
International Rectifier

IRGPH30MD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY DIODE

Features

- Short circuit rated -10µs @125°C, V GF = 15V
- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for medium operating frequency (1 to 10kHz)

Short Circuit Rated Fast CoPack IGBT

$$V_{CES}$$
 = 1200V $V_{CE(sat)} \le 3.5$ V $@V_{GE}$ = 15V, I_C = 9.0A

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, applications.

These new short circuit rated devices are especially suited for motor control and other applications requiring short circuit withstand capability.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Voltage	1200	V
I _C @ T _C = 25°C	Continuous Collector Current	15	
I _C @ T _C = 100°C	Continuous Collector Current	9.0	
I _{CM}	Pulsed Collector Current ①	30	Α
I _{LM}	Clamped Inductive Load Current ②	30	
I _F @ T _C = 100°C	Diode Continuous Forward Current	6.0	
I _{FM}	Diode Maximum Forward Current	30	
t _{sc}	Short Circuit Withstand Time	10	μs
V_{GE}	Gate-to-Emitter Voltage	± 20	V
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	100	W
P _D @ T _C = 100°C	Maximum Power Dissipation	42	
TJ	Operating Junction and	-55 to +150	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)	
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)	

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	_	_	1.2	
$R_{\theta JC}$	Junction-to-Case - Diode	_	_	2.5	°C/W
$R_{\theta CS}$	Case-to-Sink, flat, greased surface	_	0.24	_	
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	1200	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	_	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	3.1	3.5		$I_C = 9.0A$ $V_{GE} = 15V$	
		_	4.9	_	V	I _C = 15A	
		_	3.6	_		I _C = 9.0A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-14	_	mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
9 _{fe}	Forward Transconductance ④	2.5	_	_	S	$V_{CE} = 100V, I_{C} = 9.0A$	
I _{CES}	Zero Gate Voltage Collector Current	_	-	250	μΑ	$V_{GE} = 0V, V_{CE} = 1200V$	
		_	-	2500		$V_{GE} = 0V, V_{CE} = 1200V, T_{J} = 150^{\circ}C$	
V_{FM}	Diode Forward Voltage Drop	_	2.7	3.0	V	$I_{C} = 6.0A$	
		_	2.4	2.7		$I_C = 6.0A$, $T_J = 150$ °C	
I _{GES}	Gate-to-Emitter Leakage Current			±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Qg	Total Gate Charge (turn-on)	_	25	30		$I_{C} = 9.0A$		
Q _{ge}	Gate - Emitter Charge (turn-on)	_	_	6.0	nC	V _{CC} = 960V		
Q _{gc}	Gate - Collector Charge (turn-on)	_	_	15				
t _{d(on)}	Turn-On Delay Time	_	2.3	_		T _J = 25°C		
t _r	Rise Time	_	10	_	ns	$I_C = 9.0A$, $V_{CC} = 960V$		
t _{d(off)}	Turn-Off Delay Time	_	200	450		$V_{GE} = 15V$, $R_G = 23\Omega$		
t _f	Fall Time	_	210	390		Energy losses include "tail" and		
Eon	Turn-On Switching Loss	_	_	_		diode reverse recovery		
E _{off}	Turn-Off Switching Loss	_	_	_	mJ			
E _{ts}	Total Switching Loss	_	4.0	7.0				
t _{sc}	Short Circuit Withstand Time	10	_	_	μs	$V_{CC} = 720V, T_J = 125^{\circ}$	C	
						$V_{GE} = 15V$, $R_G = 23\Omega$,	V _{CPK} < 1000V	
t _{d(on)}	Turn-On Delay Time	_	33	_		T _J = 150°C,		
t _r	Rise Time	_	20	_	ns	$I_C = 9.0A$, $V_{CC} = 960V$		
t _{d(off)}	Turn-Off Delay Time	_	480	_		$V_{GE} = 15V$, $R_G = 23\Omega$		
t _f	Fall Time	_	450	_		Energy losses include "tail" and		
E _{ts}	Total Switching Loss	_	8.0	_	mJ	diode reverse recovery.		
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package		
C _{ies}	Input Capacitance	_	670	_		$V_{GE} = 0V$		
C _{oes}	Output Capacitance	_	50	_	pF	V _{CC} = 30V		
C _{res}	Reverse Transfer Capacitance	_	10	_		f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time	_	53	80	ns	T _J = 25°C		
		_	87	130		T _J = 125°C	$I_F = 6.0A$	
Irr	Diode Peak Reverse Recovery Current	_	4.4	8.0	Α	T _J = 25°C		
		_	5.0	9.0		T _J = 125°C	$V_{R} = 200V$	
Q _{rr}	Diode Reverse Recovery Charge	_	116	320	nC	T _J = 25°C		
		_	233	585		T _J = 125°C	$di/dt = 200A/\mu s$	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	180	_	A/µs	T _J = 25°C	·	
` ´	During t _b	_	100	_	1	T _J = 125°C		

Notes: ① Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature.

[@] $V_{CC} = 80\% (V_{CES}), \ V_{GE} = 20V, \ L = 10 \mu H, \ R_G = 23 \Omega$

Pulse width 5.0µs, single shot.

③ Pulse width $\leq 80\mu s$; duty factor $\leq 0.1\%$.