

1M x 16 MBit Synchronous DRAM for High Speed Graphics Applications

• High Performance:

	-5.5	-6	-7	Units
fCKmax @ CL=3	183	166	143	MHz
tCK3	5.5	6	7	ns
tAC3	4.5	5	5.5	ns
fCKmax @ CL=2	133	125	115	MHz
tCK2	7.5	8	9	ns
tAC2	5.4	6	6	ns

- Fully Synchronous to Positive Clock Edge
- 0 to 70 °C operating temperature
- Dual Banks controlled by A11 (Bank Select)
- Programmable CAS Latency : 2, 3
- Programmable Wrap Sequence : Sequential or Interleave
- Programmable Burst Length: 1, 2, 4, 8

- full page(optional) for sequencial wrap around
- Multiple Burst Read with Single Write
 Operation
- Automatic and Controlled Precharge
 Command
- Data Mask for Read / Write control
- Dual Data Mask for byte control (x16)
- Auto Refresh (CBR) and Self Refresh
- Suspend Mode and Power Down Mode
- 4096 refresh cycles / 64 ms
- Latency 2 @ 133 MHz
- Latency 3 @ 183 MHz
- Random Column Address every CLK (1-N Rule)
- Single 3.3V +/- 0.3V Power Supply
- LVTTL Interface
- Plastic Packages:
 P-TSOPII-50 400mil width (x16)

The HYB39S16160CT-5.5/-6/-7 are high speed dual bank Synchronous DRAM's based on INFINEON 0.25µm process and organized as 2 banks x 512kbit x 16. These synchronous devices achieve high speed data transfer rates up to 183 MHz by employing a chip architecture that prefetches multiple bits and then synchronizes the output data to a system clock. The chip is fabricated with INFINEON' advanced 16MBit DRAM process technology.

The device is designed to comply with all JEDEC standards set for synchronous DRAM products, both electrically and mechanically. All of the control, address, data input and output circuits are synchronized with the positive edge of an externally supplied clock.

Operating the two memory banks in an interleaved fashion allows random access operation to occur at higher rate than is possible with standard DRAMs. A sequential and gapless data rate of up to 166 MHz is possible depending on burst length, CAS latency and speed grade of the device.

Auto Refresh (CBR) and Self Refresh operation are supported. These devices operate with a single 3.3V +/- 0.3V power supply and are available in TSOPII packages.

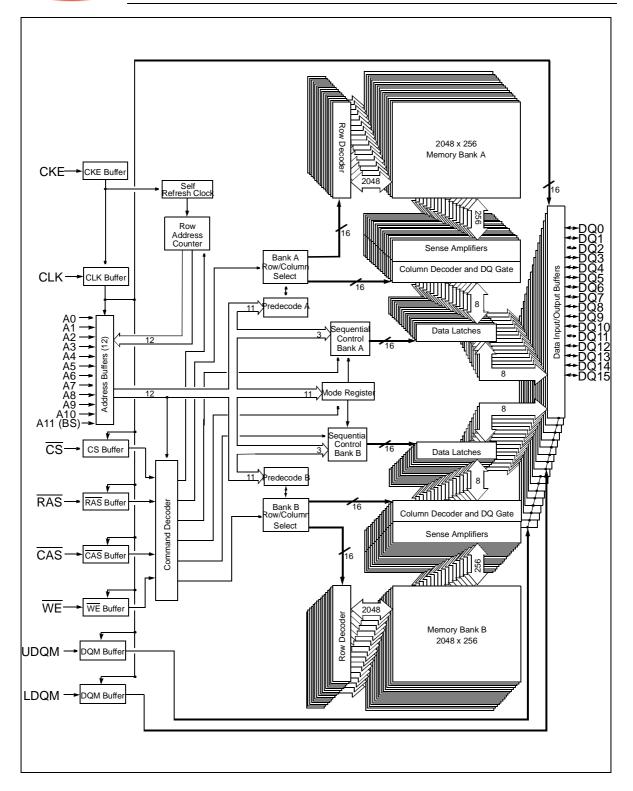
These Synchronous DRAM devices are available with LV-TTL interfaces.

Ordering Information

Туре	Package	Description				
LVTTL-version:						
HYB 39S16160CT-5.5	P-TSOPII-50 (400mil)	183MHz 2B x 512k x 16 SDRAM				
HYB 39S16160CT-6	P-TSOPII-50 (400mil)	166MHz 2B x 512k x 16 SDRAM				
HYB 39S16160CT-7	P-TSOPII-50 (400mil)	143MHz 2B x 512k x 16 SDRAM				

Pin Description and Pinouts:

CLK	Clock Input	DQ	Data Input /Output
CKE	Clock Enable	LDQM, UDQM	Data Mask
CS	Chip Select	Vdd	Power (+3.3V)
RAS	Row Address Strobe	Vss	Ground
CAS	Column Address Strobe	Vddq	Power for DQ's (+ 3.3V)
WE	Write Enable	Vssq	Ground for DQ's
A0-A10	Address Inputs	NC	not connected
A11 (BS)	Bank Select		


Pin-Out

Signal Pin Description

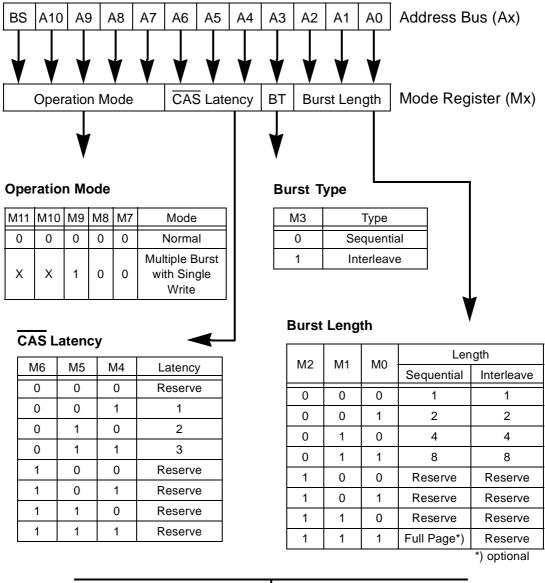
Pin	Туре	Signal	Polarity	Function
CLK	Input	Pulse	Positive Edge	The system clock input. All of the SDRAM inputs are sampled on the rising edge of the clock.
CKE	Input	Level	Active High	Activates the CLK signal when high and deactivates the CLK signal when low, thereby inititiates either the Power Down mode, Suspend mode or the Self Refresh mode.
CS	Input	Pulse	Active Low	CS enables the command decoder when low and disables the command decoder when high. When the command decoder is disabled, new commands are ignored but previous operations continue.
RAS, CAS WE	Input	Pulse	Active Low	When sampled at the positive rising edge of the clock, \overline{CAS} , \overline{RAS} , and \overline{WE} define the command to be executed by the SDRAM.
				During a Bank Activate command cycle, A0-A10 defines the row address (RA0-RA10) when sampled at the rising clock edge.
				During a Read or Write command cycle, A0-A9 defines the column address (CA0-CAn) when sampled at the rising clock edge.CAn depends from the SDRAM organisation.
				1M x 16 SDRAM CAn = CA7
A0 - A10	Input	Level	_	In addition to the column address, A10 is used to invoke autoprecharge operation at the end of the burst read or write cycle. If A10 is high, autoprecharge is selected and A11 defines the bank to be precharged (low=bank A, high=bank B). If A10 is low, autoprecharge is disabled.
				During a Precharge command cycle, A10 is used in conjunction with A11 to control which bank(s) to precharge. If A10 is high, both bank A and bank B will be precharged regardless of the state of A11. If A10 is low, then A11 is used to define which bank to precharge.
A11 (BS)	Input	Level	_	Selects which bank is to be active. A11 low selects bank A and A11 high selects bank B.
DQx	Input Output	Level	_	Data Input/Output pins operate in the same manner as on conventional DRAMs.
LDQM, UDQM	Input	Pulse	Active High	The Data Input/Output mask places the DQ buffers in a high impedance state when sampled high. In Read mode, DQM has a latency of two clock cycles and controls the output buffers like an output enable. In Write mode, DQM has a latency of zero and operates as a word mask by allowing input data to be written if it is low but blocks the write operation if DQM is high.
VDD, VSS	Supply			Power and ground for the input buffers and the core logic.
VDDQ VSSQ	Supply	_	—	Power supply and ground for the output buffers to provide improved noise immunity.

Block Diagram for HYB39S16160CT (2 banks x 512k x 16 SDRAM)

INFINEON Technologies

Operation Definition

All of SDRAM operations are defined by states of control signals \overline{CS} , \overline{RAS} , \overline{CAS} , \overline{WE} , and DQM at the positive edge of the clock. The following list shows the most important operation commands.


Operation	CS	RAS	CAS	WE	(L/U)DQM
Standby, Ignore RAS, CAS, WE and Address	Н	Х	Х	Х	Х
Row Address Strobe and Activating a Bank	L	L	Н	Н	Х
Column Address Strobe and Read Command	L	Н	L	Н	Х
Column Address Strobe and Write Command	L	Н	L	L	Х
Precharge Command	L	L	Н	L	Х
Burst Stop Command	L	Н	Н	L	Х
Self Refresh Entry	L	L	L	Н	Х
Mode Register Set Command	L	L	L	L	Х
Write Enable/Output Enable	Х	Х	Х	Х	L
Write Inhibit/Output Disable	Х	Х	Х	Х	Н
No Operation (NOP)	L	Н	Н	Н	Х

Mode Register

For application flexibility, a CAS latency, a burst length, and a burst sequence can be programmed in the SDRAM mode register. The mode set operation must be done before any activate command after the initial power up. Any content of the mode register can be altered by reexecuting the mode set command. Both banks must be in precharged state and CKE must be high at least one clock before the mode set operation. After the mode register is set, a Standby or NOP command is required. Low signals of RAS, CAS, and WE at the positive edge of the clock activate the mode set operation. Address input data at this timing defines parameters to be set as shown in the following table.

