Product Preview # Medium Power Surface Mount Products **TMOS Single P-Channel Field Effect Transistors** MiniMOS™ devices are an advanced series of power MOSFETs which utilize Motorola's High Cell Density HDTMOS process. These miniature surface mount MOSFETs feature ultra low RDS(on) and true logic level performance. They are capable of withstanding high energy in the avalanche and commutation modes and the drain—to—source diode has a very low reverse recovery time. MiniMOS devices are designed for use in low voltage, high speed switching applications where power efficiency is important. Typical applications are dc—dc converters, and power management in portable and battery powered products such as computers, printers, cellular and cordless phones. They can also be used for low voltage motor controls in mass storage products such as disk drives and tape drives. The avalanche energy is specified to eliminate the guesswork in designs where inductive loads are switched and offer additional safety margin against unexpected voltage transients. - Logic Level Gate Drive Can Be Driven by Logic ICs - Miniature SO–8 Surface Mount Package Saves Board Space - Diode Is Characterized for Use In Bridge Circuits - Diode Exhibits High Speed, With Soft Recovery - IDSS Specified at Elevated Temperature - Avalanche Energy Specified - Mounting Information for SO-8 Package Provided # **MMSF3205** Motorola Preferred Device SINGLE TMOS POWER MOSFET 11 AMPERES 20 VOLTS RDS(on) = 0.015 OHM #### **DEVICE MARKING** #### ORDERING INFORMATION | _ | | | | | | |---|-------|------------|-----------|---------------------|------------| | | S220E | Device | Reel Size | Tape Width | Quantity | | | S3205 | MMSF3205R2 | 13″ | 12 mm embossed tape | 4000 units | HDTMOS and MiniMOS are trademarks of Motorola, Inc. TMOS is a registered trademark of Motorola, Inc. Preferred devices are Motorola recommended choices for future use and best overall value. This document contains information on a product under development. Motorola reserves the right to change or discontinue this product without notice. ### **MMSF3205** # | | Rating | Symbol | Max | Unit | |--|--|-------------------------------------|------------------------------------|----------------------------------| | Drain-to-Source Voltage | | V _{DSS} | 20 | V | | Drain-to-Gate Voltage (RGS = 1.0 Ms | Ω) | VDGR | 20 | V | | Gate-to-Source Voltage — Continuo | us | V _{GS} | ± 12 | V | | 1 inch SQ.
FR-4 or G-10 PCB
10 seconds | Thermal Resistance — Junction to Ambient Total Power Dissipation @ T _A = 25°C Linear Derating Factor Drain Current — Continuous @ T _A = 25°C Continuous @ T _A = 70°C Pulsed Drain Current (1) | RTHJA
PD
I _D
ID | 50
2.5
20
11
8.0
55 | °C/W
Watts
mW/°C
A
A | | Minimum FR-4 or G-10 PCB 10 seconds | Thermal Resistance — Junction to Ambient Total Power Dissipation @ T _A = 25°C Linear Derating Factor Drain Current — Continuous @ T _A = 25°C Continuous @ T _A = 70°C | RTHJA
PD
ID | 80
1.56
12.5
8.6
6.4 | °C/W
Watts
mW/°C
A | | | Pulsed Drain Current (1) | IDM | 43 | A °C | | Operating and Storage Temperature F
Single Pulse Drain–to–Source Avalan
(VDD = 20 Vdc, VGS = 4.5 Vdc, Pe | | T _J , T _{stg} | – 55 to 150
TBD | mJ | ⁽¹⁾ Repetitive rating; pulse width limited by maximum junction temperature. #### **ELECTRICAL CHARACTERISTICS** (T_C = 25°C unless otherwise noted) | Characteristic | | Symbol | Min | Тур | Max | Unit | |--|---|----------------------|---------|------------|------------|--------------| | OFF CHARACTERISTICS | | | | | | | | Drain-to-Source Breakdown Voltage
(VGS = 0 Vdc, I _D = 0.25 mAdc)
Temperature Coefficient (Positive) | | V _{(BR)DSS} | 20
— | —
TBD | _ | Vdc
mV/°C | | Zero Gate Voltage Drain Current
$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc})$
$(V_{DS} = 20 \text{ Vdc}, V_{GS} = 0 \text{ Vdc}, T_J = 0 \text{ Vdc})$ | - 70°C) | I _{DSS} | _ | _
_ | 1.0
5.0 | μAdc | | Gate-Body Leakage Current (VGS = | ± 12 Vdc, V _{DS} = 0) | IGSS | _ | _ | 100 | nAdc | | ON CHARACTERISTICS ⁽¹⁾ | | | | | | | | Gate Threshold Voltage
(V _{DS} = V _{GS} , I _D = 0.25 mAdc)
Threshold Temperature Coefficient | (Negative) | V _{GS(th)} | 0.6 | _
_ | _
_ | Vdc
mV/°C | | Static Drain-to-Source On-Resistan
