International Rectifier

IRGMIC50U

Ultra Fast Speed IGBT

INSULATED GATE BIPOLAR TRANSISTOR WITH ON-BOARD REVERSE DIODE

Features

- Electrically Isolated and Hermetically Sealed
- Simple Drive Requirements
- · Latch-proof
- Ultra Fast operation > 10 kHz
- Switching-loss rating includes all "tail" losses

Description

Insulated Gate Bipolar Transistors (IGBTs) from International Rectifier have higher usable current densities than comparable bipolar transistors, while at the same time having simpler gate-drive requirements of the familiar power MOSFET. They provide substantial benefits to a host of high-voltage, high-current applications.

The performance of various IGBTs varies greatly with frequency. Note that IR now provides the designer with a speed benchmark ($f_{\text{Ic/2}}$, or the "half-current frequency"), as well as an indication of the current handling capability of the device.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{CES}	Collector-to-Emitter Breakdown Voltage	600	V
I _C @ T _C = 25°C	Continuous Collector Current	45*	
I _C @ T _C = 100°C	Continuous Collector Current	27	Α
I _{CM}	Pulsed Collector Current ①	220	
I _{LM}	Clamped Inductive Load Current 2	180	
V_{GE}	Gate-to-Emitter Voltage	±20	V
P _D @ T _C = 25°C	Maximum Power Dissipation	200	W
P _D @ T _C = 100°C	Maximum Power Dissipation	80	
T _J	Operating Junction and	-55 to + 150	
T _{STG}	Storage Temperature Range		°C
	Lead Temperature	300 (0.063in./1.6mm from case for 10s)	
	Weight	10.5 (typical)	g

^{*}Current is limited by pin diameter

Thermal Resistance

	Parameter	Min	Тур	Max	Units
RthJC	Junction-to-Case-IGBT		_	0.625	
RthJC	Junction-to-Case-Diode	_	_	1.0	°C/W
RthCS	Case-to-Sink	_	0.21	_	
RthJA	Junction-to-Ambient		_	30	

For footnotes refer to the last page

www.irf.com 1

Electrical Characteristics @ $T_J = 25$ °C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage	600			V	$V_{GE} = 0V, I_{C} = 1.0 \text{ mA}$	
$\Delta V_{(BR)CES}/\Delta T_J$	Temperature Coeff. of Breakdown Voltage		0.6		V/°C	$V_{GE} = 0V, I_{C} = 1.0 \text{ mA}$	
V _{CE(ON)}	Collector-to-Emitter Saturation Voltage			3.0	V	I _C = 27A	$V_{GE} = 15V$
				3.25		$I_C = 45A$	See Fig. 5
				2.85		$I_C = 27A$, $T_J = 125^{\circ}C$	
$V_{GE(th)}$	Gate Threshold Voltage	3.0		5.5		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
$\Delta V_{GE(th)}/\Delta T_{J}$	Temperature Coeff. of Threshold Voltage		-13		mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
9fe	Forward Transconductance ③	16			S	$V_{CE} = 100V, I_{C} = 27A$	
	7 0 1 1/1 0 1 1 0 1			250	μA	$V_{GE} = 0V, V_{CE} = 480V$	
I _{CES}	Zero Gate Voltage Collector Current			5000	μ/.	$V_{GE} = 0V, V_{CE} = 480V,$	$T_J = 125^{\circ}C$
I _{GES}	Gate-to-Emitter Leakage Current			±100	nA	$V_{GE} = \pm 20$	
V _{FM}	Diode Forward Voltage Drop			1.7	V	I _C = 27A	
				1.5		I _C = 27A , T _J = 125°C	

Switching Characteristics @ $T_J = 25^{\circ}C$ (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions	
Qg	Total Gate Charge (turn-on)			140		I _C = 27A	
Q _{ge}	Gate - Emitter Charge (turn-on)			35	nC	$V_{CC} = 300V$ See Fig. 8	
Q_{gc}	Gate - Collector Charge (turn-on)			70		$V_{GE} = 15V$	
t _{d(on)}	Turn-On Delay Time			50		I _C = 27A, V _{CC} = 480V	
t _r	Rise Time			75	ns	$V_{GE} = 15V, R_{G} = 2.35\Omega$	
t _{d(off)}	Turn-Off Delay Time			300		Energy losses include "tail"	
t _f	Fall Time			210		See Fig. 9, 10, 13	
Eon	Turn-On Switching Loss		0.12				
E _{off}	Turn-off Switching Loss		1.6		mJ		
Ets	Total Switching Loss		1.7	2.8			
t _{d(on)}	Turn-On Delay Time		24			$T_J = 125^{\circ}C$	
t _r	Rise Time		27		ns	$_{C}$ = 27A, V_{CC} = 480V V_{GE} = 15V, R_{G} = 2.35 Ω	
t _{d(off)}	Turn-Off Delay Time		180				
t _f	Fall Time		130			Energy losses include "tail"	
E _{ts}	Total Switching Loss		2.7		mJ	See Fig. 11, 13	
L _C +L _E	Total Inductance		6.8		nΗ	Measured from Collector lead (6mm/	
						0.25in. from package) to Emitter	
						lead (6mm / 0.25in. from package)	
C _{ies}	Input Capacitance		2900			V _{GE} = 0V	
Coes	Output Capacitance		330		pF	$V_{CC} = 30V$ See Fig. 7	
C _{res}	Reverse Transfer Capacitance		41			f = 1.0MHz	
T _{rr}	Diode Peak Reverse Recovery			100	ns	$di/dt = 200A/\mu S$, $I_F = 27A$	
	Time					$V_R \le 200V$	
Q _{rr}	Diode Peak Reverse Recovery			375	nC	$di/dt = 200A/\mu S$, $I_F = 27A$	
	Charge					$T_J = 125^{\circ}C, V_R \le 200V$	

Note: Corresponding Spice and Saber models are available on the Website. For footnotes refer to the last page $\,$

2 www.irf.com