
H Series Linkage Editor, Librarian,
and Object Converter

User’s Manual

ADE-702-139

Rev. 1.0
12/18/96
Hitachi, Ltd.
McS-Setsu

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form,
the whole or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

4. Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, use in life

support systems. Buyers of Hitachi’s products are requested to notify the relevant
Hitachi sales offices when planning to use the products in MEDICAL
APPLICATIONS.

Preface

This manual explains how to use the H Series Linkage Editor, Librarian, and Object Converter,
which work on MS-DOS*1 or UNIX*2. This manual consists of the following three parts:

Part I Linkage Editor Guide
Part II Librarian Guide
Part III Object Converter Guide

Users are encouraged to consult the user’s manuals for other H Series cross-software. Relevant
manuals include:

• H8S, H8/300 Series Cross Assembler User’s Manual

• H8S, H8/300 Series C Compiler User’s Manual

• H8S, H8/300 Series Simulator/Debugger User’s Manual

• H8/500 Series Cross Assembler User’s Manual

• H8/500 Series C Compiler User’s Manual

• H8/500 Series Simulator/Debugger User’s Manual

• SH Series Cross Assembler User’s Manual

• SH Series C Compiler User’s Manual

• SH Series Simulator/Debugger user’s Manual
Notes: 1. MS-DOS is an operating system administrated by Microsoft Corporation.

2. UNIX is a registered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Notes:

The following symbols have special meaning in this manual.

<item> : Specification item
{ } : One of the items between the brackets is to be selected.
[] : The enclosed item is optional (i.e., can be omitted)
... : The preceding item can be repeated.
∆ : Blank space(s) or tab(s)
(RET) : Press the Return (Enter) key.
File extensions are in uppercase letters on MS-DOS.

Hexadecimal data in this manual is prefixed by H'. (Example: H'1000)

Data without prefix is in decimal unless otherwise specified.

Contents

Part I Linkage Editor Guide

Section 1 Overview ... 3
1.1 Linkage Editor Functions .. 4
1.2 Object Module and Load Module.. 4
1.3 Unit and Section .. 5

Section 2 Linkage Editor Functions ... 7
2.1 Module Linkage... 7

2.1.1 Section Linkage.. 7
2.1.2 Inclusion from Library Files .. 17
2.1.3 Exclusion of Module Linking .. 19

2.2 Address Resolution.. 20
2.2.1 Import Symbol Resolution ... 20
2.2.2 Address Resolution within a Module ... 22
2.2.3 Suppressing the Listing of Unresolved Symbols.. 24

2.3 Load Module File Re-Input ... 24
2.3.1 Automatic Unit Exchange .. 25
2.3.2 Forced Unit Exchange.. 27

2.4 Multilinkage .. 27
2.5 Debugging Support.. 29
2.6 Address Check ... 30
2.7 Support of Storing Program in ROM .. 30

Section 3 Executing the Linkage Editor ... 33
3.1 Command Line Format.. 34
3.2 Executing by Command Line.. 34
3.3 Controlling by Subcommands ... 35

3.3.1 Executing in Interactive Mode ... 36
3.3.2 Executing from a Subcommand File .. 37

3.4 Terminating the Linkage Editor .. 38

Section 4 Linkage Editor Options and Subcommands ... 39
4.1 Option and Subcommand Formats .. 40
4.2 List of Options and Subcommands.. 42
4.3 File Control.. 47

4.3.1 INPUT—Specifies Input Files ... 47
4.3.2 OUTPUT—Specifies an Output File ... 49
4.3.3 LIBRARY—Specifies Library Files .. 50

4.3.4 PRINT—Specifies a List File .. 51
4.3.5 EXCLUDE—Excludes Modules from Linking ... 52
4.3.6 DIRECTORY—Specifies Directory Name Replacement.................................... 53

4.4 Memory Allocation.. 54
4.4.1 START—Specifies Start Address and Linkage Order of Sections...................... 54
4.4.2 ENTRY—Specifies Execution Start Address .. 56
4.4.3 ALIGN_SECTION—Specifies Linkage of Sections Having Different Boundary

Alignment Values... 57
4.4.4 CHECK_SECTION—Specifies Section Check... 58
4.4.5 AUTOPAGE—Specifies Autopaging Function... 59
4.4.6 CPU – Specifies Address Check Using a CPU Information File 60
4.4.7 CPUCHECK—Specifies Error Output at Address Check Using CPU Information

File.. 61
4.4.8 ROM—Specifies Support of Storing Program in ROM 62

4.5 Execution Control.. 63
4.5.1 EXCHANGE—Forcibly Replaces Units.. 63
4.5.2 SUBCOMMAND—Specifies a Subcommand File ... 64
4.5.3 FORM—Specifies Output Load Module File Format.. 65
4.5.4 DEBUG—Specifies Output of Debugging Information 66
4.5.5 SDEBUG—Specifies Output of Debugging Information to a File...................... 67
4.5.6 END—Specifies End of Subcommand Input... 68
4.5.7 EXIT—Specifies End of Linkage Operation.. 69
4.5.8 ABORT—Specifies Forced End of Linkage Operation....................................... 70
4.5.9 ECHO—Specifies Subcommand File Echo-Back ... 71
4.5.10 UDF—Specifies Display of Undefined Symbols ... 72
4.5.11 UDFCHECK—Specifies Output of an Error for Undefined Symbol 73

4.6 Debugging Support.. 74
4.6.1 LIST—Displays Interim Linkage Information... 74
4.6.2 RENAME—Changes the Names of Units, Export Symbols, or Import Symbols 75
4.6.3 DELETE—Deletes Units or Export Symbols.. 77
4.6.4 DEFINE—Forcibly Defines an Import Symbol .. 78

Section 5 Input to the Linkage Editor.. 81
5.1 Object Module Files .. 81
5.2 Relocatable Load Module Files ... 81
5.3 Library Files .. 81
5.4 Default Library Files.. 81

Section 6 Output from the Linkage Editor ... 83
6.1 Linkage Lists ... 83
6.2 Load Module File .. 92
6.3 Console Messages.. 93

Section 7 Error Messages.. 95

Section 8 Restrictions ... 107

Appendix A Example of Use of Linkage Editor .. 109

Appendix B File Name Specifications .. 122

Part II Librarian Guide

Section 1 Overview ... 125

Section 2 Librarian Functions.. 127
2.1 Creating Library Files.. 127
2.2 Editing Existing Library Files ... 128
2.3 Extracting Modules from a Library File.. 129
2.4 Displaying the Contents of a Library File ... 129

Section 3 Executing the Librarian .. 131
3.1 Command Line Format.. 132
3.2 Executing by Command Line.. 133
3.3 Executing by Subcommands.. 134

3.3.1 Executing in Interactive Mode ... 134
3.3.2 Executing from a Subcommand File .. 135

3.4 Terminating Librarian Operations ... 136

Section 4 Librarian Options and Subcommands .. 137
4.1 Option and Subcommand Formats .. 137
4.2 List of Options and Subcommands.. 141
4.3 File Control.. 145

4.3.1 LIBRARY—Specifies the Library File to Be Edited... 145
4.3.2 OUTPUT—Specifies an Output Library File .. 146
4.3.3 DIRECTORY—Specifies Directory Name Replacement.................................... 148

4.4 Execution Control.. 149
4.4.1 SUBCOMMAND—Specifies a Subcommand File ... 149
4.4.2 CREATE—Creates a Library File.. 150
4.4.3 ADD—Adds Modules.. 151
4.4.4 REPLACE—Replaces Modules... 154
4.4.5 DELETE—Deletes Modules.. 157
4.4.6 EXTRACT—Extracts Modules.. 158
4.4.7 RENAME—Modifies Section Names.. 159
4.4.8 END—Specifies End of Subcommand Input ... 160
4.4.9 EXIT—Specifies End of Librarian Operations .. 161
4.4.10 ABORT—Aborts Librarian Operations ... 162

4.5 List Display.. 163
4.5.1 LIST—Displays Contents of a Library File ... 163
4.5.2 SLIST—Displays Section Names of Library File.. 165

Section 5 Input to the Librarian... 167
5.1 Object Module Files .. 167
5.2 Relocatable Load Module Files ... 167
5.3 Library Files .. 167

Section 6 Output from the Librarian.. 169
6.1 Library Files .. 169
6.2 Librarian Lists.. 169
6.3 Section Name Lists.. 172
6.4 Console Messages.. 175

Section 7 Error Messages.. 177

Section 8 Restrictions ... 183

Appendix A Examples of Librarian Usage... 185
A.1 Librarian Execution by Command Line .. 185
A.2 Librarian Execution by Subcommands.. 186

Appendix B Note on Librarian Usage in MS-DOS System 189

Part III Object Converter Guide

Section 1 Object Format Conversion... 193
1.1 Executing the Object Format Conversion.. 193
1.2 Error Messages .. 196

Index ... 199

Figures

Part I
Figure 1-1 Program Development Procedure ... 3
Figure 1-2 Interrelation among Module, Unit, and Section.. 5
Figure 2-1 Grouping Sections Having the Same Name.. 7
Figure 2-2 Simple Linkage ... 8
Figure 2-3 Common Linkage ... 8
Figure 2-4 Dummy Linkage ... 9
Figure 2-5 Example of Section Linkage with a Specified Linkage Order 10
Figure 2-6 Example of Section Linkage without a Specified Linkage Order 11
Figure 2-7 Example of Section Linkage for Same Section Name but Different Attributes 12
Figure 2-8 Linking of Page Type Modules

(Neither Autopaging nor Start Address Specified)... 14
Figure 2-9 Linking of Page Type Modules

(Autopaging Specified, Start Address Not Specified).. 15
Figure 2-10 Linking of Page Type Modules (Autopaging and Start Address Specified) 16
Figure 2-11 Example of Module Linking (Input Object Modules) .. 18
Figure 2-12 Example of Module Linking (Input Library Files) ... 18
Figure 2-13 Example of Module Linking (Output Load Module) ... 19
Figure 2-14 Example of Module Containing Non-Referenced Import Symbol 19
Figure 2-15 Resolution of Import Symbols.. 21
Figure 2-16 Address Resolution within a Module.. 23
Figure 2-17 Load Module File Re-Input Function ... 25
Figure 2-18 Automatic Unit Exchange... 26
Figure 2-19 Multilinkage Function .. 28
Figure 2-20 Memory Map for Storing Program in ROM... 30
Figure 2-21 Symbol Address for Storing Program in ROM .. 31
Figure 6-1 Typical Output of Input Information .. 84
Figure 6-2 Typical Link Map List Output Using PRINT... 85
Figure 6-3 Typical Link Map List Output Using LIST.. 86
Figure 6-4 Typical Export Symbol List Output Using PRINT .. 88
Figure 6-5 Typical Export Symbol List Output Using LIST.. 88
Figure 6-6 Typical Unresolved Import Symbol List Output Using PRINT 89
Figure 6-7 Typical Unresolved Import Symbol List Output Using LIST................................ 90
Figure 6-8 Typical RENAME/DELETE List ... 91
Figure 6-9 Typical DEFINE List.. 92
Figure A-1 Subcommand File “exlink.sub” .. 111
Figure A-2 Linkage List “program1.map” (Input Information).. 112
Figure A-2 Linkage List “program1.map” (Link Map List) ... 113
Figure A-2 Linkage List “program1.map” (Export Symbol List) .. 115
Figure A-2 Linkage List “program1.map” (Undefined Symbol List) 116
Figure A-3 Linkage List “example.map” (Input Information).. 117
Figure A-3 Linkage List “example.map” (Link Map List) ... 118

Figure A-3 Linkage List “example.map” (Export Symbol List) .. 121

Part II
Figure 2-1 Creating a New Library File ... 127
Figure 2-2 Adding a Module .. 128
Figure 2-3 Deleting a Module .. 128
Figure 2-4 Replacing a Module.. 129
Figure 2-5 Extracting Modules... 129
Figure 6-1 Librarian List Format.. 169
Figure 6-2 Librarian List (with (S) specification on UNIX) .. 171
Figure 6-3 Librarian List (no (S) specification on UNIX) ... 171
Figure 6-4 Section Name List Format .. 172
Figure 6-5 Section Name List... 174
Figure A-1 Results of Librarian Execution by Command Line .. 186
Figure A-2 Results of Librarian Execution by Subcommand ... 188

Part III
Figure 1-1 S-Type Object Format .. 194

Tables

Part I
Table 3-1 Notes on Linkage Editor Usage.. 33
Table 3-2 Return Code Depending on Error Level ... 38
Table 4-1 List of Options and Subcommands ... 42
Table 6-1 List of Informative Messages.. 94
Table 7-1 List of Warning Messages .. 96
Table 7-2 List of Error Messages.. 101
Table 7-3 List of Fatal Error Messages ... 103
Table 8-1 Restrictions on Linkage Editor Processing ... 107
Table A-1 List of Input Files.. 109
Table A-2 List of Modules in Library File .. 110

Part II
Table 3-1 How Command Line Specification Determines the Form of Execution................ 133
Table 3-2 Return Code Depending on Error Level ... 136
Table 4-1 List of Options and Subcommands ... 141
Table 4-2 Interrelation among Options and Subcommands.. 142
Table 7-1 List of Warning Messages .. 178
Table 7-2 List of Error Messages.. 179
Table 7-3 List of Fatal Error Messages ... 181
Table 8-1 Restrictions on Librarian Processing .. 183

Part III
Table 1-1 Object Format Converter Error Messages .. 197

Part I

Linkage Editor Guide

Section 1 Overview

The growing need for large-scale, complex microcomputer programs has led to the common
practice of developing a program in separate parts and using a high-level language. In generating a
program in this fashion, a compiler or an assembler is used to convert source programs into object
modules. After that, a linkage editor is employed to link and edit the modules into one load
module file.

The H Series Linkage Editor (hereafter, referred to as the Linkage Editor) inputs object module
files output by an assembler or C compiler, links and edits them, and generates a single load
module file.

Figure 1-1 illustrates the program development procedure using the Linkage Editor.

Assembly-
language
source program

C-language
source program

Preprocessor C compiler

AssemblerLibrarian

Object modulesLibraries

CIA

CPU
informa-
tion file

*
Linkage Editor

Relocatable
load module

Absolute
load module

In-circuit emulator Simulator/DebuggerObject converter

Load module
HITACHI 3

(S-type)

Note: The Linkage Editor described in this manual.*

Figure 1-1 Program Development Procedure

The Linkage Editor has the following features:

(1) Linkage can be executed by command-line specifications or by subcommands. These two
methods allow flexible control over the Linkage Editor to match the desired application.

(2) The load module file output by the Linkage Editor can be re-input and re-edited to generate a
new load module file.

(3) Data used by a simulator/debugger or in-circuit emulator in symbolic debugging can be
included in the load module file by specifying options.

1.1 Linkage Editor Functions

The Linkage Editor provides the following five basic functions.

Module Linkage: The module linkage function links and edits object modules output by a
compiler or assembler.

Address Resolution: The address resolution function determines absolute addresses for external
reference symbols so that references can be made between modules. It also determines absolute
addresses for relative addresses.

Load Module File Re-input: The re-input function enables a load module file output by the
Linkage Editor to be input again.

Multilinkage: The multilinkage function enables the linkage process to be carried out multiple
times during one execution of the Linkage Editor.

Debugging Support: The debugging support function allows display of interim linkage results
and provisional correction of errors.

1.2 Object Module and Load Module

An object module is output as a result of compiling or assembling a source program. A load
module is obtained by using the Linkage Editor to link object modules.

There are two load module formats: absolute and relocatable. An absolute load module has been
assigned absolute addresses, and is in executable form. It does not contain relocation information
4 HITACHI

for relinking and relocation. A relocatable load module has been assigned relative addresses and
contains relocation information. This information enables the relocatable load module to be
re-input into the Linkage Editor for relinking and relocation. The load module format is selected
by the FORM option or subcommand. For details on the FORM option and subcommand, refer to
section 4.5.3, “FORM—Specifies Output Load Module File Format.”

Object modules, absolute load modules, and relocatable load modules are collectively referred to
as modules in this manual.

Modules are either page type or non-page type, depending on the H series microcomputer. The
two types differ as to the method of assigning addresses when modules are linked. H8/500 series
modules are page type, whereas H8S, H8/300 series and SH series modules are non-page type.

1.3 Unit and Section

A unit in a module refers to a compile unit or assembly unit. An object module output by a
compiler or assembler consists of a single unit. A load module which represents multiple object
modules that have been linked by the Linkage Editor contains more than one unit.

A unit is divided into sections. The Linkage Editor processes one section at a time.

The interrelation among module, unit, and section is illustrated in figure 1-2.

Section

Module

Unit

.

.

.

.

.

.

HITACHI 5

Figure 1-2 Interrelation among Module, Unit, and Section

A section has a name for identification, an attribute describing its content and usage, and a format:
either absolute or relocatable. Even if two sections have the same name, they are treated as
separate sections when their attributes or formats are different.

Section attributes and formats are classified as follows.

(1) Attributes

• Code: An area containing instructions or constants.

• Data: A variable area with values that are changed by the program.

• Stack: A stack or work area which cannot be initialized.

• Common: A variable area used in common by multiple modules.

• Dummy: Used, for example, to define the structure of a variable area; does not generate any
actual object code.
6 HITACHI

(2) Formats

• Absolute: A section in which absolute addresses have already been assigned.

• Relocatable: A section in which absolute addresses have not yet been assigned.

Section 2 Linkage Editor Functions

This section gives a more detailed description of the basic functions provided by the Linkage
Editor. The following discussion and examples will make reference to various options and
subcommands used to control the Linkage Editor. Additional information on these options and
subcommands can be found in section 3, “Executing the Linkage Editor,” and section 4, “Linkage
Editor Options and Subcommands.”

2.1 Module Linkage

The Linkage Editor reads modules from specified input files and links these modules to generate
one load module. Modules are linked by each section, a section being the smallest complete part
making up a module.

2.1.1 Section Linkage

A section is linked only if it is relocatable. Since absolute sections have already been assigned
absolute addresses, no further linking is performed. Relocatable sections are linked according to
the procedure described below.

(1) Grouping of Sections with the Same Name

Sections having the same name but found in more than one unit are grouped.

Section A

Section B

Section C

Unit X

Section A

Section B

Section C

Unit Y

Grouping of sections named A

Grouping of sections named B

Grouping of sections named C
HITACHI 7

Figure 2-1 Grouping Sections Having the Same Name

A warning message is output when sections have the same name but different attributes. Such
sections are then processed as separate sections.

(2) Linking of Sections with the Same Name

Sections having the same name are linked in one of three ways, depending on their attributes.

(a) Simple linkage

Sections with the code, data, or stack attribute and having the same name are allocated
consecutively, in the order in which the modules were input.

+

Unit X

Section A

Unit Y

Section A

Linkage of sections named A

Section A in
Unit X

Section A in
Unit Y

Figure 2-2 Simple Linkage

(b) Common linkage

Sections with the common attribute and having the same name are allocated at the same
address. The address area allocated is equal to the size of the largest section.��	����+Unit X

Section B

Unit Y

Section B

Linkage of sections named B

Unit Y

Unit X
8 HITACHI

Figure 2-3 Common Linkage

(c) Dummy linkage

Sections with the dummy attribute are not linked, because they do not have any actual
existence in the object module file.

+

Unit Y

Section C Not linked

Unit X

Section C

Figure 2-4 Dummy Linkage
HITACHI 9

(3) Linking of different sections

If a section linking order is specified when the Linkage Editor is executed, sections are linked in
that order. If the section linking order is not specified, sections are linked in the order in which
they were input.

(a) With a specified linkage order

Section A

Section B

Section D

Unit X

Section A

Section C

Section D

Unit Y

Section A

Section B

Section C

Unit Z

Section A: Code section

Section B: Common section

Section C: Dummy section

Section D: Data section

Section linkage order A D B

Section A (X)

Section A (Y)

Section A (Z)

Section D (X)

Section D (Y)

Section B
10 HITACHI

Figure 2-5 Example of Section Linkage with a Specified Linkage Order

The section linkage order can be specified only when the load module output by the
Linkage Editor has the absolute format. The linkage order is specified using the START
option or subcommand.

(b) Without a specified linkage order

Section A

Section B

Section C

Unit X

Section A

Section C

Section D

Unit Y

Section A

Section B

Section D

Unit Z

Section A: Data section

Section B: Common section

Section C: Dummy section

Section D: Code section

Sections are input in the order through

Section A (X)

Section A (Y)

Section A (Z)

Section B

Section D (Y)

Section D (Z)

1

2

3

4

1 4
HITACHI 11

Figure 2-6 Example of Section Linkage without a Specified Linkage Order

Sections having the same name but different attributes are linked in the order in which they
are input.

Section A
<data>

Unit X Unit Y Unit Z

Sections are input in the order of 1 through 3

Section A (X)
<data>

1 2Section A
<stack>

Section A
<code>

3

Section A (Y)
<stack>

Section A (Z)
<code>
12 HITACHI

Figure 2-7 Example of Section Linkage for Same Section Name but Different Attributes

(4) Address assignment

Addresses are assigned to each section. Absolute addresses are assigned when the output load
module file has the absolute format. The section linkage order and start address can be specified
using the START option or subcommand. Absolute addresses are assigned to each section in
order, beginning with the start address. If no start address is specified, absolute addresses are
assigned beginning from address zero.

If sections with absolute format are linked to sections with relocatable format, the same absolute
address may be assigned to more than one section. In that case, the Linkage Editor displays a
warning message.

When page type modules are linked, if addresses are assigned section by section, one section may
overlap a page boundary. In this case the Linkage Editor will display a warning message.
However, executing a load module one of whose sections overlaps a page boundary is extremely
troublesome. For this reason the Linkage Editor is provided with an autopaging function, which
prevents any section in a unit from overlapping the page boundary by allocating the section to the
top of the next page. Use of this function is designated by means of the AUTOPAGE option or
subcommand. The different methods of assigning addresses to page type modules are shown in
figure 2-8 (neither autopaging nor start address specified), figure 2-9 (autopaging specified, start
address not specified), and figure 2-10 (autopaging and start address specified).
HITACHI 13

When the output load module file has the relocatable format, addresses in each section are
assigned relative to the beginning of the section. The output format is specified using the FORM
option or subcommand.

