

IRGPH50S

INSULATED GATE BIPOLAR TRANSISTOR

Standard Speed IGBT

Features

- Switching-loss rating includes all "tail" losses
- Optimized for line frequency operation (to 400Hz)
 See Fig. 1 for Current vs. Frequency curve

 $V_{CES} = 1200V$ $V_{CE(sat)} \le 2.0V$ $@V_{GE} = 15V, I_C = 33A$

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	57	
I _C @ T _C = 100°C	Continuous Collector Current	33	Α
I _{CM}	Pulsed Collector Current ①	110	
I _{LM}	Clamped Inductive Load Current ②	110	
V_{GE}	Gate-to-Emitter Voltage	±20	V
E _{ARV}	Reverse Voltage Avalanche Energy 3	20	mJ
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	78	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting torque, 6-32 or M3 screw.	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case	_	_	0.64	
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	°C/W
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)		g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
V _{(BR)ECS}	Emitter-to-Collector Breakdown Voltage 4	20		_	V	$V_{GE} = 0V, I_{C} = 1.0A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	1.3	_	V/°C	$V_{GE} = 0V$, $I_C = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	1.7	2.0		I _C = 33A	$V_{GE} = 15V$
		_	2.2	_	V	I _C = 57A	See Fig. 2, 5
		_	2.0	_		$I_C = 33A, T_J = 150^{\circ}C$	
$V_{GE(th)}$	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage	_	-13	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
g _{fe}	Forward Transconductance ⑤	_	19	_	S	$V_{CE} = 100V, I_{C} = 33A$	
I _{CES}	Zero Gate Voltage Collector Current	_		250	μΑ	$V_{GE} = 0V, V_{CE} = 1200V$	•
		_	_	1000		$V_{GE} = 0V, V_{CE} = 1200V$, T _J = 150°C
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
Q_g	Total Gate Charge (turn-on)	_	72	108		I _C = 33A
Q _{ge}	Gate - Emitter Charge (turn-on)	_	16	24	nC	$V_{CC} = 400V$ See Fig. 8
Q_{gc}	Gate - Collector Charge (turn-on)	_	19	30		V _{GE} = 15V
t _{d(on)}	Turn-On Delay Time	_	62	_		$T_J = 25^{\circ}C$
t _r	Rise Time	_	77	_	ns	$I_C = 33A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	_	1200	1800		V_{GE} = 15V, R_G = 5.0 Ω
t _f	Fall Time	_	780	1200		Energy losses include "tail"
Eon	Turn-On Switching Loss	_	3.0	_		
E _{off}	Turn-Off Switching Loss	_	26	_	mJ	See Fig. 9, 10, 11, 14
E _{ts}	Total Switching Loss	_	29	44		
t _{d(on)}	Turn-On Delay Time	_	52	_		$T_{J} = 150^{\circ}C,$
t _r	Rise Time	_	76	_	ns	$I_C = 33A, V_{CC} = 960V$
t _{d(off)}	Turn-Off Delay Time	_	1300	_		$V_{GE} = 15V, R_{G} = 5.0\Omega$
t _f	Fall Time	_	2100	_		Energy losses include "tail"
E _{ts}	Total Switching Loss	_	55	_	mJ	See Fig. 10, 14
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package
C _{ies}	Input Capacitance	_	1900	_		V _{GE} = 0V
Coes	Output Capacitance	_	140	_	pF	$V_{CC} = 30V$ See Fig. 7
C _{res}	Reverse Transfer Capacitance	_	24	_		f = 1.0MHz

Notes:

- Repetitive rating; V_{GE}=20V, pulse width limited by max. junction temperature.
 (See fig. 13b)
- ③ Repetitive rating; pulse width limited by maximum junction temperature.
- S Pulse width 5.0µs, single shot.

- $@~V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,~$ $R_{G}\!\!=\!5.0\Omega,~($ See fig. 13a)
- 4 Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.

Refer to Section D - page D-13 Package Outline 3 - JEDEC Outline TO-247AC (TO-3P)