SWITCHMODE™ Power Rectifiers ... using the Schottky Barrier principle with a platinum barrier metal. These state-of-the-art devices have the following features: - · Guardring for Stress Protection - Low Forward Voltage - 150°C Operating Junction Temperature - Guaranteed Reverse Avalanche - Epoxy Meets UL94, VO at 1/8" #### **Mechanical Characteristics:** - · Case: Epoxy, Molded - Weight: 1.9 grams (approximately) - Finish: All External Surfaces Corrosion Resistant and Terminal Leads are Readily Solderable - Lead Temperature for Soldering Purposes: 260°C Max. for 10 Seconds - · Shipped 50 units per plastic tube - Marking: B2035, B2045 # **MBR2035CT MBR2045CT** MBR2045CT is a Motorola Preferred Device **SCHOTTKY BARRIER RECTIFIERS** 20 AMPERES 35 and 45 VOLTS ### **MAXIMUM RATINGS** | Rating | Symbol | MBR2035CT | MBR2045CT | Unit | |--|--------------------|--------------|-------------|-------| | Peak Repetitive Reverse Voltage
Working Peak Reverse Voltage
DC Blocking Voltage | VRRM
VRWM
VR | 35 | 45 | Volts | | Average Rectified Forward Current (Rated V _R) $T_{C} = 135^{\circ}C$ | IF(AV) | 20 | 20 | Amps | | Peak Repetitive Forward Current Per Diode Leg
(Rated V _R , Square Wave, 20 kHz) T _C = 135°C | IFRM | 20 | 20 | Amps | | Nonrepetitive Peak Surge Current
(Surge applied at rated load conditions halfwave, single phase, 60 Hz) | IFSM | 150 | 150 | Amps | | Peak Repetitive Reverse Surge Current (2.0 μs, 1.0 kHz) See Figure 11 | IRRM | 1.0 | 1.0 | Amp | | Operating Junction Temperature | TJ | - 65 to +150 | -65 to +150 | °C | | Storage Temperature | T _{stg} | - 65 to +175 | -65 to +175 | °C | | Voltage Rate of Change (Rated V _R) | dv/dt | 1000 | 1000 | V/µs | # THERMAL CHARACTERISTICS | Maximum Thermal Resistance, Junction to Case | $R_{\theta JC}$ | 2.0 | 2.0 | °C/W | |--|-----------------|-----|-----|------| # **ELECTRICAL CHARACTERISTICS** | Maximum Instantaneous Forward Voltage (1)
(iF = 10 Amps, $T_C = 125^{\circ}C$)
(iF = 20 Amps, $T_C = 125^{\circ}C$)
(iF = 20 Amps, $T_C = 25^{\circ}C$) | ۷F | 0.57
0.72
0.84 | 0.57
0.72
0.84 | Volts | |---|----------------|----------------------|----------------------|-------| | Maximum Instantaneous Reverse Current (1) (Rated dc Voltage, $T_C = 125^{\circ}C$) (Rated dc Voltage, $T_C = 25^{\circ}C$) | ⁱ R | 15
0.1 | 15
0.1 | mA | ⁽¹⁾ Pulse Test: Pulse Width = 300 μ s, Duty Cycle \leq 2.0%. SWITCHMODE is a trademark of Motorola, Inc. Preferred devices are Motorola recommended choices for future use and best overall value. ## Rev 2 Figure 1. Maximum Forward Voltage $T_J = 150$ °C 100°C . 25°C Figure 3. Maximum Reverse Current Figure 4. Maximum Surge Capability 32 I_{F(AV)}, AVERAGE FORWARD CURRENT (AMPS) RATED VOLTAGE APPLIED 28 $= \pi$ (RESISTIVE LOAD) 24 .I_{AV} 20 SQUARE 16 WAVE 12 8.0 4.0 (CAPACITIVE LOAD) IAV 0 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (°C) Figure 5. Current Derating, Infinite Heatsink Figure 6. Current Derating, $R_{\theta JA} = 16^{\circ}C/W$ Figure 7. Forward Power Dissipation Figure 8. Current Derating, Free Air Figure 9. Thermal Response #### HIGH FREQUENCY OPERATION Since current flow in a Schottky rectifier is the result of majority carrier conduction, it is not subject to junction diode forward and reverse recovery transients due to minority carrier injection and stored charge. Satisfactory circuit analysis work may be performed by using a model consisting of an ideal diode in parallel with a variable capacitance. (See Figure 10.) Rectification efficiency measurements show that operation will be satisfactory up to several megahertz. For example, relative waveform rectification efficiency is approximately 70 percent at 2.0 MHz, e.g., the ratio of dc power to RMS power in the load is 0.28 at this frequency, whereas perfect rectification would yield 0.406 for sine wave inputs. However, in contrast to ordinary junction diodes, the loss in waveform efficiency is not indicative of power loss; it is simply a result of reverse current flow through the diode capacitance, which lowers the dc output voltage. Figure 10. Capacitance Figure 11. Test Circuit for dv/dt and Reverse Surge Current # **PACKAGE DIMENSIONS** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION Z DEFINES A ZONE WHERE ALL BODY AND LEAD IRREGULARITIES ARE ALLOWED. | | INCHES | | MILLIMETERS | | |-----|--------|-------|-------------|-------| | DIM | MIN | MAX | MIN | MAX | | Α | 0.570 | 0.620 | 14.48 | 15.75 | | В | 0.380 | 0.405 | 9.66 | 10.28 | | С | 0.160 | 0.190 | 4.07 | 4.82 | | D | 0.025 | 0.035 | 0.64 | 0.88 | | F | 0.142 | 0.147 | 3.61 | 3.73 | | G | 0.095 | 0.105 | 2.42 | 2.66 | | Н | 0.110 | 0.155 | 2.80 | 3.93 | | J | 0.018 | 0.025 | 0.46 | 0.64 | | K | 0.500 | 0.562 | 12.70 | 14.27 | | L | 0.045 | 0.060 | 1.15 | 1.52 | | N | 0.190 | 0.210 | 4.83 | 5.33 | | Q | 0.100 | 0.120 | 2.54 | 3.04 | | R | 0.080 | 0.110 | 2.04 | 2.79 | | S | 0.045 | 0.055 | 1.15 | 1.39 | | Т | 0.235 | 0.255 | 5.97 | 6.47 | | U | 0.000 | 0.050 | 0.00 | 1.27 | | ٧ | 0.045 | _ | 1.15 | _ | | Z | | 0.080 | | 2.04 | **CASE 221A-06** (TO-220AB) ISSUE Y Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer. How to reach us **USA/EUROPE/Locations Not Listed**: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303–675–2140 or 1–800–441–2447 **Mfax**™: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 – US & Canada ONLY 1–800–774–1848 **JAPAN**: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 81–3–3521–8315 Mfax is a trademark of Motorola. Inc. - TOUCHTONE 602-244-6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, - US & Canada ONLY 1-800-774-1848 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298 INTERNET: http://motorola.com/sps MBR2035CT/D