

The Infinite Bandwidth Company™

MIC8114

Microprocessor Reset Circuit

Final Information

General Description

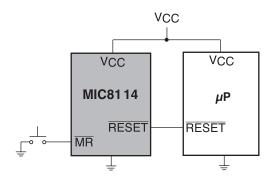
The MIC8114 is an inexpensive microprocessor supervisory circuit that monitors the power supply in microprocessor based systems.

The function of this device is to assert a reset if the power supply drops below a designated reset threshold level or /MR is forced low.

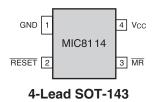
The MIC8114 has an active low /RESET output. The reset output is guaranteed to remain asserted for a minimum of 790ms after $V_{\rm CC}$ has risen above the designated reset threshold level. The MIC1814 comes in a 4-pin SOT-143 package.

Features

- Precision voltage monitor for 3.3V power supplies
- Specifically tailored to the AMD Elan SC400/410
- /RESET remains valid with V_{CC} as low as 1.4V
- <15μA supply current
- 1100ms minimum reset pulse width
- · Manual reset input
- Available in 4-Pin SOT-143 Package


Applications

- Portable equipment
- · Intelligent instruments
- Critical microprocessor power monitoring
- Printers/computers
- Embedded controllers


Ordering Information

Part Number	Marking	Operating Temp. Range	Package	
MIC8114TU	NV	–40°C to +85°C	4-lead SOT-143	

Typical Application

Pin Configuration

Pin Description

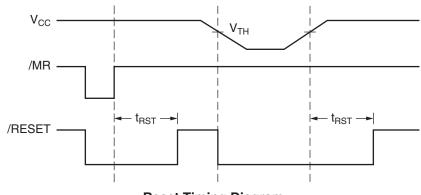
Pin Number	Pin Name	Pin Function
1	GND	IC Ground Pin
2	/RESET	/RESET goes low if either V_{CC} falls below the supply reset threshold voltage or if /MR is asserted. /RESET remains asserted for one reset timeout period after both V_{CC} exceeds the supply reset threshold voltage and /MR is deasserted.
3	/MR	Manual Reset Input. A logic low on /MR forces a reset. The reset will remain asserted as long as /MR is held low and for one reset timeout period after /MR goes high. This input can be shorted to ground via a switch or driven from CMOS or TTL logic. Pulled high internally through a $20 \mathrm{k}\Omega$ resistor. Float if unused.
4	V _{cc}	Power supply Input.

Absolute Maximum Ratings(Note 1)

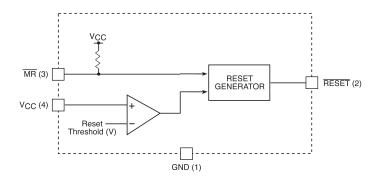
Terminal Voltage	
(V _{CC})	0.3V to +6.0V
(/MŘ)	$-0.3V (V_{CC} + 0.3V)$
Input Current (V _{CC} , /MR)	20mA
Output Current (/RESET)	20mA
Rate of Rise (V _{CC})	100V/μS
Lead Temperature (soldering, 10 sec.).	300°C
Storage Temperature (T _S)	–65°C to +150°C

Operating Ratings^(Note 2)

Operating Temperature Range	
MIC8114TU	40°C to +85°C
Power Dissipation ($T_{\Lambda} = +70^{\circ}C$)	320mW


Electrical Characteristics

For typical values, V_{CC} = 3.3V; T_A = 25°C, **bold** values indicate $-40^{\circ}C \le T_A \le +85^{\circ}C$; unless noted


Symbol	Parameter	Condition	Min	Тур	Max	Units
$\overline{V_{CC}}$	Operating Voltage Range	T _A = 0°C to 70°C	1.4		5.5	V
		$T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	1.6		5.5	V
I _{CC}	Supply Current			9	15	μΑ
$\overline{V_{TH}}$	Reset Voltage Threshold		3.00	3.08	3.15	V
t _{RST}	Reset Timeout Period		190	1200	1800	ms
$\overline{V_{OH}}$	/RESET Output Voltage	I _{SOURCE} = 500μA	0.8×V _{CC}			V
V _{OL}	/RESET Output Voltage, V _{OL}	V _{CC} = V _{TH} min, I _{SINK} = 1.2mA			0.3	V
		$V_{CC} = 1.4V$, $I_{SINK} = 50\mu A$, $T_A = 0^{\circ}C$ to $70^{\circ}C$			0.3	V
		$V_{CC} = 1.6V$, $I_{SINK} = 50\mu A$, $T_A = -40^{\circ} C$ to $+85^{\circ} C$			0.3	V
	/MR Minimum Pulse Width		10			μs
	/MR to Reset Delay			0.5		μs
	/MR Input Threshold, V _{IH}		0.7×V _{CC}			V
	/MR Input Threshold, V _{IL}				0.25×V _{CC}	
	/MR Pull-Up Resistance		10	20	30	kΩ
	/MR Glitch Immunity			100		ns

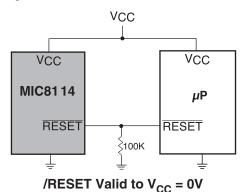
- Note 1. Exceeding the absolute maximum rating may damage the device.
- Note 2. The device is not guaranteed to function outside its operating rating.
- Note 3. Devices are ESD sensitive. Handling precautions recommended. Human body model, 1.5k in series with 100pF.

Timing Diagram

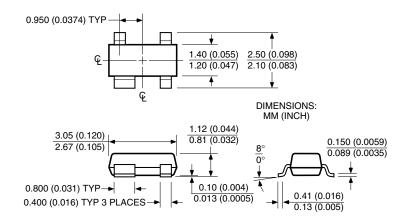
Functional Diagram

Applications Information

Microprocessor Reset


The /RESET pin is asserted whenever V_{CC} falls below the reset threshold voltage. The reset pin remains asserted for a period of 790ms after V_{CC} has risen above the reset threshold voltage. The reset function ensures the microprocessor is properly reset and powers up into a known condition after a power failure. /RESET will remain valid with V_{CC} as low as 1.4V.

V_{CC} Transients


The MIC1815 is relatively immune to the negative-going V_{CC} glitches below the reset threshold. Typically, a negative-going transient 125mV belt the reset threshold with a duration of 50 μ s or less will not cause a reset.

/RESET Valid at Low Voltage

A resistor can be added from the /RESET pin to ground to ensure the /RESET output remains low with V_{CC} down to 0V. A $100 k\Omega$ resistor connected from /RESET to ground is recommended. The resistor should be large enough not to load the /RESET output and small enough to pull-down any stray leakage currents

Package Information

4-Lead SOT-143 (UT)

MICREL, INC. 1849 FORTUNE DRIVE SAN JOSE, CA 95131 USA

TEL + 1 (408) 944-0800 FAX + 1 (408) 944-0970 WEB http://www.micrel.com

The information furnished by Micrel in this datasheet is believed to be accurate and reliable. However, no responsibility is assumed by Micrel for its use.

Micrel reserves the right to change circuitry and specifications at any time without notification to the customer.

Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is at Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale.

© 2003 Micrel, Incorporated.