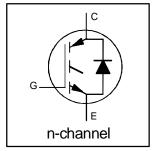
International Rectifier


IRGP450UD2

INSULATED GATE BIPOLAR TRANSISTOR WITH ULTRAFAST SOFT RECOVERY

UltraFast CoPack IGBT

DIODE Features

- Switching-loss rating includes all "tail" losses
- HEXFRED[™] soft ultrafast diodes
- Optimized for high operating frequency (over 5kHz)

$$V_{CES} = 500V$$
 $V_{CE(sat)} \le 3.2V$
 $@V_{GE} = 15V, I_C = 33A$

Description

Co-packaged IGBTs are a natural extension of International Rectifier's well known IGBT line. They provide the convenience of an IGBT and an ultrafast recovery diode in one package, resulting in substantial benefits to a host of high-voltage, high-current, motor control, UPS and power supply applications.

Absolute Maximum Ratings

	-			
	Parameter	Max.	Units	
V_{CES}	Collector-to-Emitter Voltage	500	V	
I _C @ T _C = 25°C	Continuous Collector Current	59		
I _C @ T _C = 100°C	Continuous Collector Current	33		
I _{CM}	Pulsed Collector Current ①	120	Α	
I _{LM}	Clamped Inductive Load Current ②	120		
$I_F @ T_C = 100^{\circ}C$	Diode Continuous Forward Current	29		
I _{FM}	Diode Maximum Forward Current	120		
V_{GE}	Gate-to-Emitter Voltage	± 20	V	
$P_D @ T_C = 25^{\circ}C$	Maximum Power Dissipation	200	W	
$P_D @ T_C = 100^{\circ}C$	Maximum Power Dissipation	78		
TJ	Operating Junction and	-55 to +150		
T _{STG}	Storage Temperature Range		°C	
	Soldering Temperature, for 10 sec.	300 (0.063 in. (1.6mm) from case)		
	Mounting Torque, 6-32 or M3 Screw.	10 lbf•in (1.1 N•m)		

Thermal Resistance

	Parameter	Min.	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case - IGBT	_	_	0.64	
$R_{\theta JC}$	Junction-to-Case - Diode	_	_	0.83	°C/W
R _{θCS}	Case-to-Sink, flat, greased surface	_	0.24	_	
$R_{\theta JA}$	Junction-to-Ambient, typical socket mount	_	_	40	
Wt	Weight	_	6 (0.21)	_	g (oz)

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	<u> </u>			. ,			
	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage 3	500	_	_	V	$V_{GE} = 0V, I_{C} = 250\mu A$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage	_	0.41	_	V/°C	$V_{GE} = 0V, I_{C} = 1.0mA$	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage	_	2.1	3.2		$I_C = 33A$ $V_{GE} = 15V$	
		_	2.6	_	V	I _C = 59A	
		_	2.1	_		I _C = 33A, T _J = 150°C	
V _{GE(th)}	Gate Threshold Voltage	3.0	_	5.5		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_J$	Temperature Coeff. of Threshold Voltage	_	-10	_	mV/°C	$V_{CE} = V_{GE}$, $I_C = 250\mu A$	
g _{fe}	Forward Transconductance ④	7.0	22	_	S	$V_{CE} = 100V, I_{C} = 33A$	
I _{CES}	Zero Gate Voltage Collector Current	_		250	μΑ	$V_{GE} = 0V, V_{CE} = 500V$	
		_		6500		$V_{GE} = 0V, V_{CE} = 500V, T_{J} = 150^{\circ}C$	
V_{FM}	Diode Forward Voltage Drop	_	1.3	1.7	V	I _C = 25A	
		_	1.2	1.5		$I_C = 25A, T_J = 150^{\circ}C$	
I _{GES}	Gate-to-Emitter Leakage Current	_	_	±100	nA	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Condition	ns	
Qg	Total Gate Charge (turn-on)	_	120	180		I _C = 33A		
Q _{ge}	Gate - Emitter Charge (turn-on)	_	22	33	nC	V _{CC} = 400V		
Q _{gc}	Gate - Collector Charge (turn-on)	_	41	62				
t _{d(on)}	Turn-On Delay Time	_	33	_		$T_J = 25^{\circ}C$		
t _r	Rise Time	_	26	_	ns	$I_C = 33A, V_{CC} = 400V$		
t _{d(off)}	Turn-Off Delay Time	_	110	170		$V_{GE} = 15V$, $R_G = 5.0\Omega$		
t _f	Fall Time	_	91	140		Energy losses include '	'tail" and	
Eon	Turn-On Switching Loss	_	0.91	_		diode reverse recovery		
E _{off}	Turn-Off Switching Loss	_	0.25	_	mJ			
E _{ts}	Total Switching Loss	_	1.2	1.7				
t _{d(on)}	Turn-On Delay Time	_	37	_		$T_{J} = 150^{\circ}C,$		
r	Rise Time	_	29	_	ns	$I_C = 33A$, $V_{CC} = 400V$		
t _{d(off)}	Turn-Off Delay Time	_	160	_		$V_{GE} = 15V$, $R_G = 5.0\Omega$		
t _f	Fall Time	_	110	_		Energy losses include '	'tail" and	
Ets	Total Switching Loss	_	1.8	_	mJ	diode reverse recovery.		
LE	Internal Emitter Inductance	_	13	_	nΗ	Measured 5mm from package		
C _{ies}	Input Capacitance	_	2700	_		$V_{GE} = 0V$		
Coes	Output Capacitance	_	280	_	pF	$V_{CC} = 30V$		
C _{res}	Reverse Transfer Capacitance	_	34	_		f = 1.0MHz	_	
t _{rr}	Diode Reverse Recovery Time	_	50	75	ns	$T_J = 25^{\circ}C$		
		_	105	160		T _J = 125°C	$I_F = 25A$	
Irr	Diode Peak Reverse Recovery Current	_	4.5	10	Α	$T_J = 25^{\circ}C$		
		_	8.0	15		T _J = 125°C	$V_{R} = 200V$	
Q _{rr}	Diode Reverse Recovery Charge	_	112	375	nC	T _J = 25°C		
		_	420	1200		T _J = 125°C	di/dt = 200A/µs	
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery	_	250	_	A/µs	$T_J = 25^{\circ}C$		
*	During t _b	_	160	_		T _J = 125°C		

Notes: ① Repetitive rating; V _{GE}=20V, pulse width limited by max. junction temperature. (See fig. 20)

 $^{@~}V_{CC}\!\!=\!\!80\%(V_{CES}),~V_{GE}\!\!=\!\!20V,~L\!\!=\!\!10\mu H,$ $R_{G}\!\!=\!5.0\Omega,~($ See fig. 19)

Pulse width 5.0µs, single shot.

③ Pulse width \leq 80µs; duty factor \leq 0.1%.