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������

Unit X

Section A: Code section

Section B: Common section

Section C: Dummy section

Section D: Data section

Section linkage order specified as: A D B

Unit Y Unit Z

�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����
�����

Page boundary

Page boundary

Page boundary

Section A in Unit Z
overlaps page boundary

Section D in Unit X
overlaps page boundary

Section D in Unit Y
overlaps page boundary

Section D

Section A

Section C

Section A

Section B

Section D

Section B

Section C

Section A

Section A (X)

Section A (Y)

Section A (Z)

Section D (X)

Section D (Y)

Section B
14 HITACHI

�������

Figure 2-8 Linking of Page Type Modules (Neither Autopaging nor Start Address
Specified)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������
������

Unit X

Section A: Code section

Section B: Common section

Section C: Dummy section

Section D: Data section

Section linkage order specified as: A D B

Unit Y Unit Z

Page boundary

Page boundary

Page boundary

�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

������������
������������
������������
������������
������������
������������
������������
������������
������������
������������
������������

�����
�����

Page boundary

Section A (X)

Section A (Y)

Section A (Z)

Section D (X)

Section D (Y)

Section B

Section A

Section B

Section C

Section A

Section C

Section D
Section D

Section A

Section B
HITACHI 15

Figure 2-9 Linking of Page Type Modules (Autopaging Specified, Start Address Not
Specified)

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������
����������������

������
������

Unit X

Section A: code section

Section B: common section

Section C: dummy section

Section D: data section

Section linkage order specified as: A D B

Unit Y Unit Z

Page boundary

Page boundary

Page boundary

Page boundary

Page boundary

�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����
�����

Start address

Section D

Section A

Section B

Section A

Section C

Section D

Section A

Section B

Section C

Section B

Section D (Y)

Section D (X)

Section A (Z)

Section A (X)

Section A (Y)
16 HITACHI

Figure 2-10 Linking of Page Type Modules (Autopaging and Start Address Specified)

2.1.2 Inclusion from Library Files

The Linkage Editor can link object modules and relocatable load modules input from library files
created with the H Series Librarian, and include these modules in the output load module.
Inclusion from library files is accomplished in either of the following two ways.

(1) Inclusion by Specifying the Module Name: Particular modules in a library file can be
included by specifying the library file name and module name when input file names are
specified. Input file names are specified on the command line or by the INPUT subcommand.

(2) Automatic Inclusion: After all specified modules have been input, the Linkage Editor begins
resolving external reference symbols (after this, external reference symbol is called “import
symbol”). If an import symbol is not defined in any of the modules, the Linkage Editor
searches the specified library files. If it finds a module defining the unresolved import symbol,
the Linkage Editor automatically inputs and links this module. If the unresolved import symbol
is not defined in any of these library files, the Linkage Editor searches one or more default
library files defined in advance by the user. Again, if it finds a module defining the unresolved
import symbol, the Linkage Editor automatically inputs and links this module.

If no module in the default libraries defines the unresolved import symbol, an undefined import
symbol error occurs.

A detailed explanation of default libraries is given in section 5.4, “Default Library Files.”

Library files are classified into system library files and user library files. The Linkage Editor first
searches user library files. When modules containing externally defined symbols (after this,
externally defined symbol is called “export symbol”) of the same name exist both in a specified
system library file and in a user library file, the module in the user library file is linked. The order
in which two or more user library files or system library files are searched depends on the order in
which they are specified.

A library file can contain both page type and non-page type modules. If both types of modules are
input into the Linkage Editor at the same time, an error will occur. Care must therefore be taken
both when creating library files and when specifying them.
HITACHI 17

Library files are specified using the LIBRARY option or subcommand. On the designation of
library files as system files or user files, see Part II, Librarian Guide.

An example of the order of module linking when library files are specified is given below.

(1) Object modules a and b are input by the INPUT subcommand.

.IMPORT X1, Z1
MOV @X1, R0
MOV @Z1, R1

.IMPORT X2, Y2
MOV @X2, R0
MOV @Y2, R1

Module a Module b

Figure 2-11 Example of Module Linking (Input Object Modules)

(2) Library files lib1, lib2, and lib3 are input in that order by the LIBRARY subcommand.

Module 10
.EXPORT X2

Module 11
.EXPORT X1

Module 30
.EXPORT Z1

Module 31
.EXPORT Z2

Module 20
.EXPORT Y1

Module 21
.EXPORT Y2

Library lib1 Library lib2 Library lib3

Figure 2-12 Example of Module Linking (Input Library Files)

(3) The Linkage Editor first collects all import symbols declared in the input files, then searches
for export symbols in the first specified library. If a symbol is found, the module defining it is
linked.

If two or more symbols are declared in separate modules in the same library, the modules are
18 HITACHI

linked in their order of appearance in the library. If a symbol is not found in that library, the
next specified library is searched.

In the above example, modules are linked in the following order.

Module a

Module b

Module 10

Module 11

Module 21

Module 30

Figure 2-13 Example of Module Linking (Output Load Module)

2.1.3 Exclusion of Module Linking

An option or subcommand selects whether or not to link modules that define non-referenced
import symbols. In the following coding example symbol abc is declared as an import symbol, but
is not referenced in any executable statement. If exclusion is specified, the module defining
symbol abc in a library file will not be linked.

.IMPORT xyz, abc
MOV.W @xyz, R0

.END

.

.

.

Figure 2-14 Example of Module Containing Non-Referenced Import Symbol

In a C language program, import symbols are described by an extern declaration, but these
HITACHI 19

symbols are not necessarily referenced. (For example, a large number of non-referenced import
symbols are declared in stdio.h.) The exclusion function reduces program size by excluding
unnecessary modules. Exclusion of such modules is specified by the EXCLUDE option or
subcommand.

2.2 Address Resolution

When a source program is assembled, the absolute addresses of certain symbols cannot be
decided. These include symbols imported from another module and symbols in relocatable
sections of the same module. The Linkage Editor determines absolute addresses for these symbols
and sets the absolute addresses to the reference positions.

2.2.1 Import Symbol Resolution

When importing symbols from a separate module, the assembler outputs import information in the
object program. It also declares export of symbols that can be imported in other modules. As a
result, export information is output in the object program. The Linkage Editor relates this import
and export information. In addition, it uses address information specified by options or
subcommands to determine absolute addresses for the export symbols, and replaces corresponding
import symbols with the absolute addresses.

The example given in figure 2-15 illustrates how import symbols are resolved. The modules,
sections, and subcommands used in the figure are explained below.

(1) Module a

• This module consists of one section, section X, having a size of 5000 (hexadecimal) bytes.

• Symbol S4 in module b is imported at position A1.

• Symbol S2 in module b is imported at position A2.

(2) Module b

• This module consists of sections X and Y.

• The size of section X is 2000 (hexadecimal) bytes.

• The size of section Y is 3000 (hexadecimal) bytes.

• S1 is the start of section Y. S2 is located 1000 (hexadecimal) bytes from S1.

• S3 is the start of section X. S4 is located 1200 (hexadecimal) bytes from S3.

(3) Module c
20 HITACHI

• This module consists of one section, section Z, having a size of 4000 (hexadecimal) bytes.

• Symbol S3 in module b is imported at position C1.

• Symbol S1 in module b is imported at position C2.

�
���
.
��
/

(4) Subcommands

INPUT∆a, b, c

START∆X, Y, Z(10000)

EXIT

Three modules a, b, and c are input to the Linkage Editor. Sections are linked in the order X, Y, Z.
The start address is 10000 (hexadecimal).

Module a

5000 bytes
(hexadecimal)

Module b

3000 bytes
(hexadecimal)

2000 bytes
(hexadecimal)

Module c

4000 bytes
(hexadecimal)

10000

15000

17000

1A000

1E000

A1

A2

S3
S4

S1
S2

C1

C2

Absolute address of S1: 17000 (hexadecimal)
Absolute address of S2: 18000 (hexadecimal)
Absolute address of S3: 15000 (hexadecimal)
Absolute address of S4: 16200 (hexadecimal)

Set 16200 (hexadecimal) to position A1.

*+#$+
�
+,

A1

A2

Section X

S1

Section Y

S2

S3
Section X

S4

Section Z C1

C2
HITACHI 21

Set 18000 (hexadecimal) to position A2.
Set 15000 (hexadecimal) to position C1.
Set 17000 (hexadecimal) to position C2.

Figure 2-15 Resolution of Import Symbols

2.2.2 Address Resolution within a Module

When a symbol defined in a relocatable section of a module is referenced within the same module,
the assembler expresses the symbol address as a relative address from the start of the section. The
Linkage Editor uses this relative address value and address information specified by options or
subcommands to decide the absolute address. It then replaces the relative address with the absolute
addresses.

The example given in figure 2-16 illustrates the resolution of addresses within a module. The
modules, sections, and subcommands used in the figure are explained below.

(1) Module a

• This module consists of one section, section X, having a size of 5000 (hexadecimal) bytes.

(2) Module b

• This module consists of sections X, Y, and Z.

• The size of the section X is 6000 (hexadecimal) bytes.

• The size of the section Y is 1000 (hexadecimal) bytes.

• The size of the section Z is 2000 (hexadecimal) bytes.

• B1 references S1.

• B2 references S3.

• B3 references S2.

• S1 is located 3000 (hexadecimal) bytes from the start of section X.

• S2 is located 4500 (hexadecimal) bytes from the start of section X.

• S3 is located 5000 (hexadecimal) bytes from the start of section X.

(3) Subcommands
22 HITACHI

INPUT∆a, b

START∆X, Y, Z(10000)

EXIT

'.//0!(
Two modules a and b are input to the Linkage Editor. Sections are linked in the order X, Y, Z. The
start address is 10000 (hexadecimal).

Module a

5000 bytes
(hexadecimal)

Module b

1000 bytes
(hexadecimal)

2000 bytes
(hexadecimal)

10000

15000

1B000

Logical address of S1: 18000 (hexadecimal)
Logical address of S2: 19500 (hexadecimal)
Logical address of S3: 1A000 (hexadecimal)

B2

S3

1C000

1E000

B1

S1

6000 bytes
(hexadecimal)�������� S2

B3

Section X

Section Y
B1

Section X

S1

B2

S2

S3

B3

Section Z
HITACHI 23

Set 18000 (hexadecimal) to position B1.
Set 1A000 (hexadecimal) to position B2.
Set 19500 (hexadecimal) to position B3.

Figure 2-16 Address Resolution within a Module

2.2.3 Suppressing the Listing of Unresolved Symbols

For a relocatable load module, the display of unresolved symbol names can be suppressed. This
can be selected by the UDF option or subcommand.

2.3 Load Module File Re-Input

Load module files have to be recreated using the Linkage Editor when a program has been
modified or import symbols remain unresolved. The re-input function eliminates the need to
specify each object module separately. By simply specifying the existing load module file and the
object module files that were modified (or the object module files containing the export symbols),
this function will recreate the load module file.

If modules are to be replaced, the re-input function carries out the replacement on a unit basis. A
detailed explanation of unit replacement is given in section 2.3.1, “Automatic Unit Exchange.”

The load module file to be re-input can be specified on the command line or using the INPUT
subcommand.
24 HITACHI

Only load module files in relocatable format can be re-input. The FORM option or subcommand is
used to specify the relocatable format when creating a load module file.

An overview of the load module file re-input function is shown in figure 2-17.

Load module file a

Object module file b

Object module file c

Linkage
editor

Load module file d

Unit U1

Unit U2

Unit U3

Unit U4

Unit U5

Unit U6

Unit U1

Unit U2

Unit U3

Unit U4

Unit U5

Unit U6

Figure 2-17 Load Module File Re-Input Function

Load module file a and object module files b and c are input to the Linkage Editor, which outputs
a new load module file d. Load module file d consists of units U1, U2, U3, U4, U5, and U6.

2.3.1 Automatic Unit Exchange

When the Linkage Editor finds units with the same name in two or more modules, it gives
inclusion priority to the unit in the module that was specified first. To replace units in a load
module file, first specify files containing the replacement units, then specify the relevant load
module file. This will produce the same result as using the EXCHANGE subcommand. This
function is called automatic unit exchange.

By using automatic unit exchange, new load module files can be created by simply changing the
HITACHI 25

specified order of file input. This feature is convenient when it is necessary to modify programs
frequently, such as during debugging.

An example of the procedure for automatic unit exchange is shown in figure 2-18.

Load module file a

Object module file b

Object module file c

Load module file d

Unit U1

Unit U2

Unit U3

Unit U4

Unit U5 Load module file d

Unit U1

Unit U2

Unit U3

Unit U4

Unit U5

Unit U2

INPUT a, b, c
OUTPUT d

Unit U2

Unit U5

Unit U1

Unit U3

Unit U4

∆
∆

INPUT c, b, a
OUTPUT d

∆

(2)

(1)

No automatic
exchange

Automatic
exchange

Subcommand contents

∆

Figure 2-18 Automatic Unit Exchange

(1) Automatic Exchange: Object module files c and b and load module file a are input in that
order. Unit U2 in load module file a is not included by the Linkage Editor since unit U2 in load
26 HITACHI

module file c has already been input.

(2) No Automatic Exchange: Load module file a and object module files b and c are input in that
order. Unit U2 in load module file c is not included by the Linkage Editor since unit U2 in load
module file a has already been input.

2.3.2 Forced Unit Exchange

In addition to using automatic unit exchange, the EXCHANGE subcommand can also specify the
units to be replaced. This function is called forced unit exchange.

By specifying the following subcommands, the result of forced unit exchange will be the same as
that of the automatic unit exchange shown in figure 2-18.

INPUT a, b
EXCHANGE c
OUTPUT d

Forced unit exchange

∆
∆

∆

INPUT c, b, a
OUTPUT d

Automatic unit exchange

∆
∆

In this example of forced unit exchange, the Linkage Editor inputs units U1, U2, U3, and U4 in
load module file a and unit U5 in object module file b, then forcibly replaces the unit U2 already
input with unit U2 in object module file c. Load module file d output by the Linkage Editor
contains units U1, U3, and U4 from file a, unit U5 from file b, and unit U2 from file c. Thus load
module file d has the same unit configuration as load module file d shown in the example of
automatic file exchange in figure 2-18.

2.4 Multilinkage

The Linkage Editor can handle up to 256 input files in one linkage process. When there are
multiple input files, one way to link them is to re-input the load module file. The multilinkage
function allows several linkage processes to be completed with just one execution of the Linkage
Editor, instead of executing it separately for each linkage process.
HITACHI 27

The END subcommand indicates the end of one linkage process of the multilinkage function. The
end of the final linkage process, however, is specified by the EXIT subcommand.

An example of the multilinkage function is shown in figure 2-19.

n files

m files

o files

Input files

ifile1

ifile n

ifile n+1

ifile m

ifile m+1

ifile o

Subcommand contents

INPUT ifile1

INPUT ifile n
OUTPUT lm1
FORM R
END

∆

∆
∆

∆

INPUT lm1.rel
INPUT ifile n+1

INPUT ifile m
OUTPUT lm2
FORM R
END

∆

∆
∆

∆

∆

INPUT lm2.rel
INPUT ifile m+1

INPUT ifile o
OUTPUT lm3
EXIT

∆

∆
∆

∆

Relocatable
load module file

lm1

lm2

lm3

indicates one
linkage process

Relocatable
load module file

Absolute
load module file

Note: When the default library is used during multi-linkage process, the modules in the
default library are linked in the first linkage process. When the modules must be
28 HITACHI

linked in the final linkage process, specify the NOLIBRARY command in the
processes except the final process.

Figure 2-19 Multilinkage Function

2.5 Debugging Support

Debugging support functions confirm the interim linkage results at the program debugging stage
and make provisional recovery from errors in load module files. Debugging support functions
include displaying interim linkage information as well as defining, changing, and deleting export
and import symbol names. A brief explanation of each function is given below.

(1) Display of Interim Linkage Information: This function is used during subcommand input
when it is desired to see information about the load module being processed by the Linkage
Editor. Specifying the LIST subcommand outputs interim linkage information to the standard
output device.

Three types of linkage information are displayed.

(a) Linkage map

(b) Unresolved import symbols

(c) Export symbols

(2) Change and Deletion of Unit Names, Export Symbol Names, and Import Symbol Names:
These functions can change or delete any duplicated names of units, export symbols, and
import symbols. Noted that names of import symbols cannot be deleted.

Names are changed by the RENAME subcommand and are deleted by the DELETE
subcommand.

(3) Forced Definition of Import Symbols: This function defines provisional values for import
symbols. The values defined with this function are valid only for the linkage operation being
HITACHI 29

processed.

The forced definition of these symbol values is specified using the DEFINE option or
subcommand.

2.6 Address Check

When an absolute load module is created with the Linkage Editor, addresses must be assigned to
sections in accordance with the target CPU memory map. If not, the load module cannot be loaded
to memory.

The address check function provided with the Linkage Editor confirms the validity of section
address assignments on the basis of CPU memory map information (hereinafter called “CPU
information”). This CPU information is read from a specified file.

To check an address, the CPU option or subcommand specifies the CPU information file. The
CPU information file is created using the CPU information analysis program (CIA) included in the
simulator/debugger. Note that the CPU information analysis program is not available for CPUs
other than the H8S, H8/300, and SH series; thus the address check function can be used only with
these series.

Regarding the method of creating a CPU information file, refer to the H8/300 Series or SH Series
Simulator/Debugger User’s Manual or the SH Series Simulator/Debugger User’s Manual.

2.7 Support of Storing Program in ROM

When a user program is coded in C language and the load module is to be stored in ROM, data
sections having initial value (D sections) will also be stored in ROM. To assist the user, the
Linkage Editor carry out the following operations.

(1) An area of the same size as the D section (called the D' section) is reserved in the RAM area
of the output load module. The memory map of the load module looks like this:

Non-initialized data
variable area (B)

ROM area

RAM area

Program area

Constant area

Initialized data area (D)

Initialized data area (D’)
30 HITACHI

Area reserved for data having initial value

Figure 2-20 Memory Map for Storing Program in ROM

(2) When a variable declared in the D section is referenced, its address is changed to point to the
RAM area. The variable address becomes:

Start address of D section + relative address within section

The ROM ability support function changes this to:

Start address of D’ section + relative address within section

Example: MOV @a, R0

The address of symbol “a” declared in the D section becomes (x) + (y) as shown in figure 2-21.
This address is also stored on the object code.

Start address
of D section Relative address

within section (y)

D section

D’ section

Symbol a

Start address
of D’ section (x) Relative address

within section (y)

Figure 2-21 Symbol Address for Storing Program in ROM
HITACHI 31

(3) Data is copied from ROM to RAM in the start-up routine.

The copy process is included in the start-up routine. The procedure for including this process is
described in the C Compiler User’s Manual.

Section 3 Executing the Linkage Editor

To execute the Linkage Editor, start Linkage Editor by entering a command line. This command
line specifies the names of files to be input, and also specifies options giving various instructions
to the Linkage Editor. If these instructions are sufficient, the Linkage Editor can be executed using
the command line alone. If further instruction are needed, they can be given in subcommands.

Specifying Command Line: This method executes linkage by simply specifying the input files
and options on the command line. It is used when only a few files are to be input and the linkage
operation is relatively straightforward.

Specifying Subcommands: This method, in addition to a command line, uses subcommands to
control the Linkage Editor. The subcommands specify files to be input and output, and execution
control parameters for the Linkage Editor. This method is used when a large number of files or
modules are specified, when the order in which sections are to be linked specified, or when
multilinkage function is used. There are two ways of specifying subcommands: One is direct
input from the keyboard or other input device in interactive mode and the other is input from a
subcommand file.

For file name specifications, refer to appendix B, File Name Specifications. Table 3-1 shows the
notes on Linkage Editor usage.

Table 3-1 Notes on Linkage Editor Usage

OS Notes

MS-DOS Before using this Linkage Editor, set the MS-DOS configuration file
(CONFIG.SYS) with the editor as follows.

FILES=20

SHELL=a:\command.com a:\ /p

 (1)

 (2)

1. The number of files that is allowed to open at one time during Linkage Editor
operation.

2. Directory path specification that is required when COMMAND.COM is
HITACHI 33

reloaded.

UNIX The OS shell (command interpreter) checks the command line before passing
control to the Linkage Editor. Use characters that the OS allows on the command
line.

3.1 Command Line Format

The following format is used for the Linkage Editor command line.

lnk∆[<input file name>[{,|∆}<input file name>]...]

 [[∆]-<option name>[[∆]-<option name>...]] (RET)

Command Name: “lnk” is input to start up the Linkage Editor.

Input File Names: Names of files to be input in the Linkage Editor are specified. These can be
object module files or relocatable load module files. When more than one file is specified, the
names are delimited by a comma (,).

If the file type is not specified with the input file name, the Linkage Editor automatically assumes
that the type is “.obj.”

Option Names: Each option name must be preceded by a hyphen (-). When an option name
follows an input file name or another option name, one or more spaces or tabs can be inserted to
delimit the names, or they can be entered continuously. Option names are described in detail in
section 4, Linkage Editor Options and Subcommands.

Specifying the Execution Mode: Command line specification determines whether linkage is to
be executed by the command line only or subcommands are to be used as well.

(a) Specifying execution by command line: If one or more input files are specified on the
command line and no subcommand file is specified, module linkage will be executed
according to the command line only.

(b) Specifying subcommands: If no input files are specified on the command line, or a
subcommand file is specified, the Linkage Editor will be controlled by the subcommands.