(V _{GS} = 4.5 Vdc, I _D = 11 Adc)
(V _{GS} = 2.5 Vdc, I _D = 8.6 Adc) | се | R _{DS(on)} | _ | TBD
TBD | 15
25 | mΩ | | On–State Drain Current
(V _{DS} ≤ 5.0 V, V _{GS} = 4.5 V) | | I _{D(on)} | 20 | _ | _ | А | | Forward Transconductance (V _{DS} = 1 | 0 Vdc, I _D = 11 Adc) | 9FS | 40 | TBD | _ | Mhos | | DYNAMIC CHARACTERISTICS | | | | | | | | Input Capacitance | | C _{iss} | _ | TBD | TBD | pF | | Output Capacitance | (V _{DS} = 16 Vdc, V _{GS} = 0 Vdc,
f = 1.0 MHz) | Coss | _ | TBD | TBD | | | Transfer Capacitance | , | C _{rss} | _ | TBD | TBD | | | SWITCHING CHARACTERISTICS(2) | | | | | | | | Turn-On Delay Time | $(V_{DD} = 10 \text{ Vdc}, I_{D} = 1.0 \text{ Adc}, \\ V_{GS} = 4.5 \text{ Vdc}, \\ R_{G} = 6.0 \Omega) (1)$ | ^t d(on) | _ | TBD | TBD | ns | | Rise Time | | t _r | _ | TBD | TBD | | | Turn-Off Delay Time | | ^t d(off) | _ | TBD | TBD | | | Fall Time | | t _f | _ | TBD | TBD | | | Gate Charge | $(V_{DS} = 10 \text{ Vdc}, I_{D} = 11 \text{ Adc}, V_{GS} = 4.5 \text{ Vdc}) (1)$ | QT | _ | TBD | TBD | nC | | See Figure 8 | | Q ₁ | _ | TBD | _ | | | | | Q ₂ | _ | TBD | _ | | | | | Q ₃ | _ | TBD | _ | | | SOURCE-DRAIN DIODE CHARACTE | RISTICS | | | | | | | Forward On–Voltage ⁽¹⁾ | $(I_S = 2.1 \text{ Adc}, V_{GS} = 0 \text{ Vdc}) (1)$
$(I_S = 2.1 \text{ Adc}, V_{GS} = 0 \text{ Vdc}, T_J = 125^{\circ}\text{C})$ | V _{SD} | | TBD
TBD | 1.2
— | Vdc | | Reverse Recovery Time
See Figure 15 | (I _S = 2.1 Adc, V _{GS} = 0 Vdc, | t _{rr} | _ | TBD | TBD | ns | | | | t _a | _ | TBD | _ | 1 | | | dl _S /dt = 100 A/μs) (1) | t _b | _ | TBD | _ | 1 | | Reverse Recovery Stored Charge | 1 | Q _{RR} | _ | TBD | _ | μС | ⁽¹⁾ Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2%. (4) Repetitive rating; pulse width limited by maximum junction temperature. ⁽²⁾ Switching characteristics are independent of operating junction temperature. (3) Reflects typical values. $C_{pk} = \left| \frac{\text{Max limit} - \text{Typ}}{3 \text{ x SIGMA}} \right|$ #### INFORMATION FOR USING THE SO-8 SURFACE MOUNT PACKAGE #### MINIMUM RECOMMENDED FOOTPRINT FOR SURFACE MOUNTED APPLICATIONS Surface mount board layout is a critical portion of the total design. The footprint for the semiconductor packages must be the correct size to ensure proper solder connection interface between the board and the package. With the correct pad geometry, the packages will self-align when subjected to a solder reflow process. #### **SO-8 POWER DISSIPATION** The power dissipation of the SO–8 is a function of the input pad size. This can vary from the minimum pad size for soldering to the pad size given for maximum power dissipation. Power dissipation for a surface mount device is determined by $T_{J(max)}$, the maximum rated junction temperature of the die, $R_{\theta JA}$, the thermal resistance from the device junction to ambient; and the operating temperature, T_{A} . Using the values provided on the data sheet for the SO–8 package, P_{D} can be calculated as follows: $$P_D = \frac{T_{J(max)} - T_A}{R_{\theta JA}}$$ The values for the equation are found in the maximum ratings table on the data sheet. Substituting these values into the equation for an ambient temperature T_A of 25°C, one can calculate the power dissipation of the device which in this case is 1.6 Watts. $$P_D = \frac{150^{\circ}C - 25^{\circ}C}{80^{\circ}C/W} = 1.6 \text{ Watts}$$ The 80°C/W for the SO–8 package assumes the recommended footprint on a glass epoxy printed circuit board to achieve a power dissipation of 1.6 Watts using the footprint shown. Another alternative would be to use a ceramic substrate or an aluminum core board such as Thermal Clad $^{\text{TM}}$. Using board material such as Thermal Clad, the power dissipation can be doubled using the same footprint. #### **SOLDERING PRECAUTIONS** The melting temperature of solder is higher than the rated temperature of the device. When the entire device is heated to a high temperature, failure to complete soldering within a short time could result in device failure. Therefore, the following items should always be observed in order to minimize the thermal stress to which the devices are subjected. - · Always preheat the device. - The delta temperature between the preheat and soldering should be 100°C or less.