn

0010 Rn Rm 01MD MOV.B Rm,@-Rn MOV.W Rm,@–Rn MOV.L Rm,@–Rn DIV0S Rm,Rn

0010 Rn Rm 10MD TST Rm,Rn AND Rm,Rn XOR Rm,Rn OR Rm,Rn

0010 Rn Rm 11MD CMP/STR Rm,Rn XTRCT Rm,Rn MULU.W Rm,Rn MULS.W Rm,Rn

0011 Rn Rm 00MD CMP/EQ Rm,Rn CMP/HS Rm,Rn CMP/GE Rm,Rn



534

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB       LSB MD: 00 MD: 01 MD: 10 MD: 11

0011 Rn Rm 01MD DIV1 Rm,Rn DMULU.L Rm,Rn CMP/HI Rm,Rn CMP/GT Rm,Rn

0011 Rn Rm 10MD SUB Rm,Rn SUBC Rm,Rn SUBV Rm,Rn

0011 Rn Rm 11MD ADD Rm,Rn DMULU.L Rm,Rn ADDC Rm,Rn ADDV Rm,Rn

0100 Rn Fx 0000 SHLL Rn DT Rn SHAL Rn

0100 Rn Fx 0001 SHLR Rn CMP/PZ Rn SHAR Rn

0100 Rn 00MD 0010 STS.L MACH,

@–Rn

STS.L MACL,

@–Rn

STS.L PR,

@–Rn

0100 Rn 01MD 0010 STS.L FPUL,

@–Rn*1

STS.L DSR,

@–Rn*2

STS.L FPSCR,

@–Rn*1

STS.L A0,

@–Rn*2

0100 Rn 10MD 0010 STS.L X0,

@–Rn*2

STS.L X1,

@–Rn*2

STS.L Y0,

@–Rn*2

STS.L Y1,

@–Rn*2

0100 Rn 00MD 0011 STC.L

SR,@–Rn

STC.L

GBR,@–Rn

STC.L

VBR,@–Rn

STC.L SSR,A-Rn

0100 Rn 01MD 0011 STC.L SPC,@-Rn STS.L MOD,

@–Rn*2

STS.L RS,

@–Rn*2

STS.L RE,

@–Rn*2

0100 Rn 10MD 0011 STC.L

R0_BANK,@-Rn

STC.L

R1_BANK,@-Rn

STC.L

R2_BANK,@-Rn

STC.L

R3_BANK,@-Rn

0100 Rn 11MD 0011 STC.L

R4_BANK,@-Rn

STC.L

R5_BANK,@-Rn

STC.L

R6_BANK,@-Rn

STC.L

R7_BANK,@-Rn

0100 Rm/
Rn

Fx 0100 ROTL Rn SETRC Rm ROTCL Rn

0100 Rn Fx 0101 ROTR Rn CMP/PL Rn ROTCR Rn

0100 Rm 00MD 0110 LDS.L

@Rm+,MACH

LDS.L

@Rm+,MACL

LDS.L

@Rm+,PR

0100 Rm 01MD 0110 LDS.L

@Rm+,FPUL*1

LDS.L

@Rm+,DSR*2

LDS.L

@Rm+,FPSCR*1

LDS.L

@Rm+,A0*2

0100 Rm 10MD 0110 LDS.L

@Rm+,X0*2

LDS.L

@Rm+,X1*2

LDS.L

@Rm+,Y0*2

LDS.L

@Rm+,Y1*2

0100 Rm 00MD 0111 LDC.L

@Rm+,SR

LDC.L

@Rm+,GBR

LDC.L

@Rm+,VBR

LDC.L

@Rm+,SSR



535

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB       LSB MD: 00 MD: 01 MD: 10 MD: 11