3.2 Executing by Command Line

In this method, input files are specified on the command line, and the Linkage Editor executes
module linkage according to the information specified in the command line alone. Output files and
other instructions to the Linkage Editor are specified in the form of options. Command line
34 HITACHI

execution is sufficient for performing linkage operations when the number of input files is small,
and when there is no need for detailed instructions to the Linkage Editor such as the order in
which sections are to be linked. Examples of execution by command line only are given below.
For details on options in these examples, see section 4, Linkage Editor Options and
Subcommands.

EXAMPLE 1:

lnk∆add,sub,mul,div∆-OUTPUT=arith∆-ENTRY=main (RET)

Four files “add.obj,” “sub.obj,” “mul.obj,” and “div.obj” are input to the Linkage Editor. They are
linked and output as absolute load module file “arith.abs.” Export symbol “main” is the start
address for execution of the output load module file. No linkage list is output.

EXAMPLE 2:

lnk∆main,key,display,print-OUTPUT=calc-PRINT=calc-FORM=R-DEBUG (RET)

Four files “main.obj,” “key.obj,” “display.obj,” and “print.obj” are input to the Linkage Editor.
They are linked and output as relocatable load module file “calc.rel.” Debugging information is
incorporated in this load module file. Linkage list “calc.map” is to be output.

3.3 Controlling by Subcommands

When a large number of files or modules must be input, or when complex section is linked, the
command line alone may not be sufficient to contain all the specifications. In such cases,
subcommands are used to control the Linkage Editor. Subcommands can be entered one at a time
in interactive mode, from the keyboard or other standard input device, or a subcommand file
consisting of a group of subcommands can be created in advance, and subcommands can be
entered from this subcommand file.

Interactive Mode: Can be used when the number of subcommands is relatively small. This
method is also useful when the Linkage Editor is employed during program debugging, where it is
desired to check interim linkage results or make provisional recovery from errors.

Subcommand File: A subcommand file is used to control the Linkage Editor when the number
of subcommands is large, or the procedures to be carried out are mostly routine.

A subcommand file is used by specifying the SUBCOMMAND option on the command line. The
HITACHI 35

name of the subcommand file to be input is specified as a parameter of the SUBCOMMAND
option.

The Linkage Editor can use a subcommand file even when subcommands are input interactively.
Specify the SUBCOMMAND subcommand with the subcommand file name as a parameter.

3.3.1 Executing in Interactive Mode

In this method, subcommands required for Linkage Editor operations are input directly from the
standard input device. Execution proceeds by this method when no input files are specified on the
command line and the SUBCOMMAND option is not specified. Use the interface mode when the
number of subcommands to be input is relatively small, or when it is desired to confirm linkage
results while inputting subcommands, as in the first stage of program debugging. When the
debugging support function is used, the interface mode is the most suitable.

An example showing input of subcommands in interactive mode is given below. Functions of the
subcommands listed here are detailed in section 4, Linkage Editor Options and Subcommands.

EXAMPLE:

 lnk (RET).............................. (1)

: INPUT∆main (RET)....................... (2)

: INPUT∆send,receive, exchange (RET)..... (3)

: INPUT∆account (RET).................... (4)

: LIBRARY∆syslib (RET)................... (5)

: PRINT∆ # (RET)......................... (6)

: FORM∆R (RET)........................... (7)

: EXIT (RET)............................ (8)

(1) Command line, starting up the Linkage Editor in interactive mode.

(2) Inputs object module file “main.obj.”

(3) Inputs three object module files “send.obj,” “receive.obj,” and “exchange.obj.”

(4) Inputs object module file “account.obj.”

(5) Inputs library file “syslib.lib.”
36 HITACHI

(6) Outputs linkage list to standard output device.

(7) Creates a load module in relocatable format.

(8) Outputs load module file “main.rel” and ends the linkage operation.

3.3.2 Executing from a Subcommand File

In this method, a subcommand file is used which has been created in advance and which contains
the subcommands necessary for Linkage Editor operations. This subcommand file is specified as a
parameter of the SUBCOMMAND option or subcommand. This method is used when the number
of subcommands to be specified is large, or the same linkage process is carried out repeatedly. It
saves trouble of inputting subcommands from the keyboard one at a time.

A subcommand file is created using an editor. An example of executing from a subcommand file
is given below. Functions of the subcommands listed here are detailed in section 4, Linkage Editor
Options and Subcommands.

EXAMPLE 1:

lnk∆-SUBCOMMAND=prglnk.sub (RET)..... (1)

Contents of subcommand file “prglnk.sub”:

OUTPUT∆function....................... (2)

INPUT∆sin,cos,tan..................... (3)

INPUT∆asin,acos,atan.................. (4)

INPUT∆hsin,hcos,htan.................. (5)

INPUT∆log,log10....................... (6)

FORM∆A................................ (7)

EXIT.................................. (8)

(1) Command line, starting up the Linkage Editor and entering subcommands from subcommand
file “prglnk.sub.”

(2) Names the output file as “function.” Either “.rel” or “.abs” is assumed, because the file type is
omitted.

(3) Inputs object module files “sin.obj,” “cos.obj,” and “tan.obj.”

(4) Inputs object module files “asin.obj,” “acos.obj,” and “atan.obj.”

(5) Inputs object module files “hsin.obj,” “hcos.obj,” and “htan.obj.”
HITACHI 37

(6) Inputs object module files “log.obj” and “log10.obj.”

(7) Creates a load module in absolute format. The file type for the output file name becomes
“.abs.”

(8) Outputs load module file “function.abs” and ends the linkage operation.

EXAMPLE 2:

 lnk (RET)............................ (1)

: SUBCOMMAND pgmlnk.sub (RET)......... (2)

(1) Command line, starting up the Linkage Editor. Module linkage is executed interactively,
because no parameters are specified.

(2) Inputs subcommands from “pgmlnk.sub.”

If there is no EXIT subcommand in the subcommand file, the Linkage Editor waits for further
subcommand input.

3.4 Terminating the Linkage Editor

When terminated, the Linkage Editor returns an error level to the system as a return code. This
return code controls the execution of a command file.

The return code has the values shown in table 3-2, depending on the error level.

Table 3-2 Return Code Depending on Error Level

Return Code

Error Level MS-DOS UNIX

Normal termination 0 0
38 HITACHI

Warning 0 0

Error 2 1

Fatal error 4 1

Section 4 Linkage Editor Options and Subcommands

Options and subcommands specify file names and give the Linkage Editor various instructions,
such as the order in which sections are to be linked. Options and subcommands have four types of
functions: file control, memory allocation, execution control, and debugging support. These
functions can be used independently or in combination to edit load modules in various ways.

(1) File Control Functions: File control functions specifies input files and output files to the
Linkage Editor. Input files include object module files, relocatable load module files and
library files. Output files are load module files and list files.

(2) Memory Allocation Functions: Memory allocation functions can inform the Linkage Editor
the order in which sections are to be linked and give their start addresses. They can also
specify the address at which the output load module is to start executing. These functions
change the order in which sections are linked, or create a load module that is to execute from a
specified address.

(3) Execution Control Functions: Execution control functions specify the form in which the
Linkage Editor is to input and output information, and end Linkage Editor operations. They
input subcommands from a subcommand file, or incorporate debugging information in a load
module.

(4) Debugging Support Functions: Debugging support functions display contents of a load
module during a linkage operation, or change information such as export and import symbol
names, etc. These are useful at the program debugging stage, for confirming interim linkage
results, or for provisional recovery from errors.

Options and subcommands have the same names and have equivalent functions, but are specified
using different formats. Moreover, some specifications can be made only with either
subcommands or options. Section 4.1, Option and Subcommand Formats, and section 4.2, List of
HITACHI 39

Options and Subcommands, should accordingly be read carefully.

For details on the functions and means of specifying each option and subcommand, refer to
sections 4.3, File Control, through 4.6, Debugging Support.

4.1 Option and Subcommand Formats

(1) Option and Subcommand Structure:

(a) Name: The name part gives the name of the option or subcommand. For details, see
section 4.2, List of Options and Subcommands.

(b) Parameters: The parameter part gives information such as the name of files on which the
option or subcommand operates, and address values. There are different requirements and
methods of specification depending on the option or subcommand. See sections 4.3, File
Control, 4.4, Memory Allocation, 4.5, Execution Control, and 4.6, Debugging Support.

Options and subcommands differ as to the way of separating the name from the parameters.
Options use an equals sign (=), while subcommands use one or more spaces or tabs.

Option format

<Name>=<parameters>

Subcommand format

<Name>∆<parameters>

EXAMPLES:
40 HITACHI

-OUTPUT=loadf.......... Option

OUTPUT∆loadf........... Subcommand

In these examples, “OUTPUT” is the name, and “loadf” is the parameter.

(2) Continuation Specification for a Subcommand: When a subcommand is too long to be
specified on one line (generally, up to 500 characters per line, but it will depend on the OS), a
continuation specifier is used. This is an ampersand (&) at the end of the line. It must always
be placed in between two parameters; if it is placed within a parameter, it will be interpreted as
part of the parameter. If a character (other than a space or tab) is typed after the ampersand, an
error will occur and the subcommand will not be continued.

If continuation is specified in interactive mode, a hyphen (-) appears as a prompt for further
input.

EXAMPLES:

:INPUT obj00,lib(mod0,mod1),& (RET)

–obj01, obj02 (RET)
Continuation specifier

:INPUT obj00,lib(mod0,mod1),ob& (RET)

:
Processed under the file name ob& due
to specification within parameterNot a continuation line

∆

∆

(3) Specifying Comments in a Subcommand File: A comment specifier adds notes or other
comments in a subcommand file. The specifier is a semicolon (;) placed on a subcommand
line, indicating that the rest of the line is a comment. At least one space or tab must set off the
semicolon from the subcommand name or parameter.

When a semicolon is placed at the beginning of a subcommand line, the entire line is taken as a
comment.

EXAMPLES:

; EXAMPLE OF LINKAGE SUBCOMMAND

...... The entire line is a comment.

LIBRARY∆syslib∆; INDICATES LIBRARY FILE
HITACHI 41

...... “INDICATES LIBRARY FILE” is a comment.

INPUT∆object.rel;abc

...... object.rel;abc” is treated as one parameter.

4.2 List of Options and Subcommands

There are 20 options and 29 subcommands. The options and subcommands are listed in table 4-1.

Options and subcommands can be written either in uppercase or lowercase letters.

Table 4-1 List of Options and Subcommands

No. Type
Option/
Subcommand Name Function Option

Sub-
command Section

1 File I NPUT Specifies input file No Yes 4.3.1

control O UTPUT* (NOO UTPUT) Specifies output file Yes Yes 4.3.2

 LIB RARY (NOL IBRARY)* Specifies library file Yes Yes 4.3.3

 P RINT (NOP RINT)* Specifies list file Yes Yes 4.3.4

 EXCL UDE (NOEX CLUDE)* Excludes modules from
linking

Yes Yes 4.3.5

 DI RECTORY Specifies directory name
replacement

No Yes 4.3.6

2 Memory
allocation

 ST ART Specifies section start
address and linking order

Yes Yes 4.4.1

 ENT RY Specifies execution start
address

Yes Yes 4.4.2

 AL IGN_SECTION Specifies linkage of
sections having different
boundary alignment
values

Yes Yes 4.4.3

 CH ECK_SECTION Specifies section check Yes Yes 4.4.4

 AU TOPAGE (NOA UTOPAGE)* Specifies automatic
paging

Yes Yes 4.4.5

 C PU Specifies address check Yes Yes 4.4.6

 CPUC HECK Specifies output of errors
at address check

Yes Yes 4.4.7

 RO M Specifies support of
storing program in ROM

Yes Yes 4.4.8
42 HITACHI

Notes: 1. The shortest permissible abbreviated forms are underlined.
2. Yes and No in the table indicate whether an item can be used as an option or

subcommand.
3. An asterisk indicates the default option or subcommand.

Table 4-1 List of Options and Subcommands (cont)

No. Type
Option/
Subcommand Name Function Option

Sub-
command Section

3 EXCH ANGE Substitutes units No Yes 4.5.1

 SU BCOMMAND Specifies subcommand
file

Yes Yes 4.5.2

 F ORM Specifies format of
output load module file

Yes Yes 4.5.3

 DEB UG (NOD EBUG)* Specifies output of
debugging information

Yes Yes 4.5.4

 SD EBUG Specifies output of
debugging information to
a file

Yes Yes 4.5.5

 END Terminates
subcommand input

No Yes 4.5.6

 EXI T Terminates linkage
operation

No Yes 4.5.7

 AB ORT Aborts linkage operation No Yes 4.5.8

 EC HO* (NOEC HO) Specifies subcommand
file echo-back

Yes Yes 4.5.9

 U DF* (NOU DF) Specifies display of
undefined symbols

Yes Yes 4.5.10

 UDFC HECK Specifies output of error
for undefined symbol

Yes Yes 4.5.11

4 Debugging
support

 LIS T Displays interim linkage
information

No Yes 4.6.1

 RE NAME Changes name of unit,
export symbol, or import
symbol

No Yes 4.6.2

 DEL ETE Deletes unit or export
symbol

No Yes 4.6.3

 DEF INE Forcibly defines import
symbol

Yes Yes 4.6.4
HITACHI 43

Notes: 1. The shortest permissible abbreviated forms are underlined.
2. Yes and No in the table indicate whether an item can be used as an option or

subcommand.
3. An asterisk(*) indicates the default option or subcommand.

(1) Negative Form of Options and Subcommands: For some options and subcommands, a
negative form starting with “NO” can be specified. Parameters cannot be specified with
negative-form options and subcommand. There are eight negative option/subcommand forms,
as follows:

(a) NOOUTPUT: Suppresses output of load module file

(b) NOLIBRARY: Specifies non-use of a library file

(c) NOPRINT: Suppresses output of a list file

(d) NOEXCLUDE: Specifies linking of modules

(e) NOAUTOPAGE: Suppresses automatic paging

(f) NODEBUG: Suppresses output of debugging information

(g) NOECHO: Suppresses echo-back of a subcommand file

(h) NOUDF: Suppresses display of undefined symbols

(2) Option Default: When an option is omitted, the following are the default choices.

(a) OUTPUT (no parameters)

(b) NOLIBRARY

(c) NOPRINT

(d) NOEXCLUDE

(e) NOAUTOPAGE

(f) FORM=A

(g) NODEBUG

(h) ECHO

(i) UDF

(3) Abbreviating Option and Subcommand Names: Names of options and subcommands can
be abbreviated to the point where the name can still be distinguished from other names. For
example, consider the name “DEBUG.”

D: Cannot be distinguished from DELETE or DEFINE, so an error occurs

DE: Cannot be distinguished from DELETE or DEFINE, so an error occurs

DEB: Recognized as DEBUG
44 HITACHI

DEBU: Recognized as DEBUG

DEBUG: Recognized as DEBUG

DEBUGS: No such name, so an error occurs

(4) Range of Validity of Options: When only a command line is specified, linkage is executed
based only on the options specified. When subcommands are specified, options specified in the
command line remain valid up to the first END subcommand specified (or up to the EXIT
subcommand when no END is specified). However, if subcommands are specified which
conflict with the function of an option, an error message is displayed, the option becomes
invalid, and execution proceeds according to the subcommand specification. After the first
END subcommand, all subsequent subcommand specifications are valid.

EXAMPLE:

 lnk -NOOUTPUT (RET)
The NOOUTPUT option is in effect,
so no output file is created.

.

.

.

∆

HITACHI 45

:END (RET)

:OUTPUT loadfile (RET)

.

.

.

.

.

.

The OUTPUT subcommand is now valid,
so output file “loadfile.abs” is created.

∆

In the following sections the format below is used to describe each option and subcommand.

No. INPUT

Format Name SubcommandOption Negative Form

Parameters

Function

Explanation

Examples

Heading for each option
or subcommand

Option or subcommand
name, and format for
specifying parameters;
underline indicates
shortest abbreviation

Summary of option or
subcommand functions

Detailed description
of functions, and
restrictions

Examples of option
or subcommand
specifications
46 HITACHI

4.3 File Control

4.3.1 INPUT—Specifies Input Files INPUT

Format Name Option Subcommand Negative Form

None I NPUT None

Parameters <Input file name>[(<module name>[,<module name>...])]
[{,|∆}<Input file name> [(< module name>[,<module name>...])]...]

Function Specifies files and modules to be input.

Explanation (1) Outline of functions:
• The files specified by parameters, or the specified modules in those files, are

input to the Linkage Editor.

• Three kinds of files can be specified: object module files, load module files, and
library files.

• Modules can be specified only for library files, in which case only the specified
modules from the library file will be input.

• If the file type is omitted from a file name, the Linkage Editor will
automatically assume the type as follows.

No module name specified: “.obj”

Module name specified: “.lib”

(2) Restrictions in use:
• Among load module files, only relocatable load modules can be specified. If an

absolute load module is specified, an error will occur and the file will not be
input.

• If a module other than that in a library file is specified, an error will occur and
the file will not be input.

• The maximum number of input files that can be treated in one linkage process
is 256, including library files. If more than 256 files are specified, an error will
occur, and only the first 256 files specified will be input. To process more than
HITACHI 47

256 files, use the multilinkage function.

• Page type and non-page type modules must not be input at the same time. If
both types of modules are input together, an error will occur and the Linkage
Editor will stop execution.

Examples INPUT∆main

Inputs the object module file “main.obj.”

INPUT∆funclib(sin,cos),tan.o
48 HITACHI

Inputs the modules “sin” and “cos” from library file “funclib.lib,” and
inputs the object module file “tan.o.”

4.3.2 OUTPUT—Specifies an Output File OUTPUT

Format Name Option Subcommand Negative Form

 O UTPUT O UTPUT NOO UTPUT

Parameters [<Output file name>]

Function Specifies a load module output file name.

Explanation (1) Outline of functions:
• Outputs the load module generated by the Linkage Editor to the specified file.

• If the file type is omitted from the file name, the Linkage Editor will
automatically assign a file type according to the format of the load module file,
as follows.

Absolute format “.abs”

Relocatable format “.rel”

The format of the load module file is specified using the FORM option or
subcommand. If no specification is made, absolute format is used.

• If no output file name is specified using the OUTPUT option or subcommand,
the output file is given the name of the first specified input file plus the above
file type.

• If the NOOUTPUT option or subcommand is specified, no load module file
will be output.

(2) Restrictions in use:
• No parameters can be specified with the NOOUTPUT option or subcommand.

• If an output file name is specified, it must be different from all input file names.

Examples -OUTPUT=prgload

Outputs load module file “prgload.abs” (or “prgload.rel”).

-OUTPUT

Outputs load module file with the name of the first specified object module
file plus “.abs” (or “.rel”).
HITACHI 49

OUTPUT∆main.10

Outputs load module file “main.10.”

4.3.3 LIBRARY—Specifies Library Files LIBRARY

Format Name Option Subcommand Negative Form

 LIB RARY LIB RARY NOL IBRARY

Parameters <Library file name>[,<library file name>...]

Function Specifies input library files.

Explanation (1) Outline of functions:
• Specifies library files which the Linkage Editor is to search if there are

unresolved import symbols after linkage operations among specified input files
are completed.

• If both user library files and system library files are specified, the Linkage
Editor will search the user library files first.

• If no file type is specified with the library file name, the Linkage Editor
automatically assumes this to be “.lib.”

• If the NOLIBRARY option or subcommand is specified, there will be no input
from a library file (including default libraries). When linkage is controlled by
subcommand specification, however, the range of validity of this option is
limited. For details see Range of Validity of Options under section 4.2.

(2) Restrictions in use:
• Only library files created using the H Series Librarian can be input to the

Linkage Editor.

• The maximum number of input files that can be treated in one linkage operation
is 256, including library files. If more than 256 files are specified, an error will
occur, and only the first 256 files specified will be input. To process more than
256 files, use the multilinkage function.

• Page type and non-page type modules must not be input at the same time. If
both types of modules are input together, an error will occur and the Linkage
Editor will stop execution.

• No parameters must be specified with the NOLIBRARY option or
subcommand.

Examples -LIBRARY=syslib.
50 HITACHI

Specifies library file “syslib.”

LIBRARY∆system,debug

Specifies library files “system.lib” and “debug.lib.”

4.3.4 PRINT—Specifies a List File PRINT

Format Name Option Subcommand Negative Form

 P RINT P RINT NOP RINT

Parameters <List file name>
#

Function Specifies a list file for output of linkage list.

Explanation (1) Outline of functions:
• Outputs a linkage list to the specified list file.

• If the parameter “#” is specified, the list file is output to the standard output
device.

• If no PRINT option or subcommand is specified, or if the NOPRINT option or
subcommand is specified, the linkage list will not be output.

• If no file type is specified with the list file name, the Linkage Editor will
automatically assume this to be “.map.”

• On the contents of the linkage list, see section 6.1, Linkage Lists.

(2) Restrictions in use:
• No parameters must be specified with the NOPRINT option or subcommand.

Examples -PRINT=linkage
HITACHI 51

Outputs a linkage list to list file “linkage.map.”

PRINT∆earth.prn

Outputs a linkage list to list file “earth.prn.”

4.3.5 EXCLUDE—Excludes Modules from Linking EXCLUDE

Format Name Option Subcommand Negative Form

 EXCL UDE EXCL UDE NOEX CLUDE

Parameters None

Function Specifies that modules defining non-referenced import symbols should not be
linked.

Explanation (1) Outline of functions:
• If an import symbol is not referenced, the module defining it is not linked.

• When the NOEXCLUDE option or subcommand is specified, modules defining
non-referenced import symbols are linked. The defining modules are also
linked if the EXCLUDE option or subcommand is omitted.

(2) Restrictions in use:
• The EXCLUDE subcommand cannot be used after input files have been

specified by the INPUT or EXCHANGE subcommand.

• The EXCLUDE option or subcommand can be specified only when the output
load module is in absolute format. When the multilinkage function is used to
create an absolute load module in the final linkage process, if the default library
function is also used, the modules from the default library will be included in
the first linkage process. If you want the default library to be included in the last
linkage process, specify the NOLIBRARY subcommand for the intermediate
52 HITACHI

linkage processes.

