

Constant Current Source and Temperature Sensor

FEATURES

- 1µA to 10mA Operation
- 0.02%/V Regulation
- 0.8V to 30V Operating Voltage
- Can Be Used as Linear Temperature Sensor
- Draws No Reverse Current

APPLICATIONS

- Current Mode Temperature Sensing
- Constant Current Source for Shunt References
- **■** Cold Junction Compensation
- Constant-Gain Bias for Bipolar Differential Stage
- Micropower Bias Networks
- Buffer for Photoconductive Cell
- Current Limiter

DESCRIPTION

The LM334 is a three-terminal current source designed to operate at current levels from $1\mu A$ to 10mA, as set by an external resistor. The device operates as a true two-terminal current source, requiring no extra power connections or input signals. Regulation is typically 0.02%/V and terminal-to-terminal voltage can range from 800mV to 30V.

Because the operating current is directly proportional to absolute temperature in degrees Kelvin, the device will also find wide applications as a temperature sensor. The temperature dependence of the operating current is $+\,0.336\%/^{\circ}\text{C}$ at room temperature. For example, a device operating at $298\mu\text{A}$ will have a temperature coefficient of $+\,1\mu\text{A}/^{\circ}\text{C}$. The temperature dependence is extremely accurate and repeatable.

If a zero temperature coefficient current source is required, this is easily achieved by adding a diode and a resistor.

Remote Temperature Sensor with Voltage Output

ABSOLUTE MAXIMUM RATINGS

PACKAGE/ORDER INFORMATION

ELECTRICAL CHARACTERISTICS CURRENT SOURCE (Note 1)

SYMBOL	PARAMETER	CONDITIONS	MIN	LM334 TYP	MAX	UNITS
△ISET	Set Current Error, V + = 2.5V (Note 2)	10μ A \leq $1_{SET} \leq 1$ mA 1 mA $<$ $1_{SET} \leq 5$ mA 2μ A \leq $1_{SET} < 10\mu$ A			6 8 12	% % %
	Ratio of Set Current to V - Current	10μ A \leq I _{SET} \leq 1mA 1 mA \leq I _{SET} \leq 5mA 2μ A \leq I _{SET} \leq 10 μ A	14	18 14 18	26 26	
V _{MIN}	Minimum Operating Voltage	2μ A \leq I _{SET} \leq 100 μ A 100 μ A $<$ I _{SET} \leq 1mA 1mA $<$ I _{SET} \leq 5mA		0.8 0.9 1.0		V V V
<u>∆I_{SET}</u> ∆V _{IN}	Average Change in Set Current with Input Voltage	$1.5V \le V^+ \le 5V$ $2\mu A \le I_{SET} \le 1mA$ $5V \le V^+ \le 30V$		0.02 0.01	0.1 0.05	%/V %/V
		$1.5V \le V \le 5V$ $1mA < I_{SET} \le 5mA$ $5V \le V \le 30V$		0.03 0.02		%/V %/V
	Temperature Dependence of Set Current (Note 3)	25μA ≤ I _{SET} ≤1mA	0.96T	T	1.04T	
Cs	Effective Shunt Capacitance			15		pF

Note 1: Unless otherwise specified, tests are performed at $T_j = 25^{\circ}\text{C}$ with pulse testing so that junction temperature does not change during test. **Note 2:** Set current is the current flowing into the V $^+$ pin. It is determined by the following formula: $I_{SET} = 67.7 \text{mV/R}_{SET}$ (@25 $^{\circ}\text{C}$). Set current error is expressed as a percent deviation from this amount. I_{SET} increases at $0.336\%/^{\circ}\text{C}$ @ $T_j = 25^{\circ}\text{C}$.

Note 3: I_{SET} is directly proportional to absolute temperature (°K). I_{SET} at any temperature can be calculated from: $I_{SET} = I_0$ (T/T₀) where I_0 is I_{SET} measured at T_0 (°K).