Photointerrupter, double-layer mold type RPI-122

The RPI-122 is an ultra-small size, double-layer mold photointerrupter.

Applications

Optical control equipment

Cameras

Floppy disk drives

Features

- 1) Ultra-small.
- 2) Minimal influence from stray light.
- 3) Low collector-emitter saturation voltage.

External dimensions (Units: mm)

●Absolute maximum ratings (Ta = 25°C)

Parameter		Symbol	Limits	Unit
<u></u>	Forward current	I _F	50	mA
Input(LED)				1107
	Reverse voltage	VR	5	V
	Power dissipation	Pb	80	mW
Output (photo- (transistor)	Collector-emitter voltage	Vceo	30	V
	Emitter-collector voltage	Veco	4.5	V
	Collector current	lc	30	mA
	Collector power dissipation	Pc	80	mW
Operating temperature		Topr	-25~ + 85	$^{\circ}$
Storage temperature		Tstg	-40~+100	$^{\circ}$

Sensors RPI-122

●Electrical and optical characteristics (Ta = 25°C)

Parameter		Symbol	Min.	Тур.	Max.	Unit	Conditions
Input charac- teristics	Forward voltage	VF	_	1.3	1.6	٧	I==50mA
	Reverse current	lR	_	_	10	μΑ	V _R =5V
Output charac- teristics	Dark current	ICEO	_	_	0.5	μΑ	VcE=10V
	Peak sensitivity wavelength	λp	_	800	_	nm	_
Transfer charac- teristics	Collector current	lc	0.18	_	1.08	mA	VcE=0.7V, IF=3mA
	Collector-emitter saturation voltage	VCE(sat)	_	_	0.3	٧	I _F =20mA, I _C =0.3mA
	Response time	tr • tf	_	10	_	μS	Vcc=5V, I==20mA, RL=100 Ω

Electrical and optical characteristic curves

Fig.1 Output vs. ambient temperature

Fig.2 Forward current vs. forward voltage

Fig.3 Collector current vs. forward current

Fig.4 Dark current vs. ambient temperature

Fig.5 Relative output vs. ambient temperature

Fig.6 Relative output current vs. distance $\langle I \rangle$

Sensors RPI-122

Fig.7 Relative output current vs. distance $\langle \mathbb{II} \rangle$

Fig.8 Response time vs. collector current

Fig.9 Forward current falloff

Fig.10 Output characteristics

- td: Delay time
- t_r: Rise time (time for output current to rise from 10% to 90% of peak current)
- tr : Fall time (time for output current to fall from 90% to 10% of peak current)

Fig.11 Response time measurement circuit