Examples -EXCLUDE

If an import symbol is not referenced, the module defining it is not linked.

4.3.6 DIRECTORY—Specifies Directory Name Replacement DIRECTORY

Format Name Option Subcommand Negative Form

None DI RECTORY None

Parameters <Symbol name>(<Directory name>)

Function Defines a symbol as an alias of a directory. This function enables a long directory
name to be input with a simple symbol name.

Explanation • Directory name alias definition

A symbol name is defined as an alias of a directory with the DIRECTORY
subcommand.

DIRECTORY∆<symbol name>(<directory name>)

• Directory name reference

To refer to a directory name, enclose the defined symbol name with a dollar
mark ($) and a slash (/) (a dollar mark ($) and a back-slash (\) in MS-DOS
system). If the symbol name has not been defined, the Linkage Editor does not
replace it with a directory name.

$<symbol name>/ —> Replaced with <directory name>/

• Symbol names for up to 16 directory names can be defined.

Examples DIRECTORY∆symbol(dir1/dir2)
HITACHI 53

INPUT∆$symbol/file1.obj

Defines symbol “symbol” as an alias of directory “dir1/dir2”.

Replaces $symbol/with dir1/dir2, and as a result, specifies file name
“dir1/dir2/file1.obj”.

4.4 Memory Allocation

4.4.1 START—Specifies Start Address and Linkage Order of Sections START

Format Name Option Subcommand Negative Form

 ST ART ST ART None

Parameters Option

UNIX: <Section name>[,<section name>…][/[<page address>:]<start address>]

[,<section name>[,<section name>…][/[<page address>:]<start address>]...]

MS-
DOS:

<Section name>[,<section name>…][([<page address>:]<start address>)]

[,<section name>[,<section name>…][([<page address>:]<start address>)]...]

Sub-
com-
mand

<Section name>[,<section name>…][([<page address>:]<start address>)]

[,<section name>[,<section name>…][([<page address>:]<start address>)]...]

Function Specifies the order in which sections are linked, and their start addresses.

Explanation (1) Outline of functions:
• Sections are allocated from the specified address and in the specified order.

• If the start address is not specified and only the section linkage order is
specified, and sections are assigned addresses starting from zero.

• Page address can be specified only for page type modules. If the page address is
not specified, it is assumed to be zero.

• The page address and start address are specified in hexadecimal notation.

• When sections not specified in the parameters are input, those sections are
assigned after the series of sections with the highest specified start address.

• If no START option or subcommand is specified, sections will be allocated to
addresses starting from zero in the order of appearance.

• The START option or subcommand can be specified more than once.

• Hexadecimal numbers must start with numbers 0 through 9.

(2) Restrictions in use:
• If the load module to be output is in relocatable format, the START option or

subcommand must not be used.
54 HITACHI

• If a page address is specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

EX: 0ABCD Correct designation

ABCD Incorrect designation

Explanation • Page addresses must be assigned in the range from 0 through 0FF
(hexadecimal).

• The range of start addresses that can be specified varies with the H series
model.

H8/500 series: 0 through 0FFFF (hexadecimal)

H8/300 series: 300HA: 0 through 0FFFFFF (hexadecimal)
Others: 0 through 0FFFF (hexadecimal)

H8/S series: 2600A and 2000A: 0 through 0FFFFFFFF (hexadecimal)
Others: 0 through 0FFFF (hexadecimal)

SH series: 0 through 0FFFFFFFF (hexadecimal)

Examples -START=CODE,DATA,BSS,STACK

Links sections in the order “CODE,” “DATA,” “BSS,” “STACK,” and
allocates them to addresses starting from 0 (hexadecimal)

-START=CONTROL,BANK0,BANK1(0F00) (MS-DOS)

-START=CONTROL,BANK0,BANK1/0F00 (UNIX)

Links sections in the order “CONTROL,” “BANK0,” “BANK1,” and
allocates them to addresses starting from 0F00 (hexadecimal).

START∆CONTROL,BANK0,BANK1(0:0F00)

Links sections in the order “CONTROL,” “BANK0,” “BANK1,” and
allocates them to addresses starting from 0F00 (hexadecimal) in page 0.

START∆RAM0,RAM1(8000),ROM1,ROM2(1000),ROM0
HITACHI 55

Links sections “RAM0” and “RAM1” in that order and allocates them to
addresses starting from 8000 (hexadecimal). Sections “ROM1” and
“ROM2” are linked in that order and are allocated to addresses starting from
1000 (hexadecimal). Section “ROM0” is allocated to addresses starting
from zero.

4.4.2 ENTRY—Specifies Execution Start Address ENTRY

Format Name Option Subcommand Negative Form

 ENT RY ENT RY None

Parameters <Export symbol>

Function Specifies the start address for executing a load module.

Explanation (1) Outline of functions:
• Sets the address of an export symbol as the execution start address of a load

module to be output.

• If no ENTRY option or subcommand is specified and the output load module
format is absolute, the execution start address becomes the start address of the
first code section in the output load module.

(2) Restrictions in use:
• If an ENTRY option or subcommand is specified more than once, the last

specified address is valid.

Examples -ENTRY=PRG_ENT

Specifies the address of export symbol “PRG_ENT” as the execution start
address.
56 HITACHI

ENTRY∆MAIN

Specifies the address of export symbol “MAIN” as the execution start
address.

4.4.3 ALIGN_SECTION—Specifies Linkage of Sections Having
Different Boundary Alignment Values

ALIGN_SECTION

Format Name Option Subcommand Negative Form

 AL IGN_SECTION AL IGN_SECTION None

Parameters None

Function Specifies address assignment for sections having the same name but different
boundary alignment values (specified with the ALIGN operand in the .SECTION
directive of the assembler), handling the sections as the same one.

Explanation Outline of functions:
• Sections having the same name but different boundary alignment values can be

generated by using the ALIGN operand in the .SECTION directive of the
assembler. In this case, the Linkage Editor usually does not handle these
sections as the same section when assigning addresses because they have
different boundary alignment values. Specifying the ALIGN_SECTION option
enables these sections to be handled as the same section.
HITACHI 57

Examples -ALIGN_SECTION

Assigns addresses for sections having different boundary alignment values
handling the sections as the same section.

4.4.4 CHECK_SECTION—Specifies Section Check CHECK_SECTION

Format Name Option Subcommand Negative Form

 CH ECK_SECTION CH ECK_SECTION None

Parameters None

Function Outputs a warning and continues processing if a section that has not been specified
with the START option/subcommand is found in an input file.

Explanation (1) Outline of functions:
• Checks whether the input files include a section whose start address has not

been specified with the START option/subcommand, and outputs warning
message 120 when such a section is found.

(2) Restrictions in use:
• Processing continues after the warning message is output.
58 HITACHI

Examples -CHECK_SECTION

Checks whether the input files include a section whose start address has not
been specified and outputs a warning when such a section is found.

4.4.5 AUTOPAGE—Specifies Autopaging Function AUTOPAGE

Format Name Option Subcommand Negative Form

 AU TOPAGE AU TOPAGE NOA UTOPAGE

Parameters None

Function Specifies autopaging in assignment of addresses to page type modules.

Explanation (1) Outline of functions:
• When a page type module is linked, addresses are assigned by automatic

paging.

• If the AUTOPAGE option or subcommand is not specified, or if the
NOAUTOPAGE option or subcommand is specified, addresses are not
assigned by automatic paging.

(2) Restrictions in use:
• The AUTOPAGE option or subcommand must not be specified when linking

non-page type modules are linked. Such specification will result in an error, and
the Linkage Editor will stop execution.

• If the NOAUTOPAGE option or subcommand is specified when page type
modules are linked, sections may overlap page boundaries. If overlap occurs,
the Linkage Editor displays a warning.

Examples AUTOPAGE
HITACHI 59

Assigns addresses by autopaging.

-NOAUTOPAGE

Assigns addresses without regard to page boundaries.

4.4.6 CPU – Specifies Address Check Using a CPU Information File CPU

Format Name Option Subcommand Negative Form

 C PU C PU None

Parameters <CPU information file name>

Function Specifies execution of an address check using a CPU information file.

Explanation (1) Outline of functions:
• The validity of addresses assigned to each section is checked, based on CPU

information. In the following cases the section address assignment is regarded
as invalid, and the Linkage Editor displays a warning. The sections, however,
are output to the load module file without changing the addresses.

(a) When sections are assigned addresses in areas other than memory.

(b) When one section is assigned to addresses overlapping memory areas
having different memory types and attributes.

• If no file type is specified with the CPU information file, the Linkage Editor
will automatically assume this to be “.cpu.”

(2) Restrictions in use:
• In the following cases the Linkage Editor displays a warning, and the CPU

option or subcommand is invalid.

(a) Relocatable format is specified for load module output with the FORM
option or subcommand.

(b) The information format of the CPU information file is invalid.

(c) A CPU information file is specified for linkage processing of object
modules that are not for the H8S, H8/300, or SH series.

• When a CPU option or subcommand is specified more than once, a warning
message is displayed, and only the last-specified file is valid.

Examples -CPU=cinf
60 HITACHI

Inputs CPU information file “cinf.cpu.”

CPU∆c300.inf

Inputs CPU information file “c300.inf.”

4.4.7 CPUCHECK—Specifies Error Output at Address Check
Using CPU Information File

CPUCHECK

Format Name Option Subcommand Negative Form

 CPUC HECK CPUC HECK None

Parameters None

Function Changes the warning message into an error message when an address check is
executed with the CPU option/subcommand using the CPU information file.

Explanation (1) Outline of functions:
• Outputs error 329 and aborts processing when memory allocation does not

match the memory layout specified in the CPU information file. This error
occurs in the same conditions as those generating a warning when the CPU
option/subcommand is specified (see section 4.4.6).

(2) Restrictions in use:
• When neither the CPU option nor subcommand is specified, the CPUCHECK

option/subcommand is ignored.
HITACHI 61

Examples -CPUCHECK

Specifies error message output in the conditions that generate a warning at
CPU option/subcommand execution and aborts processing in these cases.

4.4.8 ROM—Specifies Support of Storing Program in ROM ROM

Format Name Option Subcommand Negative Form

 RO M RO M None

Parameters UNIX: <Section 1>/<Section 2>[,<Section 1>/<Section 2>…]
MS-DOS: (<Section 1>,<Section 2>)[(<Section 1>,<Section 2>),…]

<Section 1>: Section name of source initialized data area in ROM
<Section 2>: Section name of destination initialized data area in RAM

Function Reserves a RAM area for updating initialized data values stored in ROM.

Explanation (1) Outline of functions:
• In the output load module, a section with the same section size as the specified

section 1 is reserved as section 2. Section 2 has the same section attributes as
section 1.

• References to symbols declared in section 1 are relocated to addresses in
section 2. Specify a relocatable section as section 1.

• Up to 64 pairs of section 1 and section 2 pairs can be specified.

• For details of the support of storing program in ROM, see section 2.7, Support
of Storing Program in ROM.

(2) Restrictions in use:
• The ROM option or subcommand cannot be specified when the output load

module has the relocatable format.

• If two sections have the same name and this name is specified as section 1, the
section input first is selected.

• An error occurs if section 1 does not exist.

• A dummy section cannot be specified as section 1.

• When an existing section is specified as section 2, the following conditions
must be satisfied.

(a) The size of section 2 in each unit is 0.

(b) Section 2 is the relocatable section.

(c) Both section 1 and section 2 have the same attribute.

Examples -ROM=D/RAM_SCT (UNIX)
62 HITACHI

-ROM=(D,RAM_SCT) (MS-DOS)

Reserves section RAM_SCT, equal in size to section D, in the output load
module. References to symbols allocated to section D are relocated to
addresses on RAM_SCT.

4.5 Execution Control

4.5.1 EXCHANGE—Forcibly Replaces Units EXCHANGE

Format Name Option Subcommand Negative Form

None EXCH ANGE None

Parameters <Input file name>[(<unit name>[,<unit name>...])]

Function Replaces units in an input file by units of the same name in the load module being
processed by the Linkage Editor.

Explanation (1) Outline of functions:

• Units in the specified input file are replaced by units of the same name in the
load module being processed by the Linkage Editor.

• An object module file or load module file can be specified as the input file.

• If a load module is specified as the input file without specifying unit names, all
the units in that load module file will be usable for replacement.

• If no file type is given with the input file name, the Linkage Editor will
automatically assume “.obj” as the file type.

• Units are replaced after all input files have been included. If more than one
EXCHANGE subcommand is specified, units will be replaced in the order of
specification.

(2) Restrictions in use:

• An absolute load module must not be specified. If an absolute load module is
specified, an error will occur, and the file will not be input.

• A library file must not be specified as the input file. If a library file is specified,
an error will occur, and the file will not be input.

Examples EXCHANGE∆datain

Replaces units in the object module file “datain.obj” by units of the same
name in the load module file being processed.
HITACHI 63

EXCHANGE∆function.rel(tan,atan)

Replaces the units “tan” and “atan” in relocatable load module file
“function.rel” by units of the same name in the load module file being
processed.

4.5.2 SUBCOMMAND—Specifies a Subcommand File SUBCOMMAND

Format Name Option Subcommand Negative Form

 SU BCOMMAND SU BCOMMAND None

Parameters <Subcommand file name>

Function Specifies a subcommand file for input.

Explanation (1) Outline of functions:
• Subcommands are input from the specified subcommand file.

• If the SUBCOMMAND option is not specified on the command line, and no
input file is specified there, the Linkage Editor will link modules according to
the subcommands input in interactive mode.

• If the SUBCOMMAND option is not specified on the command line but one or
more input files are specified there, the Linkage Editor will link modules
according to the command line specification.

(2) Restrictions in use:
• When a subcommand file is specified on the command line together with input

files or other options, the subcommand file is executed as the last option,
regardless of its specification position. For example:

lnk in1,in2 - SUB = linkage.sub - FORM = R

(1) (2) (3)

This command line is interpreted and executed in the order (3), (1), (2). If
FORM=A is specified in linkage.sub, FORM=A is valid (because it is
interpreted afterward).

• The SUBCOMMAND subcommand cannot be specified in a subcommand file.
64 HITACHI

Examples -SUBCOMMAND=linkage.sub

Inputs subcommand file “linkage.sub” and links modules according to the
contents of this file.

4.5.3 FORM—Specifies Output Load Module File Format FORM

Format Name Option Subcommand Negative Form

 F ORM F ORM None

Parameters A
R

Function Specifies the output load module file format as either absolute or relocatable.

Explanation (1) Outline of functions:
• If parameter “A” is specified, the load module file will be output in absolute

format.

• If parameter “R” is specified, the load module file will be output in relocatable
format.

• If no FORM option or subcommand is specified, the load module will be output
in absolute format.

(2) Restrictions in use:
• The parameter “R” cannot be specified when the ROM or START option or

subcommand is specified.

Examples -FORM=R
HITACHI 65

Outputs the load module file in relocatable format.

FORM∆A

Outputs the load module file in absolute format.

4.5.4 DEBUG—Specifies Output of Debugging Information DEBUG

Format Name Option Subcommand Negative Form

 DEB UG DEB UG NOD EBUG

Parameters None

Function Specifies incorporation of debugging information in the output load module file.

Explanation (1) Outline of functions:
• Incorporates debugging information in the output load module file. This

information is required for symbolic debugging using the Simulator/Debugger.

• If no DEBUG option or subcommand is specified, or if the NODEBUG option
or subcommand is specified, debugging information will not be incorporated in
the output load module file.

(2) Restrictions in use:
• If the NOOUTPUT option or subcommand is specified, the DEBUG option or

subcommand is ignored.

Examples DEBUG
66 HITACHI

Incorporates debugging information in the output load module file.

-NODEBUG

Does not incorporate debugging information in the output load module file.

4.5.5 SDEBUG—Specifies Output of Debugging Information to a File SDEBUG

Format Name Option Subcommand Negative Form

 SD EBUG SD EBUG None

Parameters None

Function Outputs a debugging information file separately from a load module. Some
debuggers require the object and debugging information as separate files. In this
case, the SDEBUG option/subcommand must be specified.

Explanation (1) Outline of functions:
• Outputs a debugging information file separately from a load module.

Object file: File extension .abs.

Debugging file: File extension .dbg.

• When the debugging information is output as a separate file, the time for
downloading the load module at debugging can be reduced.

(2) Restrictions in use:
• When the relocatable format is specified for the output load module, the

SDEBUG option/subcommand cannot be used.

• If the NOOUTPUT option/subcommand is specified, the SDEBUG
HITACHI 67

option/subcommand is ignored.

Examples -SDEBUG

Outputs a debugging file and an object file separately.

4.5.6 END—Specifies End of Subcommand Input END

Format Name Option Subcommand Negative Form

None END None

Parameters None

Function Temporarily ends input of subcommands and begins linkage operation (after which
subcommand input is resumed).

Explanation (1) Outline of functions:
• Temporarily ends input of subcommands and begins a linkage operation. After

the linkage operation is completed, the Linkage Editor is initialized and
subcommand input is resumed.

• When the multilinkage function is used to perform multiple linkage operations
during a course of Linkage Editor execution, the END subcommand indicates
the end of one linkage process.

• When the multilinkage function is not used, or when the end of the final linkage
process is specified in a multilinkage operation, use the EXIT subcommand in
place of the END subcommand.

(2) Restrictions in use:
• If, for a single linkage process, the END subcommand is specified without
68 HITACHI

specifying input files, an error will occur.

Examples END

Temporarily ends subcommand input and begins a linkage operation.

4.5.7 EXIT—Specifies End of Linkage Operation EXIT

Format Name Option Subcommand Negative Form

None EXI T None

Parameters None

Function Ends subcommand input and begins linkage operation (subcommand input is not
resumed).

Explanation Outline of functions:
• Ends subcommand input and begins linkage operation. After the linkage

operation is completed, ends the Linkage Editor execution.

• When execution is controlled from a subcommand file, if no EXIT
subcommand is specified, the Linkage Editor waits for further subcommand
input.

• If, for a single linkage process, the EXIT subcommand is specified without
specifying input files, an error will occur.
HITACHI 69

Examples EXIT

Ends subcommand input and begins linkage operation.

4.5.8 ABORT—Specifies Forced End of Linkage Operation ABORT

Format Name Option Subcommand Negative Form

None AB ORT None

Parameters None

Function Forcibly ends linkage operation.

Explanation Outline of functions:
• Forcibly ends Linkage Editor operation.

• The ABORT subcommand is useful to interrupt Linkage Editor operation when
70 HITACHI

a mistake such as subcommand input mistake has been made.

Examples ABORT

Brings Linkage Editor execution to a forced end.

4.5.9 ECHO—Specifies Subcommand File Echo-Back ECHO

Format Name Option Subcommand Negative Form

 EC HO EC HO NOEC HO

Parameters None

Function Specifies whether or not to suppress echo-back of subcommands when a
subcommand file is executed.

Explanation Outline of functions:
• The ECHO option or subcommand displays subcommands on the console when

a subcommand file is executed. Subcommands are displayed even if the ECHO
option or subcommand is not specified.

• The NOECHO option or subcommand suppresses display of subcommands on
the console when a subcommand file is executed.
HITACHI 71

Examples -ECHO

Displays executed subcommands on the console when a subcommand file is
executed.

4.5.10 UDF—Specifies Display of Undefined Symbols UDF

Format Name Option Subcommand Negative Form

 U DF U DF NOU DF

Parameters None

Function Specifies whether to display a warning message when an undefined symbol
remains.

Explanation (1) Outline of functions:
• Warning message 105 is displayed if an undefined symbol remains when a

relocatable load module is created. This message is also displayed if an
undefined symbol remains when the UDF option or subcommand is omitted.

• When the NOUDF option or subcommand is specified, a warning message is
not displayed if there is an undefined symbol when a relocatable load module is
created.

(2) Restrictions in use:
• The NOUDF option or subcommand is ignored when an absolute load module
72 HITACHI

is created.

Examples -FORM=R-NOUDF

Does not display a warning message if there is an undefined symbol when
the relocatable load module is created.

4.5.11 UDFCHECK—Specifies Output of an Error for Undefined Symbol UDFCHECK

Format Name Option Subcommand Negative Form

 UDFC HECK UDFC HECK None

Parameters None

Function Displays an error message for an undefined symbol and stops absolute load module
generation.

Explanation (1) Outline of functions:
• Outputs error message 221 and stops absolute load module generation when an

undefined import symbol is found. (When the UDFCHECK is not specified,
warning message 105 is output instead and absolute load module generation
continues.)

(2) Restrictions in use:
• When relocatable load module generation is specified, the UDFCHECK

option/subcommand is ignored.
HITACHI 73

Examples -UDFCHECK

Displays an error message for an undefined symbol and stops absolute load
module generation.

4.6 Debugging Support

4.6.1 LIST—Displays Interim Linkage Information LIST

Format Name Option Subcommand Negative Form

None LIS T None

Parameters M
U
X

Function Displays linkage information of an input file.

Explanation (1) Outline of functions:
• Outputs linkage information to the standard output device concerning the files

currently being input.

• Content of the displayed information depends on the specified parameters, as
follows.

M: Displays a link map

U: Displays unresolved import symbols

X: Displays export symbols

(2) Restrictions in use:
• To display linkage information according to the input files, the information

displayed is restricted as follows.

— When parameter M is specified

The start address of a relocatable section is always 0.

— When parameter U is specified

The display shows import symbols for which there is no corresponding
export symbol in the input files specified in INPUT subcommands up to the
location of the LIST subcommand.

LIST∆M
74 HITACHI

Examples

Displays a linkage map for the load module being processed.

LIST∆U

Displays unresolved import symbols in the load module being processed.

4.6.2 RENAME—Changes the Names of Units, Export Symbols, or
Import Symbols

RENAME

Format Name Option Subcommand Negative Form

None RE NAME None

Parameters UN=<unit name 1> (<unit name 2>)

ER=<unit name>.<import symbol 1>
(<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

UN=<unit name 1>(<unit name 2>)

ER=<unit name>.<import symbol 1>
(<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

, ...