Address Input for Mode Set (Mode Register Operation)

Sequential Burst Addressing				Inte	erlea	ave	Bur	st A	ddre	essii	ng						
0	1	2	3	4	5	6	7		0	1	2	3	4	5	6	7	
1	2	3	4	5	6	7	0		1	0	3	2	5	4	7	6	
2	3	4	5	6	7	0	1		2	3	0	1	6	7	4	5	
3	4	5	6	7	0	1	2		3	2	1	0	7	6	5	4	
4	5	6	7	0	1	2	3		4	5	6	7	0	1	2	3	
5	6	7	0	1	2	3	4		5	4	7	6	1	0	3	2	
6	7	0	1	2	3	4	5		6	7	4	5	2	3	0	1	
7	0	1	2	3	4	5	6		7	6	5	4	3	2	1	0	

Read and Write Access Mode

When \overline{RAS} is low and both \overline{CAS} and \overline{WE} are high at the positive edge of the clock, a RAS cycle starts. According to address data, a word line of the selected bank is activated and all of sense amplifiers associated to the word line are fired. A CAS cycle is triggered by setting \overline{RAS} high and \overline{CAS} low at a clock timing after a necessary delay, tRCD, from the RAS timing. \overline{WE} is used to define either a read ($\overline{WE} = H$) or a write ($\overline{WE} = L$) at this stage.

SDRAM provides a wide variety of fast access modes. In a single CAS cycle, serial data read or write operations are allowed at up to a 166 MHz data rate. The numbers of serial data bits are the burst length programmed at the mode set operation, i.e., one of 1, 2, 4, 8 and full page, where full page is an optional feature in this device. Column addresses are segmented by the burst length and serial data accesses are done within this boundary. The first column address to be accessed is supplied at the CAS timing and the subsequent addresses are generated automatically by the programmed burst length and its sequence. For example, in a burst length of 8 with interleave sequence, if the first address is '2', then the rest of the burst sequence is 3, 0, 1, 6, 7, 4, and 5.

Full page burst operation is only possible using the sequential burst type and page length is a function of the I/O organisation and column addressing. Full page burst operation do not self terminate once the burst length has been reached. In other words, unlike burst length of 2, 3 or 8, full page burst continues until it is terminated using another command.

Similar to the page mode of conventional DRAM's, burst read or write accesses on any column address are possible once the RAS cycle latches sense amplifiers. The maximum tRAS or the refresh interval time limits the number of random column accesses. A new burst access can be done even before the previous burst ends. The interrupt operation at every clock cycles is supported. When the previous burst is interrupted, the remaining addresses are overridden by the new address with the full burst length. An interrupt which accompanies with an operation change from a read to a write is possible by exploiting DQM to avoid bus contention.

When two banks are activated sequentially, interleaved bank read or write operations are possible. With the programmed burst length, alternate access and precharge operations on two banks can realize fast serial data access modes among many different pages. Once two banks are activated, column to column interleave operation can be done between two different pages.

Refresh Mode

SDRAM has two refresh modes, a CAS before RAS (CBR) automatic refresh and a self refresh. All of banks must be precharged before applying any refresh mode. An on-chip address counter increments the word and the bank addresses and no bank information is required for both refresh modes. The chip enters the automatic refresh mode, when RAS and CAS are held low and CKE and WE are held high at a clock timing. The mode restores word line after the refresh and no external precharge command is necessary. A minimum tRC time is required between two automatic refreshes in a burst refresh mode. The same rule applies to any access command after the automatic refresh operation.

The chip has an on-chip timer and the self refresh mode is available. It enters the mode when RAS, \overline{CAS} , and CKE are low and \overline{WE} is high at a clock timing. All of external control signals including the clock are disabled. Returning CKE to high enables the clock and initiates the refresh exit operation. After the exit command, at least one tRC delay is required prior to any access command.

DQM Function

DQM has two functions for data I/O read write operations. During reads, when it turns to high at a clock timing, data outputs are disabled and become high impedance after two clock delay (DQM Data Disable Latency t_{DQZ}). It also provides a data mask function for writes. When DQM is activated, the write operation at the next clock is prohibited (DQM Write Mask Latency t_{DQW} = zero clocks).

Suspend Mode

During normal access mode, CKE is held high and CLK is enabled. When CKE is low, it freezes the internal clock and extends data read and write operations. One clock delay is required for mode entry and exit (Clock Suspend Latency t_{CSL}).

Power Down

In order to reduce standby power consumption, a power down mode is available. Bringing CKE low enters the power down mode and all of receiver circuits are gated. All banks must be precharged before entering this mode. One clock delay is required for mode entry and exit. The Power Down mode does not perform any refresh operation.

Auto Precharge

Two methods are available to precharge SDRAMs. In an automatic precharge mode, the CAS timing accepts one extra address, CA10, to determine whether the chip restores or not after the operation. If CA10 is high when a Read Command is issued, the **Read with Auto-Precharge** function is initiated. The SDRAM automatically enters the precharge operation one clock before the last data out for CAS latency 2 amd two clocks for CAS latency 3. If CAS10 is high when a Write Command is issued, the **Write with Auto-Precharge** function is initiated. The SDRAM automatically enters the precharge function is initiated. The SDRAM automatically enters of 1 and 2 and two clocks for CAS latencies of 3. This delay is referenced as t_{DPL} .

Precharge Command

If CA10 is low, the chip needs another way to precharge. In this mode, a separate precharge command is necessary. When RAS and WE are low and CAS is high at a clock timing, it triggers the precharge operation. Two address bits, A10 and A11, are used to define banks as shown in the following list. The precharge command may be applied coincident with the last of burst reads for CAS Latency = 1 and with the second to the last read data for CAS Latencies = 2 & 3. Writes require a time t_{WR} from the last burst data to apply the precharge command.

Bank Selection	on by Addro	ess Bits
	A10	A11
Bank A Only	Low	Low
Bank B Only	Low	High
Both A and B	High	Don't Care

Burst Termination

Once a burst read or write operation has been initiated, there are several methods in which to terminate the burst operation prematurely. These methods include using another Read or Write Command to interrupt an existing burst operation, use a Precharge Command to interrupt a burst cycle and close the active bank, or using the Burst Stop Command to terminate the existing burst operation but leave the bank open for future Read or Write Commands to the same page of the active bank. When interrupting a burst with another Read or Write Command care must be taken to avoid DQ contention. The Burst Stop Command, however, has the fewest restrictions making it the easiest method to use when terminating a burst operation before it has been completed. If a Burst Stop command is issued during a burst write operation, then any residual data from the burst write cycle will be ignored. Data that is presented on the DQ pins before the Burst Stop Command is registered will be written to the memory.

Power Up Procedure

All Vdd and Vddq must reach the specified voltage no later than any of input signal voltages. An initial pause of 200 μ sec is required after power on. During this time CKE must be stable high and no self refresh command may be issued. All banks have to be precharged and a minimum of 8 auto-refresh cycles are required prior to the mode register set operation.

Absolute Maximum Ratings

Operating temperature range	0 to + 70 °C
Storage temperature range	– 55 to + 150 °C
Input/output voltage	0.5 to min(Vcc+0.5, 4.6) V
Power supply voltage VDD / VDDQ	– 1.0 to + 4.6 V
Power Dissipation	1 W
Data out current (short circuit)	
Note: Stresses above those listed under "Absolute Max damage of the device. Exposure to absolute maximu may affect device reliability.	

Recommended Operation and Characteristics for LV-TTL versions:

Parameter Symbol **Limit Values** Unit Notes min. max. $V_{\rm IH}$ Input high voltage 2.0 Vcc+0.3 1, 2, 3 V Input low voltage $V_{\rm IL}$ - 0.3 0.8 V 1, 2, 3 Output high voltage ($I_{OUT} = -2.0 \text{ mA}$) V_{OH} 2.4 _ V 3 $\overline{V}_{\rm OL}$ Output low voltage ($I_{OUT} = 2.0 \text{ mA}$) V 3 _ 0.4 Input leakage current, any input - 5 5 $I_{I(L)}$ μΑ $(0 V < V_{IN} < V ddq, all other inputs = 0 V)$ Output leakage current $I_{\rm O(L)}$ - 5 5 μΑ (DQ is disabled, 0 V < V_{OUT} < V_{CC})

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm SS}$ = 0 V; $V_{\rm DD}, V_{\rm DDQ}$ = 3.3 V ± 0.3 V

Notes:

Capacitance

 $T_{\rm A} = 0$ to 70 °C; $V_{\rm DD} = 3.3$ V ± 0.3 V, f = 1 MHz

Parameter	Symbol	Values		Unit	
		min.	max.	-	
Input capacitance (CLK)	C _{I1}	2.5	4.0	pF	
Input capacitance (A0-A12, BA0,BA1,RAS, CAS, WE, CS, CKE, DQM, UDQM, LDQM)	C _{I2}	2.5	5.0	pF	
Input / Output capacitance (DQ)	C _{IO}	4.0	6.5	pF	

^{1.} All voltages are referenced to VSS.

Vih may overshoot to Vcc + 2.0 V for pulse width of < 4ns with 3.3V. Vil may undershoot to
 -2.0 V for pulse width < 4.0 ns with 3.3V. Pulse width measured at 50% points with amplitude measured peak
 to DC reference.

Operating Currents (T_A = 0 to 70°C, VCC = 3.3V \pm 0.3V

(Recommended Operating Conditions unless otherwise noted)

Parameter	Symbol	Test Condition	CAS	-5.5	-6	-7		Note
			Latency		max.			
Operating Current	lcc1	Burst Length = 4 trc>=trc (min.) tck>=tck(min.), lo = 0mA 2 bank interleave operation		110	100	90	mA	1, 2
Precharge Standby Current	Icc2P	CKE<=VIL(max), tck>=tck(min.)		2	2	2	mA	
in Power Down Mode	Icc2PS	CKE<=VIL(max), tCK=infinite		1	1	1	mA	
Precharge Standby Current in Non-power	Icc2N	CKE>=VIH(min), tck>=tck(min.) input signals changed once in 3 cycles		15	15	15	mA	CS= High
down Mode	Icc2NS	CKE>=VIH(min), tCK=infinite, input signals are stable		5	5	5	mA	
Active Standby Current in Power	Icc3P	CKE<=VIL(max), tck>=tck(min.)		4	4	4	mA	
Down Mode	Icc3PS	CKE<=VIL(max), tCK=infinite, inpit signals are stable		4	4	4	mA	
Active Standby Current in Non- power Down	Icc3N	CKE>=VIH(min), tck>=tck(min.), changed once in 3 cycles		25	25	25	mA	CS= High, 1
Mode	Icc3NS	CKE>=VIH(min), tCK=infinite, input signals are stable		15	15	15	mA	
Burst Operating Current	lcc4	Burst Length = full page trc = infinite tck >= tck (min.), IO = 0 mA 2 banks activated		100	90	80	mA	1, 2
Auto (CBR) Refresh Current	Icc5	trc>=trc(min)		70	60	50	mA mA	1, 2
Self Refresh	Icc6	CKE=<0,2V		1	1	1	mA	1, 2

Notes:

1. The specified values are valid when addresses are changed no more than three times during trc(min.) and when No Operation commands are registered on every rising clock edge during tRC(min).

