International TOR Rectifier ## RADIATION HARDENED POWER MOSFET SURFACE MOUNT (SMD-2) ## **Product Summary** | Part Number | Radiation Level | RDS(on) | lD | |--------------|-----------------|---------------|-----| | IRHNA57260SE | 100K Rads (Si) | 0.038Ω | 55A | International Rectifier's R5™ technology provides high performance power MOSFETs for space applications. These devices have been characterized for Single Event Effects (SEE) with useful performance up to an LET of 80 (MeV/(mg/cm²)). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters. # IRHNA57260SE 200V, N-CHANNEL TECHNOLOGY #### Features: - Single Event Effect (SEE) Hardened - Ultra Low RDS(on) - Low Total Gate Charge - Proton Tolerant - Simple Drive Requirements - Ease of Paralleling - Hermetically Sealed - Surface Mount - Ceramic Package - Light Weight ## **Absolute Maximum Ratings** ## **Pre-Irradiation** | | Parameter | | Units | |--|-----------------------------|--------------|-------| | ID @ VGS = 12V, TC = 25°C | Continuous Drain Current | 55 | | | ID @ VGS = 12V, TC = 100°C | Continuous Drain Current | 35 | Α | | IDM | Pulsed Drain Current ① | 220 | | | P _D @ T _C = 25°C | Max. Power Dissipation | 300 | W | | | Linear Derating Factor | 2.4 | W/°C | | VGS | Gate-to-Source Voltage | ±20 | V | | EAS Single Pulse Avalanche Energy | | 380 | mJ | | IAR Avalanche Current ① | | 55 | Α | | EAR Repetitive Avalanche Energy ① | | 30 | mJ | | dv/dt | Peak Diode Recovery dv/dt 3 | 9.2 | V/ns | | TJ | Operating Junction | -55 to 150 | | | TSTG Storage Temperature Range | | | °C | | Pckg. Mounting Surface Temp. | | 300 (for 5s) | | | | Weight | 3.3(Typical) | g | For footnotes refer to the last page ## Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified) | | Parameter | Min | Тур | Max | Units | Test Conditions | |-------------------------------------|---|-----|------|-------|-------|---| | BVDSS | Drain-to-Source Breakdown Voltage | 200 | _ | _ | V | VGS = 0V, ID = 1.0mA | | ΔBV _{DSS} /ΔT _J | Temperature Coefficient of Breakdown Voltage | _ | 0.26 | _ | V/°C | Reference to 25°C, I _D = 1.0mA | | RDS(on) | Static Drain-to-Source On-State | _ | _ | 0.038 | Ω | VGS = 12V, ID = 35A (4) | | | Resistance | | _ | 0.040 | | VGS = 12V, ID = 55A | | VGS(th) | Gate Threshold Voltage | 2.5 | _ | 4.5 | V | $V_{DS} = V_{GS}$, $I_{D} = 1.0 \text{mA}$ | | 9fs | Forward Transconductance | 35 | _ | _ | S (7) | V _{DS} > 15V, I _{DS} = 35A ④ | | IDSS | Zero Gate Voltage Drain Current | _ | _ | 10 | μΑ | VDS= 160V ,VGS=0V | | | | | _ | 25 | μΑ | V _{DS} = 160V, | | | | | | | | $V_{GS} = 0V, T_{J} = 125^{\circ}C$ | | IGSS | Gate-to-Source Leakage Forward Gate-to-Source Leakage Reverse | | _ | 100 | nA | VGS = 20V | | IGSS | | | _ | -100 | | Vgs = -20V | | Qg | Total Gate Charge | | _ | 165 | | VGS =12V, ID = 35A | | Qgs | Gate-to-Source Charge | | _ | 45 | nC | $V_{DS} = 100V$ | | Q _{gd} | Gate-to-Drain ('Miller') Charge | | _ | 75 | | | | ^t d(on) | Turn-On Delay Time | | _ | 35 | | $V_{DD} = 100V, I_{D} = 35A,$ | | tr | Rise Time | _ | _ | 125 | | $V_{GS} = 12V$, $R_{G} = 2.35\Omega$ | | td(off) | Turn-Off Delay Time | | _ | 80 | ns | | | tf | Fall Time | | _ | 50 | | | | LS+LD | Total Inductance | _ | 4.0 | _ | nΗ | Measured from the center of drain pad to center of source pad | | Ciss | Input Capacitance | | 6044 | _ | | VGS = 0V, VDS = 25V | | Coss | Output Capacitance | | 913 | _ | pF | f = 1.0MHz | | Crss | Reverse Transfer Capacitance | _ | 65 | - | | | ## **Source-Drain Diode Ratings and Characteristics** | | Parameter | Min | Тур | Max | Units | Test Conditions | |-----------------|--|---|-----|-----|-------|---| | Is | Continuous Source Current (Body Diode) | _ | _ | 55 | Α | | | ISM | Pulse Source Current (Body Diode) ① | | _ | 220 | '` | | | | | | | | | | | VSD | Diode Forward Voltage | _ | — | 1.2 | V | $T_j = 25$ °C, $I_S = 55A$, $V_{GS} = 0V$ ④ | | t _{rr} | Reverse Recovery Time | | _ | 450 | nS | Tj = 25°C, IF = 35A, di/dt \leq 100A/ μ s | | QRR | Reverse Recovery Charge | _ | _ | 7.0 | μC | V _{DD} ≤ 25V ④ | | ton | Forward Turn-On Time Intrinsic turn-on | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LD. | | | | | ## **Thermal