Function Changes the names of units, export symbols or import symbols in input files.

Explanation (1) Outline of functions:
• Changes the names of the specified units, export symbols, or import symbols in

input files to the name designated in parentheses (“()”).

• The unit name specified following “UN=” is changed to the unit name in
parentheses.

• The import symbol name specified following “ER=” is changed to the name in
parentheses. The import symbol name is preceded by the name of the unit in
HITACHI 75

which the symbol exists, and is set off from the unit name by a period (.).

• The export symbol name specified following “ED=” is changed to the name in
parentheses. The export symbol name is preceded by the name of the unit in
which the symbol exists, and is set off from the unit name by a period (.).

Explanation (2) Restrictions in use:
• The RENAME subcommand will affect the input files specified only in the first

INPUT subcommand after the RENAME subcommand.

• Only the following five subcommands can be specified immediately after the
RENAME subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand

(c) RENAME subcommand

(d) DELETE subcommand

(e) ABORT subcommand

When more than one RENAME subcommands are specified, or when
RENAME and DELETE subcommands are specified together, operation takes
place in the order of specification.

Examples RENAME∆UN=datalist(datalst1)

Renames unit “datalist”as “datalst1.”
76 HITACHI

RENAME∆ED=cntl.TRUNK(P_TRUNK),ER=cntl1.REC_DATA(RECV_DATA)

Changes export symbol “TRUNK” in unit “cntl” to “P_TRUNK.”
Likewise, changes import symbol “REC_DATA” in unit “cntl1” to
“RECV_DATA.”

4.6.3 DELETE—Deletes Units or Export Symbols DELETE

Format Name Option Subcommand Negative Form

None DEL ETE None

Parameters UN=<unit name>
ED=<unit name >.<export symbol name>

, ...UN=<unit name>
ED=<unit name>.<export symbol name>

Function Specifies deletion of units or export symbols from input files.

Explanation (1) Outline of functions:
• Deletes the specified units or export symbols from input files.

• In the case of a unit, the unit specified following “UN=” is deleted.

• In the case of an export symbol, the symbol specified following “ED=” is
deleted. The export symbol name is set off by a period (.) from the name of the
unit in which it exists.

(2) Restrictions in use:
• The DELETE subcommand will not affect input files already specified. This

subcommand must be specified prior to specification of the input files in which
the name of the unit or export symbol to be deleted is found.

• The following five subcommands can be specified immediately after the
DELETE subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand

(c) DELETE subcommand

(d) RENAME subcommand

(e) ABORT subcommand

• When RENAME and DELETE subcommands are specified together, operation
takes place in the order of specification.

Examples DELETE∆UN=snap_unit
HITACHI 77

Deletes unit “snap_unit.”

DELETE∆UN=dummy,ED=main.DUMMY_ENTER

Deletes unit “dummy.” Also, deletes export symbol “DUMMY_ENTER” in
unit “main.”

4.6.4 DEFINE—Forcibly Defines an Import Symbol DEFINE

Format Name Option Subcommand Negative Form

 DEF INE DEF INE None

Parameter Option
UNIX: <numeric value>

<Import symbol name>/ [<page address>:]<address>
<export symbol name>
<numeric value>

[,<import symbol name>/ [<page address>:]<address> ...]
<export symbol name>

MS-DOS: <numeric value>
<Import symbol name>([<page address>:]<address>)

<export symbol name>
<numeric value>

[,<import symbol name>([<page address>:]<address>)...]
<export symbol name>

Sub-
command

<numeric value>
<Import symbol name> ([<page address>:]<address>)

<export symbol name>
<numeric value>

[,<Import symbol name> ([<page address>:]<address>)...]
<export symbol name>

Function Specifies forced definition of import symbols.

Explanation (1) Outline of functions:
• Forcibly defines each specified import symbol with the specified numeric

value, address or export symbol value.
78 HITACHI

• Page address can be specified only for page type modules. If the page address is
not specified, zero is assumed.

• Numeric values, page addresses, and addresses are specified in hexadecimal
notation.

Explanation (2) Restrictions in use:
• When the assigned value is that of an export symbol, it must be one that has

already been defined.

• If a page address is specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

• Hexadecimal numbers must start with the numbers 0 through 9.

• The range of page addresses is 0 through 0FF (hexadecimal).

• The range of addresses that can be specified varies with the H series model.

H8/500 series: 0 through 0FFFF (hexadecimal)

H8/300 series: 300HA: 0 through 0FFFFFF (hexadecimal)
Others: 0 through 0FFFF (hexadecimal)

H8S series: 2600A and 2000A: 0 through 0FFFFFF (hexadecimal)
Others: 0 through 0FFFF (hexadecimal)

SH series: 0 through 0FFFFFFFF (hexadecimal)

• Values defined by the DEFINE subcommand cannot be used in relocatable load
modules.

• When the EXCLUDE option or subcommand is specified, non-referenced
import symbols specified by the DEFINE subcommand are ignored.

Examples -DEFINE=PORT10(0E8) (MS-DOS)

-DEFINE=PORT10/0E8 (UNIX)

Defines undefined import symbol “PORT10” as a symbol having the value
0E8 (hexadecimal).
HITACHI 79

DEFINE∆MAIN_RTN(PRG_EXIT)

Defines undefined import symbol “MAIN_RTN” as having the same value
as export symbol “PRG_EXIT.”

Section 5 Input to the Linkage Editor

5.1 Object Module Files

The Linkage Editor can accept as input the object module files output by the H Series C Compiler
or Assembler.

5.2 Relocatable Load Module Files

Relocatable load module files output by this Linkage Editor can be re-input. Absolute load module
files cannot be re-input.

5.3 Library Files

Library files created using the H Series Librarian can be input to the Linkage Editor. Modules in
library files can be specified individually, or the LIBRARY option or subcommand can be used to
input modules contained in library files automatically. See further under section 4.3.3,
LIBRARY—Specifies Library Files.

5.4 Default Library Files

A library file created by the H Series Librarian can be input implicitly without specifying the
LIBRARY option or subcommand. This is called the default library function.

A default library is input when the following three conditions are satisfied:

• A logical name reserved as a default library name is assigned to the library file before the
library files is input to the Linkage Editor.

• The NOLIBRARY option or subcommand is not specified.

• An unresolved import symbol remains after the libraries specified by the LIBRARY option or
subcommand have been searched.

The Linkage Editor inputs the library files assigned to the following logical names in the order 1,
HITACHI 81

2, 3, and searches for modules that define unresolved import symbols.

1. HLNK_LIBRARY1

2. HLNK_LIBRARY2

3. HLNK_LIBRARY3

The user can specify library files corresponding to these logical names by using the setenv
command for UNIX system and the SET command for MS-DOS system.

EXAMPLE:
82 HITACHI

set HLNK_LIBRARY1=user.lib (MS-DOS)

User library user.lib is assigned to the logical name HLNK_LIBRARY1.

Section 6 Output from the Linkage Editor

6.1 Linkage Lists

When the PRINT option or subcommand or the LIST subcommand is specified, the contents of a
load module file being processed are output to the standard output device or to a file, as follows.

(1) Input information (PRINT only)

(2) Link map list (PRINT or LIST M)

(3) Export symbol list (PRINT or LIST X)

(4) Unresolved import list (PRINT or LIST U)
HITACHI 83

(5) RENAME/DELETE list (PRINT only)

(6) DEFINE list (PRINT only)

The output formats for these lists are shown below.

(1) Input Information: Information input as command line parameters, interactive mode
subcommands, or subcommand files is output in the format shown in figure 6-1.

 H SERIES LINKAGE EDITOR Ver. 5.3

LINK COMMAND LINE

LNK -sub=func.sub

 (1)

LINK SUBCOMMANDS

 inp main

 rename ed=sin.sin0(sin1)

 delete ed=sin.sin3

 inp sin

 define undef1(100),undef2(sin1)

 print fmap

 inp cos

 inp tan

 inp calc.lib(division)

 form a

 rom (SECT1, SEC1N)

 out func

 exit

 ** sin0 IS RENAMED TO sin1

 ** sin3 IS DELETED

 ** 105 UNDEFINED EXTERNAL SYMBOL (division.undef3)

(2)

Figure 6-1 Typical Output of Input Information
84 HITACHI

(1) Shows the character string input on the command line.

(2) Shows the character strings input as subcommands in interactive mode, or input from a
subcommand file. Also shows error messages or informative messages in response to this
input.

(2) Link Map List:

(a) When the PRINT option or subcommand is specified, information on each section is output
in the format shown in figure 6-2.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR ROM

SECT1 H'00000000 - H'00000004 H'00000005

 main main

 H'00000006 - H'00000017 H'00000012

 sin sin

 H'00000018 - H'00000019 H'00000002

 cos cos

 H'0000001a - H'0000002d H'00000014

 tan tan

 H'0000002e - H'00000043 H'00000016

 division division

(2)

(1) (5) (6)
(7) (8)

(3) (4)
HITACHI 85

* TOTAL ADDRESS * H'00000000 - H'00000043 H'00000044

(9) (10)

Figure 6-2 Typical Link Map List Output Using PRINT

(b) When parameter “M” is specified in the LIST subcommand, information on each file is
output in the format shown in figure 6-3.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR LINK MAP LIST ***

FILE NAME : main.OBJ

MODULE NAME : main

UNIT NAME : main

SECTION NAME ATTRIBUTE

 START - END LENGTH

SECT1 CODE NOSHR

 H'00000000 - H'00000004 H'00000005

(11)

(8)

(7)

(1)
(5) (6)

Figure 6-3 Typical Link Map List Output Using LIST

(1) Shows section names in the order in which sections are linked.

(2) Shows the attribute as follows.

DATA: data or common section

CODE: code section

DUMMY: dummy section

STACK: stack section

RESV: reserved

UNDEF: undefined

*****: unused

(3) Shows the following link attributes.

SHR: common link
86 HITACHI

NOSHR: simple link

DUMMY: dummy link

UNDEF: link attribute undefined

*****: unused

(4) Displayed for a section related to the support of storing program in ROM

ROM: ROM section (section 1 in the ROM option or subcommand)
RAM: RAM section (section 2 in the ROM option or subcommand)

(5) Shows start address and end address of the object in hexadecimal notation. In the case of
page type modules, the page address and address are separated by a colon (:) as follows.

H'xxxx : xxxx

address
page address

(6) Shows size of object in hexadecimal notation.

(7) Shows unit name.

(8) Shows module name.

(9) Shows start address and end address of the section.

In the case of page type modules, the page address and address are separated by a colon (:) as
follows.

H'xxxx : xxxx

address
page address
HITACHI 87

(10) Shows total size of the section.

(11) Shows the file name (LIST only).

(3) Export Symbols List: This list is output when there are export symbols.

(a) When the PRINT option or subcommand is specified, a list is output in the format shown in
figure 6-4.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR EXTERNALLY DEFINED SYMBOLS LIST ***

SYMBOL NAME ADDR TYPE

 cos1 H'0000000A EQU

 sin1 H'0000004A DAT

 sin2 H'0000005B DAT

(1) (2) (3)

Figure 6-4 Typical Export Symbol List Output Using PRINT

(b) When parameter “X” is specified by the LIST subcommand, a list is output as shown in
figure 6-5.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR EXTERNALLY DEFINED SYMBOLS LIST ***

SYMBOL NAME ADDR TYPE

 cos1 H'0000000A EQU

 sin1 H'00000000 DAT

 sin2 H'00000011 DAT

(1) (2) (3)

Figure 6-5 Typical Export Symbol List Output Using LIST

(1) Shows export symbols in alphabetical order.
(2) Shows the value of each export symbol in hexadecimal notation. In the case of page type

modules, the page address and address are separated by a colon (:) as follows.
88 HITACHI

H'xxxx : xxxx

address
page address

(3) Shows the type of symbol as follows.

DAT: data/variable name

EQU: symbol name defined as constant value

ENT: entry name

***: undefined/unused

(4) Unresolved Import Symbol List: This list is output only when there are remaining undefined
symbols.

(a) When the PRINT option or subcommand is specified, a list is output in the format shown in
figure 6-6.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR UNRESOLVED EXTERNAL REFERENCE LIST ***

 FILE NAME : calc.lib

 MODULE NAME : division

 UNIT NAME : division

 SYMBOL NAME TYPE

 undef3 ***

(1)

(2)

(3)
HITACHI 89

(4) (5)

Figure 6-6 Typical Unresolved Import Symbol List Output Using PRINT

(b) When parameter “U” is specified by the LIST command, a list is output as shown in figure
6-7.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR UNRESOLVED EXTERNAL REFERENCE LIST ***

 FILE NAME : calc.lib

 MODULE NAME : division

 UNIT NAME : division

 SYMBOL NAME TYPE

 undef1 ***

 undef2 ***

 undef3 ***

(1)

(2)

(3)

(4) (5)

Figure 6-7 Typical Unresolved Import Symbol List Output Using LIST

(1) Shows name of file containing undefined symbol.

(2) Shows name of module containing undefined symbol.

(3) Shows name of unit containing undefined symbol.

(4) Shows undefined symbol names in alphabetical order.
90 HITACHI

(5) Shows undefined symbol attributes as follows.

DAT: data/variable name

ENT: entry name

***: undefined/unused

(5) RENAME/DELETE List: When the RENAME or DELETE subcommands are used to
change the name of units or symbols or delete units or symbols, specification of the PRINT
option or subcommand results in output of a list in the format shown in figure 6-8.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR RENAME/DELETE LIST ***

FILE NAME : sin.OBJ

UNIT NAME : sin

 FROM NAME TO NAME TYPE RENAME/DELETE

 sin0 sin1 ED RENAME

 sin3 ED DELETE

(1)

(2)

(3)
(4)

(5) (6)

Figure 6-8 Typical RENAME/DELETE List

(1) Shows names of files containing the unit or symbol to be renamed or deleted in the order input.

(2) Shows the unit name. If the unit was renamed or deleted, the old unit name is shown.

(3) Shows the name before changed.

(4) Shows the name after changed. No name is shown in case of a DELETE.

(5) Shows the type specified by subcommand, as follows.

UN: unit name
HITACHI 91

ED: export symbol

ER: import symbol

(6) Shows whether the subcommand was a RENAME or a DELETE.

(6) DEFINE List: When an import symbol is forcibly defined using the DEFINE option or
subcommand, specification of the PRINT option or subcommand results in output of a list in
the format shown in figure 6-9.

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR DEFINE LIST ***

 UNDEFINED SYMBOL DEFINED SYMBOL DEFINED VALUE

 undef1 H'00000100

 undef2 sin1 H'0000004A

(1) (2) (3)

Figure 6-9 Typical DEFINE List

(1) Shows forcibly defined symbol name.

(2) Shows the name of the export symbol which is specified.

(3) Shows the value of the defined symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by a colon (:) as follows.

H'xxxx : xxxx

address
page address

6.2 Load Module File

The Linkage Editor links a number of object modules or relocatable load module files and outputs
92 HITACHI

them as a single load module file. Depending on the specification made with the FORM option or
subcommand, the load module file is output in either absolute or relocatable format. A detailed
explanation of the FORM option and subcommand is given in section 4.5.3, FORM – Specifies
Output Load Module File Format.

6.3 Console Messages

The Linkage Editor shows the following messages on the standard output device.

(1) Opening Message: This is displayed when Linkage Editor command name “LNK” is input.

H SERIES LINKAGE EDITOR Ver. 5.3

Copyright (C) Hitachi, Ltd. 1989

Licensed Material of Hitachi, Ltd.

(2) Normal Completion Message: This is displayed when the load module file editing has been
completed normally.

LINKAGE EDITOR COMPLETED

(3) Abort Message: This is displayed when the load module file editing is ended before
completion, due either to an error or to specification of an ABORT subcommand.

LINKAGE EDITOR ABORT

(4) Subcommand Request Prompt: In interactive mode, a colon (:) indicates that the Linkage
Editor is waiting for subcommand input.

:

(5) Subcommand Continuation Prompt: When continuation of a subcommand is specified
during interactive mode execution, a minus sign (–) indicates that the Linkage Editor is waiting
for continuation of the input.

–

(6) Informative Message: Informative messages indicate the result of Linkage Editor processing,
for example when units are replaced or when an export symbol is renamed. The messages are
output in the following format.

** <information>∆
HITACHI 93

1st column

A list of informative messages is given in table 6-1. A unit name can be displayed as <External
name> in table 6-1.

Table 6-1 List of Informative Messages

(Informative Message)

No. (Meaning of Message)

1 <Unit name 1> IS REPLACED WITH <unit name 2>(<file name>)

<Unit name 1> has been replaced by <unit name 2> from <file name>.

2 <External name 1> IS RENAMED TO <external name 2>

Name of <external name 1> has been changed to that of <external name 2>.

3 <External name> IS DELETED

<External name> has been deleted.

4 DUPLICATE UNIT-(<unit name>) IN (<file name>) IS DELETED

More than one units of the same name <unit name> have been found, and the unit of that
name in <file name> has been deleted.

5 <Import symbol name> CANNOT DEFINE

<Import symbol name> could not be found, and therefore could not be forcibly defined.

6 <External name> CANNOT RENAMED

<External name> could not be found, and therefore could not be renamed.

7 <External name> CANNOT DELETED
94 HITACHI

<External name> could not be found, and therefore could not be deleted.

8 <Unit name> CANNOT REPLACED

<Unit name> could not be found, and therefore could not be replaced.

Section 7 Error Messages

When incorrect options or subcommands are specified, or if an error is detected during the linkage
process, an error message is output. The Linkage Editor outputs error messages in the following
form.

** <Error number> <error message>[(<additional information>)]

1st column

∆ ∆

Error Number: The first digit indicates the level of the error (xx represent the second and third
digits).

1xx: Warning : Processing of the particular module is skipped.

2xx: Error : In the case of input from the command line or a subcommand file,
processing is stopped. In interactive mode, processing of the
subcommand is stopped when the error is detected, and the next
subcommand is requested.

3xx: Fatal error : Processing is stopped.

A list of errors is given below in tables 7-1, 7-2, and 7-3 in the following format.
HITACHI 95

Error Number Error Message Additional Information

Nature of Error

Linkage Editor actions and corrective actions

Notation used in table: —: No additional information

Table 7-1 List of Warning Messages

101 DUPLICATE OPTION/SUBCOMMAND Option/subcommand name

The same option or subcommand was specified more than once.

Only the last-specified option or subcommand is valid.

102 IDENTIFIERCHARACTEREXCEEDS 251 Name

Name of a unit, section, or symbol over 251 characters was specified.

Name is valid up to 251th character. The rest is ignored.

104 DUPLICATE SYMBOL Symbol name

The same export symbol is defined more than once.

Only the first appearing symbol is valid.

105 UNDEFINED EXTERNAL SYMBOL Unit name, symbol name

An undefined symbol was imported.

The import is invalid, and zero is assumed as the value.

106 REDEFINED SYMBOL Symbol name

A previously defined symbol was defined using the DEFINE subcommand or option.

The DEFINE specification is invalid.

107 SECTION ATTRIBUTE MISMATCH Section name

Two sections with the same name but different attributes or boundary alignment were input.

The sections are processed as separate sections.

108* RELOCATION SIZE OVERFLOW Unit name, section name—offset
value

Relocation result exceeds the relocation size.

Result is rounded off to fit the relocation size.

109 ENTRY POINT MULTIPLY DEFINED —

Execution start addresses were specified in more than one object modules.

The first appearing execution start address is valid.

110 SECTION ADDRESS EXCEED PAGE BOUNDARY Section name

A section overlaps a page boundary.

Specify the AUTOPAGE option or subcommand.

111 DUPLICATE SECTION NAME Section name

Same section name was specified in options or subcommands.
96 HITACHI

The first section is valid.

112 ILLEGAL CPU INFORMATION FILE FORMAT —

The file format of the CPU information file is incorrect.

The CPU option or subcommand specification is invalid.

Table 7-1 List of Warning Messages (cont)

113 CONFLICTING DEVICE TYPE —

The specified CPU information file is for a different CPU from that for which the input object
module is intended.

The CPU information file specification is invalid.

114 SECTION IS NOT IN SAME MEMORY AREA Section name: xxxx-yyyy

A section overlaps different memory areas. Addresses xxxx to yyyy are not allocated to one
memory area.

The section is output to the load module without change.

115 INACCESSIBLE ADDRESS RANGE Section name

A section was assigned to a memory area that cannot be used.

The section is output to the load module without change.

116 INVALID CPU OPTION/SUBCOMMAND —

The CPU option or subcommand was specified for a relocatable load module file.

The CPU option or subcommand specification is invalid.

117 ADDRESS SPACE DUPLICATE —

Sections overlap.

The load module is output as is.

118 INVALID UDF OPTION/SUBCOMMAND —

The NOUDF option or subcommand was specified for an absolute output load module.

The NOUDF option or subcommand is invalid.

119 RELOCATION VALUE IS ODD Unit name, section name—offset
value

Relocation value for the displacement is odd.

The LSB is rounded down to fit to the relocation size.

120 START ADDRESS NOT SPECIFIED FOR
SECTION

Section name

A section that has not been specified with the START option/subcommand was found.

Check the section name.

121 CANNOT FIND SECTION Section name

The specified section cannot be found.

The section specification is ignored.
HITACHI 97

122 TOOLONGSUBCOMMANDLINE —

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.

The file name is valid up to the 511th character.

Table 7-1 List of Warning Messages (cont)

123 TOO MANY DIRECTORY COMMANDS —

More than 16 directory names have been specified with the DIRECTORY subcommand.

Up to 16th specification is valid.

124 NO DEBUG INFORMATION —

The DEBUG or SDEBUG option/subcommand has been specified for the file having no
debugging information.

Specify the debug option at compilation or assembly.

Note: The following describes the generating condition, generating program examples, and
corrective actions for warning 108 (RELOCATIONSIZEOVERFLOW).