0100 Rm 01MD 0111 LDC.L @Rm+,SPC LDC.L

@Rm+,MOD*2

LDC.L

@Rm+,RS*2

LDC.L

@Rm+,RE*2

0100 Rm 10MD 0111 LDC.L

@Rm+,R0_BANK

LDC.L

@Rm+,R1_BANK

LDC.L

@Rm+,R2_BANK

LDC.L

@Rm+,R3_BANK

0100 Rm 11MD 0111 LDC.L

@Rm+,R4_BANK

LDC.L

@Rm+,R5_BANK

LDC.L

@Rm+,R6_BANK

LDC.L

@Rm+,R7_BANK

0100 Rn Fx 1000 SHLL2 Rn SHLL8 Rn SHLL16 Rn

0100 Rn Fx 1001 SHLR2 Rn SHLR8 Rn SHLR16 Rn

0100 Rm 00MD 1010 LDS Rm,MACH LDS Rm,MACL LDS Rm,PR

0100 Rm 01MD 1010 LDS Rm,FPUL*1 LDS Rm,DSR*2

LDS Rm,FPSCR*1

LDS Rm,A0*2

0100 Rm 10MD 1010 LDS Rm,X0*2 LDS Rm,X1*2 LDS Rm,Y0*2 LDS Rm,Y1*2

0100 Rn Fx 1011 JSR @Rm TAS.B @Rn JMP @Rm

0100 Rm Rm 1100 SHAD Rm,Rn

0100 Rm Rm 1101 SHLD Rm,Rn

0100 Rm 00MD 1110 LDC Rm,Sr LDC Rm,GBR LDC Rm,VBR LDC Rm,SSR

0100 Rm 01MD 1110 LDC Rm,SPC LDC Rm,MOD*2 LDC Rm,RS*2 LDC Rm,RE*2

0100 Rm 10MD 1110 LDC Rm,R0_BANK LDC Rm,R1_BANK LDC Rm,R2_BANK LDC Rm,R3_BANK

0100 Rm 11MD 1110 LDC Rm,R4_BANK LDC Rm,R5_BANK LDC Rm,R6_BANK LDC Rm,R7_BANK

0100 Rn Rm 1111 MAC.W @Rm+,@Rn+

0101 Rn Rm disp MOV.L @(disp:4,Rm),Rn

0110 Rn Rm 00MD MOV.B @Rm,Rn MOV.W @Rm,Rn MOV.L @Rm,Rn MOV Rm,Rn

0110 Rn Rm 01MD MOV.B @Rm+,Rn MOV.W @Rm+,Rn MOV.L @Rm+,Rn NOT Rm,Rn

0110 Rn Rm 10MD SWAP.B Rm,Rn SWAP.W Rm,Rn NEGC Rm,Rn NEG Rm,Rn

0110 Rn Rm 11MD EXTU.B Rm,Rn EXTU.W Rm,Rn EXTS.B Rm,Rn EXTS.W Rm,Rn

0111 Rn imm ADD #imm:8,Rn

1000 00MD Rn disp MOV.B R0, MOV.W R0, SETRC #imm*2

imm @(disp:4,Rn) @(disp:4,Rn)

1000 01MD Rm disp MOV.B

@(disp:4,

Rm),R0

MOV.W

@(disp:4,

Rm),R0



536

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB       LSB MD: 00 MD: 01 MD: 10 MD: 11

1000 10MD imm/disp CMP/EQ

#imm:8,R0

BT disp:8 BF label:8

1000 10MD imm/disp LDRS

@(disp,PC)*2

BT/S disp:8 LDRE

@(disp,PC)*2

BF/S label:8

1001 Rn disp MOV.W @(disp:8,PC),Rn

1010 disp BRA label:12

1011 disp BSR label:12

1100 00MD imm/disp MOV.B R0,

@(disp:8,

GBR)

MOV.W R0,

@(disp:8,

GBR)

MOV.L R0,

@(disp:8,

GBR)

TRAPA #imm:8

1100 01MD disp MOV.B

@(disp:8,

GBR),R0

MOV.W

@(disp:8,

GBR),R0

MOV.L

@(disp:8,

GBR),R0

MOVA

@(disp:8,

PC),R0

1100 10MD imm TST

#imm:8,R0

AND

#imm:8,R0

XOR

#imm:8,R0

OR

#imm:8,R0

1100 11MD imm TST.B

#imm:8,

@(R0,GBR)

AND.B

#imm:8,

@(R0,GBR)

XOR.B

#imm:8,

@(R0,GBR)

OR.B

#imm:8,

@(R0,GBR)