2. The specified values are valid when data inputs (DQ's) are stable during tRC(min.).

AC Characteristics 1)2)

 $T_{\rm A}$ = 0 to 70 °C; $V_{\rm SS}$ = 0 V; $V_{\rm CC}$ = 3.3 V ± 0.3 V, $t_{\rm T}$ = 1 ns

Parameter	Symbol			Limit	Values			Unit
		-5	5.5		-6		-7	
				min	max	min	max	

Clock and Clock Enable

Clock Cycle Time										
\overline{CAS} Latency = 3		t _{CK}	5.5	_	6	-	7	_	ns	
$\frac{1}{CAS}$ Latency = 2			7.5	-	8	-	9	-	ns	
Clock Frequency										
CAS	Latency = 3	t _{CK}	_	183	_	166	_	143	MHz	
\overline{CAS} Latency = 2			-	133	-	125	-	115	MHz	
Access Time from Cloo	ck									
CAS	Latency = 3	t _{AC}	_	4.5	_	5	_	5	ns	2,
CAS	Latency = 2		-	5.4	-	6	-	6	ns	3
Clock High Pulse Width		t _{CH}	2	_	2	_	2.5	_	ns	
Clock Low Pulse Width		t _{CL}	2	-	2	-	2.5	_	ns	
Transition time		t _T	0.5	10	0.5	10	0.5	10	ns	

Setup and Hold Times

Input Setup Time	t _{IS}	1.5	_	2	_	2	_	ns	4
Input Hold Time	t _{IH}	1	-	1	_	1	-	ns	4
CKE Setup Time	t _{CKS}	1.5	-	2	_	2	_	ns	4
CKE Hold Time	t _{CKH}	1	-	1	_	1	_	ns	4
Mode Register Set-up time	t _{RSC}	11	_	12	_	24	_	ns	
Power Down Mode Entry Time	t _{SB}	0	5.5	0	6	0	7	ns	

Common Parameters

Row to Column Delay Time	t _{RCD}	15	_	16	_	18	_	ns	5
Row Precharge Time	t _{RP}	15	-	16	_	18	-	ns	5
Row Active Time	t _{RAS}	33	-	36	100k	42	100k	ns	5
Row Cycle Time	t _{RC}	49.5		54	_	63	_	ns	5
Activate(a) to Activate(b) Command period	t _{RRD}	11	_	12	_	14	_	ns	

Parameter	Symbol	Limit Values								
		-5.5		-6		-7		-		
				min	max	min	max			
CAS(a) to CAS(b) Command period	t _{CCD}	1	-	1	-	1	-	CLK		

Refresh Cycle

Refresh Period (4096 cycles)	t _{REF}	_	64	_	64	_	64	ms	
Self Refresh Exit Time	t _{SREX}	10	-	10		10		ns	

Read Cycle

Data Out Hold Time	t _{OH}	2	-	2	-	2.5	—	ns	2
Data Out to Low Impedance Time	t _{LZ}	0	-	0	-	0	-	ns	
Data Out to High Impedance Time	t _{HZ}	2	5.5	2	6	2	7	ns	
DQM Data Out Disable Latency	t _{DQZ}	_	2	_	2	_	2	CLK	

Write Cycle

Write Recovery Time	t _{WR}	2	_	2	_	2	_	CLK	6
DQM Write Mask Latency	t _{DQW}	0	-	0	-	0	_	CLK	
Write Latency	t _{WL}	0	-	0	-	0	-	CLK	

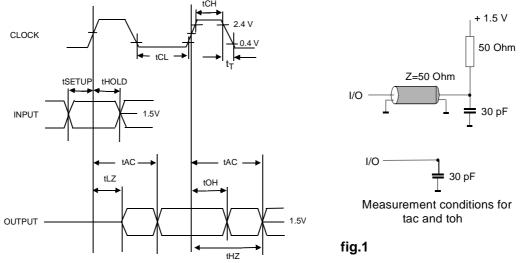
Frequency vs. AC Parameter Relationship Table:

-5.5 -parts

	CL	tRCD	tRP	tRC	tRAS	tRRD	tCCD	WL	tWR
183 MHz	3	3	3	9	6	2	1	0	2
133 MHz	2	2	2	7	5	2	1	0	2

-6 -parts

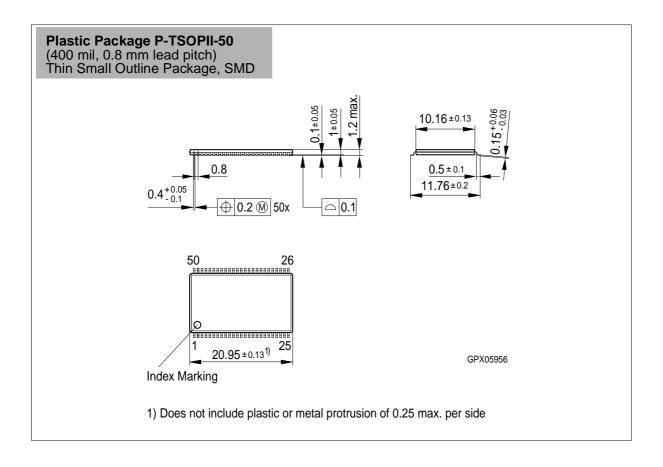
	CL	tRCD	tRP	tRC	tRAS	tRRD	tCCD	WL	tWR
166 MHz	3	3	3	9	6	2	1	0	2
125 MHz	2	2	2	7	5	2	1	0	2


-7 -parts:

	CL	tRCD	tRP	tRC	tRAS	tRRD	tCCD	WL	tWR
143 MHz	3	3	3	9	6	2	1	0	2
115 MHz	2	2	2	7	5	2	1	0	2

Notes for AC Parameters:

- 1. For proper power-up see the operation section of this data sheet.
- 2. AC timing tests for LV-TTL versions have $V_{il} = 0.4$ V and $V_{ih} = 2.4$ V with the timing referenced to the 1.5 V crossover point. The transition time is measured between V_{ih} and V_{il} . All AC measurements assume t_T =1ns with the AC output load circuit shown in fig.1. Specified tac and toh parameters are measured with a 30 pF only, without any resistive termination and with a input signal of 1V / ns edge rate between 0.8V and 2.0 V.


- 3. If clock rising time is longer than 1 ns, a time $(t_T/2 0.5)$ ns has to be added to this parameter.
- 4. If tT is longer than 1 ns, a time $(t_T 1)$ ns has to be added to this parameter.
- 5. These parameter account for the number of clock cycle and depend on the operating frequency of the clock, as follows:

the number of clock cycle = specified value of timing period (counted in fractions as a whole number) Self Refresh Exit is a synchronous operation and begins on the 2nd positive clock edge after CKE returns high. Self Refresh Exit is not complete until a time period equal to tRC is satisfied once the Self Refresh Exit command is registered.

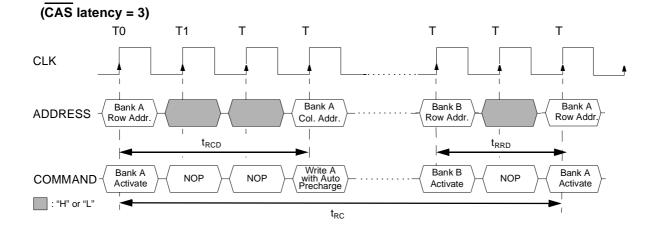
6. For 100MHz operation and above. For operation frequencies less or equal to 83 MHz this parameter can be set to 1 CLK.

Package Outlines:

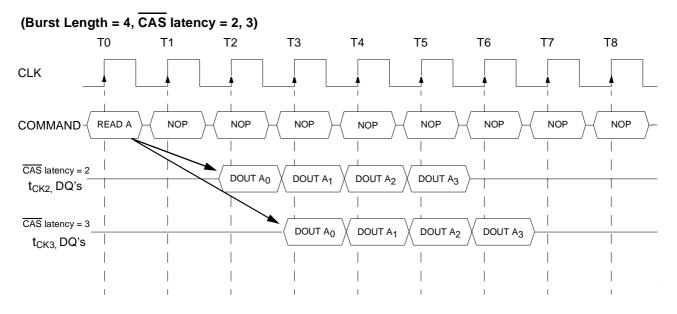
Timing Diagrams

- 1. Bank Activate Command Cycle
- 2. Burst Read Operation
- 3. Read Interrupted by a Read
- 4. Read to Write Interval
 - 4.1 Read to Write Interval
 - 4.2 Minimum Read to Write Interval
 - 4.3 Non-Minimum Read to Write Interval
- 5. Burst Write Operation
- 6. Write and Read Interrupt
 - 6.1 Write Interrupted by a Write
 - 6.2 Write Interrupted by Read
- 7. Burst Write & Read with Auto-Precharge
 - 7.1 Burst Write with Auto-Precharge
 - 7.2 Burst Read with Auto-Precharge
- 8. Burst Termination
 - 8.1 Termination of a full Page Burst Write Operation
 - 8.2 Termination of a full Page Burst Write Operation
- 9. AC- Parameters
 - 9.1 AC Parameters for a Write Timing
 - 9.2 AC Parameters for a Read Timing
- 10. Mode Register Set
- 11. Power on Sequence and Auto Refresh (CBR)
- 12. Clock Suspension (using CKE)
 - 12. 1 Clock Suspension During Burst Read CAS Latency = 2
 - 12. 2 Clock Suspension During Burst Read CAS Latency = 3
 - 12. 3 Clock Suspension During Burst Write \overline{CAS} Latency = 2
 - 12. 4 Clock Suspension During Burst Write \overline{CAS} Latency = 3
- 13. Power Down Mode and Clock Suspend
- 14. Self Refresh (Entry and Exit)
- 15. Auto Refresh (CBR)
- 16. Random Column Read (Page within same Bank)
 - 16.1 CAS Latency = 2
 - 16.2 CAS Latency = 3
- 17. Random Column Write (Page within same Bank)
 - 17.1 CAS Latency = 2