Resistance** | | Parameter | Min | Тур | Max | Units | Test Conditions | |-----------------------|----------------------|-----|-----|------|-------|---| | RthJC | Junction-to-Case | _ | _ | 0.42 | °C/W | | | R _{th} J-PCB | Junction-to-PC board | _ | 1.6 | _ | C/VV | soldered to a 2" square copper-clad board | Note: Corresponding Spice and Saber models are available on the G&S Website. For footnotes refer to the last page International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison. Table 1. Electrical Characteristics @ Tj = 25°C, Post Total Dose Irradiation 56 | | Parameter | 100K F | Rads (Si) | Units | Test Conditions ® | | |---------------------|--|--------|-----------|-------|--|--| | | | Min | Max | | | | | BV _{DSS} | Drain-to-Source Breakdown Voltage | 200 | _ | V | $V_{GS} = 0V, I_{D} = 1.0 mA$ | | | V _{GS(th)} | Gate Threshold Voltage ④ | 2.0 | 4.5 | | $V_{GS} = V_{DS}$, $I_{D} = 1.0 \text{mA}$ | | | I _{GSS} | Gate-to-Source Leakage Forward | _ | 100 | nA | V _{GS} = 20V | | | I _{GSS} | Gate-to-Source Leakage Reverse | _ | -100 | | V _{GS} = -20V | | | IDSS | Zero Gate Voltage Drain Current | _ | 10 | μΑ | V _{DS} =160V, V _{GS} =0V | | | R _{DS(on)} | Static Drain-to-Source ④ | | | | | | | | On-State Resistance (TO-3) | _ | 0.039 | Ω | $V_{GS} = 12V, I_{D} = 35A$ | | | R _{DS(on)} | Static Drain-to-Source 4 On-State Resistance (SMD-2) | | 0.038 | Ω | V _G S = 12V, I _D = 35A | | | V _{SD} | Diode Forward Voltage ④ | _ | 1.2 | V | VGS = 0V, I _D = 45A | | International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2. **Table 2. Single Event Effect Safe Operating Area** | lon | LET | Energy | Range | V _{DS} (V) | | | | | | | | |-----|----------------------------|--------|-------|-----------------------|-----------------------|-------------------------|------------------------|------------------------|--|--|--| | | MeV/(mg/cm ²)) | (MeV) | (µm) | @ V _{GS} =0V | @V _{GS} =-5V | @ V _{GS} =-10V | @V _{GS} =-15V | @V _{GS} =-20V | | | | | Br | 36.7 | 309 | 39.5 | 200 | 200 | 200 | 200 | 200 | | | | | I | 59.8 | 341 | 32.5 | 200 | 200 | 200 | 185 | 120 | | | | | Au | 82.3 | 350 | 28.4 | 200 | 200 | 150 | 50 | 25 | | | | Fig a. Single Event Effect, Safe Operating Area For footnotes refer to the last page Fig 1. Typical Output Characteristics Fig 2. Typical Output Characteristics Fig 3. Typical Transfer Characteristics **Fig 4.** Normalized On-Resistance Vs. Temperature Pre-Irradiation IRHNA57260SE **Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage **Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage Fig 8. Maximum Safe Operating Area **Fig 9.** Maximum Drain Current Vs. Case Temperature Fig 10a. Switching Time Test Circuit Fig 10b. Switching Time Waveforms Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case Pre-Irradiation IRHNA57260SE Fig 12a. Unclamped Inductive Test Circuit Fig 12b. Unclamped Inductive Waveforms Fig 13a. Basic Gate Charge Waveform **Fig 12c.** Maximum Avalanche Energy Vs. Drain Current Fig 13b. Gate Charge Test Circuit ## Footnotes: - ① Repetitive Rating; Pulse width limited by maximum junction temperature. - ② $V_{DD} = 50V$, starting $T_J = 25$ °C, L= 0.25 mH Peak IL = 55A, $V_{GS} = 12V$ - $\begin{tabular}{ll} \hline @ & I_{SD} \le 55A, & di/dt \le 190A/\mu s, \\ & V_{DD} \le 200V, & T_{J} \le 150^{\circ}C \\ \hline \end{tabular}$ - ④ Pulse width \leq 300 µs; Duty Cycle \leq 2% - Total Dose Irradiation with V_{GS} Bias. volt V_{GS} applied and V_{DS} = 0 during irradiation per MIL-STD-750, method 1019, condition A. - ® Total Dose Irradiation with V_{DS} Bias. 160 volt V_{DS} applied and V_{GS} = 0 during irradiation per MIL-STD-750, method 1019, condition A. ## Case Outline and Dimensions — SMD-2 #### NOTES: - 1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994. - 2. CONTROLLING DIMENSION: INCH. - 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. - (4) DIMENSION INCLUDES METALLIZATION FLASH. - (5) DIMENSION DOES NOT INCLUDE METALLIZATION FLASH. ### PAD ASSIGNMENTS - 1 = DRAIN - 2 = GATE - 3 = SOURCE IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 08/01