1101 Rn disp MOV.L @(disp:8,PC),Rn

1110 Rn imm MOV #imm:8,Rn

1111 Rn Rm 00MD FADD FRm,FRn*1 FSUB FRm,FRn*1 FMUL FRm,FRn*1 FDIV FRm,FRn*1

1111 Rn Rm 01MD FCMP/EQ

FRm,FRn*1

FCMP/GT

FRm,FRn*1

FMOV.S

@(R0,Rm),FRm*1

FMOV.S

FRm,@(R0,Rn) *1

1111 Rn Rm 10MD FMOV.S

@Rm,FRn*1

FMOV.S

@Rm+,FRm*1

FMOV.S

FRm,@Rn*1

FMOV.S

FRm,@-Rn*1

1111 Rn Rm 1100 FMOV FRm,FRn*1

1111 Rn 00MD 1101 FSTS

FPUL,FRn*1

FLDS

FRn,FPUL*1

FLOAT

FPUL,FRn*1

FTRC

FRn, FPUL*1

1111 Rn 01MD 1101 FNEG FRn*1 FABS FRn*1 FSQRT FRn*1

1111 Rn 10MD 1101 FLDI0 FRn*1 FLDI1 FRn*1

1111 Rn Rm 1110 FMAC

FR0,FRm,FRn*1

1111 00** **** (MOVX.W, MOVY.W, DPS double data transfer instructions)
(SH3-DSP)



537

Table A-58 Operation Code Map (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB       LSB MD: 00 MD: 01 MD: 10 MD: 11

1111 01** **** (MOVS.W, MOVS.L, DPS single data transfer instructions)
(SH3-DSP)

1111 10** **** (DPS parallel processing instructions, field A: MOVX.W,
MOVY.W, DPS double data transfer instructions, field B:
PSHL to PLDS, DPS operation instructions) (SH3-DSP)

1111 11** ****

Notes: 1. Floating point arithmetic calculation instruction or CPU instruction related to the FPU.
These instruction are available only on the SH-3E

2. CPU instructions to provide support for DSP functions. These instructions can only be
used with the SH3-DSP.

Table A-59 Operation Code Map for DSP Operation Instructions (B Field)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB cc:00 cc:01* cc:10 (DCT) cc:11 (DCF)

0000 imm zzzz PSHL #imm, Dz

0000 1*** **** ****

0001 imm zzzz PSHA #imm, Dz

0001 1*** **** ****

001* **** **** ****

0100 eeff xxyy gguu PMULS Se, Sf, Dg

0101 **** **** ****

0110 eeff xxyy gguu PSUB Sx, Sy, Du PMULS Se, Sf, Dg

0111 eeff xxyy gguu PADD Sx, Sy, Du PMULS Se, Sf, Dg

1000 00cc xxyy zzzz [if cc] PSHL Sx, Sy, Dz

1000 01cc xxyy zzzz PCMP Sx, Sy

1000 10cc xxyy zzzz PABS Sx, Dz [if cc] PDEC Sx, Dz

1000 11cc xxyy zzzz [if cc] PCLR DZ

1001 00cc xxyy zzzz [if cc] PSHA Sx, Sy, Dz

1001 01cc xxyy zzzz [if cc] PAND Sx, SY, Dz

1001 10cc xxyy zzzz PRND Sx, Dz [if cc]PINC Sx, Dz



538

Table A-59 Operation Code Map for DSP Operation Instructions (B Field) (cont)

Instruction Code Fx: 0000 Fx: 0001 Fx: 0010 Fx: 0011–1111

MSB LSB cc:00 cc:01* cc:10 (DCT) cc:11 (DCF)

1001 11cc xxyy zzzz [if cc] PDMSB Sy Dz

1010 00cc xxyy zzzz PSUBC Sx,
Sy, Dz

[if cc] PSUB Sx, Sy, Dz

1010 01cc xxyy zzzz [if cc] PXOR Sx, Sy, Dz

1010 10cc xxyy zzzz PABS Sy, Dz [if cc] PDEC Sy, Dz

1010 11cc xxyy zzzz

1011 00cc xxyy zzzz PADDC Sx,
Sy, Dz

[if cc] PADD Sx, Sy, Dz

1011 01cc xxyy zzzz [if cc] POR Sx, Sy, Dz

1011 10cc xxyy zzzz PRND Sy, Dz [if cc] PINC Sy, Dz

1011 11cc xxyy zzzz [if cc] PDMSB Sy, Dz

1100 0*** **** ****

1100 10cc xxyy zzzz [if cc] PNEG Sx, Dz

1100 11cc xxyy zzzz [if cc] PSTS MACH, Dz

1101 0*** **** ****

1101 10cc xxyy zzzz [if cc] PCOPY Sx, Dz

1101 11cc xxyy zzzz [if cc] PSTS MACL, Dz

1110 0**** **** ****

1110 10cc xxyy zzzz [if cc] PNEG Sy, Dz

1110 11cc xxyy zzzz [if cc] PLDS Dz, MACH

1111 0*** **** ****

1111 10cc xxyy zzzz [if cc] PCOPY Sy, Dz

1111 11cc xxyy zzzz [if cc] PLDS DZ, MACL

Note: * Unconditional



539

Appendix B   Pipeline Operation and Contention

The SH-3/SH-3E/DSP series is designed so that basic instructions are executed in one cycle. Two
or more cycles are required for instructions when, for example, the branch destination address is
changed by a branch instruction or when the number of cycles is increased by contention between
MA and IF. Table B-1 gives the number of execution cycles and stages for different types of
contention and their instructions. Instructions without contention and instructions that require 2 or
more cycles even without contention are also shown.