17.2 CAS Latency = 3

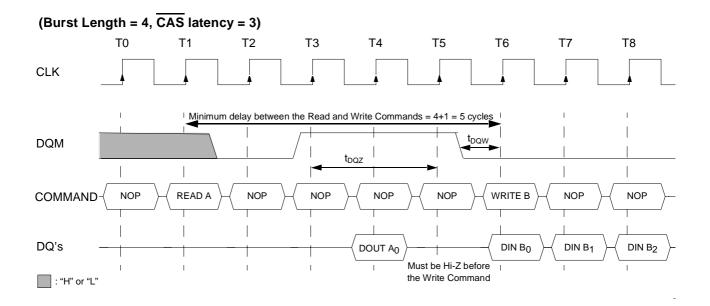


Timing Diagrams (cont'd)

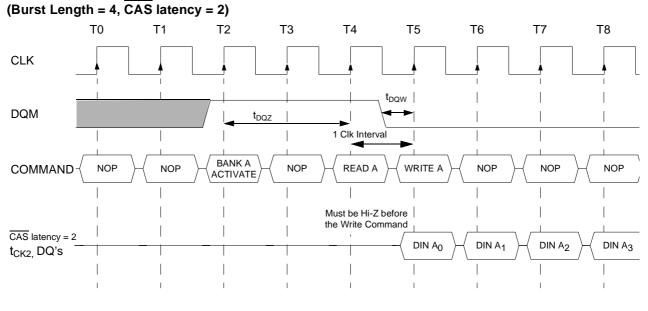

18. Random Row Read (Interleaving Banks) with Precharge 18.1 CAS Latency = 2 18.2 CAS Latency = 3
19. Random Row Write (Interleaving Banks) with Precharge 19.1 CAS Latency = 2 19.2 CAS Latency = 3
20. Full Page Read Cycle 20.1 CAS Latency = 2 20.2 CAS Latency = 3
21. Full Page Write Cycle 21.1 CAS Latency = 2 21.2 CAS Latency = 3
22. Precharge Termination of a Burst

1. Bank Activate Command Cycle

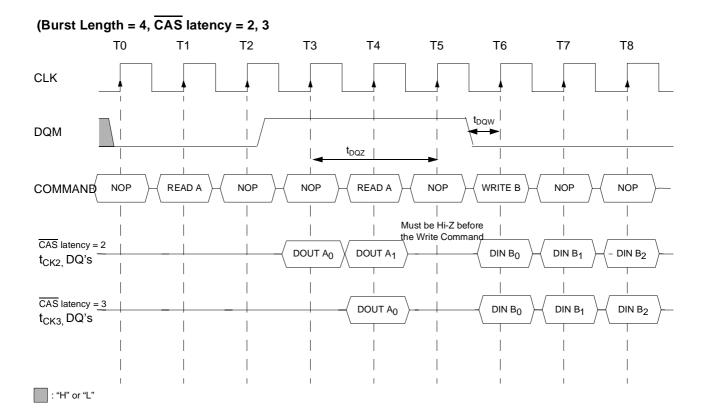
2. Burst Read Operation



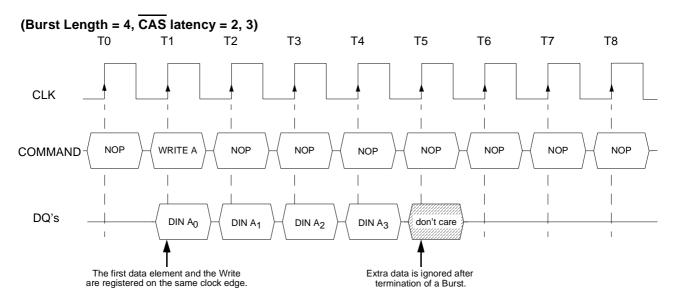
3. Read Interrupted by a Read



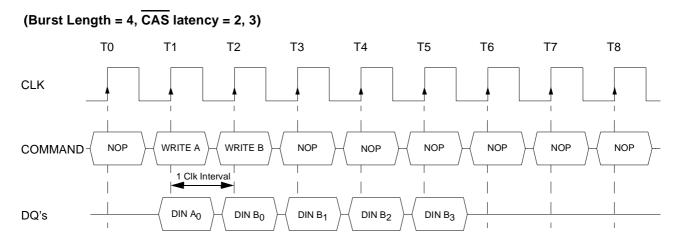
4.1 Read to Write Interval



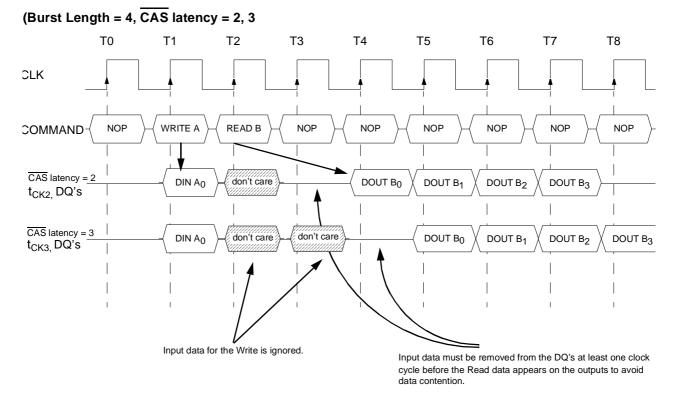
4 2. Minimum Read to Write Interval


: "H" or "L"

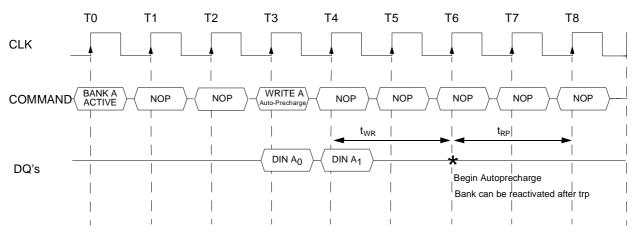
4. 3. Non-Minimum Read to Write Interval



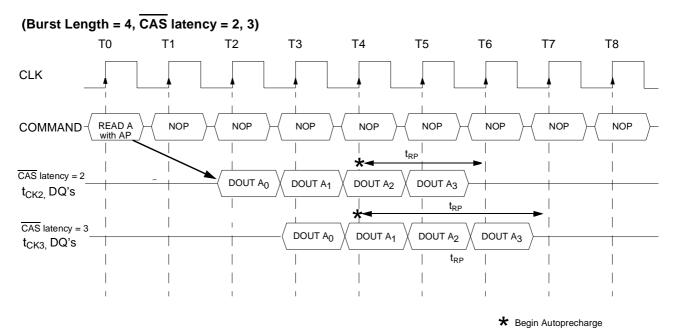
5. Burst Write Operation

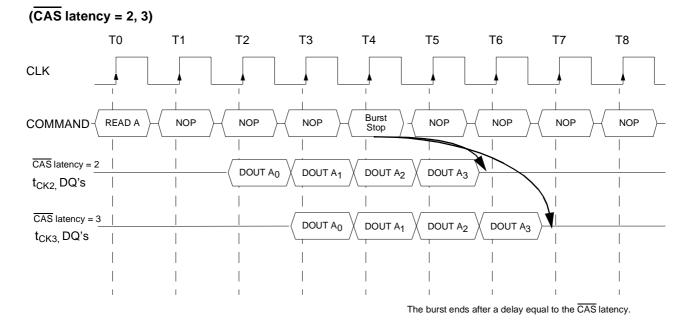


6.1 Write Interrupted by a Write

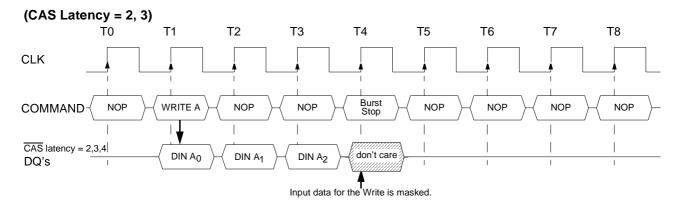


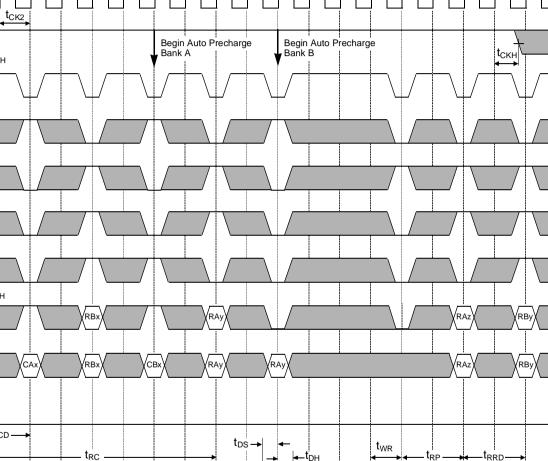
6.2 Write Interrupted by a Read


7.1 Burst Write with Auto-Precharge



7.2 Burst Read with Auto-Precharge


Bank can be reactivated after trp



8.1 Termination of a Full Page Burst Read Operation

8.2 Termination of a Full Page Burst Write Operation

Infineon

l**₄**_t_{DH}

Ay1

Ay2

Ау3

Precharge

Command

Bank A

-

Ay0

Write

Command

Bank A

Bx3-

Bx1

Bx2

Activate

Command

Bank A

Bx0

Command Bank B

Ax3

T12

T13

T14

T15

9.1 AC Parameters for Write Timing

T1

_ t_{CL}

Т2

←t_{CS}

l←t_{CH}

←t_{AH}

t{RCD} ___

Ax0

Command Bank A

Ax1

Activate Write with Activate Write with Command Auto Precharge Command Auto Precharge

