

2,5V Reference

FEATURES

- 0.4% Initial Tolerance Max
- Guaranteed Temperature Stability
- Maximum 0.6Ω Dynamic Impedance
- Wide Operating Current Range
- Directly Interchangeable with LM336 for Improved Performance
- No Adjustments Needed for Minimum Temperature Coefficient

APPLICATIONS

- Reference for 5V Systems
- 8-Bit A/D and D/A Reference
- Digital Voltmeters
- Current Loop Measurement and Control Systems
- Power Supply Monitor

DESCRIPTION

The LT1009 is a precision trimmed 2.5V shunt regulator diode featuring a maximum initial tolerance of only ± 10 mV. The low dynamic impedance and wide operating current range enhances its versatility. The 0.4% reference tolerance is achieved by on-chip trimming which not only minimizes the initial voltage tolerance but also minimizes the temperature drift.

Even though no adjustments are needed with the LT1009, a third terminal allows the reference voltage to be adjusted $\pm 5\%$ to calibrate out system errors. In many applications, the LT1009 can be used as a pin-to-pin replacement of the LM336-2.5 and the external trim network eliminated.

TYPICAL APPLICATION

2.5V Reference

Output Voltage

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

Reverse Current	20mA
Forward Current	10mA
Operating Temperature Range	0°C to 70°C
Storage Temperature Range	-65°C to 150°C
Lead Temperature (Soldering, 10 sec).	300°C

ELECTRICAL CHARACTERISTICS $V_{IN} = 3V$, Military or Commercial Version

SYMBOL	PARAMETER	CONDITIONS		MIN	TYP	MAX	UNITS
$\overline{V_Z}$	Reverse Breakdown Voltage	T _A = 25°C, I _R = 1mA		2.49	2.50	2.51	V
ΔV_Z	Reverse Breakdown Change with Current	$400\mu\text{A} \le I_{\text{R}} \le 10\text{mA}$			2.6	10	mV
ΔI_R			•		3.0	12	mV
r_Z	Reverse Dynamic Impedance	I _R = 1mA			0.2	1.0	Ω
			•		0.4	1.4	Ω
ΔV_Z	Temperature Stability	$T_{MIN} \le T_A \le T_{MAX}$	•		1.8	4	mV
$\Delta Temp$	Average Temperature Coefficient	$0^{\circ}C \le T_A \le 70^{\circ}C \text{ (Note 1)}$			15.0	25	ppm/°C
$\frac{\Delta V_Z}{\Delta Time}$	Long-Term Stability	$T_A = 25^{\circ}C \pm 0.1^{\circ}C, I_R = 1 \text{mA}$			20		ppm/kHr
ΔTime							

The ● denotes specifications which apply over the full operating temperature range.

Note 1: Average temperature coefficient is defined as the total voltage change divided by the specified temperature range.

PACKAGE DESCRIPTION Dimensions in inches (millimeters) unless otherwise noted.

S8 Package 8-Lead Plastic SOIC

