
SURFACE MOUNT NEGATIVE ADJUSTABLE 1.0 AMP VOLTAGE REGULATOR

Isolated Hermetic Surface Mount Package 1.0 Amp, High Voltage, Negative Adjustable **Voltage Regulator**

FEATURES

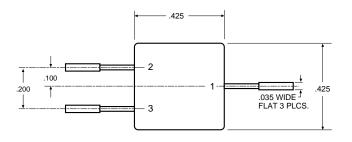
- Isolated Hermetic Surface Mount Package
- Adjustable Output Voltage
- Eliminates Stocking Fixed Voltages
- Built-In Thermal Overload Protection
- Short Circuit Current Limiting
- · Product Is Available Hi-Rel Screened
- Electrically Similar To Industry Standard Type LM137HV

DESCRIPTION

This three terminal negative regulator is supplied in a hermetically sealed metal surface mount package. All protective features are designed into the circuit, including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over 1.0 amp of output current. This unit features output voltages that can be trimmed using external resistors, from -1.2 volts to -47 volts.

ABSOLUTE MAXIMUM RATINGS @ 25°C

	50.17
Input To Output Voltage Differential	50 V
Operating Junction Temperature Range55	
Storage Temperature Range	5°C to + 150°C
Typical Power/Thermal Characteristics:	
Rated Power:	
T _C	17.5W
T _A	3W
Thermal Resistance:	
$ heta_{ extsf{JC}} \ldots \ldots $	
$ heta_{JA}$	42°C/W
Max. Lead Solder Temperature for 5 sec	


ELECTRICAL CHARACTERISTICS -55°C T_A 125°C, $I_L = 8mA$ (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Reference Voltage	V _{REF}	V _{DIFF} = 3.0V, T _A = 25°C		-1.30	-1.20	
		V _{DIFF} = 3V	•	-1.30	-1.20	V
		$ V_{DIFF} = 50V, T_A = 25^{\circ}C$		-1.30	-1.20	
		V _{DIFF}	•	-1.30	-1.20	
Line Regulation	R _{LINE}	3.0 V V _{DIFF} 50V, T _A = 25°C		-10	10	mV
(Note 1)			•	-25	25	
Load Regulation	R _{LOAD}	V _{DIFF} = 50V, 8mA I _L 110mA		-25	25	
(Note 1)		T _A = 25°C				mV
		$ V_{DIFF} = 5V, 8mA I_L 1.5A, T_A = 25^{\circ}C$		-25	25	mv
			•	-45	45	
Thermal Regulation	V _{RTH}	V _{IN} = -14.6V, I _L = 1.5A		-5	5	mV
		$P_d = 20 \text{ Watts, t} = 10 \text{ ms, T}_A = 25^{\circ}\text{C}$				
Ripple Rejection	R _N	f = 120 Hz, V _{OUT} = V _{ref}	•	66		dB
(Note 2)		$C_{Adj} = 10 \mu F, I_{OUT} = 100 \text{ mA}$				ub
Adjustment Pin Current	I _{Adj}	V _{DIFF} = 3.0V	•		100	
		V _{DIFF}	•		100	μΑ
		V _{DIFF}	•		100	
Adjustment Pin	I _{Adj}	V _{DIFF} = 5V, 8mA I _{OUT} 1.5A	•	-5	5	
Current Change		3V V _{DIFF} 50V	•	-6	6	μA
Miminum Load Current	I _{Lmin}	$ V_{DIFF} = 3.0V, V_{OUT} = -1.4V \text{ (forced)}$	•		3.0	
		$ V_{DIFF} = 10V, V_{OUT} = -1.4V$ (forced)	•		3.0	A
		V _{DIFF} = 40V, V _{OUT} = -1.4V (forced)	•		5.0	mA
		$ V_{DIFF} = 50V$, $V_{OUT} = -1.4V$ (forced)	•		5.0	
Current Limit	I _{CL}	V _{DIFF} = 50V, T _A = 25°C		0.2	1.0	^
(Note 2)		1 V _{DIFF} 1 = 50V, 1 _A = 25°C		0.∠	1.0	A

Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. If not tested, shall be guaranteed to the specified limits.
- 3. The denotes the specifications which apply over the full operating temperature range.

MECHANICAL OUTLINE

350 MIN. ± .020 -115 -160

3.5

Pin Connections

Pin 1: V_{IN} Pin 2: Adjust Pin 3: V_{OUT}

Case: Isolated