# International TOR Rectifier

# RADIATION HARDENED POWER MOSFET THRU-HOLE (TO-204AA/AE)

IRH7450SE 500V, N-CHANNEL RAD Hard HEXFET TECHNOLOGY

## **Product Summary**

| Part Number | Radiation Level | RDS(on) | lb  |
|-------------|-----------------|---------|-----|
| IRH7450SE   | 100K Rads (Si)  | 0.51Ω   | 12A |

International Rectifier's RADHard™ HEXFET® MOSFET technology provides high performance power MOSFETs for space applications. This technology has over a decade of proven performance and reliability in satellite applications. These devices have been characterized for both Total Dose and Single Event Effects (SEE). The combination of low RDS(on) and low gate charge reduces the power losses in switching applications such as DC to DC converters and motor control. These devices retain all of the well established advantages of MOSFETs such as voltage control, fast switching, ease of paralleling and temperature stability of electrical parameters.



#### Features:

- Single Event Effect (SEE) Hardened
- Ultra Low RDS(on)
- Low Total Gate Charge
- Proton Tolerant
- Simple Drive Requirements
- Ease of Paralleling
- Hermetically Sealed
- Light Weight

# **Absolute Maximum Ratings**

## **Pre-Irradiation**

|                                                                 | Parameter                   |                                               | Units |
|-----------------------------------------------------------------|-----------------------------|-----------------------------------------------|-------|
| ID @ VGS = 12V, TC = 25°C                                       | Continuous Drain Current    | 12                                            |       |
| I <sub>D</sub> @ V <sub>G</sub> S = 12V, T <sub>C</sub> = 100°C | Continuous Drain Current    | 7.0                                           | Α     |
| IDM                                                             | Pulsed Drain Current ①      | 48                                            |       |
| P <sub>D</sub> @ T <sub>C</sub> = 25°C                          | Max. Power Dissipation      | 151                                           | W     |
|                                                                 | Linear Derating Factor      | 1.2                                           | W/°C  |
| VGS                                                             | Gate-to-Source Voltage      | ±20                                           | V     |
| EAS Single Pulse Avalanche Energy ②                             |                             | 500                                           | mJ    |
| IAR Avalanche Current ①                                         |                             | 12                                            | Α     |
| EAR Repetitive Avalanche Energy ①                               |                             | 15                                            | mJ    |
| dv/dt                                                           | Peak Diode Recovery dv/dt 3 | 4.2                                           | V/ns  |
| TJ                                                              | Operating Junction          | -55 to 150                                    |       |
| TSTG                                                            | Storage Temperature Range   |                                               | °C    |
|                                                                 | Lead Temperature            | 300 (0.063 in. (1.6mm) from case for 10 sec.) |       |
|                                                                 | Weight                      | 11.5 (Typical)                                | g     |