Warning Generating Condition: When the linkage editor determines the program addresses, if a
data size designated at assembly or compilation is exceeded, warning message 108 is output.

Warning Generating Program Examples:

• H8S, H8/300 series

Example 1

 .EXPORT SYM1
SYM1 .EQU H'1000
 ·
 ·
 ·

 .IMPORT SYM1
 ·
 ·
 ·
 MOV.B #SYM1 ,R1L (1)

Program 1 Program 2

When the above two programs are assembled and linked, the instruction at (1) references
SYM1 in byte size and therefore the referenced value must be within the range from -128 to
+255. However, SYM1 is defined as H'1000 (4096) in program 1, which exceeds the range,
and warning 108 is output.

Example 2

 .EXPORT SYM2
SYM2 .EQU H'C0 (2)
 ·
 ·
 ·

 .IMPORT SYM2
 ·
 ·
 ·
 MOV @SYM2 :8 ,R0L (3)
98 HITACHI

Program 3 Program 4

When the above two programs are assembled and linked, SYM 2 is referenced in 8-bit absolute
addressing mode at (3). The access range in 8-bit absolute addressing is 65280 to 65535
(H'FF00 to H'FFFF). However, SYM 2 is defined as H'C0 at (2), which exceeds the range, and

warning 108 is output. In this case, @SYM2:8 accesses address H'FFC0, and therefore, when
@H'FFC0 is the target address, this warning message can be ignored.

• H8/500 series

Example 3

 .EXPORT SYM3
SYM3 .EQU H'FF
 ·
 ·
 ·

 .IMPORT SYM3
 ·
 ·
 ·
 MOV @(SYM3 :8 ,R2),R3 (4)

Program 5 Program 6

When the above two programs are assembled and linked, the instruction at (4) references
SYM3 in 8-bit size and therefore the referenced value must be within the range from -128 to
+127. However, SYM3 is defined as H'FF (255) in program 5, which exceeds the range, and
warning 108 is output.

Example 4

 .SECTION SEC1,CODE
SYM4 .EQU $; Sets a location value to a symbol
 ·
 ·
 ·
 MOV @SYM4 :8 ,R0 ; Transfers 2-byte data at the address pointed
 to by the location (5)

When the above program is assembled and linked with specifying the start address of section
(SEC1) as address 1000 (hexadecimal), the SYM4 value becomes H'1000, which exceeds the
1-byte data size, and warning 108 is output. In this case, when the base register (BR) is set to
H'10 before the instruction at (5) is executed, this message can be ignored.

Example 5

 .EXPORT SYM3
SYM3 .EQU H'FF
 ·
 ·
 ·

 .IMPORT SYM3
 ·
 ·
 ·
 MOV @(SYM3 :8 ,R2),R3 (4)
HITACHI 99

Program 7 Program 8

When the above two programs are assembled and linked, the SYM5 value referenced at (6) is
defined as H'2000 in program 9, which exceeds the 1-byte data size, and warning 108 is output.

In the same way as example 4, when the base register (BR) is set to H'20 before the instruction
at (6) is executed, this message can be ignored.

Corrective Actions: When the warning message cannot be ignored, take the following corrective
actions.

• H8S, H8/300 series

In example 1, the following two corrective actions can be taken:

— Modifying the instruction operation size to word
Modify, at (1) in program 2, MOV.B to MOV.W and R1L to R1.

— Extracting the high-order or low-order one byte of the label (SYM1) value
To extract the high-order byte, modify #SYM1 to #HIGH SYM1 at (1).
To extract the low-order byte, modify #SYM1 to #LOW SYM1.

In example 2, modify H'C0 to H'FFC0 at (2) in program 3.

• H8/500 series

In example 3, modify SYM3:8 to SYM3:16 at (4) in program 6 when the label (SYM3) value
exceeds the 1-byte data size.

In example 4, modify @SYM4:8 to @SYM4:16 at (5) in the program.

In example 5, modify @SYM5:8 to @SYM5:16 at (6) in program 8.

Warning Message 108 Output Format: Output in the following format:
100 HITACHI

** 108 RELOCATIONSIZEOVERFLOW (<unit name> . <section name> - <offset value>)

This message means that the data overflow has occurred <offset value> addresses after the start
address of the section indicated by <unit name> . <section name>. Here, <unit name> means the
file name.

Table 7-2 List of Error Messages

201 ILLEGAL SUBCOMMAND/OPTION —

An illegal subcommand (or option) was specified.

Specify a valid subcommand (or option).

202 SYNTAX ERROR —

Syntax of the specified subcommand (or option) is incorrect.

Check the syntax and respecify the subcommand (or option).

203 TOO LONG SUBCOMMAND LINE —

Length of the subcommand entry exceeds 255 characters.

Respecify, keeping the length within 255 characters.

204 ILLEGAL SUBCOMMAND SEQUENCE —

Order of subcommand specification is invalid.

Check the order of subcommand specification and respecify.

207 ILLEGAL SECTION NAME Section name

The specified section name is invalid.

Specify a proper section name.

208 ILLEGAL SYMBOL NAME Symbol name

The specified symbol name is invalid.

Specify a proper symbol name.

210 TOO MANY INPUT FILES —

Attempt was made to input more than 256 input files at one time.

Create a relocatable load module file, then specify the remaining input files by re-inputting
the load module file.

211 CANNOT FIND FILE File name

The specified file cannot be found.

Check the specified file name, then respecify.

212 CANNOT FIND UNIT Unit name

The specified unit cannot be found.

Check the specified unit name, then respecify.
HITACHI 101

213 CANNOT FIND MODULE Module name

The specified module cannot be found.

Check the specified module name, then respecify.

Table 7-2 List of Error Messages (cont)

214 DUPLICATE START ADDRESS SPECIFIED —

The same start address was specified more than once.

Change the start address, then re-input.

216 PAGE ADDRESS EXCEEDED —

A page address exceeds the permitted range.

Check the page address and respecify.

217 SUBCOMMAND COMMAND IN SUBCOMMAND
FILE

—

The SUBCOMMAND subcommand appeared in a subcommand file.

Remove the SUBCOMMAND subcommand from the subcommand file.

219 INVALID ADDRESS address

The specified address exceeds the permitted range.

The specified address exceeds the address range of the specified device. Check the value
of the specified address, then re-execute.

220 TOO MANY ROM COMMANDS —

More than 10 pairs of section names were specified in a ROM subcommand.

Specify 10 pairs or less.

221 CANNOT CREATE ABSOLUTE MODULE Module name

An undefined import symbol was found.
102 HITACHI

Resolve the address for the symbol.

222 DIVISION BY ZERO IN RELOCATION VALUE Unit name . section name—offset

The input object file includes a division by zero.

Check the relocation operation and make the object file that has no division by zero.

Table 7-3 List of Fatal Error Messages

301 ILLEGAL COMMAND PARAMETER —

An illegal command parameter was specified.

Check the command parameters and re-execute.

302 CANNOT OPEN FILE File name

The file cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

303 CANNOT READ INPUT FILE File name

The file cannot be input.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

304 CANNOT WRITE OUTPUT FILE File name

The file cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

305 CANNOT CLOSE FILE File name

The file cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

306 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents and specified file name, then re-execute. This message is output
when the object file format is illegal, for example because there are two or more import
symbols with the same name in the same unit, or two external symbol names were made
identical by the RENAME subcommand.

307 ILLEGAL RECORD FORMAT File name

There is an illegal record in the specified file, or division by zero occurred.

Check the source program contents. Re-assemble or recompile, then re-execute.
HITACHI 103

308 SECTION ADDRESS OVERFLOW Section name of the specified device

The address allocated to a section exceeds the allowable range.

The address allocated to the section exceeds the address range of the specified device.
Change the section start address or rearrange the user program, then re-execute.

Table 7-3 List of Fatal Error Messages (cont)

309 ADDRESS OVERFLOW —

The specified address exceeds the address range allowed for the particular CPU.

Check the specified address, then re-execute.

310 MEMORY OVERFLOW —

There is no space remaining in the Linkage Editor’s usable memory.

Expand the memory or revise the user program, then re-execute.

311 PROGRAM ERROR nnn

There is an error in the Linkage Editor program.

The Linkage Editor is inoperable. Check the program error number (nnn), then contact your
Hitachi representative.

312 ILLEGAL START ADDRESS ALIGNMENT Address

The specified address conflicts with the boundary alignment number of the object module.

Check the boundary alignment number of the object module, then re-execute.

314 CANNOT FIND SECTION Section name

The specified section name cannot be found.

Check the section name, then respecify.

319 AUTOPAGE SPECIFIED AT NON-PAGE TYPE —

The AUTOPAGE option/subcommand was specified when non-page type files were input.

Check the input file contents, then respecify.

321 PAGE ADDRESS OVERFLOW —

The page address overflows the allowable range.

Change the section start address or the user program so that the page address will be
within the allowable range of 0 - 0FF (hexadecimal), then re-execute.

322 PAGE ADDRESS SPECIFIED AT NON–PAGE
TYPE

—

For a non-page type input file, a page address was specified with the START or DEFINE
option/subcommand.

Check the specified file name and option or subcommand content, then re-execute.

323 SECTION SPECIFIED AT ROM OPTION/ Section name
104 HITACHI

SUBCOMMAND DOES NOT EXIST

A section specified in a ROM command does not exist.

Check the section name, and respecify.

Table 7-3 List of Fatal Error Messages (cont)

325 ILLEGAL START SECTION Section name

A section specified by a START command has an illegal attribute.

Check the section attributes, and respecify.

326 CANNOT READ —

Input failed from a file (including the standard input device).

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

327 SYMBOL ADDRESS OVERFLOW Symbol name

The address assigned to a symbol exceeded the permitted range for the specified device.

Change the section start address or rearrange the user program, then re-execute.

328 ILLEGAL ROM SECTION Section name

Section 2 specified in a ROM subcommand or option is invalid.

The size of section 2 is not 0, section 2 is the absolute section or the attribute of section 2 is
different from that of section 1. Check the size and attribute of section 2, and respecify.

329 INVALID MEMORY MAP —

Memory allocation does not match the one specified in the CPU information file, or it
overlaps different types of memory.

Check the CPU information file and the input files.

330 ILLEGAL FILE FORMAT (INPUT ABSOLUTE FILE) —

An absolute load module was input.

Check the input files and respecify them.

331 ILLEGAL FILE FORMAT (MISMATCH OBJECT
FORMAT VERSION)

—

The input files have different object formats.

Check the input files and respecify them.
HITACHI 105

332 ILLEGAL FILE FORMAT (INPUT MISMATCH CPU
TYPE)

—

The input files are not for the H series or SH series.

Check the input files and respecify them.

Section 8 Restrictions

Restrictions on the Linkage Editor are shown in table 8-1. If the numerical restrictions are
exceeded, linkage operations cannot be performed.

Table 8-1 Restrictions on Linkage Editor Processing

No. Item Restrictions Remarks

1 Number of input files 256 max.

2 Input file formats • Object module file output by
assembler or compiler.

• Relocatable load module file.

• Library file created using
Librarian.

3 Address/notation Hexadecimal only.
The range depends on the H
series type.

H8/500 series: 0-0FFFF

H8/300 series:
• 300HA: 0-0FFFFFF
• Others: 0-0FFFF

H8S series:
• 2600A and 2000A: 0-0FFFFFFFF
• Others: 0-0FFFF

SH series: 0-0FFFFFFFF

4 Names of modules,
units, sections,
symbols

Up to 251 characters.
HITACHI 107

5 Number of modules,
units, sections,
export symbols,
import symbols

65,535. Assumes no prior restrictions on
memory of system on which
Linkage Editor is executed.

Appendix A Example of Use of Linkage Editor

In this sample application, the 11 object modules and one library file shown in table A-1 are input
into the Linkage Editor.

Table A-1 List of Input Files

No. File Name Type of File

1 main.obj Object module file

2 init.obj

3 cmndanl.obj

4 cmndprc.obj

5 table.obj

6 term.obj

7 keyin.obj

8 file.obj

9 printer.obj

10 display.obj

11 commu.obj

12 function.lib Library file
HITACHI 109

Library file “function.lib” consists of the 14 modules listed in table A-2.

Table A-2 List of Modules in Library File

No. Module Name

1 mvdata

2 upshft

3 comp

4 expr

5 rmargin

6 lmargin

7 sum

8 number

9 zerosprs

10 ascbin

11 binasc

12 cnvbcd

13 portio

14 dos

Linkage Execution: Input the following command to execute module linkage. In this example,
subcommands are input from subcommand file “exlink.sub,” and execution is controlled by these
subcommands.
110 HITACHI

lnk∆-SUBCOMMAND=exlink.sub (RET)

The contents of subcommand file “exlink.sub” are shown in figure A-1.

;

; First Linkage Process

;

form r ; Relocatable Load Module

input main ; Input "main.obj"

input init ; Input "init.obj"

input cmndanl ; Input "cmndanl.obj"

input cmndprc ; Input "cmndprc.obj"

input table ; Input "table.obj"

input term ; Input "term.obj"

library function ; Library "function.lib"

output program1 ; Output "program1.rel"

print program1 ; Print "program1.map"

end

;

; Second Linkage Process

;

input program1.rel ; Input "program1.rel"

input keyin ; Input "keyin.obj"

input file ; Input "file.obj"

input printer ; Input "printer.obj"

input display ; Input "display.obj"

input commu ; Input "commu.obj"

library function ; Library "function.lib"

 ; Sequence of Sections

start program1,program2,function,global,local,f_local,stack_area

output example ; Output "example.abs"

print example ; Print "example.map"

exit

Figure A-1 Subcommand File “exlink.sub”

As figure A-1 shows, two linkage processes are carried out, using the multilinkage function. In the
first linkage process, six object module files and the library file are input, and relocatable load
module file “program1.rel” and linkage list “program1.map” are output. In the second linkage
process, load module file “program1.rel” is re-input, and the remaining object module files are
HITACHI 111

input. Absolute load module file “example.abs” and linkage list “example.map” are output.

Linkage list, “program1.map” output in the first linkage process is shown in figure A-2. Linkage
list “example.map” output in the second linkage process is shown in figure A-3.

 H SERIES LINKAGE EDITOR Ver. 5.3

LINK COMMAND LINE

lnk -subcommand=exlink.sub

LINK SUBCOMMANDS

;

; First Linkage Process

;

form r ; Relocatable Load Module

input main ; Input "main.obj"

input init ; Input "init.obj"

input cmndanl ; Input "cmndanl.obj"

input cmndprc ; Input "cmndprc.obj"

input table ; Input "table.obj"

input term ; Input "term.obj"

library function ; Library "function.lib"

output program1 ; Output "program1.rel"

print program1 ; Print "program1.map"

end

** 105 UNDEFINED EXTERNAL SYMBOL(main.keyin)

** 105 UNDEFINED EXTERNAL SYMBOL(cmndprc.printer)

** 105 UNDEFINED EXTERNAL SYMBOL(cmndprc.file)

** 105 UNDEFINED EXTERNAL SYMBOL(cmndprc.keyin)

** 105 UNDEFINED EXTERNAL SYMBOL(cmndprc.commu)

** 105 UNDEFINED EXTERNAL SYMBOL(cmndprc.display)
112 HITACHI

** 105 UNDEFINED EXTERNAL SYMBOL(term.file)

Figure A-2 Linkage List “program1.map” (Input Information)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR

program1 H'00000000 - H'00000349 H'0000034a

 main main

 H'0000034a - H'00000467 H'0000011e

 init initialize

 H'00000468 - H'0000055d H'000000f6

 cmndanl command_analize

 H'0000055e - H'000007e7 H'0000028a

 cmndprc command_process

 H'000007e8 - H'0000091f H'00000138

 term terminate

* TOTAL ADDRESS * H'00000000 - H'0000091f H'00000920

ATTRIBUTE : DATA NOSHR

local H'00000000 - H'00001ELF H'00001e20

 main main

 H'00001e20 - H'00001e3f H'00000020

 init initialize

 H'00001e40 - H'00003c7f H'00001e40

 cmndanl command_analize

 H'00003c80 - H'000222bf H'0001e640

 cmndprc command_process

 H'000222c0 - H'000222df H'00000020

 term terminate

* TOTAL ADDRESS * H'00000000 - H'000222df H'000222e0

ATTRIBUTE : DATA NOSHR

global H'00000000 - H'000015cf H'000015d0

 table global_table

* TOTAL ADDRESS * H'00000000 - H'000015cf H'000015d0

ATTRIBUTE : STACK NOSHR
HITACHI 113

stack_area H'00000000 - H'001e1fff H'001e2000

 table global_table

* TOTAL ADDRESS * H'00000000 - H'001e1fff H'001e2000

Figure A-2 Linkage List “program1.map” (Link Map List)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 2

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR

function H'00000000 - H'0000001b H'0000001c

 comp compare_string

 H'0000001c - H'0000010f H'000000f4

 expr expression

 H'00000110 - H'00000163 H'00000054

 mvdata move_data_string

 H'00000164 - H'00000193 H'00000030

 upshft upshift_character

* TOTAL ADDRESS * H'00000000 - H'00000193 H'00000194

ATTRIBUTE : DATA NOSHR

f_local H'00000000 - H'0000000b H'0000000c

 comp compare_string

 H'0000000c - H'0000011b H'00000110

 expr expression

 H'0000011c - H'0000011f H'00000004
114 HITACHI

 upshft upshift_character

* TOTAL ADDRESS * H'00000000 - H'0000011f H'00000120

Figure A-2 Linkage List “program1.map” (Link Map List) (cont)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR EXTERNALLY DEFINED SYMBOLS LIST ***

 SYMBOL NAME ADDR TYPE

 cmndanl H'00000000 DAT

 cmndprc H'00000000 DAT

 cmndtbl H'000000C8 DAT

 comp H'00000000 DAT

 expr H'00000000 DAT

 fltbl H'000003C8 DAT

 header H'00000000 DAT

 init H'00000000 DAT

 keybuf H'000001C8 DAT

 main H'00000000 DAT

 mvdata H'00000000 DAT

 prbuf H'000014C8 DAT

 recbuf H'000013C8 DAT

 stackarea H'00000000 DAT
HITACHI 115

 term H'00000000 DAT

 upshft H'00000000 DAT

Figure A-2 Linkage List “program1.map” (Export Symbol List)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR UNRESOLVED EXTERNAL REFERENCE LIST ***

FILE NAME : main.obj

MODULE NAME : main

UNIT NAME : main

 SYMBOL NAME TYPE

 keyin ***

FILE NAME : cmndprc.obj

MODULE NAME : command_process

UNIT NAME : cmndprc

 SYMBOL NAME TYPE

 commu ***

 display ***

 file ***

 keyin ***

 printer ***

FILE NAME : term.obj

MODULE NAME : terminate

UNIT NAME : term

 SYMBOL NAME TYPE
116 HITACHI

 file ***

Figure A-2 Linkage List “program1.map” (Undefined Symbol List)

 H SERIES LINKAGE EDITOR Ver. 5.3

LINK COMMAND LINE

LINK SUBCOMMANDS

;

; Second Linkage Process

;

input program1.rel ; Input "program1.rel"

input keyin ; Input "keyin.obj"

input file ; Input "file.obj"

input printer ; Input "printer.obj"

input display ; Input "display.obj"

input commu ; Input "commu.obj"

library function ; Library "function.lib"

 ; Sequence of Sections

start program1,program2,function,global,local,f_local,stack_area

output example ; Output "example.abs"

print example ; Print "example.map"

exit
HITACHI 117

Figure A-3 Linkage List “example.map” (Input Information)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR

program1 H'00000000 - H'00000349 H'0000034a

 main program1

 H'0000034a - H'00000467 H'0000011e

 init program1

 H'00000468 - H'0000055d H'000000f6

 cmndanl program1

 H'0000055e - H'000007e7 H'0000028a

 cmndprc program1

 H'000007e8 - H'0000091f H'00000138

 term program1

* TOTAL ADDRESS * H'00000000 - H'0000091f H'00000920

ATTRIBUTE : CODE NOSHR

program2 H'00000920 - H'00000b1f H'00000200

 keyin input_keyboard

 H'00000b20 - H'00000c47 H'00000128

 file file_io

 H'00000c48 - H'00000d49 H'00000102

 printer output_printer

 H'00000d4a - H'00000e61 H'00000118

 display display_console

 H'00000e62 - H'00001127 H'000002c6

 commu communication

* TOTAL ADDRESS * H'00000920 - H'00001127 H'00000808

ATTRIBUTE : CODE NOSHR

function H'00001128 - H'00001143 H'0000001c

 comp program1

 H'00001144 - H'00001237 H'000000f4

 expr program1

 H'00001238 - H'0000128b H'00000054

 mvdata program1

 H'0000128c - H'000012bb H'00000030

 upshft program1

 H'000012bc - H'00001343 H'00000088

 lmargin left_margin

 H'00001344 - H'00001373 H'00000030
118 HITACHI

 number numbering_items

 H'00001374 - H'000013f3 H'00000080

 rmargin right_margin

Figure A-3 Linkage List “example.map” (Link Map List)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 2

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : CODE NOSHR

function H'000013f4 - H'0000140b H'00000018

 sum sum_items

 H'0000140c - H'000014c7 H'000000bc

 zerosprs zero_suppress

 H'000014c8 - H'00001533 H'0000006c

 ascbin ascii_to_binary

 H'00001534 - H'00001573 H'00000040

 binasc binary_to_ascii

 H'00001574 - H'0000163f H'000000cc

 cnvbcd convert_to_bcd

 H'00001640 - H'00001647 H'00000008

 dos interface_of_dos

 H'00001648 - H'00001657 H'00000010

 portio interface_of_port

* TOTAL ADDRESS * H'00001128 - H'00001657 H'00000530

ATTRIBUTE : DATA NOSHR

global H'00001658 - H'00002c27 H'000015d0

 table program1

* TOTAL ADDRESS * H'00001658 - H'00002c27 H'00015d0

ATTRIBUTE : DATA NOSHR

local H'00002c28 - H'00004a47 H'00001e20

 main program1

 H'00004a48 - H'00004a67 H'00000020

 init program1

 H'00004a68 - H'000068a7 H'00001e40

 cmndanl program1

 H'000068a8 - H'00024ee7 H'0001e640

 cmndprc program1

 H'00024ee8 - H'00024f07 H'00000020

 term program1

 H'00024f08 - H'00025127 H'00000220

 keyin input_keyboard

 H'00025128 - H'00025307 H'000001e0

 file file_io

 H'00025308 - H'0002544b H'00000144
HITACHI 119

 printer output_printer

 H'0002544c - H'0002554f H'00000104

 display display_console

Figure A-3 Linkage List “example.map” (Link Map List) (cont)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 3

