HERMETIC SURFACE MOUNT FIXED VOLTAGE NEGATIVE REGULATORS APPROVED TO DESC DRAWING

LCC 20, Fixed Voltage, Precision Negative Regulators In Hermetic Surface Mount Package

FEATURES

- Hermetic Surface Mount Package
- Output Voltages: -5V, -12V, -15V
- Output Voltages Set Internally To ±1%
- Built-In Thermal Overload Protection
- · Short Circuit Current Limiting
- Product Is Available Hi-Rel Screened

DESCRIPTION

These negative regulators are supplied in a hermetically sealed surface mount package. All protective features are designed into the circuit including thermal shutdown, current limiting and safe-area control. With heat sinking, they can deliver over .5 amps of output current. These units feature internally trimmed output voltages to $\pm 1\%$ of nominal voltage. Standard voltages are -5V, -12V, and -15V. These units are ideally suited for Military applications where a hermetic surface mount package is required.

PART NUMBER DESIGNATOR

 Standard Military Drawing Number
 Omnirel Part Number

 5962-8874601 2X
 OM1905N2M

 5962-8874701 2X
 OM1912N2M

 5962-8874801 2X
 OM1915N2M

3.5

4 11 R0 3.5 - 49

ABSOLUTE MAXIMUM RATINGS @ 25°C

Input Voltage		35 V
Operating Junction Temp	erature Range	55°C to + 150°C
Storage Temperature Rar	nge	65°C to + 150°C
Typical Power/Thermal Cl	harateristics:	
Rated Power @ 25° C	$T_C \dots \dots$	2W
	T_A	1040 mW
Thermal Resistance	θ_{JC}	25°C/W
	$\theta_{JA}\dots$	120°C/W

$\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{-5 Volt} \qquad V_{\text{IN}} = -10V, \ I_{\text{0}} = 100\text{mA}, \ -55^{\circ}\text{C} \quad \text{T}_{\text{A}} \quad 125^{\circ}\text{C} \ (\text{unless otherwise specified})$

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-4.95	-5.05	V
		$V_{IN} = -7.5V \text{ to } -20V$	•	-4.85	-5.15	V
		$I_O = 5$ mA to 500 mA, $P \le 2W$				
Line Regulation	V _{RLINE}	$V_{IN} = -7.5V \text{ to } -20V$			12	mV
(Note 1)			•		25	mV
(Note 4)		$V_{IN} = -8.0V \text{ to } -12V$			5	mV
			•		12	mV
Load Regulation	V _{RLOAD}	$I_O = 5mA$ to 500 mA			25	mV
(Note 1)			•		50	mV
Standby Current Drain	I _{SCD}				2.5	mA
			•		3.0	mA
Standby Current Drain	Δl _{SCD}	V _{IN} = -7.0V to -20V	•		0.4	mA
Change With Line	(Line)					
Standby Current Drain	Δl _{SCD}	I _O = 5mA to 500 mA	•		0.4	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	$\Delta V_{OUT} = 100$ mV, $I_{O} = 500$ mA	•		2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		0.5	1.7	А
Short Circuit Current	I _{DS}	$V_{IN} = -35V$.7	А
(Note 2)			•		2.0	A
Ripple Rejection	ΔV_{IN}	$f = 120 \text{ Hz}, \Delta V_{IN} = -10 \text{V}$		63		dB
	ΔV_{OUT}	(Note 3)	•	60		dB
Output Noise Voltage	No	T _A = 25°C, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			75	mV
(Note 3)	Δt					

Notes

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to V_{IN} = -35V.
- If not tested, shall be guaranteed to the specified limits.
 The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5.0 mA.