Instructions contend in the following ways:

• Operations and transfers between registers are executed in one cycle with no contention.

• No contention occurs, but the instruction still requires 2 or more cycles.

• Contention occurs, increasing the number of execution cycles. Contention combinations are:

— MA contends with IF

— MA contends with IF and sometimes with memory loads as well

— MA contends with IF and sometimes with the multiplier as well

— MA contends with IF and sometimes with memory loads and sometimes with the multiplier



540

Table B-1 Instructions and Their Contention Patterns

Contention Cycles Stages Instructions

None 1 3 • Transfers between registers

• Operations between registers
(except when a multiplier is involved)

• Logical operations between registers

• Shift and dynamic shift instructions

• System control ALU instructions

2 3 Unconditional branches

3/1 3 Conditional branches

2/1 3 Delayed conditional branch instructions

4 3 SLEEP instruction

4 5 RTE instruction

5 5 LDC instruction (SR), register to SR

6/8*2 9 TRAP instruction

• MA contends with IF 1 4 • Memory store instructions

• STS.L instruction (PR)

• Cache instruction

1/2*2 4 • Bank register other than STC.L
instruction

2 5 STC.L instruction (bank register)

3 6 • Memory logic operations

3/4*2 6 • TAS instruction

7 7 LDC.L instruction (SR), memory to SR

• MA contends with IF.
• Causes memory load contention.

1 5 • Memory load instructions

• LDS.L instruction (PR)

1/5*2 5 • LDC.L instruction



541

Table B-1 Instructions and Their Contention Patterns (cont)

Contention Cycles Stages Instructions

• MA contends with IF.
• Causes multiplier contention.

1 4 • Register to MAC transfer instructions

• Memory to MAC transfer instructions

• MAC to memory transfer instructions

1 (to 3)*1 6 Multiplication instructions (excluding
PMULS)

2 (to 5)*1 7 Multiply/accumulate instructions

2 (to 5)*1 9 Double length multiply/accumulate
instructions

2 (to 5)*1 9 Double length multiplication instructions

• MA contends with IF.
• Causes memory load,

contention.
• Causes multiplier contention.
• Causes DSP operation

contention

1 5 MAC/DSP to register transfer instructions

Notes: 1. The normal minimum number of execution states. (The number in parentheses is the
number in contention with the preceding/following instructions.)

2. In the case of the SH3-DSP, the figures on the right indicate the number of cycles and
stages.



542



SH-3/SH-3E/SH-DSP Programming Manual

Publication Date: 1st Edition, September 1995
3rd Edition, September 2000

Published by: Electronic Devices Sales & Marketing Group
Semiconductor & Integrated Circuits
Hitachi, Ltd.

Edited by: Technical Documentation Group
Hitachi Kodaira Semiconductor Co., Ltd.

Copyright © Hitachi, Ltd., 1995. All rights reserved. Printed in Japan.


	Cover
	Cautions
	Introduction
	Contents
	Section 1 Features
	1.1 SH-3 CPU Features
	1.2 SH3-DSP Features

	Section 2 Programming Model
	2.1 Organization of Registers
	2.1.1 Privileged Mode and Banks

	2.2 General-Purpose Registers
	2.3 Control Registers
	2.4 System Registers
	2.5 Initial Register Value

	Section 3 Data Formats
	3.1 Data Format in Registers
	3.2 Data Format in Memory
	3.3 Data Format for Immediate Data
	3.4 DSP Type Data Formats (SH3-DSP Only)

	Section 4 Floating Point Unit (SH-3E only)
	4.1 Introduction
	4.2 Floating Point Registers and System Registers for FPU
	4.2.1 Floating Point Register File
	4.2.2 Floating Point Communication Register (FPUL)
	4.2.3 Floating Point Status/Control Register (FPSCR)

	4.3 Floating Point Format
	4.3.1 Floating Point Format
	4.3.2 Not a Number (NaN)
	4.3.3 Denormalized Values
	4.3.4 Other Special Values