Ax2

Bank B

-

t_{AS} →

RAx

¥rax¥

Bank A

тз

Т4

Т5

Т6

T7

Т8

Т9

T10

T11

то

·→

t_{CKS}

t_{CH}→

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

DQM

DQ

Hi-Z

Burst Length = 4, \overline{CAS} Latency = 2

T19

T20 T21

T22

T17

toc

Activate

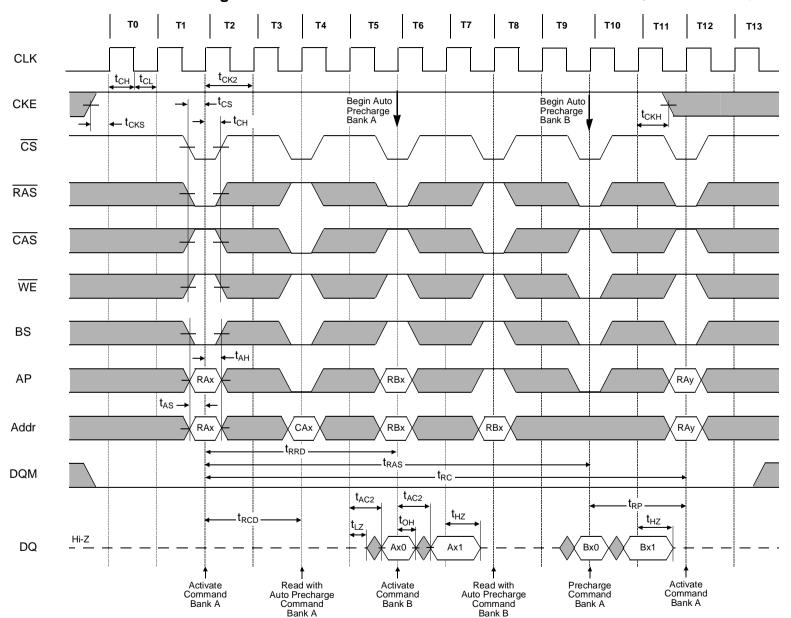
Command

Bank A

Activate

Command

Bank B

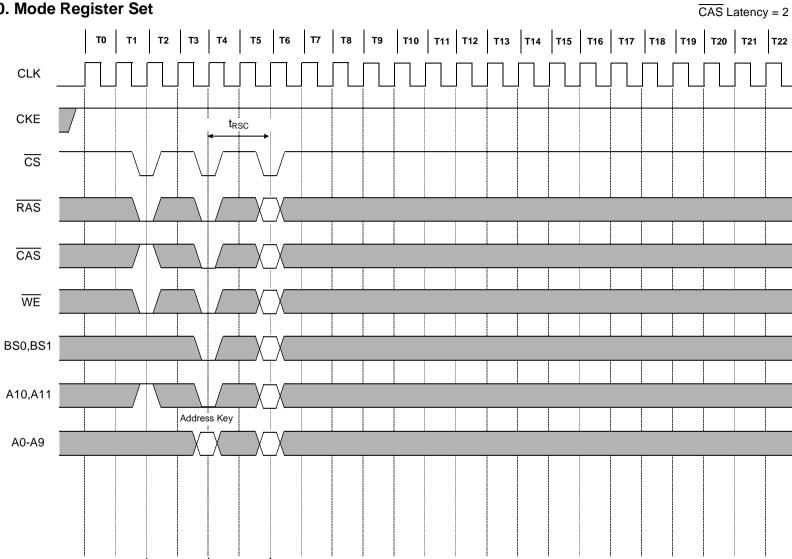

T16

T18

26

9.2 AC Parameters for Read Timing

Burst Length = 2, \overline{CAS} Latency = 2



INFINEON Technologies

HYB39S16160CT-5.5/-6/-7 16MBit Synchronous DRAM

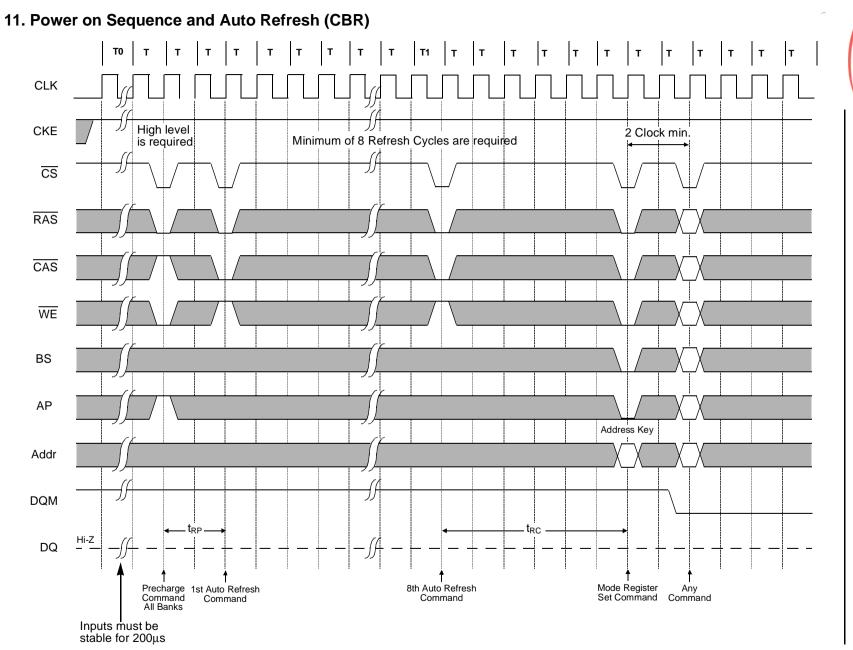
Infineon

Infineon

10. Mode Register Set

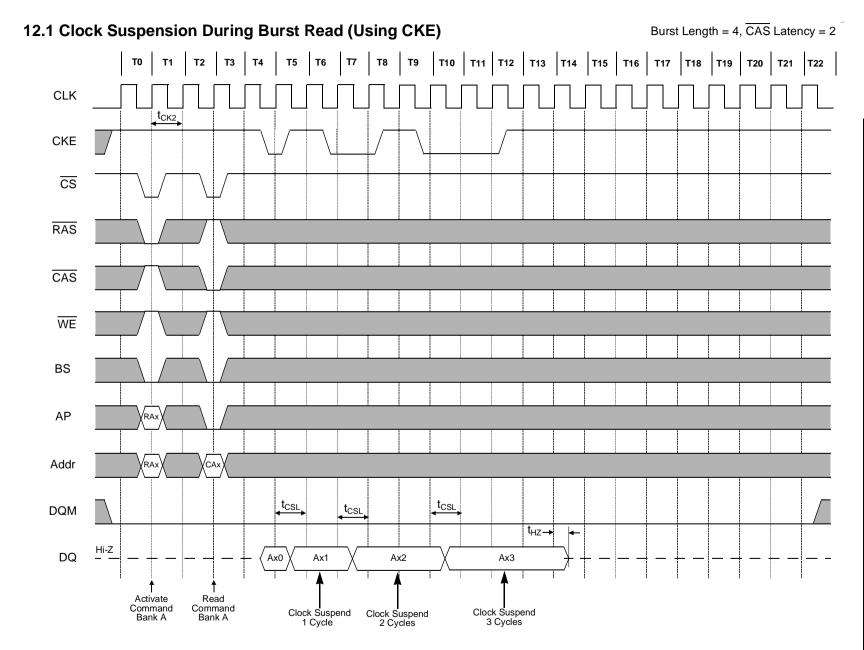
CLK

CKE


CS

RAS

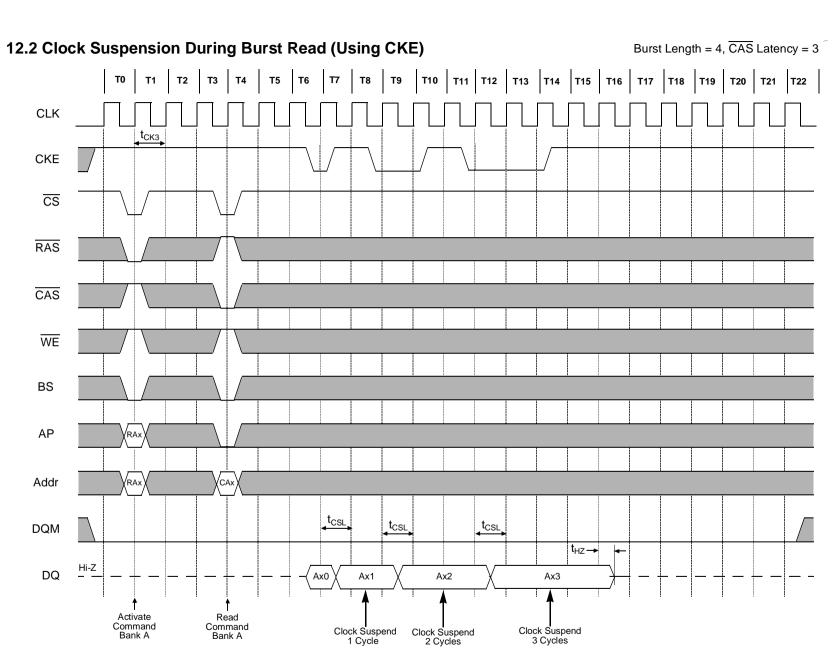
CAS


WE

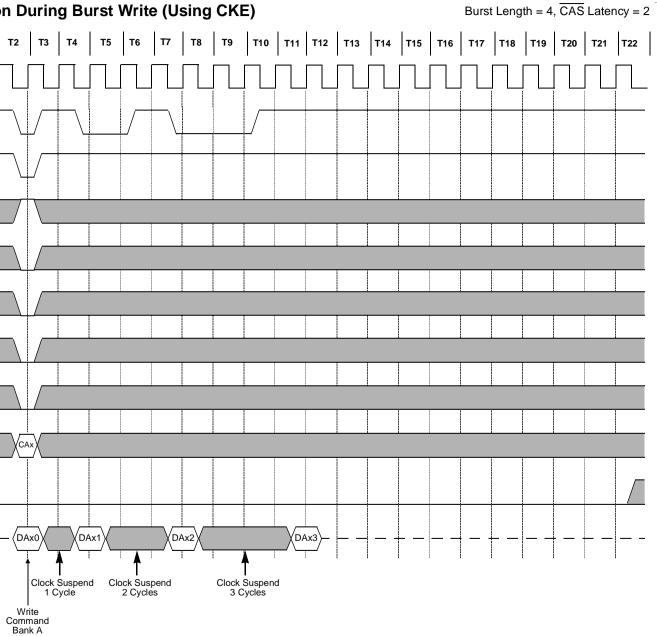
Precharge Mode Register Any Command Set Command Command All Banks