 *** LINKAGE EDITOR LINK MAP LIST ***

SECTION NAME START - END LENGTH

 UNIT NAME MODULE NAME

ATTRIBUTE : DATA NOSHR

local H'00025550 - H'00025713 H'000001c4

 commu communication

* TOTAL ADDRESS * H'00002c28 - H'00025713 H'00022aec

ATTRIBUTE : DATA NOSHR

f_local H'00025714 - H'0002571f H'0000000c

 comp program1

 H'00025720 - H'0002582f H'00000110

 expr program1

 H'00025830 - H'00025833 H'00000004

 upshft program1

 H'00025834 - H'00025843 H'00000010

 lmargin left_margin

 H'00025844 - H'00025847 H'00000004

 number numbering_items

 H'00025848 - H'00025857 H'00000010

 rmargin right_margin

 H'00025858 - H'0002587b H'00000024

 zerosprs zero_suppress

 H'0002587c - H'00025883 H'00000008

 ascbin ascii_to_binary

 H'00025884 - H'00025887 H'00000004

 binasc binary_to_ascii

 H'00025888 - H'000258cf H'00000048

 cnvbcd convert_to_bcd

* TOTAL ADDRESS * H'00025714 - H'000258cf H'000001bc

ATTRIBUTE: STACK NOSHR

stack_area H'000258d0 - H'002078cf H'001e2000
120 HITACHI

 table program1

* TOTAL ADDRESS * H'000258d0 - H'002078cf H'001e2000

Figure A-3 Linkage List “example.map” (Link Map List) (cont)

 H SERIES LINKAGE EDITOR Ver. 5.3 PAGE: 1

 *** LINKAGE EDITOR EXTERNALLY DEFINED SYMBOLS LIST ***

 SYMBOL NAME ADDR TYPE

 ascbin H'000014c8 DAT

 binasc H'00001534 DAT

 cmndanl H'00000468 DAT

 cmndprc H'0000055e DAT

 cmndtbl H'00001720 DAT

 cnvbcd H'00001574 DAT

 commu H'00000e62 DAT

 comp H'00001128 DAT

 display H'00000d4a DAT

 dos H'00001640 DAT

 expr H'00001144 DAT

 file H'00000b20 DAT

 fltbl H'00001a20 DAT

 header H'00001658 DAT

 init H'0000034a DAT

 keybuf H'00001820 DAT

 keyin H'00000920 DAT

 lmargin H'000012bc DAT

 main H'00000000 DAT

 mvdata H'00001238 DAT

 number H'00001344 DAT

 portio H'00001648 DAT

 prbuf H'00002b20 DAT

 printer H'00000c48 DAT

 recbuf H'00002a20 DAT

 rmargin H'00001374 DAT

 stackarea H'000258d0 DAT

 sum H'000013f4 DAT

 term H'000007e8 DAT
HITACHI 121

 upshft H'0000128c DAT

 zerosprs H'0000140c DAT

Figure A-3 Linkage List “example.map” (Export Symbol List)

Appendix B File Name Specifications

File names are specified in the following format:

path name main file name file type
 (1) (2) (3)

(1) Path name

Specify the directory path of the directory containing the file, using slashes (/) in UNIX or
back-slashes (\) in MS-DOS to delimit directory names. The default value is the current
directory.

(2) Main file name

Specify the name of the file.

(3) File type

Specify the type of file separated from the main file name by a period (.).

The general rules of file naming for the Linkage Editor conform to the operating-system (OS)
rules.

Example 1 (MS-DOS): \usr \tool\ prog .typ

File type

Main file name

Path name

Example 2 (UNIX): /usr /tool/ prog .typ

File type

Main file name

Path name
122 HITACHI

Note: If the same name is specified for the input file and output file, the input file contents will
be lost. Do not use the same name for the input and output files.

Part II

Librarian Guide

Section 1 Overview

A program is usually developed by dividing it into functional modules and creating a separate
source program for each module. Next, each source program module is compiled or assembled to
create an object module. The object modules are then linked together using a linkage editor,
resulting in an executable program.

The H Series Librarian introduced in this manual (hereafter called the Librarian) plays a vital role
in this process. It brings together the many object modules output by the C compiler and
assembler, as well as relocatable load modules output by the linkage editor, to make library files.

The Librarian provides the following advantages.

Simplified Module Management: The many modules making up a program (including
relocatable load modules as well as object modules) are stored in a library file for the particular
program. They can then be dealt with all at once. Moreover, it is possible to create generic library
files that can be used later to streamline the creation of other programs.

A library file can be edited by adding, deleting, or replacing individual modules. In this way the
modules can be kept up to date.
HITACHI 125

Enhanced Linkage: The Linkage Editor can search library files to find, extract, and link modules
that define unresolved import symbols. Use of the library files thus makes linkage editing more
efficient.

Section 2 Librarian Functions

2.1 Creating Library Files

This function makes it possible to create new library files, and to enter object modules output by
the C compiler or assembler as well as relocatable load modules output by the linkage editor.

Figure 2-1 is an illustration of the library file creation concept.

Module A

Module B

Entered modules New library file

Creation
Module A

Module B

Module C
HITACHI 127

Module C

Figure 2-1 Creating a New Library File

2.2 Editing Existing Library Files

Modules can be added to, deleted from, or replaced in existing library files.

Adding Modules: Modules can be added to already existing library files. The concept of module
addition is illustrated in figure 2-2.

Module A

Module B

Module C

Existing library file Edited library file

Module A

Module B

Module C

Module D

Update

Module D

Addition

Figure 2-2 Adding a Module

Deleting Modules: Unnecessary modules can be deleted from existing library files. Figure 2-3
illustrates the module deletion concept.

Existing library file

Module A

Module B

Module C

Module A

Module B

Module C

Edited library file

Update

Deletion
128 HITACHI

Module D

Figure 2-3 Deleting a Module

Replacing Modules: Modules in existing library files can be replaced with new modules. The
concept of module replacement is illustrated in figure 2-4.

Existing library file

Module A

Module B

Module D

Update

Edited library file

Module A

Module B'

Module D

Module B'

Replacement

Figure 2-4 Replacing a Module

2.3 Extracting Modules from a Library File

Modules can be extracted from existing library files and used to create new library files. The
concept of module extraction is illustrated in figure 2-5.

Existing library file

Module A

Module B

Module C

Extraction

New library file

Module B

Module C

Extraction

Figure 2-5 Extracting Modules

2.4 Displaying the Contents of a Library File

A librarian list giving information about the modules and export symbols in a library file can be
HITACHI 129

output to a standard output device or a list file. A librarian list tells when the library file was
created and when it was last revised, indicates when each module was stored, and gives the names
of export symbols and other useful information.

For further details, see section 6.2, Librarian Lists.

Section 3 Executing the Librarian

To execute the Librarian, start the Librarian by entering a command line. The command line
specifies the name of the library file to be edited and various options, which give instructions to
the Librarian. If these instructions are sufficient, the Librarian can be executed using the command
line alone. If further instructions are needed, they can be given in subcommands.

Command Line Execution: The Librarian can be executed simply by specifying a library file
and options on the command line. The method is useful when library editing is relatively
straightforward.

Subcommand Execution: The Librarian can also be executed by entering both a command line
and subcommands. The subcommands specify input and output files and parameters that control
the Librarian. This method is useful for specifying a large number of files or modules, or for
editing two or more library files together. Subcommands can be entered interactively, or from a
subcommand file. Details are given in section 3.3, Executing by Subcommands.

File names used on the command line and in the subcommands are specified in the following
format:

path name main file name file type
 (1) (2) (3)

(1) Path name

Specify the directory path of the directory containing the file, using slashes (/) in UNIX system
and back-slashes (\) in MS-DOS system to delimit directory names. The default value is the
current directory.

(2) Main file name

Specify the name of the file.

(3) File type

Specify the type of file separated from the main file name by a period (.). If omitted, the
HITACHI 131

implicit type is used.

The general rules of file naming for the Librarian conform to the operating-system (OS) rules.

Note: The OS shell (command interpreter) checks the command line before passing control to
the Librarian. Use characters that the OS allows on the command line.

Example (UNIX): /usr /tool/ prog .typ

File type

Main file name

Path name

Example (MS-DOS): \usr \tool\ prog .typ

File type

Main file name

Path name

3.1 Command Line Format

The following format is used for the Librarian command line.

lbr[∆[<library file name>][[∆]-<option name>[[∆]-<option name>...]]] (RET)

• Command name: “lbr” is the command that starts the Librarian.

• Library file name: To edit or extract modules from an existing library file, type the name of the
library file in the command line.

• Option names: Each option name must start with a hyphen (-). One or more spaces or tabs
can also be used to separate an option name from a preceding option name
or library file name, but these spaces or tabs are not required. Option names
are described in detail in section 4, Librarian Options and Subcommands.
The Librarian edits the library file according to the order in which the
options are specified.
132 HITACHI

Specifying the Mode of Execution: The content of the command line determines whether the
Librarian will be executed by the command line specifications only, or by subcommands. See
table 3-1.

Table 3-1 How Command Line Specification Determines the Form of Execution

Option Specification

Library File
Name
Specification

No Option
Specified

SUBCOMMAND*1

Option Specified
CREATE Option*1

Specified

Option Other
than CREATE or
SUBCOMMAND
Specified

Library file name
specified

—*2 — — Executed by
specifying
command line

No library file
name specified

Executed by
specifying
subcommands

Executed by
specifying
subcommands

Executed by
specifying command
line

—

Notes: 1. For SUBCOMMAND and CREATE options, see section 4, Librarian Options and
Subcommands.

2. The combinations of option and library file names indicated by dashes (—) are not
permitted. An error will occur, and the librarian will not be executed.

3.2 Executing by Command Line

In command line execution, the Librarian is executed according to the information specified in the
command line alone. Editing procedures and other conditions are specified to the Librarian in the
form of options. When the editing process is straightforward and simple, command line
specification is sufficient for creating or updating a library. Examples of execution by command
line are given below.

Example 1:

lbr∆-CREATE-syslib.lib-ADD=obj00.obj,prg.lib (RET)

(1) (2)

(1) Creates a new library file named syslib.lib.

(2) Adds the modules in object module file obj00.obj and library file prg.lib to syslib.lib.
HITACHI 133

The CREATE option by itself will not create a library file unless modules are added using the
ADD option.

Example 2:

lbr∆ syslib.lib-ADD=obj00.obj-DELETE=modl (RET)

(1) (3)(2)

(1) Designates library file syslib.lib as the file to be edited.

(2) Adds the module in object module file obj00.obj to syslib.lib.

(3) Deletes existing module mod1 from syslib.lib.

3.3 Executing by Subcommands

Since the number of characters that can be typed on the command line is limited, the command
line may not be able to accommodate a large number of specifications. In such cases,
subcommands are used to execute the Librarian. Subcommands can be input interactively, one at a
time, from the keyboard or other standard input device. Alternatively, a subcommand file
consisting of a group of subcommands can be created in advance, and subcommands can be input
from this subcommand file.

3.3.1 Executing in Interactive Mode

When no library file is specified in the command line and there are no option specifications,
execution proceeds in interactive mode. A colon (:) appears on the screen as a prompt, indicating
that the Librarian is waiting for a subcommand to be input. In this way you can enter the necessary
subcommands. This method is useful when the number of subcommands is relatively small, or
when you want to check Librarian lists as you enter the subcommands.

An example of execution by interactive input of subcommands is given below. Functions of the
subcommands listed here are detailed in section 4, Librarian Options and Subcommands.

Example:

 lbr (RET) ...(1)

: CREATE∆prg.lib (RET) ...(2)

: ADD∆main.obj (RET) ...(3)

: ADD∆send.obj,receive.obj,exchange.obj (RET) ...(4)

: ADD∆account.obj (RET) ...(5)
134 HITACHI

: LIST∆(S) (RET) ...(6)

: EXIT (RET) ...(7)

(1) Starts the Librarian in interactive mode.

(2) Creates a new library file named prg.lib.

(3) Adds the module in main.obj to prg.lib.

(4) Adds the modules in send.obj, receive.obj and exchange.obj to prg.lib.

(5) Adds the module in account.obj to prg.lib.

(6) Outputs a librarian list, including symbol information, to the standard output device.

(7) Terminates the Librarian operation.

3.3.2 Executing from a Subcommand File

This method uses a subcommand file that was created in advance and that contains the
subcommands necessary for Librarian operations. This subcommand file is then specified on the
command line as a parameter of the SUBCOMMAND option. This method is useful when many
subcommands must be specified, or when the same editing process is carried out repeatedly. It
eliminates the need to input subcommands from the keyboard or other standard input device each
time.

Use an editor to create the subcommand file. An example of execution from a subcommand file is
given below. Functions of the subcommands listed here are detailed in section 4, Librarian
Options and Subcommands.

lbr∆-SUBCOMMAND=prglib.sub (RET) ... (1)

Contents of subcommand file prglib.sub:

CREATE∆function.lib

ADD∆sin.obj,cos.obj,tan.obj

ADD∆asin.obj,acos.obj,atan.obj

ADD∆hsin.obj,hcos.obj,htan.obj

ADD∆log.obj,log10.obj

EXIT

... (2)

... (3)

... (4)

... (5)

... (6)

... (7)

(1) Starts the Librarian and inputs subcommands from subcommand file prglib.sub.

(2) Creates a new library file function.lib.

(3) Adds the modules in object module files sin.obj, cos.obj and tan.obj to function.lib.
HITACHI 135

(4) Adds the modules in object module files asin.obj, acos.obj and atan.obj to function.lib.

(5) Adds the modules in object module files hsin.obj, hcos.obj and htan.obj to function.lib.

(6) Adds the modules in object module files log.obj and log10.obj to function.lib.

(7) Terminates Librarian operations.

3.4 Terminating Librarian Operations

When the Librarian terminates operations, it gives the system a return code indicating an error
level. The return code can be used to control the execution of a command file. The error code has
the values shown in table 3-2, depending on the error level.

Table 3-2 Return Code Depending on Error Level

Return Code

Error level UNIX MS-DOS

Normal termination 0 0

Warning 0 0
136 HITACHI

Error 1 2

Fatal error 1 4

Section 4 Librarian Options and Subcommands

Options and subcommands tell the Librarian what editing operations to perform. The three main
functions of options and subcommands are file control, execution control, and list display. These
functions can be used individually or in combination to create and edit library files.

Options and subcommands have the same names and equivalent functions, but are specified in
different formats. Moreover, there are some specifications which can be made only with options,
and others only with subcommands. Sections 4.1, Option and Subcommand Formats, and 4.2, List
of Options and Subcommands, must accordingly be read carefully. Option and subcommand
functions are outlined below.

File Control Functions: File control functions indicate the name of the library file to be edited, or
the name of a library file to which extracted modules are to be output.

Execution Control Functions: Execution control functions instruct the Librarian to perform
editing operations, or terminate its processing. These functions are used, for example, to input
subcommands from a subcommand file, to create a new library file, or to update a library file.

List Display Functions: List display functions are used to display information such as names of
modules stored in a library file, or export symbol names.

4.1 Option and Subcommand Formats

Option and Subcommand Structure:
HITACHI 137

(a) Name

The name gives the name of the option or subcommand. For the names, refer to section 4.2, List of
Options and Subcommands.

(b) Parameters

The parameters give the names of files,*1 module,*2 etc. on which the option or subcommand
operates. There are different requirements and methods of specification depending on the type of
option or subcommand. For details, refer to section 4.3, File Control, section 4.4, Execution
Control, and section 4.5, List Display.

Options and subcommands differ as to the way of separating the name from the parameters.
Options use an equal sign (=), while subcommands use one or more spaces or tabs.

Option format

<Name>=<parameters>

Subcommand format

<Name>∆<parameters>

Examples:

–OUTPUT=lbf : option

OUTPUT∆lbf : subcommand

In these examples, OUTPUT is the name, and lbf is the parameter.

Notes: 1. A file name consists of three parts: the path name, main file name, and file type.

If the file type is omitted, a file type is assumed as follows.

Library file : .lib

Object module file : .obj

Relocatable load module file : .obj

Subcommand file : .sub

List file : .lst

2. A module name is the name defined in an object module or relocatable load module. In
module names, uppercase letters are distinguished from lowercase letters. The pairs of
138 HITACHI

names below, for example, are treated as different names.

Examples: modul1
abcde

MODUL1
Abcde

Continuation Specification in a Subcommand: When a subcommand is too long to be specified
on one line (generally, up to 500 characters per line, but it will depend on the OS), a continuation
specifier is used. A continuation specifier is an ampersand (&) at the end of the line. It must
always be placed between two parameters; if it is placed within a parameter, it will not be treated
as a continuation specifier. Also, if a character (including a space or tab) is typed after the
ampersand, an error will occur and the subcommand will not be continued.

In interactive input of subcommands, a hyphen (-) appears as a prompt for further input after
continuation has been specified.

Examples:

:ADD∆obj00.lib(mod0,mod1),& (RET)

-ibh91,ibh92 (RET)

:ADD∆obj00.lib(mod0,mod1),ob& (RET)
Continuation specifier

Specifying continuation
in the middle of a
parameter generates an error

A subcommand line in a subcommand file can be continued in the same way. The line after a line
with the continuation specifier becomes the continuation line.

Example:

Subcommand file
HITACHI 139

DELETEDSUB1,SUB2,& (RET)

sub3 (RET)

Continuation specifier

Continuation line

Specifying Comments in a Subcommand File: A comment specifier is used to place notes or
other comments in a subcommand file. The specifier is a semicolon (;) placed on a subcommand
line, indicating that the rest of the line is a comment. If the semicolon follows a subcommand
name or parameter, it must be separated by at least one space or tab.

If the semicolon is placed at the beginning of a subcommand line, the entire line is treated as a
comment.

Examples:

;EXAMPLE OF LIBRARIAN SUBCOMMAND

... the entire line is a comment.

LIBRARY∆syslib∆; INDICATES LIBRARY FILE

... INDICATES LIBRARY FILE is a comment.
140 HITACHI

ADD∆module.obj;abc

... module.obj;abc is treated as a single parameter;
 abc is not treated as a comment.

4.2 List of Options and Subcommands

There are 10 options and 15 subcommands, as listed in table 4-1.

Table 4-1 List of Options and Subcommands

No. Type Name*1 Function Opt.*2 Sub.*2 Section

1 File control LIB RARY Specifies the library file to be
edited

No Yes 4.3.1

 O UTPUT Specifies an output library file Yes Yes 4.3.2

 DI RECTORY Specifies directory name
replacement

No Yes 4.3.3

2 Execution S UBCOMMAND Specifies a subcommand file Yes No 4.4.1
control C REATE Creates a library file Yes Yes 4.4.2

 AD D Adds modules Yes Yes 4.4.3

 R EPLACE Replaces modules Yes Yes 4.4.4

 D ELETE Deletes modules Yes Yes 4.4.5

 EXT RACT Extracts modules Yes Yes 4.4.6

 REN AME Modifies section names Yes Yes 4.4.7

 EN D End of subcommand input No Yes 4.4.8

 EXI T End of Librarian operations No Yes 4.4.9

 AB ORT Aborts Librarian operations No Yes 4.4.10

3 List display LIS T Displays contents of library file Yes Yes 4.5.1

 SL IST Displays section names of Yes Yes 4.5.2
HITACHI 141

library file

Notes: 1. The underlined letters of a name are the shortest permissible abbreviated form.
2. The Opt. and Sub. columns indicate whether a name is available as an option or

subcommand.

Abbreviating Option and Subcommand Names: Names of options and subcommands can be
abbreviated to the point where the name can still be distinguished from other names. As an
example, consider the name EXTRACT.

E : Cannot be distinguished from EXIT or END, so an error occurs.
EX : Cannot be distinguished from EXIT, so an error occurs.
EXT : Recognized as EXTRACT.
EXTRA : Recognized as EXTRACT.
EXTRACT : Recognized as EXTRACT.
EXTRACTS : No such name, so an error occurs.

Interrelation among Different Options and Subcommands: Once an option or a subcommand has
been specified, other options or subcommands with conflicting functions cannot be specified. This
interrelationship is shown in table 4-2.

Table 4-2 Interrelation among Options and Subcommands

S
U

B
C

O
M

M
A

N
D

L
IB

R
A

R
Y

C
R

E
A

T
E

A
D

D

R
E

P
L

A
C

E

D
E

L
E

T
E

E
X

T
R

A
C

T

R
E

N
A

M
E

O
U

T
P

U
T

D
IR

E
C

T
O

R
Y

L
IS

T

S
L

IS
T

E
N

D

E
X

IT

A
B

O
R

TSpecified
Option/
Subcommand

SUBCOMMAND

LIBRARY

CREATE

ADD

REPLACE

DELETE

EXTRACT

RENAME

OUTPUT

DIRECTORY

LIST

SLIST

END

Later Specification of Option/Subcommand

× O O O O O O O O O O O O O O

O × × O O O O O O O O O O O O

O × × O O O × × × O O O O O O

O × × O O O × O × O O O O O O

O × × O O O × × × O O O O O O

O × × O O O × × × O O O O O O

O × × × × × O × O O O O O O O

O × × O O O × O × O O O O O O

O × × × × × O O × O O O O O O

O O O O O O O O O O O O O O O

O × × O O O O O O O O O O O O

O × × O O O O O O O O O O O O

O O O × × × × × × O × × × × O
142 HITACHI

EXIT

ABORT

O: Later specification enabled.
× : Later specification disabled, since it conflicts with already specified option or subcommand.