	4.4 Floating Point Exception Model
	4.4.1 Enabled Exception
	4.4.2 Disabled Exception
	4.4.3 Exception Event and Code for FPU
	4.4.4 Alignment of Floating Point Data in Memory
	4.4.5 Arithmetic with Special Operands

	4.5 Synchronization Issues

	Section 5 DSP Operation Functions and Data Transfers (SH3-DSP Only)
	5.1 ALU Fixed Decimal Point Operations
	5.1.1 Function
	5.1.2 Instructions and Operands
	5.1.3 DC Bit
	5.1.4 Condition Bits

	5.2 ALU Integer Operations
	5.3 ALU Logical Operations
	5.3.1 Function
	5.3.2 Instructions and Operands
	5.3.3 DC Bit
	5.3.4 Condition Bits

	5.4 Fixed Decimal Point Multiplication
	5.5 Shift Operations
	5.5.1 Arithmetic Shift Operations
	5.5.2 Logical Shift Operations

	5.6 The MSB Detection Instruction
	5.6.1 Function
	5.6.2 Instructions and Operands
	5.6.3 DC Bit
	5.6.4 Condition Bits

	5.7 Rounding
	5.7.1 Operation Function
	5.7.2 Instructions and Operands
	5.7.3 DC Bit
	5.7.4 Condition Bits
	5.7.5 Overflow Prevention Function (Saturation Operation)

	5.8 Condition Select Bits (CS) and the DSP Condition Bit (DC)
	5.9 Overflow Prevention Function (Saturation Operation)
	5.10 Data Transfers
	5.10.1 X and Y Memory Data Transfer
	5.10.2 Single Data Transfers

	5.11 Operand Contention
	5.12 DSP Repeat (Loop) Control
	5.12.1 Usage Notes

	5.13 Conditional Instructions and Data Transfers

	Section 6 Instruction Features
	6.1 RISC-Type Instruction Set
	6.1.1 16-Bit Fixed Length
	6.1.2 One Instruction/Cycle
	6.1.3 Data Length
	6.1.4 Load-Store Architecture
	6.1.5 Delayed Branch Instructions
	6.1.6 Multiplication/Accumulation Operation
	6.1.7 T Bit
	6.1.8 Immediate Data
	6.1.9 Absolute Address
	6.1.10 16-Bit/32-Bit Displacement
	6.1.11 Privileged Instructions

	6.2 CPU Instruction Addressing Modes
	6.3 DSP Data Addressing (SH3-DSP Only)
	6.3.1 X and Y Data Addressing
	6.3.2 Single Data Addressing
	6.3.3 Modulo Addressing
	6.3.4 DSP Addressing Operation

	6.4 Instruction Format of CPU Instructions
	6.5 Instruction Formats for DSP Instructions (SH3-DSP Only)
	6.5.1 Double and Single Data Transfer Instructions
	6.5.2 Parallel Processing Instructions


	Section 7 Instruction Set
	7.1 Instruction Set by Classification
	7.1.1 Data Transfer Instructions
	7.1.2 Arithmetic Instructions
	7.1.3 Logic Operation Instructions
	7.1.4 Shift Instructions
	7.1.5 Branch Instructions
	7.1.6 System Control Instructions
	7.1.7 Floating Point Instructions (SH-3E Only)
	7.1.8 FPU System Register Related CPU Instructions (SH-3E Only)
	7.1.9 CPU Instructions That Support DSP Functions (SH3-DSP Only)

	7.2 Instruction Set in Alphabetical Order
	7.3 DSP Data Transfer Instruction Set (SH3-DSP Only)
	7.3.1 Double Data Transfer Instructions (X Memory Data)
	7.3.2 Double Data Transfer Instructions (Y Memory Data)
	7.3.3 Single Data Transfer Instructions

	7.4 DSP Operation Instruction Set (SH3-DSP Only)
	7.4.1 ALU Arithmetic Operation Instructions
	7.4.2 ALU Logical Operation Instructions
	7.4.3 Fixed Decimal Point Multiplication Instructions
	7.4.4 Shift Operation Instructions
	7.4.5 System Control Instructions
	7.4.6 NOPX and NOPY Instruction Code


