POWER MOSFET IN HERMETIC ISOLATED TO-254AA PACKAGE

600V & 550V, 11 Amp, N-Channel MOSFET In Hermetic Metal Package

FEATURES

- · Isolated Hermetic Metal Package
- · Fast Switching
- Low R_{DS(on)}
- Available Screened To MIL-S-19500, TX, TXV And S
- · Ceramic Feedthroughs Also Available

DESCRIPTION

This series of hermetically packaged products feature the latest advanced MOSFET and packaging technology. The device breakdown ratings provide a substantial voltage margin for stringent applications such as 270 VDC aircraft power and/or rectified 230 VAC power (line operation). They are ideally suited for Military requirements where small size, high performance and high reliability are required, and in applications such as switching power supplies, motor controls, inverters, choppers, audio amplifiers and high energy pulse circuits.

MAXIMUM RATINGS

PART NUMBER	V_{DS}	R _{DS(on)}	I _{D(MAX)}
OM11N60	600V	.50	11A
OM11N55	550V	.44	11A

3 1

SCHEMATIC

ELECTRICAL CHARACTERISTICS: $T_C = 25^{\circ}$ unless otherwise noted STATIC P/N OM11N60SA

STATIC F/N OWITHOUSA										
eter	Min.	Тур.	Max.	Units	Test Conditions					
Drain-Source Breakdown	600			V	$V_{GS} = 0$,					
Voltage					$I_D = 250 \text{ mA}$					
Gate-Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \text{ mA}$					
Gate-Body Leakage			± 100	nA	V _{GS} = ± 20 V					
Zero Gate Voltage Drain		0.1	0.25	mA	$V_{DS} = Max. Rat., V_{GS} = 0$					
Current		0.2	1.0	mA	$V_{DS} = 0.8 \text{ Max. Rat.}, V_{GS} = 0,$					
					T _C = 125° C					
On-State Drain Current ¹	11.0			Α	$V_{DS} > I_{D(on)} \times R_{DS(on)}, V_{GS} = 10 \text{ V}$					
Static Drain-Source On-State			3.1	V	$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$					
Voltage ¹										
Static Drain-Source On-State		.47	.50		$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$					
Resistance ¹										
Static Drain-Source On-State			1.0		$V_{GS} = 10 \text{ V}, I_D = 5.5 \text{ A},$					
Resistance ¹					T _C = 125 C					
	Drain-Source Breakdown Voltage Gate-Threshold Voltage Gate-Body Leakage Zero Gate Voltage Drain Current On-State Drain Current¹ Static Drain-Source On-State Voltage¹ Static Drain-Source On-State Resistance¹ Static Drain-Source On-State	eter Min. Drain-Source Breakdown 600 Voltage 2.0 Gate-Threshold Voltage 2.0 Gate-Body Leakage Zero Gate Voltage Drain Current 11.0 Static Drain-Source On-State Voltage 1 Static Drain-Source On-State Resistance 1 Static Drain-Source On-State	eter Min. Typ. Drain-Source Breakdown Voltage 600 600 Voltage 2.0 3.0 Gate-Threshold Voltage 2.0 3.0 Gate-Body Leakage 0.1 0.2 Zero Gate Voltage Drain 0.2 0.2 On-State Drain Current¹ 11.0 11.0 Static Drain-Source On-State Voltage¹ 47 Static Drain-Source On-State .47 Resistance¹ Static Drain-Source On-State	eter Min. Typ. Max. Drain-Source Breakdown Voltage 600 4.0 Gate-Threshold Voltage 2.0 4.0 Gate-Body Leakage ± 100 0.2 Zero Gate Voltage Drain 0.1 0.25 Current 11.0 0.2 On-State Drain Current¹ 11.0 11.0 Static Drain-Source On-State Voltage¹ 3.1 3.1 Voltage¹ .47 .50 Resistance¹ 1.0 1.0	eter Min. Typ. Max. Units Drain-Source Breakdown Voltage 600 V Voltage 2.0 4.0 V Gate-Body Leakage ± 100 nA Zero Gate Voltage Drain 0.1 0.25 mA Current 0.2 1.0 mA On-State Drain Current¹ 11.0 A Static Drain-Source On-State Voltage¹ 3.1 V Static Drain-Source On-State Resistance¹ .47 .50 Static Drain-Source On-State 1.0 1.0					

DYNAMIC

g _{fs}	Forward Transductance ¹	5.0		S(M)	V_{DS} 2 $V_{DS(on)}$, I_{D} = 5.5 A
C _{iss}	Input Capacitance		3000	pF	V _{GS} = 0
Coss	Output Capacitance		440	pF	V _{DS} = 25 V
C _{rss}	Reverse Transfer Capacitance		220	pF	f = 1 MHz
T _{d(on)}	Turn-On Delay Time		55	ns	V _{DD} = 210 V, I _D @ 7.0 A
t _r	Rise Time		75	ns	$R_{g} = 5 \text{ W}, R_{L} = 30 \text{ W}$
$T_{d(off)}$	Turn-Off Delay Time		225	ns	(MOSFET) switching times are essentially independent of
t _f	Fall Time		135	ns	operating temperature.

