OM3460SS

Preliminary Data Sheet

HIGH-CURRENT, PROTECTED 'SMART-POWER' MODULE FOR BIDIRECTIONAL DRIVE OF DC ACTUATOR

5 Amp, 52 Volt, Bidirectional 'Smart' Module With Thermal Protection Provides Direct, 'Stand Alone' Drive For DC Actuator, Motors, Etc.

FEATURES

- · Dedicated Design: 2 Power Inputs, 2 Power Outputs And Ground
- Monolithic Control, Power And Thermal Protection
- BCDMOS 'Smart-Power' Low ON Resistance NMOS FETs
- Output Current Continuous To 4 Amps (RMS)
- Output Current (Peak) To 5 Amps
- Efficient, Low-Power BCDMOS Circuitry
- Stand Alone Capability For 12 To 28 Volt Actuator
- Current Direction Fixed By 'Steering' Input Power (A or B)
- Internal Lockout Circuitry (No Simultaneous Conduction)
- Internal (Inductive) Transient Suppression (Diodes Plus RC Snubber)
- Thermal Shutdown Protection (+150°C Nominal)
- · Small, Standard 6 Lead Hermetic SIP
- Compatible With Electronic And Electromechanical Systems

DESCRIPTION

The OM3460SS provides protected bidirectional drive for dc actuator. The module supply operating voltage range is 12 Volts to 36 Volts, and this 'smart-power' device is very useful in 28 Volt aircraft systems. No signal inputs are required for operation; the direction of output current is 'steered' from one of the two Power Input Terminals (A $_{\rm IN}$; B $_{\rm IN}$). The load power is applied via either the A $_{\rm IN}$ or B $_{\rm IN}$ terminals in normal operation; and simultaneous application of power is **not a normal operating mode**. The two 'low-side' output FETs are instantaneously disabled should the system produce a fault/flaw condition which results in power being applied simultaneously to both the A $_{\rm IN}$ and B $_{\rm IN}$ connections. This prevents unwanted, potentially damaging, cross-conduction in the power output FETs; and no power is applied to the load. This module is very compatible with most electromechanical and electronic systems; and can easily be controlled by semiconductor devices, relays, limit switches, etc. Additionally, the module includes thermal shutdown protection (nominally +150°C) and integral diodes and RC snubber network for inductive transient suppression.

ABSOLUTE MAXIMUM RATINGS (@ 25°C)

Supply Voltage Range, V _{SS}	12 V to 38 V
Continuous Output Current, I _{OUT}	4.0 A
Peak Out Current, I _{OUT (PK)}	5.0 A
Non-Repetitive Pulsed Output Current, (<1ms), I _{OUT(PUL)}	10 A
Thermal Resistance, Junction-to-Case, R _{aJC}	TBD
Operating Temperature Range, T _A	
Storage Temperature Range, Ts	65° C to + 150° C

OM3460SS

RECOMMENDED OPERATING CONDITIONS (Over Specified Temperature Range)

Supply Voltage Range, V _{SS}	12 V to 36 V
Continuous Output Current, I _{OUT}	3.0 A
Case Temperature, T _C	+100°C
Junction Temperature, T ₁	+140°C

ELECTRICAL CHARACTERISTICS (V_{ss} = 28V; T_A = +25°C or as noted)

Module Test and Applicable Conditions	Min.	Тур.	Max.	Units
Total ON Voltage, V _{ON} (I _{ON} = 1A; total voltage drop)		1.4	1.9	V
(I _{ON} = 3A; sum: per truth table)		2.8	4.2	V
Output ON Resistance, R _{DS(on)} (sinking outputs only)		0.3	0.55	
Output Leakage, I _{DS(off)} (V _{SS} = 37V: per Truth Table			1	mA
Clamping Voltage, V _{CL} (I _{SD} = 10mA; A _{IN} /B _{IN} = Open)	TBD	40	42.5	V
Quiescent Supply Current, I _S (Outputs = Open)		<10	TBD	mA
Thermal Shutdown, T _J		150		°C

TRUTH TABLE

A _{IN}	B _{IN}	Output 1	Output 2	Output/Load Condition
Open	Open	Off	Off	All Output FETs: Off State
+28 V	Open	High	Low	Load Current: Out 1 > Out 2
Open	+28 V	Low	High	Load Current: Out 1 < Out 2
+28 V*	+28 V*	High	High	Fault Mode: No Load Current

^{*}Note: Fault/Flaw Mode on Input Power to Module; Load/Outputs: Non-Conducting Mode

Mechanical Outline .060 DIA.TYP. 6 PLACES Pin 1: Pin2:

Typical Application 0.01µF