	Section 8 Instruction Descriptions
	8.1 Sample Description (Name): Classification
	8.2 Instruction Description (Listing and Description of Instructions Common to the SH-3, SH-3E and SH3-DSP)
	8.2.1 ADD (Add Binary): Arithmetic Instruction
	8.2.2 ADDC (Add with Carry): Arithmetic Instruction
	8.2.3 ADDV (Add with V Flag Overflow Check): Arithmetic Instruction
	8.2.4 AND (AND Logical): Logic Operation Instruction
	8.2.5 BF (Branch if False): Branch Instruction
	8.2.6 BF/S (Branch if False with Delay Slot): Branch Instruction
	8.2.7 BRA (Branch): Branch Instruction
	8.2.8 BRAF (Branch Far): Branch Instruction
	8.2.9 BSR (Branch to Subroutine): Branch Instruction
	8.2.10 BSRF (Branch to Subroutine Far): Branch Instruction
	8.2.11 BT (Branch if True): Branch Instruction
	8.2.12 BT/S (Branch if True with Delay Slot): Branch Instruction
	8.2.13 CLRMAC (Clear MAC Register): System Control Instruction
	8.2.14 CLRS (Clear S Bit): System Control Instruction
	8.2.15 CLRT (Clear T Bit): System Control Instruction
	8.2.16 CMP/cond (Compare Conditionally): Arithmetic Instruction
	8.2.17 DIV0S (Divide Step 0 as Signed): Arithmetic Instruction
	8.2.18 DIV0U (Divide Step 0 as Unsigned): Arithmetic Instruction
	8.2.19 DIV1 (Divide Step 1): Arithmetic Instruction
	8.2.20 DMULS.L (Double-Length Multiply as Signed): Arithmetic Instruction
	8.2.21 DMULU.L (Double-Length Multiply as Unsigned): Arithmetic Instruction
	8.2.22 DT (Decrement and Test): Arithmetic Instruction
	8.2.23 EXTS (Extend as Signed): Arithmetic Instruction
	8.2.24 EXTU (Extend as Unsigned): Arithmetic Instruction
	8.2.25 JMP (Jump): Branch Instruction
	8.2.26 JSR (Jump to Subroutine): Branch Instruction
	8.2.27 LDC (Load to Control Register): System Control Instruction (Privileged Only)
	8.2.28 LDRE (Load Effective Address to RE Register): System Control Instruction (SH3-DSP Only)
	8.2.29 LDRS (Load Effective Address to RS Register): System Control Instruction (SH3-DSP Only)
	8.2.30 LDS (Load to System Register): System Control Instruction
	8.2.31 LDTLB (Load PTEH/PTEL to TLB): System Control Instruction (Privileged Only)
	8.2.32 MAC.L (Multiply and Accumulate Long): Arithmetic Instruction
	8.2.33 MAC (Multiply and Accumulate): Arithmetic Instruction
	8.2.34 MOV (Move Data): Data Transfer Instruction
	8.2.35 MOV (Move Immediate Data): Data Transfer Instruction
	8.2.36 MOV (Move Peripheral Data): Data Transfer Instruction
	8.2.37 MOV (Move Structure Data): Data Transfer Instruction
	8.2.38 MOVA (Move Effective Address): Data Transfer Instruction
	8.2.39 MOVT (Move T Bit): Data Transfer Instruction
	8.2.40 MUL.L (Multiply Long): Arithmetic Instruction
	8.2.41 MULS.W (Multiply as Signed Word): Arithmetic Instruction
	8.2.42 MULU.W (Multiply as Unsigned Word): Arithmetic Instruction
	8.2.43 NEG (Negate): Arithmetic Instruction
	8.2.44 NEGC (Negate with Carry): Arithmetic Instruction
	8.2.45 NOP (No Operation): System Control Instruction
	8.2.46 NOT (NOT—Logical Complement): Logic Operation Instruction
	8.2.47 OR (OR Logical) Logic Operation Instruction
	8.2.48 PREF (Prefetch Data to the Cache)
	8.2.49 ROTCL (Rotate with Carry Left): Shift Instruction
	8.2.50 ROTCR (Rotate with Carry Right): Shift Instruction
	8.2.51 ROTL (Rotate Left): Shift Instruction
	8.2.52 ROTR (Rotate Right): Shift Instruction
	8.2.53 RTE (Return from Exception): System Control Instruction (Privileged Only)
	8.2.54 RTS (Return from Subroutine): Branch Instruction
	8.2.55 SETRC (Set Repeat Count to RC): System Control Instruction (SH3-DSP Only)
	8.2.56 SETS (Set S Bit): System Control Instruction
	8.2.57 SETT (Set T Bit): System Control Instruction
	8.2.58 SHAD (Shift Arithmetic Dynamically): Shift Instruction
	8.2.59 SHAL (Shift Arithmetic Left): Shift Instruction
	8.2.60 SHAR (Shift Arithmetic Right): Shift Instruction
	8.2.61 SHLD (Shift Logical Dynamically): Shift Instruction
	8.2.62 SHLL (Shift Logical Left): Shift Instruction
	8.2.63 SHLLn (Shift Logical Left n Bits): Shift Instruction
	8.2.64 SHLR (Shift Logical Right): Shift Instruction
	8.2.65 SHLRn (Shift Logical Right n Bits): Shift Instruction
	8.2.66 SLEEP (Sleep): System Control Instruction (Privileged Only)
	8.2.67 STC (Store Control Register): System Control Instruction (Privileged Only)
	8.2.68 STS (Store System Register): System Control Instruction
	8.2.69 SUB (Subtract Binary): Arithmetic Instruction
	8.2.70 SUBC (Subtract with Carry): Arithmetic Instruction
	8.2.71 SUBV (Subtract with V Flag Underflow Check): Arithmetic Instruction
	8.2.72 SWAP (Swap Register Halves): Data Transfer Instruction
	8.2.73 TAS (Test and Set): Logic Operation Instruction
	8.2.74 TRAPA (Trap Always): System Control Instruction
	8.2.75 TST (Test Logical): Logic Operation Instruction
	8.2.76 XOR (Exclusive OR Logical): Logic Operation Instruction
	8.2.77 XTRCT (Extract): Data Transfer Instruction