For footnotes refer to the last page

1

# Electrical Characteristics @ Tj = 25°C (Unless Otherwise Specified)

|                                     | Parameter                                               | Min | Тур  | Max  | Units | Test Conditions                                                                               |  |
|-------------------------------------|---------------------------------------------------------|-----|------|------|-------|-----------------------------------------------------------------------------------------------|--|
| BVDSS                               | Drain-to-Source Breakdown Voltage                       | 500 | _    | _    | V     | VGS = 0V, ID = 1.0mA                                                                          |  |
| ΔBV <sub>DSS</sub> /ΔT <sub>J</sub> | ΔBVDSS/ΔTJ Temperature Coefficient of Breakdown Voltage |     | 0.6  | _    | V/°C  | Reference to 25°C, I <sub>D</sub> = 1.0mA                                                     |  |
| RDS(on)                             | Static Drain-to-Source On-State                         |     | _    | 0.51 | Ω     | VGS = 12V, ID = 7.0A (4)                                                                      |  |
|                                     | Resistance                                              | _   | _    | 0.57 | 1 22  | VGS = 12V, ID = 12A                                                                           |  |
| VGS(th)                             | Gate Threshold Voltage                                  | 2.5 | _    | 4.5  | V     | $V_{DS} = V_{GS}$ , $I_{D} = 1.0 \text{mA}$                                                   |  |
| 9fs                                 | Forward Transconductance                                | 3.0 | _    | _    | S (7) | V <sub>DS</sub> > 15V, I <sub>DS</sub> = 7.0A ④                                               |  |
| IDSS                                | Zero Gate Voltage Drain Current                         |     | _    | 50   | μА    | V <sub>DS</sub> = 400V ,V <sub>GS</sub> =0V                                                   |  |
|                                     |                                                         |     | _    | 250  | μΑ    | V <sub>DS</sub> = 400V,                                                                       |  |
|                                     |                                                         |     |      |      |       | V <sub>G</sub> S = 0V, T <sub>J</sub> = 125°C                                                 |  |
| IGSS                                | Gate-to-Source Leakage Forward                          |     | _    | 100  | ^     | VGS = 20V                                                                                     |  |
| IGSS                                | Gate-to-Source Leakage Reverse                          |     | _    | -100 | nA    | Vgs = -20V                                                                                    |  |
| Qg                                  | Total Gate Charge                                       |     | _    | 140  |       | VGS =12V, ID = 12A                                                                            |  |
| Qgs                                 | •                                                       |     | _    | 35   | nC    | V <sub>DS</sub> = 250V                                                                        |  |
| Q <sub>gd</sub>                     |                                                         |     | _    | 75   | 1     |                                                                                               |  |
| td(on)                              | Turn-On Delay Time                                      |     | _    | 35   |       | V <sub>DD</sub> = 250V, I <sub>D</sub> = 12A,                                                 |  |
| tr                                  | Rise Time                                               | _   | _    | 60   |       | $V_{GS} = 12V, R_{G} = 2.35\Omega$                                                            |  |
| td(off)                             | Turn-Off Delay Time                                     |     | _    | 75   | ns    |                                                                                               |  |
| tf                                  | Fall Time                                               | _   | _    | 60   |       |                                                                                               |  |
| LS+LD                               | Total Inductance                                        | _   | 10   | _    | nΗ    | Measured from drain lead (6mm/0.25in. from package) to source lead (6mm/0.25in. from package) |  |
| C <sub>iss</sub>                    | Input Capacitance                                       | _   | 2800 | _    |       | VGS = 0V, VDS = 25V                                                                           |  |
| Coss                                | Output Capacitance                                      | _   | 640  | _    | pF    | f = 1.0MHz                                                                                    |  |
| C <sub>rss</sub>                    | Reverse Transfer Capacitance                            | _   | 250  | _    |       |                                                                                               |  |

# **Source-Drain Diode Ratings and Characteristics**

|                 | Parameter                              | Min                                                                                        | Тур | Max | Units | Test Conditions                              |  |  |  |
|-----------------|----------------------------------------|--------------------------------------------------------------------------------------------|-----|-----|-------|----------------------------------------------|--|--|--|
| Is              | Continuous Source Current (Body Diode) | _                                                                                          | _   | 12  | Α     |                                              |  |  |  |
| ISM             | Pulse Source Current (Body Diode) ①    | _                                                                                          | _   | 48  | ^     |                                              |  |  |  |
|                 |                                        |                                                                                            |     |     |       |                                              |  |  |  |
| VSD             | Diode Forward Voltage                  | _                                                                                          | _   | 1.6 | V     | $T_j = 25$ °C, $I_S = 12A$ , $V_{GS} = 0V$ ④ |  |  |  |
| t <sub>rr</sub> | Reverse Recovery Time                  | _                                                                                          | _   | 500 | nS    | $T_j$ = 25°C, $I_F$ = 12A, $di/dt$ ≤ 100A/μs |  |  |  |
| QRR             | Reverse Recovery Charge                | _                                                                                          | _   | 9.6 | μС    | V <sub>DD</sub> ≤ 50V ④                      |  |  |  |
| ton             | Forward Turn-On Time Intrinsic turn-on | Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by LS + LE |     |     |       |                                              |  |  |  |

