
International Rectifier

IRGPH40MD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY

DIODE Features

- Short circuit rated -10 μ s @125°C, V _{GE} = 15V
- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for medium operating frequency (1 to 10kHz)

Short Circuit Rated Fast CoPack IGBT

$$V_{CES}$$
 = 1200V $V_{CE(sat)} \le 3.4V$ $@V_{GE}$ = 15V, I_C = 18A

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

Parameter		Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	31	
I _C @ T _C = 100°C	Continuous Collector Current	18	
I _{CM}	Pulsed Collector Current ①	62	Α
I _{LM}	Clamped Inductive Load Current ②	62	
I _F @ T _C = 100°C	Diode Continuous Forward Current	8.0	
I _{FM}	Diode Maximum Forward Current	62	
t _{sc}	Short Circuit Withstand Time	10	μs
V_{GE}	Gate-to-Emitter Voltage	± 20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	160	W
P _D @ T _C = 100°C	Maximum Power Dissipation	65	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	_	_	0.77	
$R_{\theta JC}$	Junction-to-Case - Diode	_	_	1.7	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temp. Coeff. of Breakdown Voltage	_	1.1	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.3	3.4		$I_C = 18A$ $V_{GE} = 15V$	
		_	3.0	_	V	I _C = 31A	
		_	2.8	_		I _C = 18A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temp. Coeff. of Threshold Voltage	_	-14	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g _{fe}	Forward Transconductance ④	4.0	10	_	S	$V_{CE} = 100V, I_{C} = 18A$	
I _{CES}	Zero Gate Voltage Collector Current	_	_	250	μΑ	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	_	3500		V _{GE} = 0V, V _{CE} = 1200V, T _J = 150°C	
V_{FM}	Diode Forward Voltage Drop	_	2.6	3.3	V	I _C = 8A	
		_	2.3	3.0		$I_C = 8A, T_J = 150^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Condition	าร	
Q_g	Total Gate Charge (turn-on)	_	50	75		I _C = 18A		
Qge	Gate - Emitter Charge (turn-on)	_	11	21	nC	$V_{CC} = 400V$		
Q_{gc}	Gate - Collector Charge (turn-on)	_	15	30				
t _{d(on)}	Turn-On Delay Time	_	67	_		$T_J = 25^{\circ}C$		
t _r	Rise Time	_	89		ns	$I_C = 18A, V_{CC} = 800V$		
t _{d(off)}	Turn-Off Delay Time	_	340	930		V_{GE} = 15V, R_{G} = 10 Ω		
t _f	Fall Time	_	510	930		Energy losses include	'tail" and	
Eon	Turn-On Switching Loss	_	2.1	_		diode reverse recovery		
E _{off}	Turn-Off Switching Loss	_	5.9		mJ			
E _{ts}	Total Switching Loss	_	8.0	13				
t _{sc}	Short Circuit Withstand Time	10	_	-	μs	$V_{CC} = 720V, T_{J} = 125^{\circ}$	С	
						V_{GE} = 15V, R_G = 10 Ω ,	V _{CPK} < 1000V	
t _{d(on)}	Turn-On Delay Time	_	64	_		$T_{J} = 150^{\circ}C,$		
r	Rise Time	_	74		ns	$I_C = 18A, V_{CC} = 800V$		
t _{d(off)}	Turn-Off Delay Time	_	550	_		V_{GE} = 15V, R_G = 10 Ω		
t _f	Fall Time	_	1200	_		Energy losses include	'tail" and	
E _{ts}	Total Switching Loss	_	16	_	mJ	diode reverse recovery		
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from p	ackage	
Cies	Input Capacitance	_	1400			$V_{GE} = 0V$		
C _{oes}	Output Capacitance	_	100		pF	$V_{CC} = 30V$		
C _{res}	Reverse Transfer Capacitance	_	15	_		f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time	_	63	95	ns	$T_J = 25^{\circ}C$		
		_	106	160		T _J = 125°C	$I_F = 8A$	
Irr	Diode Peak Reverse Recovery Current	_	4.5	8.0	Α	T _J = 25°C		
		_	6.2	11	•	T _J = 125°C	V _R = 200V	
Q _{rr}	Diode Reverse Recovery Charge	_	140	380	nC	T _J = 25°C		
		_	335	880	Ì	T _J = 125°C	di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	133	_	A/µs	T _J = 25°C		
, ,	During t _b	_	85	_		T _J = 125°C		

Notes: ① Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature.

 $^{@~}V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,~R_{G}\!\!=\!10\Omega$

Pulse width 5.0µs, single shot.

③ Pulse width \leq 80µs; duty factor \leq 0.1%.