	8.3 Floating Point Instructions and FPU Related CPU Instructions (SH-3E Only)
	8.3.1 FABS (Floating Point Absolute Value): Floating Point Instruction
	8.3.2 FADD (Floating Point Add): Floating Point Instruction
	8.3.3 FCMP (Floating Point Compare): Floating Point Instruction
	8.3.4 FDIV (Floating Point Divide): Floating Point Instruction
	8.3.5 FLDI0 (Floating Point Load Immediate 0): Floating Point Instruction
	8.3.6 FLDI1 (Floating Point Load Immediate 1): Floating Point Instruction
	8.3.7 FLDS (Floating Point Load to System Register): Floating Point Instruction
	8.3.8 FLOAT (Floating Point Convert from Integer): Floating Point Instruction
	8.3.9 FMAC (Floating Point Multiply Accumulate): Floating Point Instruction
	8.3.10 FMOV (Floating Point Move): Floating Point Instruction
	8.3.11 FMUL (Floating Point Multiply): Floating Point Instruction
	8.3.12 FNEG (Floating Point Negate): Floating Point Instruction
	8.3.13 FSQRT (Floating Point Square Root): Floating Point Instruction
	8.3.14 FSTS (Floating Point Store From System Register): Floating Point Instruction
	8.3.15 FSUB (Floating Point Subtract): Floating Point Instruction
	8.3.16 FTRC (Floating Point Truncate And Convert To Integer): Floating Point Instruction
	8.3.17 LDS (Load to System Register): FPU Related CPU Instruction
	8.3.18 STS (Store from FPU System Register): FPU Related CPU Instruction

	8.4 DSP Data Transfer Instructions (SH3-DSP Only)
	8.4.1 MOVS (Move Single Data between Memory and DSP Register): DSP Data Transfer  Instruction
	8.4.2 MOVX (Move between X Memory and DSP Register): DSP Data Transfer Instruction
	8.4.3 MOVY (Move between Y Memory and DSP Register): DSP Data Transfer Instruction
	8.4.4 NOPX (No Access Operation for X Memory): DSP Data Transfer Instruction
	8.4.5 NOPY (No Access Operation for Y Memory): DSP Data Transfer Instruction