# **Thermal Resistance**

|                    | Parameter           | Min | Тур  | Max  | Units | Test Conditions      |
|--------------------|---------------------|-----|------|------|-------|----------------------|
| RthJC              | Junction-to-Case    | _   | _    | 0.83 |       |                      |
| RthCS              | Case-to-Sink        | _   | 0.12 | _    | °C/W  |                      |
| R <sub>th</sub> JA | Junction-to-Ambient | _   | _    | 30   |       | Typical socket mount |

Note: Corresponding Spice and Saber models are available on the G&S Website.

For footnotes refer to the last page

**Pre-Irradiation** IRH7450SE

International Rectifier Radiation Hardened MOSFETs are tested to verify their radiation hardness capability. The hardness assurance program at International Rectifier is comprised of two radiation environments. Every manufacturing lot is tested for total ionizing dose (per notes 5 and 6) using the TO-3 package. Both pre- and post-irradiation performance are tested and specified using the same drive circuitry and test conditions in order to provide a direct comparison.

| • |           |      | OSt rotar | D030 II 10 | ididilon ee    |
|---|-----------|------|-----------|------------|----------------|
| Γ | Parameter | 100K | Rads (Si) | Units      | Test Condition |

Table 1 Flectrical Characteristics @ Ti = 25°C Post Total Dose Irradiation @@

|                     | Parameter                         | 100K F | 100K Rads (Si) |    | Test Conditions ®                           |  |
|---------------------|-----------------------------------|--------|----------------|----|---------------------------------------------|--|
|                     |                                   | Min    | Max            |    |                                             |  |
| BV <sub>DSS</sub>   | Drain-to-Source Breakdown Voltage | 500    |                | V  | $V_{GS} = 0V, I_{D} = 1.0 \text{mA}$        |  |
| V <sub>GS(th)</sub> | Gate Threshold Voltage            | 2.0    | 4.5            |    | $V_{GS} = V_{DS}$ , $I_{D} = 1.0 \text{mA}$ |  |
| IGSS                | Gate-to-Source Leakage Forward    | _      | 100            | nA | V <sub>GS</sub> = 20V                       |  |
| I <sub>GSS</sub>    | Gate-to-Source Leakage Reverse    | _      | -100           |    | V <sub>GS</sub> = -20V                      |  |
| IDSS                | Zero Gate Voltage Drain Current   | _      | 50             | μA | V <sub>DS</sub> = 400V, V <sub>GS</sub> =0V |  |
| R <sub>DS(on)</sub> | Static Drain-to-Source ④          |        |                |    |                                             |  |
|                     | On-State Resistance               | _      | 0.51           | Ω  | $V_{GS} = 12V, I_{D} = 7.0A$                |  |
| V <sub>SD</sub>     | Diode Forward Voltage ④           | _      | 1.6            | V  | VGS = 0V, I <sub>D</sub> = 12A              |  |

International Rectifier radiation hardened MOSFETs have been characterized in heavy ion environment for Single Event Effects (SEE). Single Event Effects characterization is illustrated in Fig. a and Table 2.

Table 2. Single Event Effect Safe Operating Area

| Ion | LET                     | Energy  | Range | V <sub>DS</sub> (V) |                                     |                           |                          |                          |  |
|-----|-------------------------|---------|-------|---------------------|-------------------------------------|---------------------------|--------------------------|--------------------------|--|
|     | MeV/(mg/cm <sup>2</sup> | )) (MeV | )     | (µm) @              | V <sub>GS</sub> =0V @V <sub>G</sub> | s=-5V @V <sub>GS</sub> =- | 10V@V <sub>GS</sub> =-15 | V @V <sub>GS</sub> =-20V |  |
| Cu  | 28                      | 285     | 43    | 375                 | 375                                 | 375                       | 375                      | 375                      |  |
| Br  | 36.8                    | 305     | 39    | 350                 | 350                                 | 350                       | 325                      | 300                      |  |
| Ni  | 26.6                    | 265     | 42    | 375                 | -                                   | _                         | _                        | _                        |  |