Infineon

Infineon



INFINEON Technologies


30

Infineon

Infineon

12.3 Clock Suspension During Burst Write (Using CKE)

т0

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

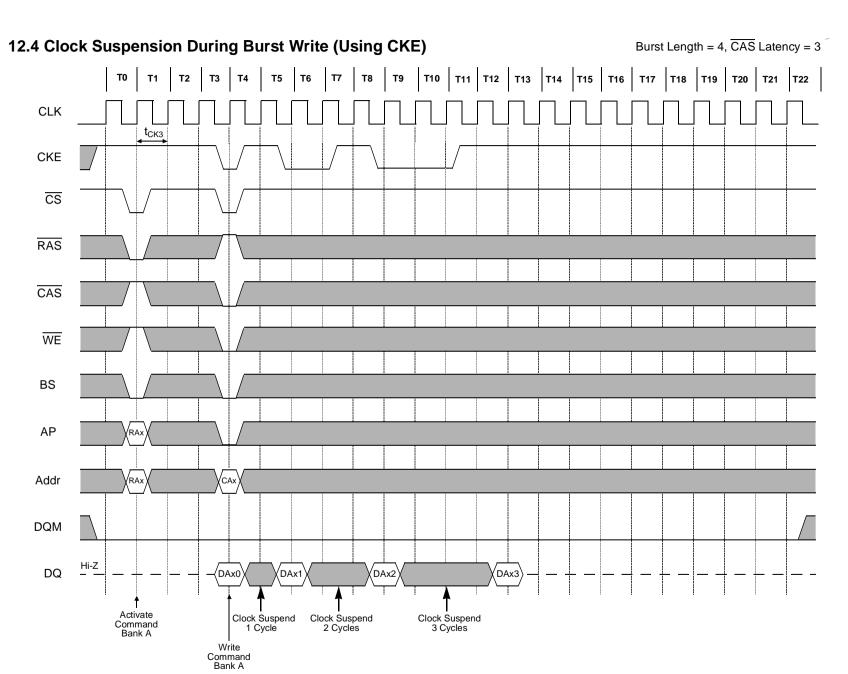
DQM

DQ

Hi-Z

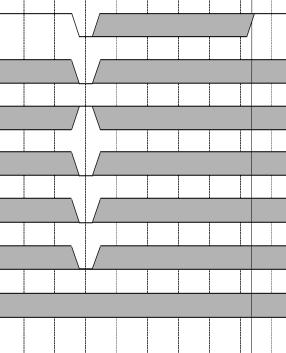

T1

t_{CK2}


(RAX

RAX

Activate Command Bank A


Infineon

INFINEON Technologies

ЗЗ

Infineon

T17

T16

T18

T19

t_{CKS}

PRECHARGE STANDBY

Power Down Mode Entry Power Down Mode Exit

> Any Command

13. Power Down Mode and Clock Suspend

Т2

тз

t_{CKS}

ACTIVE STANDBY

Т4

Т5

Read

Command Bank A

Clock Suspend Mode Exit Ax0

Ax1

Clock Mask

Start

Т6

T7

Т8

Т9

T10

T12

T11

T13

t_{HZ} →

Ax3

Precharge Command

Bank A

Ax2

Clock Mask End T14

T15

то

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

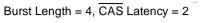
DQM

DQ

Hi-Z

T1

t_{CK2}

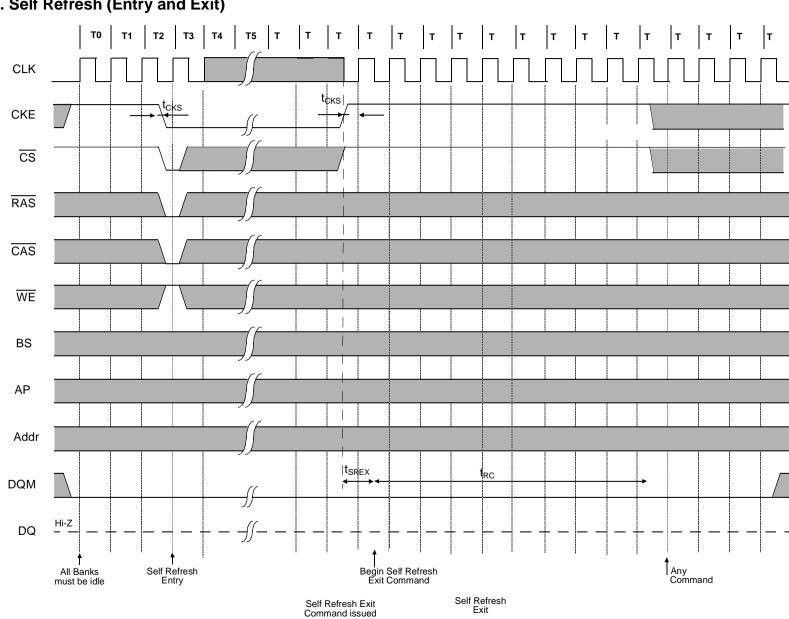

RAX

RAX

Activate

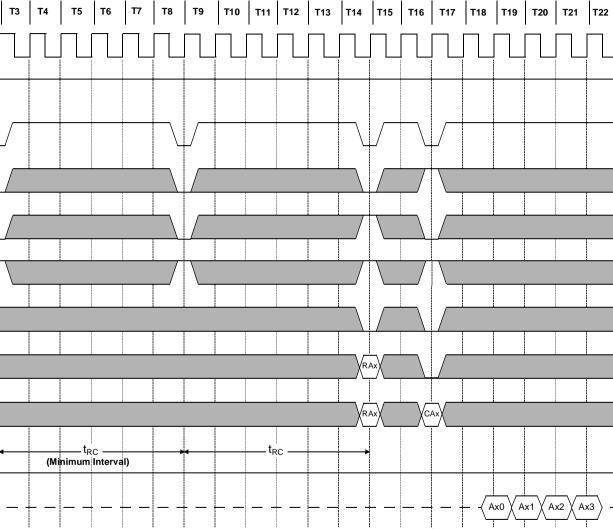
Command Bank A

> Clock Suspend Mode Entry


T21

T22

T20


Infineon

14. Self Refresh (Entry and Exit)

Infineon