* - When preheating and soldering, the temperature of the leads and the case must not exceed the maximum temperature ratings as shown on the data sheet. When using infrared heating with the reflow soldering method, the difference shall be a maximum of 10°C. - The soldering temperature and time shall not exceed 260°C for more than 10 seconds. - When shifting from preheating to soldering, the maximum temperature gradient shall be 5°C or less. - After soldering has been completed, the device should be allowed to cool naturally for at least three minutes. Gradual cooling should be used as the use of forced cooling will increase the temperature gradient and result in latent failure due to mechanical stress. - Mechanical stress or shock should not be applied during cooling. - * Soldering a device without preheating can cause excessive thermal shock and stress which can result in damage to the device. #### TYPICAL SOLDER HEATING PROFILE For any given circuit board, there will be a group of control settings that will give the desired heat pattern. The operator must set temperatures for several heating zones and a figure for belt speed. Taken together, these control settings make up a heating "profile" for that particular circuit board. On machines controlled by a computer, the computer remembers these profiles from one operating session to the next. Figure 1 shows a typical heating profile for use when soldering a surface mount device to a printed circuit board. This profile will vary among soldering systems, but it is a good starting point. Factors that can affect the profile include the type of soldering system in use, density and types of components on the board, type of solder used, and the type of board or substrate material being used. This profile shows temperature versus time. The line on the graph shows the actual temperature that might be experienced on the surface of a test board at or near a central solder joint. The two profiles are based on a high density and a low density board. The Vitronics SMD310 convection/infrared reflow soldering system was used to generate this profile. The type of solder used was 62/36/2 Tin Lead Silver with a melting point between 177–189°C. When this type of furnace is used for solder reflow work, the circuit boards and solder joints tend to heat first. The components on the board are then heated by conduction. The circuit board, because it has a large surface area, absorbs the thermal energy more efficiently, then distributes this energy to the components. Because of this effect, the main body of a component may be up to 30 degrees cooler than the adjacent solder joints. Figure 1. Typical Solder Heating Profile #### PACKAGE DIMENSIONS #### NOTES: - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. DIMENSIONS ARE IN MILLIMETER. - DIMENSION D AND E DO NOT INCLUDE MOLD PROTRUSION. - MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. DIMENSION B DOES NOT INCLUDE DAMBAR - PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS OF THE B DIMENSION AT MAXIMUM MATERIAL CONDITION. | | MILLIMETERS | | | |-----|-------------|------|--| | DIM | MIN | MAX | | | Α | 1.35 | 1.75 | | | A1 | 0.10 | 0.25 | | | В | 0.35 | 0.49 | | | С | 0.19 | 0.25 | | | D | 4.80 | 5.00 | | | E | 3.80 | 4.00 | | | е | 1.27 | BSC | | | Н | 5.80 | 6.20 | | | h | 0.25 | 0.50 | | | L | 0.40 | 1.25 | | | θ | 0 ° | 7 ° | | STYLE 12: PIN 1. SOURCE - 2. SOURCE - 3. SOURCE - GATE DRAIN 4. - 5. - DRAIN - DRAIN - DRAIN 8. Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheefs and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. **CASE 751-06** SO-8 **ISSUE T** Mfax is a trademark of Motorola, Inc. #### How to reach us: USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1-303-675-2140 or 1-800-441-2447 JAPAN: Nippon Motorola Ltd.: SPD, Strategic Planning Office, 141, 4-32-1 Nishi-Gotanda, Shagawa-ku, Tokyo, Japan. 03-5487-8488 #### Customer Focus Center: 1-800-521-6274 Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 1-602-244-6609 - US & Canada ONLY 1-800-774-1848 Motorola Fax Back System - http://sps.motorola.com/mfax/ ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 HOME PAGE: http://motorola.com/sps/ \Diamond MMSF3205/D