2 5

ELECTRICAL CHARACTERISTICS -12 Volt V_{IN} = -19V, I_o = 100 mA, -55°C T_A 125°C (unless otherwise specified)

Parameter	Symbol	Test Conditions		Min.	Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-11.88	-12.12	V
		V _{IN} = -14.5V to -27V	•	-11.64	-12.36	V
		$I_O = 5$ mA to 500 mA, $P_D \le 2$ W				
Line Regulation	V _{RLINE}	$V_{IN} = -14.5V \text{ to } -27V$			20	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = -16V \text{ to } -22V$			10	mV
			•		30	mV
Load Regulation	V _{RLOAD}	$I_O = 5$ mA to 500 mA			32	mV
(Note 1)			•		60	mV
Standby Current Drain	I _{SCD}				3.5	mA
			•		4.0	mA
Standby Current Drain	ΔI_{SCD}	$V_{IN} = -14.5V \text{ to } -27V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	I _O = 5mA to 500 mA	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	ΔV_{OUT} = 100mV, I_{O} = 500 mA	•		1.8	V
Peak Output Current	I _{O (pk)}	$T_A = 25$ °C, $I_O = 5$ mA to 1A		0.5	1.7	А
Short Circuit Current	I _{DS}	V _{IN} = -35V			.7	А
(Note 2)			•		2.0	Α
Ripple Rejection	ΔV_{IN}	f =120 Hz, ΔV _{IN} = -10V		56		dB
	ΔV_{OUT}	(Note 3)	•	53		dB
Output Noise Voltage	No	T _A = 25°C, f =10 Hz to 100 KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			120	mV
(Note 3)	Δt					

Notes:

- 1. Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to V_{IN} = -35V.
- 3. If not tested, shall be guaranteed to the specified limits.
 - The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5.0 mA.

PIN CONNECTION

MECHANICAL OUTLINE

3.5

 $\textbf{ELECTRICAL CHARACTERISTICS} \quad \textbf{-15 Volt} \quad V_{\text{IN}} = -23 \text{V, I}_{\text{o}} = 100 \text{mA, -55}^{\circ}\text{C} \quad \text{T}_{\text{A}} \quad 125 ^{\circ}\text{C} \text{ (unless otherwise specified)}$

Parameter	Symbol	Symbol Test Conditions			Max.	Unit
Output Voltage	V _{OUT}	T _A = 25°C		-14.85	-15.15	V
		V _{IN} = -17.5V to -30V	•	-14.55	-15.45	V
		$I_O = 5$ mA to 500 m A, $P_D \le 2$ W				
Line Regulation	V _{RLINE}	V _{IN} = -17.5V to -30V			25	mV
(Note 1)			•		50	mV
(Note 4)		$V_{IN} = -20V \text{ to } -26V$			15	mV
			•		25	mV
Load Regulation	V _{RLOAD}	I _O = 5mA to 500 mA			50	mV
(Note 1)			•		90	mV
Standby Current Drain	I _{SCD}				6.0	mA
			•		6.5	mA
Standby Current Drain	ΔI_{SCD}	$V_{IN} = -17.5V \text{ to } -30V$	•		0.8	mA
Change With Line	(Line)					
Standby Current Drain	ΔI_{SCD}	$I_O = 5mA$ to 500 mA	•		0.5	mA
Change With Load	(Load)					
Dropout Voltage	V _{DO}	ΔV_{OUT} = 100mV, I_{O} = 500 mA	•		2.5	V
Peak Output Current	I _{O (pk)}	T _A = 25°C		0.5	1.7	А
Short Circuit Current	I _{DS}	V _{IN} = -35V			0.7	А
(Note 2)			•		2.0	Α
Ripple Rejection	ΔV_{IN}	f =120 Hz, ΔV _{IN} = -10V		53		dB
	ΔV_{OUT}	(Note 3)	•	50		dB
Output Noise Voltage	No	T _A = 25°C, f =10 Hz to 100KHz			40	μV/V
(Note 3)						RMS
Long Term Stability	ΔV _{OUT}	$T_A = 25$ °C, $t = 1000$ hrs.			150	mV
(Note 3)	Δt					

Notes:

- Load and Line Regulation are specified at a constant junction temperature. Pulse testing with low duty cycle is used. Changes in output voltage due to heating effects must be taken into account separately.
- 2. Short Circuit protection is only assured up to V_{IN} = -35V.
- If not tested, shall be guaranteed to the specified limits.
 The denotes the specifications which apply over the full operating temperature range.
- 4. Minimum load current for full line regulation = 5.0 mA.