Burst Length = 4, \overline{CAS} Latency = 2

Auto Refresh Command Read Command Bank A

Activate Command Bank A

15. Auto Refresh (CBR)

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

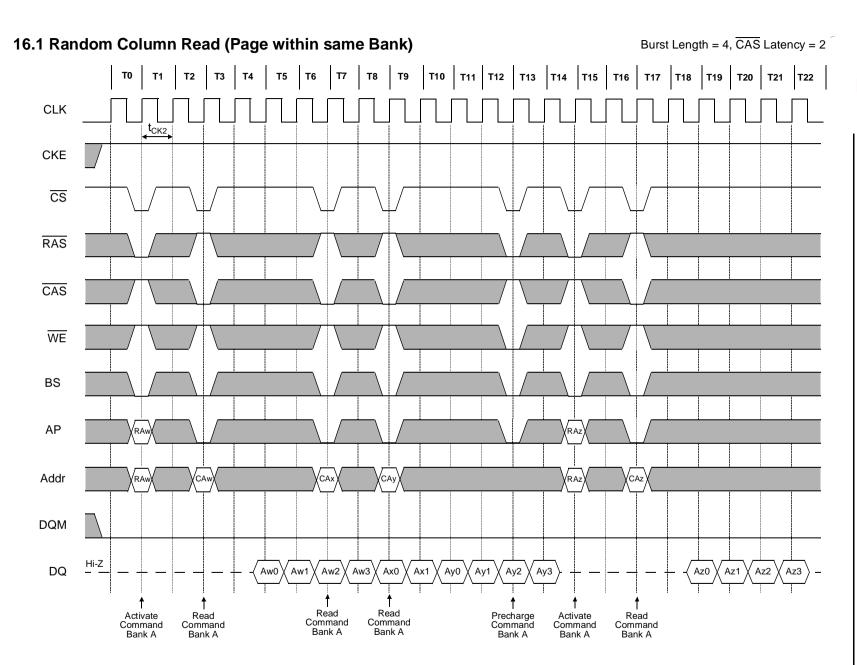
DQM

DQ

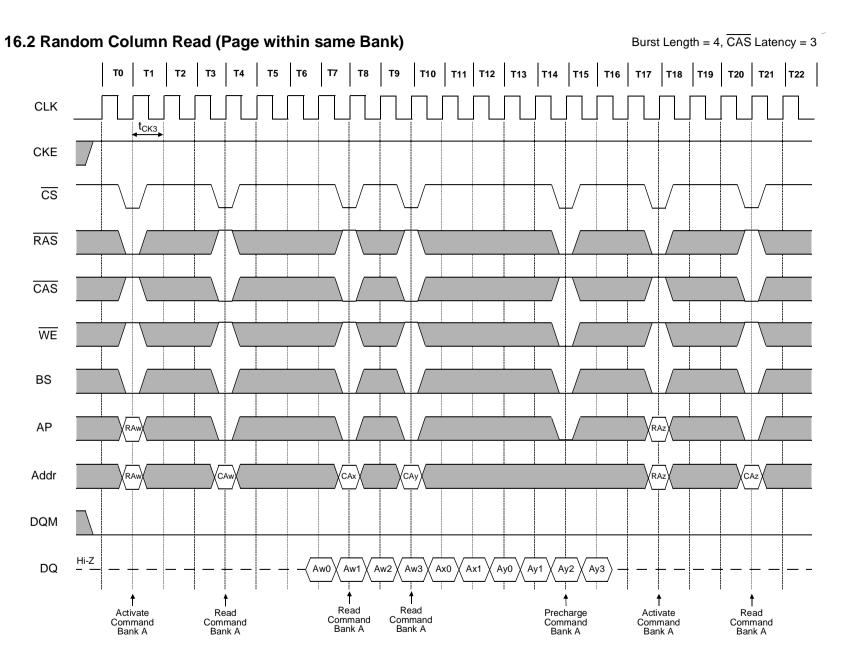
Hi-Z

то

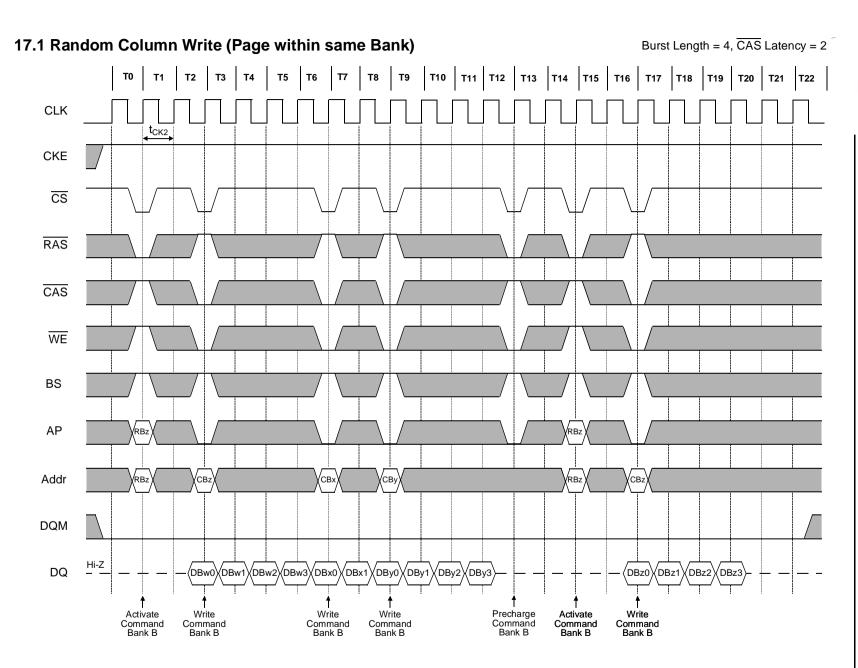
T1


t_{CK2}

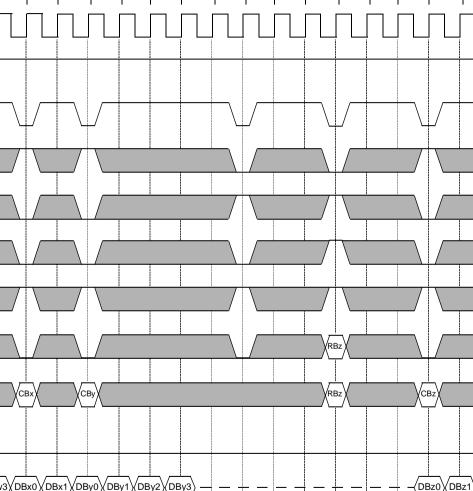
t_{RP}


Auto Refresh Command

Precharge Command All Banks Т2

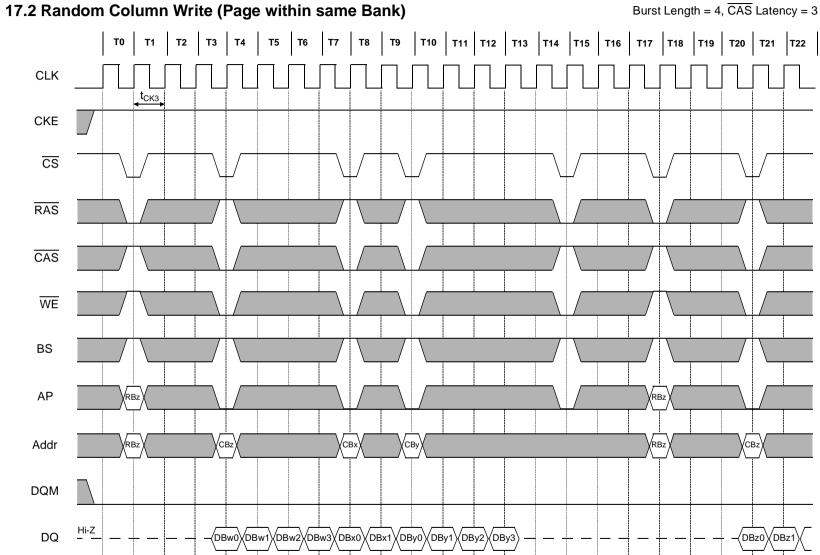


INFINEON Technologies



INFINEON Technologies

T22


Precharge Command Bank B

Activate

Command Bank B

Write

Command Bank B

Write

Command

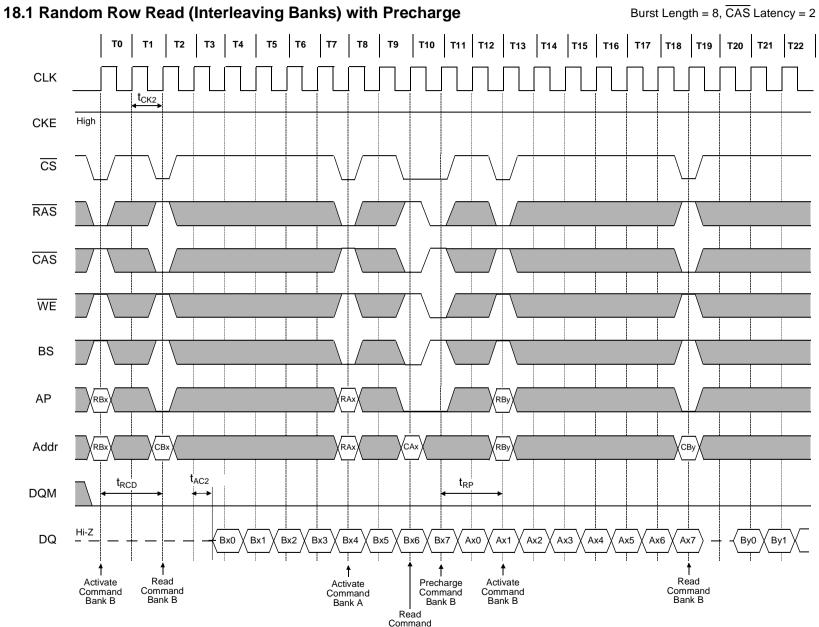
Bank B

Write

Command

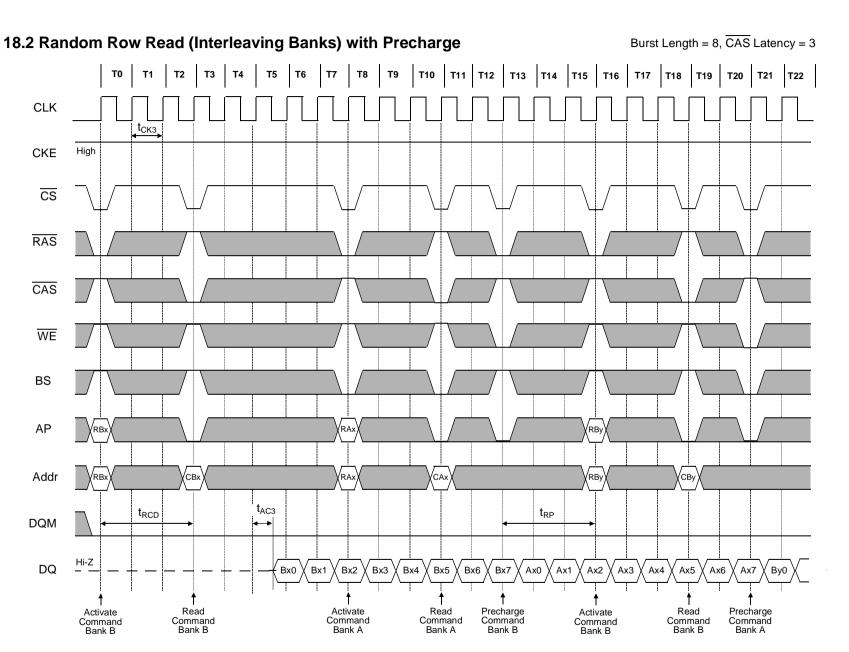
Bank B

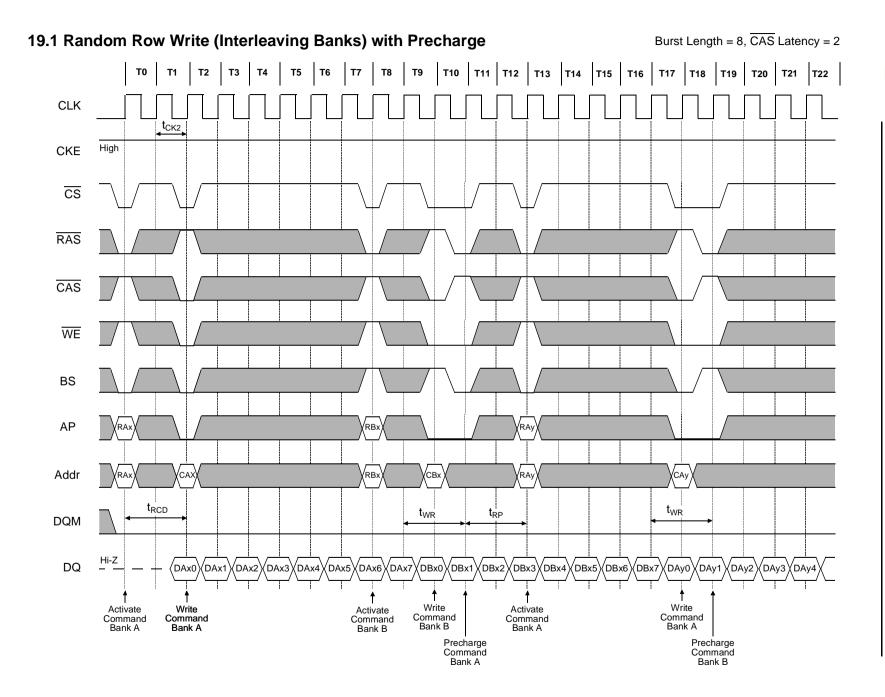
40


Activate

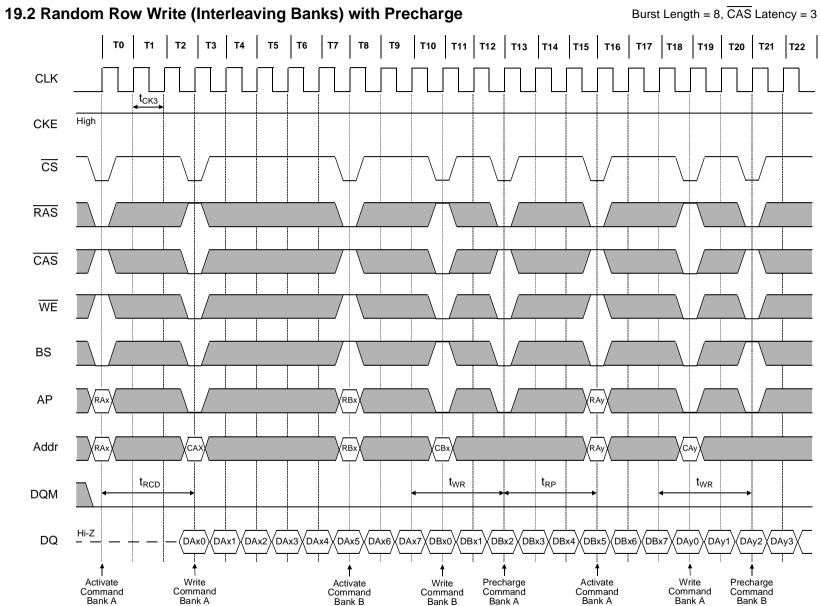
Command Bank B

Write

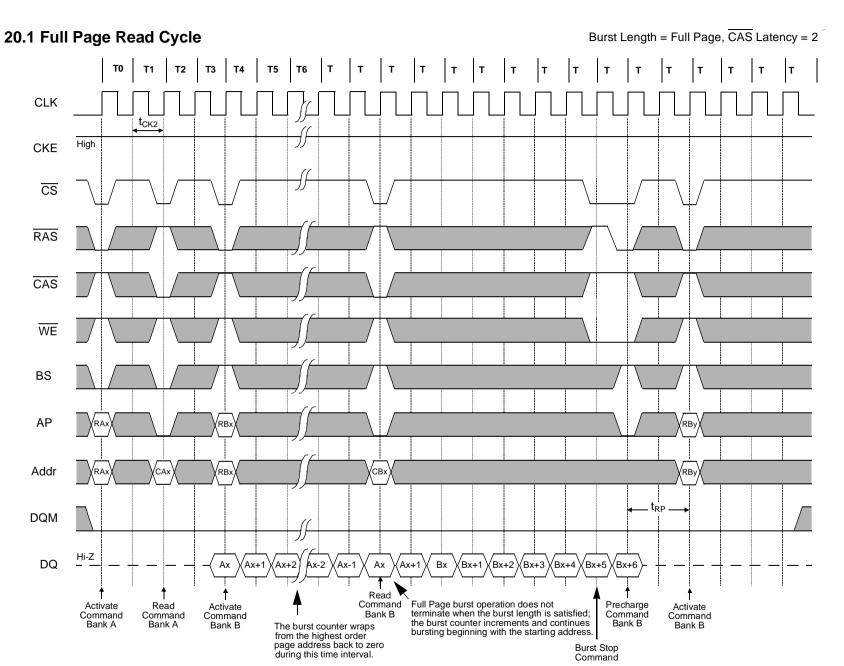

Command Bank B

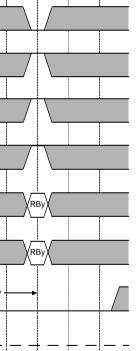


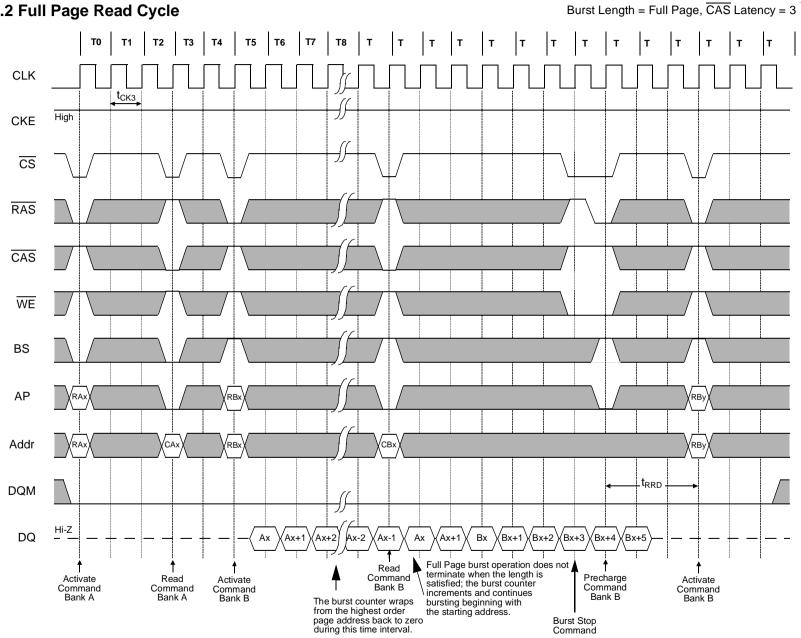
Bank A



INFINEON Technologies

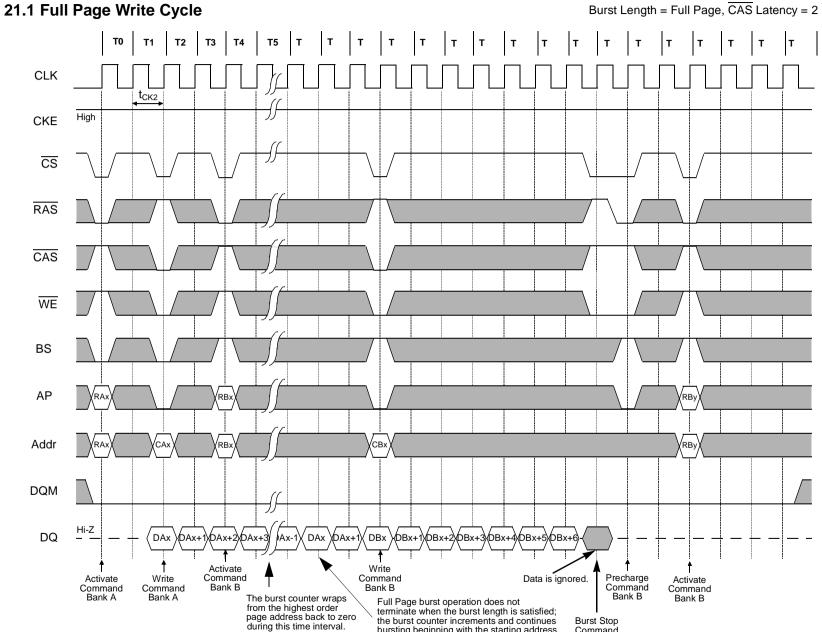





