HIGH POWER, HIGH CURRENT OPERATIONAL AMPLIFIER

5 Amp Peak Operational Amplifier, Low Distortion A/B Output Stage

FEATURES

- Available In Isolated Standard TO-3, "Copper Slug" TO-3 And Power DIP Packages
- 5 Amp Peak Output Current
- ±10V to ±30V Supply Range
- · Low Distortion, Class A/B Output Stage

DESCRIPTION

The OMA511 series is a high voltage, high current power operational amplifier designed to drive a wide variety of resistive and reactive loads. Its complimentary class A/B output stage provides superior performance in applications requiring freedom from cross over distortion. This hybrid is housed in a variety of isolated hermetic packages and is ideally suited for critical environments such as motor drivers, servo amplifiers, audio amplifiers and synchro exertation.

ABSOLUTE MAXIMUM RATINGS @ 25°C

Supply Voltage, +V _S to -V _S
Output Current: Source
Sink See SOA
Power Dissipation, Internal
Input Voltage: Differential
Common Mode
Operating Temperature Range
Storage Temperature Range55°C to 150°C
Lead Temperature (10 Sec. Soldering)

SCHEMATIC

TO-3

OMA511SK APPLICATIONS INFORMATION

Power Supplies

Specifications for the OMA511SK are based on a nominal operating voltage of ±28V. A single power supply or unbalanced supplies may be used so long as the maximum total operating voltage (total of +V_s and -V_s) is not greater than 68V.

Current Limits

Current limit resistors must be provided for proper operation. Independent positive and negative current limit values may be selected by choice of R_{α} + and R_{α} - respectively. Resistor values are calculated by:

 $R_{CL} = 0.65/I_{LIM} (amps) - 0.01$

This is the nominal current limit value at room temperature. The maximum output current decreases at high temperature as shown in the typical performance curve. Most wire-wound resistors are satisfactory, but some highly inductive types may cause loop stability problems. Be sure to evaluate performance with the actual resistors to be used in production.

3.4

OMA511SK OMA511SKC OMA511SD OMA511SDZ

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$; $V_S = \pm 28 V_{DC}$ unless otherwise noted.)

Parameter	Conditions	Min.	Тур.	Max.	Units
Input Offset Voltage					
Initial Offset			±5	±10	mV
vs Temperature	Full Temperature Range		±10	±65	μV/°C
vs Supply Voltage	Full Temperature Kange		±35	±200	μV/V
vs Power		±20		μV/W	
Input Bias Current					
Initial			±15	±40	nA
vs Temperature	Full Temperature Range		±0.05	±0.4	nA/°C
vs Supply Voltage			±0.02		nA/V
Input Offset Current					
Initial			±5	±10	nA
vs Temperature	Full Temperature Range		±0.01		nA/°C
Input Impedance*					
Common-Mode			200		M
Differential			10		М
Voltage Range ⁽¹⁾					
Common-Mode Voltage	Full Temperature Range	±(œV _s œ- 6)	±(œV _s œ-3)		V
Common-Mode Rejection	$V_{CM} = V_s - 6V$ 70		110		dB
Gain Characteristics*					
Open Loop Gain at 10Hz	Full Temperature Range, full load	91	113		dB
Gain Bandwidth Product at 1MHz	T _c = 25°C, full load		1		MHz
Power Bandwidth	$T_c = 25$ °C, $I_o = 4A$, $V_o = 40$ V p-p	$_{c} = 25^{\circ}\text{C}, I_{o} = 4\text{A}, V_{o} = 40\text{V p-p}$ 15			kHz
Phase Margin	Full Temperature Range		45		Degrees
Output					
Voltage Swing	I _o = 5A	±(œVsœ-8)	±(œV _s œ-5)		V
	Full Temperature Range, I _o = 2A	±(œV _s œ-6)	±(œV _s œ-5)		V
	Full Temperature Range, I _o = 56mA	±(œV _s œ-5)			V
Current Peak		±5			Α
Settling Time to 0.1%*	2V Step		2		μS
Slew Rate	R _L = 2.5	±1.0	1.8		V/µS
Capacitive Load: Unity Gain*	Full Temperature Range			3.3	nF
Gain > 4	Full Temperature Range			SOA(2)	
Power Supply					
Voltage		±10	±28	±30	V
Current, Quiescent	Full Temperature Range		20	30	mA

Thermal Resistance ⁽³⁾		Standard	Copper Slug	Power	
Typical	Conditions	TO-3	TO-3	DIP	Units
AC Junction-to-Case		2.1	1.7	1.30	
DC Junction-to-Case	f < 60Hz	2.6	2.0	1.55	°C/W
Junction-to-Air		30	30	25	

 $\textbf{Notes:} \quad \textbf{(1) +V}_S \text{ and -V}_S \text{ denotes the positive and negative supply voltage respectively.} \quad \textbf{Total V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ to -V}_S \text{ is Operating from } \textbf{+V}_S \text{ is Operating from$

3.4

⁽²⁾ SOA = Safe Operating Area.

⁽³⁾ Rating applies only if the output current alternates between both output transistors at a rate faster than 60 Hz.

^{*}Guaranteed - not tested 100%.

OMA511SK OMA511SKC OMA511SD OMA511SDZ

TYPICAL PERFORMANCE CURVES

 $T_A = +25$ °C, $V_S = \pm V_{DC}$ unless otherwise noted

3.4 - 19

OMA511SK OMA511SKC OMA511SD OMA511SDZ

TRANSISTOR SAFE OPERATING AREA (SOA)

INCHES MIN MAX

.500 BASIC

Safe Operating Area (SOA)

The safe operating area plot provides a comprehensive summary of the power handling limitations of a power amplifier, including maximum current, voltage and power as well as the secondary breakdown region. It shows the allowable output current as a function of the power supply to output voltage differential (voltage across the conducting power device).

- .180 MIN.

PIN CONNECTIONS

MECHANICAL OUTLINE

TO-3-8

	.260	.770 .300 .042 .105	H J K Q	1.186 BASIC .593 BASIC .400 .500 .151 .161	SEATING SEATING PLANE	$\bigoplus_{\substack{F \\ 1 \\ 376}} \stackrel{123}{\underset{6}{\times}} \stackrel{1}{\underset{6}{\times}} \stackrel{1}{\underset{76}{\times}} $
	F 40°	BASIC D-10	R	.980 1.020	D-10Z	Common Lead
.5		.690		.540	1.190 .940 .690 .125 DIA. 2 HOLES	.260 MAX

INCHES MIN

Α

MAX

1.550

G