Constant Current Source and Temperature Sensor ### **FEATURES** - 1µA to 10mA Operation - 0.02%/V Regulation - 0.8V to 30V Operating Voltage - Can Be Used as Linear Temperature Sensor - Draws No Reverse Current ### **APPLICATIONS** - Current Mode Temperature Sensing - Constant Current Source for Shunt References - **■** Cold Junction Compensation - Constant-Gain Bias for Bipolar Differential Stage - Micropower Bias Networks - Buffer for Photoconductive Cell - Current Limiter ### DESCRIPTION The LM334 is a three-terminal current source designed to operate at current levels from $1\mu A$ to 10mA, as set by an external resistor. The device operates as a true two-terminal current source, requiring no extra power connections or input signals. Regulation is typically 0.02%/V and terminal-to-terminal voltage can range from 800mV to 30V. Because the operating current is directly proportional to absolute temperature in degrees Kelvin, the device will also find wide applications as a temperature sensor. The temperature dependence of the operating current is $+\,0.336\%/^{\circ}\text{C}$ at room temperature. For example, a device operating at $298\mu\text{A}$ will have a temperature coefficient of $+\,1\mu\text{A}/^{\circ}\text{C}$. The temperature dependence is extremely accurate and repeatable. If a zero temperature coefficient current source is required, this is easily achieved by adding a diode and a resistor. # Remote Temperature Sensor with Voltage Output ### **ABSOLUTE MAXIMUM RATINGS** ### ### PACKAGE/ORDER INFORMATION ## **ELECTRICAL CHARACTERISTICS** CURRENT SOURCE (Note 1) | SYMBOL | PARAMETER | CONDITIONS | MIN | LM334
TYP | MAX | UNITS | |---|---|---|-------|-------------------|--------------|-------------| | △ISET | Set Current Error, V + = 2.5V
(Note 2) | 10μ A \leq $1_{SET} \leq 1$ mA
1 mA $<$ $1_{SET} \leq 5$ mA
2μ A \leq $1_{SET} < 10\mu$ A | | | 6
8
12 | %
%
% | | | Ratio of Set Current to
V - Current | 10μ A \leq I _{SET} \leq 1mA
1 mA \leq I _{SET} \leq 5mA
2μ A \leq I _{SET} \leq 10 μ A | 14 | 18
14
18 | 26
26 | | | V _{MIN} | Minimum Operating Voltage | 2μ A \leq I _{SET} \leq 100 μ A
100 μ A $<$ I _{SET} \leq 1mA
1mA $<$ I _{SET} \leq 5mA | | 0.8
0.9
1.0 | | V
V
V | | <u>∆I_{SET}</u>
∆V _{IN} | Average Change in Set Current with Input Voltage | $1.5V \le V^+ \le 5V$
$2\mu A \le I_{SET} \le 1mA$
$5V \le V^+ \le 30V$ | | 0.02
0.01 | 0.1
0.05 | %/V
%/V | | | | $1.5V \le V \le 5V$ $1mA < I_{SET} \le 5mA$ $5V \le V \le 30V$ | | 0.03
0.02 | | %/V
%/V | | | Temperature Dependence of
Set Current (Note 3) | 25μA ≤ I _{SET} ≤1mA | 0.96T | T | 1.04T | | | Cs | Effective Shunt Capacitance | | | 15 | | pF | **Note 1:** Unless otherwise specified, tests are performed at $T_j = 25^{\circ}\text{C}$ with pulse testing so that junction temperature does not change during test. **Note 2:** Set current is the current flowing into the V $^+$ pin. It is determined by the following formula: $I_{SET} = 67.7 \text{mV/R}_{SET}$ (@25 $^{\circ}\text{C}$). Set current error is expressed as a percent deviation from this amount. I_{SET} increases at $0.336\%/^{\circ}\text{C}$ @ $T_j = 25^{\circ}\text{C}$. **Note 3:** I_{SET} is directly proportional to absolute temperature (°K). I_{SET} at any temperature can be calculated from: $I_{SET} = I_0$ (T/T₀) where I_0 is I_{SET} measured at T_0 (°K).