HYB39S16160CT-5.5/-6/-7 16MBit Synchronous DRAM

HYB3916160CT-5.5/-6/-7 16MBit Synchronous DRAM

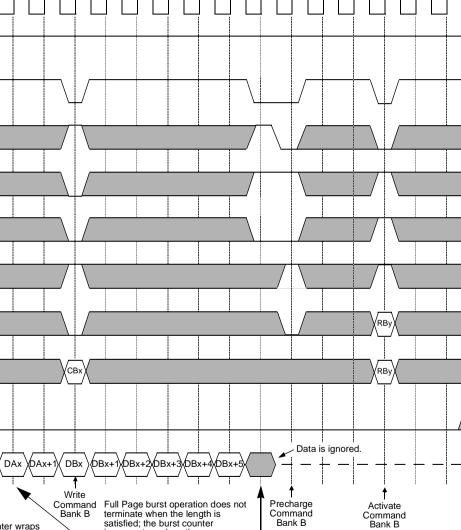
Infineon



20.2 Full Page Read Cycle

HYB39S16160CT-5.5/-6/-7 16MBit Synchronous DRAM

Infineon



bursting beginning with the starting address.

Command

HYB3916160CT-5.5/-6/-7 16MBit Synchronous DRAM

Infineon

Bank B

Burst Stop Command

21.2 Full Page Write Cycle

High

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

DQM

DQ

Vrax

RAx

Hi-Z

Activate

Command Bank A

то

T1

t_{CK3}

Т2

тз

Τ4

Т5

(rbx)

(rbx)

XDAx+1XDAx+2XDAx+

Activate

Bank B

Command

ŤŤ

DAx-1

The burst counter wraps from the highest order page address back to zero

during this time interval.

CAX

DAx

Write Command Bank A Т6

7)

Т

т

т

т

т

т

satisfied; the burst counter increments and continues

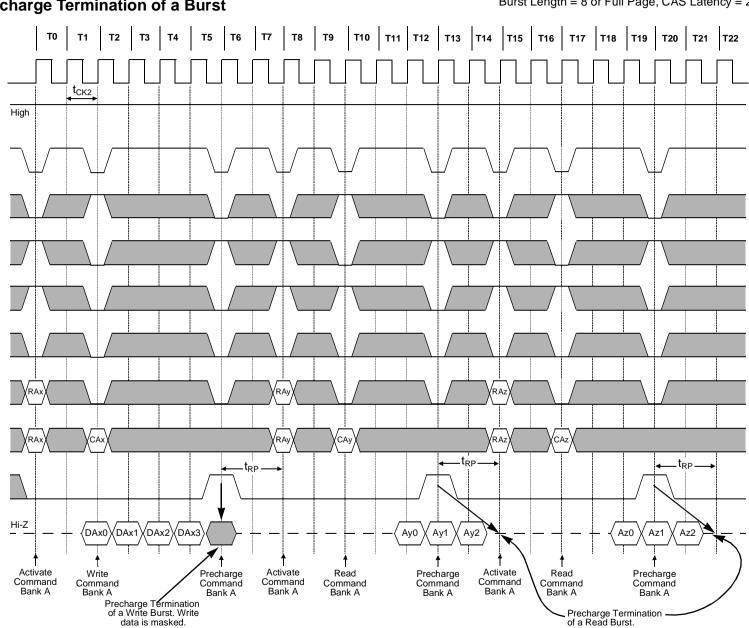
bursting beginning with the starting address.

т

т

т

Т


Т

т

Т

HYB39S16160CT-5.5/-6/-7 16MBit Synchronous DRAM

Infineon

22.1 Precharge Termination of a Burst

CLK

CKE

CS

RAS

CAS

WE

BS

AP

Addr

DQM

DQ

data is masked.