	8.5 DSP Operation Instructions
	8.5.1 PABS (Absolute): DSP Arithmetic Operation Instruction
	8.5.2 [if cc]PADD (Addition with Condition): DSP Arithmetic Operation Instruction
	8.5.3 PADD PMULS (Addition & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.4 PADDC (Addition with Carry): DSP Arithmetic Operation Instruction
	8.5.5 [if cc] PAND (Logical AND): DSP Logical Operation Instruction
	8.5.6 [if cc] PCLR (Clear): DSP Arithmetic Operation Instruction
	8.5.7 PCMP (Compare Two Data): DSP Arithmetic Operation Instruction
	8.5.8 [if cc] PCOPY (Copy with Condition): DSP Arithmetic Operation Instruction
	8.5.9 [if cc] PDEC (Decrement by 1): DSP Arithmetic Operation Instruction
	8.5.10 [if cc] PDMSB (Detect MSB with Condition): DSP Arithmetic Operation Instruction
	8.5.11 [if cc] PINC (Increment by 1 with Condition): DSP Arithmetic Operation Instruction
	8.5.12 [if cc] PLDS (Load System Register): DSP System Control Instruction
	8.5.13 PMULS (Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.14 [if cc] PNEG (Negate): DSP Arithmetic Operation Instruction
	8.5.15 [if cc] POR (Logical OR): DSP Logical Operation Instruction
	8.5.16 PRND (Rounding): DSP Arithmetic Operation Instruction
	8.5.17 [if cc] PSHA (Shift Arithmetically with Condition): DSP Arithmetic Shift Instruction
	8.5.18 [if cc] PSHL (Shift Logically with Condition): DSP Logical Shift Instruction
	8.5.19 [if cc] PSTS (Store System Register): DSP System Control Instruction
	8.5.20 [if cc]PSUB (Subtract with Condition): DSP Arithmetic Operation Instruction
	8.5.21 PSUB PMULS (Subtraction & Multiply Signed by Signed): DSP Arithmetic Operation Instruction
	8.5.22 PSUBC (Subtraction with Carry): DSP Arithmetic Operation Instruction
	8.5.23 [if cc] PXOR (Logical Exclusive OR): DSP Logical Operation Instruction


	Section 9 Processing States
	9.1 State Transitions
	9.1.1 Reset State
	9.1.2 Exception Processing State
	9.1.3 Program Execution State
	9.1.4 Power-Down State
	9.1.5 Bus Release State

	9.2 Power-Down State
	9.2.1 Sleep Mode
	9.2.2 Standby Mode
	9.2.3 Hardware Standby Mode
	9.2.4 Module Standby Function


	Section 10 Pipeline Operation
	10.1 Basic Configuration of Pipelines
	10.1.1 Five-Stage Pipeline
	10.1.2 Slot and Pipeline Flow
	10.1.3 Number of Cycles Required for Execution of One Slot
	10.1.4 Number of Instruction Execution Cycles

	10.2 Contention
	10.2.1 Contention between Instruction Fetch (IF) and Memory Access (MA)
	10.2.2 Effects of Memory Load Instructions on Pipelines
	10.2.3 Contention due to SR Update Instructions
	10.2.4 Multiplier Access Contention
	10.2.5 FPU Contention (SH-3E Only)
	10.2.6 Contention between DSP Data Operation Instructions and Store Instructions (SH3- DSP Only)
	10.2.7 Relationship between Load and Store Instructions (SH3-DSP Only)

	10.3 Programming Guidelines
	10.3.1 Correspondence between Contention and Instructions
	10.3.2 Increasing Instruction Execution Speed
	10.3.3 Number of Cycles

	10.4 Operation of Instruction Pipelines
	10.4.1 Data Transfer Instructions
	10.4.2 Arithmetic Instructions
	10.4.3 Logic Operation Instructions
	10.4.4 Shift Instructions
	10.4.5 Branch Instructions
	10.4.6 System Control Instructions
	10.4.7 Exception Processing
	10.4.8 Pipeline for FPU Instructions (SH-3E Only)
	10.4.9 DSP Data Transfer Instructions (SH3-DSP Only)
	10.4.10 DSP Operation Instructions (SH3-DSP Only)


	Appendix A Instruction Code
	A.1 Instruction Set by Addressing Mode
	A.1.1 No Operand
	A.1.2 Direct Register Addressing
	A.1.3 Indirect Register Addressing
	A.1.4 Post-Increment Indirect Register Addressing
	A.1.5 Pre-Decrement Indirect Register Addressing
	A.1.6 Indirect Register Addressing with Displacement
	A.1.7 Indirect Indexed Register Addressing
	A.1.8 Indirect GBR Addressing with Displacement
	A.1.9 Indirect Indexed GBR Addressing
	A.1.10 PC Relative Addressing with Displacement
	A.1.11 PC Relative Addressing
	A.1.12 Immediate

	A.2 Instruction Sets by Instruction Format
	A.2.1 0 Format
	A.2.2 n Format
	A.2.3 m Format
	A.2.4 nm Format
	A.2.5 md Format
	A.2.6 nd4 Format
	A.2.7 nmd Format
	A.2.8 d Format
	A.2.9 d12 Format
	A.2.10 nd8 Format
	A.2.11 i Format
	A.2.12 ni Format

	A.3 Operation Code Map

	Appendix B Pipeline Operation and Contention
	Colophon