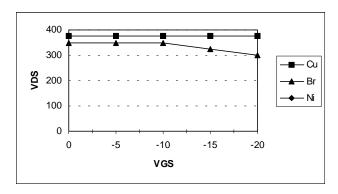



Fig a. Single Event Effect, Safe Operating Area

For footnotes refer to the last page

3

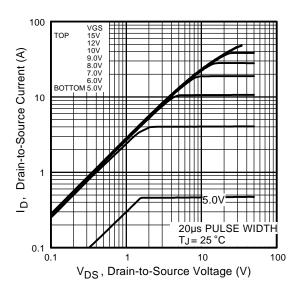



Fig 1. Typical Output Characteristics

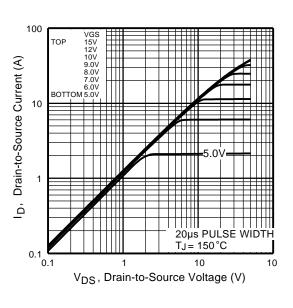
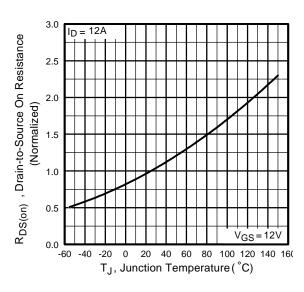




Fig 2. Typical Output Characteristics

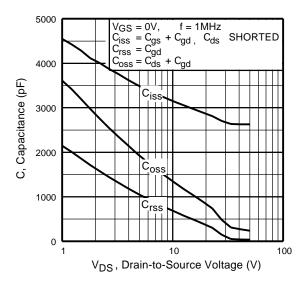
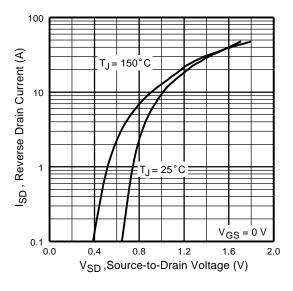
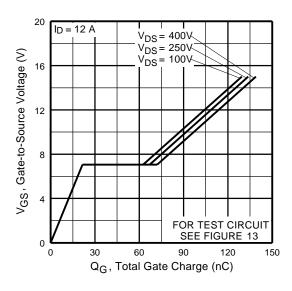



Fig 3. Typical Transfer Characteristics




**Fig 4.** Normalized On-Resistance Vs. Temperature


Pre-Irradiation IRH7450SE



**Fig 5.** Typical Capacitance Vs. Drain-to-Source Voltage



**Fig 7.** Typical Source-Drain Diode Forward Voltage



**Fig 6.** Typical Gate Charge Vs. Gate-to-Source Voltage

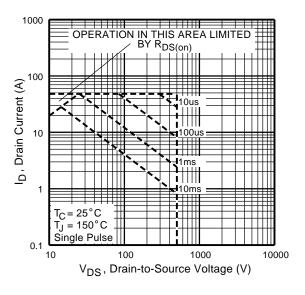
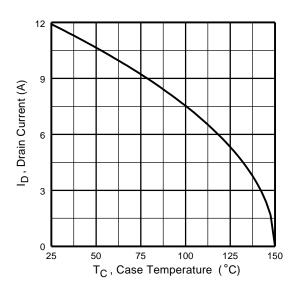