BODY-DRAIN DIODE RATINGS AND CHARACTERISTICS

Is	Continuous Source Current		- 11	Α	Modified MOSPOWER ●□
-3	(Body Diode)				symbol showing
I _{SM}	Source Current ¹		- 52	Α	the integral P-N
	(Body Diode)				Junction rectifier.
V _{SD}	Diode Forward Voltage ¹		- 1.4	V	$T_{\rm C} = 25 \text{C}, I_{\rm S} = -11 \text{A}, V_{\rm GS} = 0$
t _{rr}	Reverse Recovery Time	700		ns	$T_J = 150 \text{ C}, I_F = I_S,$
					dl _F /ds = 100 A/ms

¹ Pulse Test: Pulse Width 300msec, Duty Cycle 2%.

ELECTRICAL CHARACTERISTICS: $T_C = 25^{\circ}$ unless otherwise noted STATIC P/N OM11N55SA

Param	eter	Min.	Тур.	Max.	Units	Test Conditions
BV _{DSS}	Drain-Source Breakdown	550			V	$V_{GS} = 0$,
	Voltage					$I_D = 250 \text{ mA}$
$V_{GS(th)}$	Gate-Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250 \text{ mA}$
I _{GSSF}	Gate-Body Leakage Forward			±100	nA	V _{GS} = ± 20 V
I _{DSS}	Zero Gate Voltage Drain		0.1	0.25	mA	$V_{DS} = Max. Rat., V_{GS} = 0$
	Current		0.2	1.0	mA	$V_{DS} = 0.8 \text{ Max. Rat.}, V_{GS} = 0,$
						T _C = 125° C
I _{D(on)}	On-State Drain Current ¹	11.0			Α	$V_{DS} > I_{D(on)} \times R_{DS(on)}, V_{GS} = 10 \text{ V}$
V _{DS(on)}	Static Drain-Source On-State			3.3	V	$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$
	Voltage ¹					
R _{DS(on)}	Static Drain-Source On-State		.37	.44		$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A}$
	Resistance ¹					
R _{DS(on)}	Static Drain-Source On-State			.88		$V_{GS} = 10 \text{ V}, I_{D} = 5.5 \text{ A},$
	Resistance ¹					T _C = 125 C

DYNAMIC

[g _{fs}	Forward Transductance ¹	5.0		S(M)	V_{DS} 2 $V_{DS(on)}$, $I_{D} = 5.5 \text{ A}$
	C _{iss}	Input Capacitance		3000	pF	$V_{GS} = 0$
	Coss	Output Capacitance		440	pF	V _{DS} = 25 V
-	C _{rss}	Reverse Transfer Capacitance		220	pF	f = 1 MHz
Г	$T_{d(on)}$	Turn-On Delay Time		55	ns	V _{DD} = 210 V, I _D @ 7.0 A
	t _r	Rise Time		75	ns	$R_g = 5 \text{ W}, R_L = 30 \text{ W}$
Γ.	$T_{d(off)}$	Turn-Off Delay Time		225	ns	(MOSFET) switching times are essentially independent of
	t _f	Fall Time		135	ns	operating temperature.

BODY-DRAIN DIODE RATINGS AND CHARACTERISTICS

		_		-	-	
Is	Continuous Source Current			- 11	Α	Modified MOSPOWER
	(Body Diode)					symbol showing
I _{SM}	Source Current ¹			- 52	Α	the integral P-N
	(Body Diode)					Junction rectifier.
V _{SD}	Diode Forward Voltage ¹			- 1.4	V	$T_{\rm C} = 25 \text{C}, I_{\rm S} = -11 \text{A}, V_{\rm GS} = 0$
t _{rr}	Reverse Recovery Time		700		ns	$T_J = 150 \text{ C}, I_F = I_S,$
						dl _F /ds = 100 A/ms

¹ Pulse Test: Pulse Width 300msec, Duty Cycle 2%.

ABSOLUTE MAXIMUM RATINGS ($T_C = 25$ °C unless otherwise noted)

Symbol	Parameter	OM11N60	OM11N55	Units
V_{DGR}	Drain Source Voltage	600	550	V
V _{DS}	Drain Gate Voltage (R _{GS} = 1.0 M)	600	550	V
I _D	Continuous Drain Current @ T _C = 25°C	11	11	А
I _D	Continuous Drain Current @ T _C = 100°C	7.2	7.2	А
I _{DM}	Pulsed Drain Current ¹	52	52	А
P _D	Max. Power Dissipation @ T _C = 25°C	125	125	W
P _D	Max. Power Dissipation @ T _C = 100°C	50	50	W
	Linear Derating Factor Jct. to Case	1.0	1.0	W/°C
	Linear Derating Factor Jct. to Ambient	.020	.020	W/°C
T _J , T _{stg}	Operating and Storage Temp. Range	-55 to	150	°C
	Lead Temperature (1/16* from case for 10 sec.)	300	300	°C

¹ Pulse Test: Pulse width 300 µsec. Duty Cycle 2%.

THERMAL RESISTANCE (Maximum at $T_A = 25$ °C)

R _{thJC}	Junction-to-Case	1.0	1.0	°C/W
R _{thJA}	Junction-to-Ambient (Free Air Operation)	50	50	°C/W

3.1

MECHANICAL OUTLINES

TO-254 AA Package

Omnirel AZ Package

For Z-Pack configuration, add letter "Z" to part number, Example - OMXXXXSAZ

Standard Products are supplied with glass feedthroughs, for ceramic feedthroughs, add letter "C" to part number, Example - OMXXXXCSA