Fig 8. Maximum Safe Operating Area



**Fig 9.** Maximum Drain Current Vs. Case Temperature

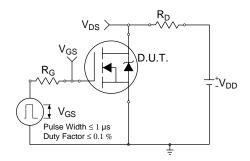



Fig 10a. Switching Time Test Circuit

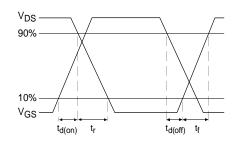



Fig 10b. Switching Time Waveforms

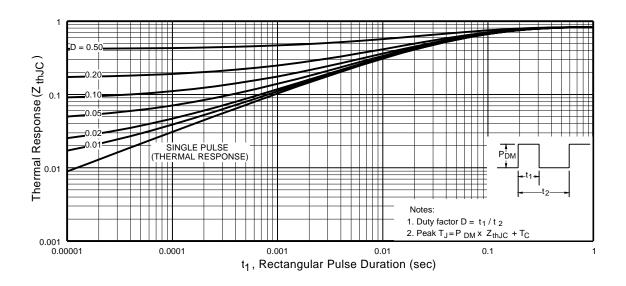



Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

Pre-Irradiation IRH7450SE

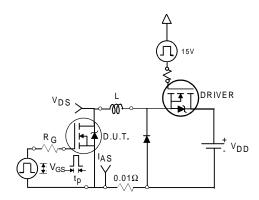



Fig 12a. Unclamped Inductive Test Circuit

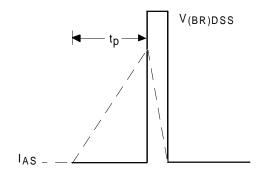



Fig 12b. Unclamped Inductive Waveforms

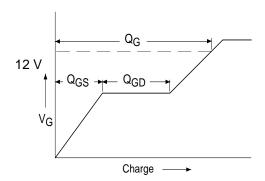
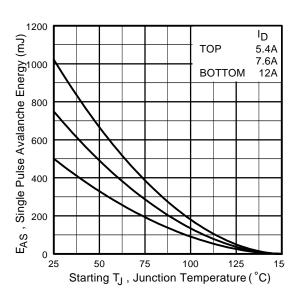
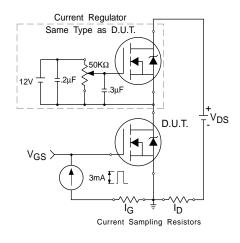
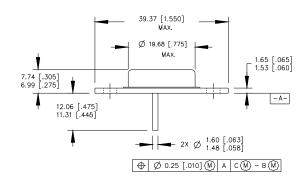



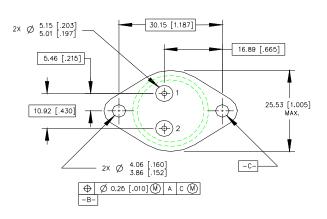

Fig 13a. Basic Gate Charge Waveform



**Fig 12c.** Maximum Avalanche Energy Vs. Drain Current





Fig 13b. Gate Charge Test Circuit


### Footnotes:

- ① Repetitive Rating; Pulse width limited by maximum junction temperature.
- V<sub>DD</sub> = 50V, starting T<sub>J</sub> = 25°C, L= 6.9 mH Peak I<sub>L</sub> = 12A, V<sub>GS</sub> = 12V
- ③  $I_{SD} \le 12A$ ,  $di/dt \le 400A/\mu s$ ,  $V_{DD} \le 500V$ ,  $T_{J} \le 150^{\circ}C$

- ④ Pulse width ≤ 300 µs; Duty Cycle ≤ 2%
- Total Dose Irradiation with V<sub>GS</sub> Bias.
   volt V<sub>GS</sub> applied and V<sub>DS</sub> = 0 during irradiation per MIL-STD-750, method 1019, condition A.
- ® Total Dose Irradiation with V<sub>DS</sub> Bias. 400 volt V<sub>DS</sub> applied and V<sub>GS</sub> = 0 during irradiation per MIL-STD-750, method 1019, condition A.

# Case Outline and Dimensions —TO-204AE (Modified TO-3)





PIN ASSIGNMENTS

1 - SOURCE
2 - GATE
3 - DRAIN (CASE)

#### NOTES:

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
- 4. OUTLINE CONFORMS TO JEDEC OUTLINE TO-204AE.

International
Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. Data and specifications subject to change without notice. 05/01