× × × × × × × × × × × × × × O

× × × × × × × × × × × × × × ×

Examples:

 lbr (RET)

:LIBRARY∆funclib.lib (RET)

:CREATE∆newlib.lib (RET) A CREATE subcommand cannot be specified
after a LIBRARY subcommand. An error occurs,
and the CREATE subcommand is ignored.
HITACHI 143

:END (RET)

:LIST (RET)

:EXIT (RET)

Specifying a LIST subcommand after an End
subcommand generates an error. After END, only the
LIBRARY, CREATE, EXIT or ABORT subcommand
is valid.

In the following sections, the format below is used to describe each option and subcommand.

Section number

Format Name Option Subcommand

Parameters

Function

Explanation

Heading for each option or
subcommand

Section number and heading
for option or subcommand

Option or subcommand
name and format for
specifying parameters

The underlined part of the name
is the shortest abbreviated form

Summary of option or
subcommand functions

Detailed description of
functions and restrictions
144 HITACHI

Examples Examples of option or
subcommand specifications

LIBRARY

4.3 File Control

4.3.1 LIBRARY—Specifies the Library File to Be Edited

Format Name LIB RARY Option Subcommand

No Yes

Parameters <Library file name>

Function Specifies an existing library file for editing.

Explanation (1) This subcommand is specified at the beginning of an editing operation that edits
an existing library file or extracts modules from an existing library file.

(2) Only a library file created by this Librarian can be specified.

(3) When no file type is specified as part of the library file name, the type is
assumed to be .lib.

(4) This subcommand cannot be used together with the CREATE subcommand,
which specifies creation of a new library file.

(5) If, as the result of editing an existing library file, the number of modules
becomes zero, the library file will not be updated.

(6) The access right to the updated library file is the same as the access right to a
newly created file. Note that the access right prior to the update is not
preserved.
HITACHI 145

Examples LIBRARY∆syslib

Specifies editing of the library file syslib.lib.

OUTPUT

4.3.2 OUTPUT—Specifies an Output Library File

Format Name O UTPUT Option Subcommand

Yes Yes

Parameters Option UNIX <Library file name>

MS-DOS <Library file name> (S)
(U)

Subcommand <Library file name> (S)
(U)

Function Specifies a library file for output of extracted modules.

Explanation (1) Specify the OUTPUT option or subcommand whenever a module is to be
extracted from an existing library file.

(2) Specify a new library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).

(S) ... System library

(U) ... User library

This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when OUTPUT is specified as an option in
UNIX system.

(4) OUTPUT can be specified either before or after the EXTRACT option or
subcommand, which specifies extraction of modules.

(5) OUTPUT cannot be used together with the CREATE, ADD, DELETE, or
146 HITACHI

REPLACE options or subcommands.

(6) When the number of extracted modules is zero, the library file specified by the
OUTPUT option or subcommand is not created.

OUTPUT

Examples –OUTPUT=prog86

Outputs modules extracted using the EXTRACT subcommand to a file
named prog86.lib as a user library.
HITACHI 147

OUTPUT∆clib.o(S)

Outputs modules extracted using the EXTRACT subcommand to a file
named clib.o as a system library.

DIRECTORY

4.3.3 DIRECTORY—Specifies Directory Name Replacement

Format Name DI RECTORY Option Subcommand

No Yes

Parameters <Symbol name>(<directory name>)

Function Defines a symbol as an alias of a directory. This function enables a long directory
name to be input with a simple symbol name.

Explanation (1) Directory name alias definitionA symbol name is defined as an alias of a
directory with the DIRECTORY subcommand.

DIRECTORY ∆ <symbol name> (<directory name>)

(2) Directory name referenceTo refer to a directory name, enclose the defined
symbol name with a dollar sign ($) and a slash (/) (a dollar sign ($) and a back-
slash (\) in MS-DOS system). If the symbol name has not been defined, the
Librarian does not replace it with a directory name.

$<symbol name>/ —> Replaced with <directory name>/

(3) Symbol name for up to 16 directory names can be defined.

Examples DIRECTORY∆symbol(dir1/dir2)
148 HITACHI

ADD∆$symbol/file1.obj

Defines symbol “symbol” as an alias of directory “dir1/dir2”.Replaces
$symbol/dir1/dir2, and as a result, specifies file name dir1/dir2/file1.obj.

SUBCOMMAND

4.4 Execution Control

4.4.1 SUBCOMMAND—Specifies a Subcommand File

Format Name S UBCOMMAND Option Subcommand

Yes Yes

Parameters <Subcommand file name>

Function Inputs subcommands from a specified file.

Explanation (1) Inputs and processes subcommands from a specified subcommand file one at a
time.

(2) When no EXIT subcommand is specified, the Librarian waits for command
input.

(3) When no file type is specified as part of the file name, the type is assumed to be
.sub.

(4) When a SUBCOMMAND option is used together with other options, the
SUBCOMMAND is processed last regardless of the option specification order.
HITACHI 149

Examples –SUBCOMMAND=makelib

Inputs subcommands from the subcommand file makelib.sub for use in
editing a library file.

CREATE

4.4.2 CREATE—Creates a Library File

Format Name C REATE Option Subcommand

Yes Yes

Parameters Option UNIX: <Library file name>

MS-DOS: <Library file name> (S)
(U)

Subcommand <Library file name> (S)
(U)

Function Creates a new library file.

Explanation (1) Specified at the beginning of a group of options or subcommands ending with
END or EXIT.

(2) Specify a new library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).

(S) ... System library

(U) ... User library

This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when CREATE is specified as an option in
UNIX system.

(4) CREATE cannot be used together with the LIBRARY subcommand.

(5) If the number of modules is zero, no library file is created.

Examples –CREATE=userlib.lib

Creates userlib.lib as a new user library.

CREATE∆sislib(S)
150 HITACHI

Creates sislib.lib as a new system library.

CREATE∆datax

Creates datax.lib as a new user library.

ADD

4.4.3 ADD—Adds Modules

Format Name AD D Option Subcommand

Yes Yes

Parameters Option
UNIX: <Object module file name>

<Relocatable load module file name> [{∆|,}...]
<Library file name>

MS-DOS: <Object module file name>
<Relocatable load module file name> [{∆|,}...]
<Library file name>[(<module name>[{∆|,}...])]

Sub-
command

<Object module file name>
<Relocatable load module file name> [{∆|,}...]
<Library file name>[(<module name>[{∆|,}...])]

Function Adds modules from specified files to a library file.

Explanation (1) ADD is used to store modules in a new library file, or add modules to an
existing library file.

(2) When only a file name is specified, if no file type is specified, the type is
assumed to be .obj. When a module name is specified after a file name, the file
is assumed to be a library file, so if no file type is specified, the type is assumed
to be .lib.

(3) When only certain modules from a library file are to be added, specify the
module names after the library file name. Up to 10 module names can be
specified. However, module names can not be included when ADD is specified
as an option in UNIX system.
HITACHI 151

Example: ADD lbf (m1,m2,m3)

Module names
Library file name

ADD

Explanation (4) When modules in a library file are specified, the specified module names are
sorted in alphabetical order and the modules are added in that order. They are
not added in the order of specification.

Example: (e, a, d, c, b)
 5, 1, 4, 3, 2 ... Order in which modules

are added

ADD lbf

(5) When the names of modules in a library file are not specified, all modules in the
library file are added.

Example: ADD lbf.lib

Library file name

(6) When a module to be added has the same name as a module already in the
library file being edited, or when an export symbol defined in the module to be
added has the same name as an export symbol in the library file being edited, a
warning message is displayed and the module is not added.

(7) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in a library file.

(8) ADD cannot be used together with the EXTRACT or OUTPUT options or
subcommands.

(9) Errors will occur and the parameters after the error occurs will not be processed
when:

(a) A specified file does not exist.

(b) A specified module does not exist in a library file.

(c) The content of the specified file is invalid.
152 HITACHI

(d) The number of modules to be stored exceeds 32,767.

(e) Memory capacity is insufficient to add more modules.

(f) The number of input files exceeds 256.

ADD

Examples –ADD=mod1,mod2,modx.o

Adds all modules from the object module files mod1.obj, mod2.obj and
modx.o.

ADD∆iofnc(keyin,crtout)
HITACHI 153

Adds the two modules keyin and crtout from the library file iofnc.lib.

ADD∆syslib.lib

Adds all modules from the library file syslib.lib.

REPLACE

4.4.4 REPLACE—Replaces Modules

Format Name R EPLACE Option Subcommand

Yes Yes

Parameters Option
UNIX: <Object module file name>

<Relocatable load module file name> [{∆|,}...]
<Library file name>

MS-DOS: <Object module file name>
<Relocatable load module file name> [{∆|,}...]
<Library file name>[(<module name>[{∆|,}...])]

Sub-
command

<Object module file name>
<Relocatable load module file name> [{∆|,}...]
<Library file name>[(<module name>[{∆|,}...])]

Function Substitutes modules in a specified file for modules of the same name in the library
file being edited.

Explanation (1) When a module in the library file being edited has the same name as a module
in the specified file, the former is replaced by the latter. If there is no module
with the same name in the library file being edited, the module is simply added.

(2) When only a file name is specified and no file type is specified, the type is
assumed to be .obj. When a module name is specified after a file name and no
file type is specified, the file is assumed to be a library file and the type is
assumed to be .lib.

(3) To substitute only certain modules from a library file, specify the module
names after the library file name. Up to 10 module names can be specified.
However, module names cannot be included when REPLACE is specified as an
option in UNIX system.
154 HITACHI

Example: lbf (m1,m2,m3)

Module names
Library file name

REPLACE

REPLACE

Explanation (4) When modules in library files are specified, the specified module names are
sorted in alphabetical order and modules are replaced in that order. They are not
replaced in the order of specifications.

Example: (e, a, d, c, b)
 5, 1, 4, 3, 2 ... Order of replacement

REPLACE lbf

(5) When the names of modules in a library file are not specified, all modules in the
file are substituted.

Example: lbf.lib

Library file name

REPLACE

(6) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in a library file.

(7) REPLACE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

(8) The following cases will result in error, and the parameters after the error
position will not be processed.

(a) A specified file does not exist.

(b) A specified module does not exist in a library file.

(c) The content of the specified file is invalid.

(d) The number of modules to be stored exceeds 32,767.

(e) Memory capacity is insufficient to perform substitution.

(f) The number of input files exceeds 256.

(9) The process of replacing a module involves deleting the module of the same
name in the library file being edited, then inputting the module from the file
specified by the REPLACE option or subcommand and storing it in the library
HITACHI 155

file. The following special caution is thus required: If a module to be
substituted contains an export symbol already defined in another module in the
library file, the old module will be deleted, but the replacement module will not
be stored.

REPLACE

Examples –REPLACE=userlib.lib

Stores all modules in the library file userlib.lib in the library file being
edited, replacing modules with the same name.

REPLACE∆loadx.rel,loady.rel

Substitutes the modules in the relocatable load module files loadx.rel and
loady.rel for modules of the same name in the library file being edited.
156 HITACHI

REPLACE∆datax(member),omf

Substitutes the module named member in library file datax.lib, and the
modules in the object module file omf.obj for modules of the same name in
the library file being edited.

DELETE

4.4.5 DELETE—Deletes Modules

Format Name D ELETE Option Subcommand

Yes Yes

Parameters <Module name> [{∆|,}...]

Function Deletes specified modules from the library file being edited.

Explanation (1) If a specified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(2) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in a library file.

(3) DELETE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

Examples –DELETE=inchar,outchar
HITACHI 157

Deletes the two modules inchar and outchar.

DELETE∆datatbl,sort

Deletes the two modules datatbl and sort.

EXTRACT

4.4.6 EXTRACT—Extracts Modules

Format Name EXT RACT Option Subcommand

Yes Yes

Parameters <Module name> [{∆|,}...]

Function Extracts specified modules from the library file being edited.

Explanation (1) The extracted modules are output in library file format with the file name
specified by the OUTPUT option or subcommand.

(2) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in a library file.

(3) If a specified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(4) EXTRACT cannot be used together with the CREATE, ADD, DELETE or
REPLACE options or subcommands.

Examples –EXTRACT=add,sub,mul,div

Extracts the four modules add, sub, mul, and div from the library file being
edited.
158 HITACHI

EXTRACT∆alpha,upper,lower,digit,cntrl

Extracts the five modules alpha, upper, lower, digit, and cntrl from the
library file being edited.

RENAME

4.4.7 RENAME—Modifies Section Names

Format Name REN AME Option Subcommand

Yes Yes

Parameters <module name>[,...](<section name 1>=<section name 2>[,...])

Function Modifies section names in library files in module units.

Explanation (1) The section names in library files can be modified to freely allocate sections to
memory at linkage.

(2) The section names in a library file including a relocatable load module cannot
be modified.

(3) When a section name in the module including debugging information is
modified, symbols will not be referenced correctly at debugging.

Examples RENAME∆m1,m2,m3(A=A1,B=B1,C=C1)

Modifies sections A, B, and C in module m1 to A1, B1, and C1, section A
in module m2 to A1, and section B in module m3 to B1.

ex.lib

Section A

Section B

Section C

Section A

Section M

Section N

m1

m2

ex.lib

Section A1

Section B1

Section C1

Section A1

Section M

Section N

m1

m2
HITACHI 159

Section B

Section X

Section Y

m3 Section B1

Section X

Section Y

m3

END

4.4.8 END—Specifies End of Subcommand Input

Format Name EN D Option Subcommand

No Yes

Parameters None

Function Outputs a newly created or updated library file.

Explanation (1) When more than one library file is edited in one Librarian execution, the editing
of each library file is terminated by an END subcommand.

(2) Specification of the END subcommand causes the Librarian to output the edited
library file. If, however, the number of modules stored in the library file is zero,
160 HITACHI

the library file is not created or updated.

Examples END

Outputs a library file.

EXIT

4.4.9 EXIT—Specifies End of Librarian Operations

Format Name EXI T Option Subcommand

No Yes

Parameters None

Function Terminates Librarian operations.

Explanation (1) The EXIT subcommand is used to terminate a set of Librarian operations
executed by the subcommand specification.

(2) When executing from a subcommand file, all subcommands following after an
EXIT subcommand are ignored. If the EXIT subcommand is not specified, a
warning message will be displayed.

(3) When the EXIT subcommand is used, the immediately preceding END
subcommand can be omitted. In that case the EXIT subcommand serves also as
HITACHI 161

an END subcommand, causing the library file to be output before terminating
the Librarian operation.

Examples EXIT

Terminates Librarian operations.

ABORT

4.4.10 ABORT—Aborts Librarian Operations

Format Name AB ORT Option Subcommand

No Yes

Parameters None

Function Aborts Librarian operations.

Explanation (1) When executing by the subcommand specification, the ABORT subcommand
can be used to abort editing operations.

(2) When the ABORT subcommand is specified, the library file being edited will
not be created or updated. If, however, a list file was output by a LIST
subcommand before the ABORT subcommand, the list file will remain
162 HITACHI

unchanged.

Examples ABORT

Aborts Librarian operations.

LIST

4.5 List Display

4.5.1 LIST—Displays Contents of a Library File

Format Name LIS T Option Subcommand

Yes Yes

Parameters Option UNIX: [<List file name>]

MS-DOS: [[<List file name>][(S)]]

Subcommand [[<List file name>][(S)]]

Function Outputs a list of the contents of the library file being edited to the standard output
device or to a file.

Explanation (1) The names of modules stored in the library file, export symbol names, and other
information is output on a list. For the list format, see section 6.2, Librarian
Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When a list file name is specified, the list is output to a file. Specify a new list
file name; the list cannot be appended to an existing file. If an existing file is
specified, the existing file contents will be replaced.

(4) When no file type is specified as part of the list file name, the type is assumed
to be .lst.

(5) To obtain a list of export symbols designated in modules, specify the (S)
parameter. If the (S) parameter is not specified, only the module names will be
listed. The (S) parameter cannot be included when LIST is specified as an
HITACHI 163

option in UNIX system.

(6) The LIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

LIST

Examples –LIST

Outputs a list to the standard output device.

Export symbols are not shown.

LIST

Outputs a list to the standard output device.
164 HITACHI

Export symbols are not shown.

LIST∆libx(S)

Outputs a list including export symbols to a file named libx.lst.

SLIST

4.5.2 SLIST—Displays Section Names of Library File

Format Name SLI ST Option Subcommand

Yes Yes

Parameters [<List file name>]

Function Outputs a list of the contents of the library file being edited to the standard output
device or to a file.

Explanation (1) The names of modules stored in the library file, export symbol names, names of
the sections containing export symbol names, and other information is output
on a list. For the list format, see section 6.3, Section Name Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When a list file name is specified, the list is output to a file. Specify a new list
file name; the list cannot be appended to an existing file. If an existing file is
specified, the existing file contents will be replaced.

(4) When no file type is specified as part of the list file name, the type is assumed
to be .sct.

(5) The SLIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

Examples –SLIST
HITACHI 165

Outputs a section name list to the standard output device.

SLIST∆libx

Outputs a section name list to a file named libx.sct.

Section 5 Input to the Librarian

5.1 Object Module Files

Object module files output from a C compiler or assembler can be input to the Librarian and
stored as modules in library files.

5.2 Relocatable Load Module Files

A relocatable load module file output from the Linkage Editor can be input and stored in a library
file as one module.

5.3 Library Files

The Librarian inputs the library file it is editing. Also, modules to be stored in this library file can
HITACHI 167

be input from other library files. Either specified modules can be input, or all the modules in a
library file can be input at one time.

Input can be made only from library files created using this Librarian.

Section 6 Output from the Librarian

6.1 Library Files

The Librarian combines two or more modules into a single output library file. It also updates an
existing library file, or extracts modules from an existing library file, and outputs the result in
library file format.

6.2 Librarian Lists

When the LIST option or subcommand is specified, a list of the library file contents is output to
the standard output device or to a file. The format of a librarian list is shown in figure 6-1.

Library file name: (1)

Library file name:

Attribute: (2)

Number of modules:

Number of symbols:

(1)

(1)

Creation date:

Revision date:

Entry date:

Entry date:

(3)

(4)

(7) (8)

(10)

(7) (8)

:

(5)

(6)

(9)

(10)

:

(9)

Figure 6-1 Librarian List Format

(1) Shows the library file name. If the name is too long to fit on one line it is continued to the
next line. When modules are extracted from an existing library file, the list shows the
contents of the existing library file.

(2) Shows the library file attribute.

SYSTEM: System library
HITACHI 169

USER: User library

(3) Shows the total number of modules stored in the library file, in decimal notation.

(4) Shows the total number of export symbols in the library file, in decimal notation.

(5) Shows the date and time of library file creation. This information is given in the following
format.

dd - mmm yy hh:mm:ss

second
minute
hour
year (last 2 digits)
month (3 letters)
day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The
format is the same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in alphabetical order.

(8) Shows the kind of editing operation performed on the module.

BLANK : A module stored in an existing library file

(A) : An added module

(R) : A replacement module

(E) : An extracted module

Modules deleted by the DELETE option or subcommand are not listed.

(9) Shows the date and time a module was stored in the library file. The format is the same as for
the library file creation date and revision date.

(10) When the (S) parameter is specified with the LIST subcommand, the export symbols in each
170 HITACHI

module are shown. These symbol names are listed in alphabetical order two on each line.

An example of a list when the (S) parameter is specified with the LIST subcommand is given in
figure 6-2. Figure 6-3 shows a list without the (S) specification.

Library file name: clib.lib

Attribute: USER

Number of modules: 6 Creation date: 08-Jan-90 14:18:47

Number of symbols: 6 Revision date: 01-Mar-90 19:56:33

ABS.C Entry date: 08-Jan-90 14:18:47

 _abs

ATOF.C Entry date: 08-Jan-90 14:18:47

 _atof

ATOI.C Entry date: 08-Jan-90 14:18:47

 _atoi

ATOL.C Entry date: 08-Jan-90 14:18:47

 _atol

_ALOCBUF (A) Entry date: 01-Mar-90 19:56:33

 _alcobuf

_DIVI (A) Entry date: 01-Mar-90 19:56:33

 _divi

Figure 6-2 Librarian List (with (S) specification on UNIX)

Library file name: clib.lib

Attribute: USER

Number of modules: 6 Creation date: 08-Jan-90 14:18:47

Number of symbols: 6 Revision date: 01-Mar-90 19:56:33

ABS.C Entry date: 08-Jan-90 14:18:47

ATOF.C Entry date: 08-Jan-90 14:18:47

ATOI.C Entry date: 08-Jan-90 14:18:47

ATOL.C Entry date: 08-Jan-90 14:18:47

_ALOCBUF (A) Entry date: 01-Mar-90 19:56:33
HITACHI 171

_DIVI (A) Entry date: 01-Mar-90 19:56:33

Figure 6-3 Librarian List (no (S) specification on UNIX)

6.3 Section Name Lists

When the SLIST option or subcommand is specified, a list of the section contents of the library
file are output to the standard output device or to a file. The format of a section name list is shown
in figure 6-4.

Library file name:

Attribute: (2)

Number of modules:

Number of symbols:

(1)

(1)

Creation date:

Revision date:

Entry date:

Entry date:

(3)

(4)

(7)

(9)

(7)

:

(5)

(6)

(8)

(10)

:

(8)

Figure 6-4 Section Name List Format

(1) Shows the library file name. If the name is too long to fit on one line it is continued to the
next line. When modules are extracted from an existing library file, the list shows the
contents of the existing library file.

(2) Shows the library file attribute.

SYSTEM: System library
172 HITACHI

USER: User library

(3) Shows the total number of modules stored in the library file, in decimal notation.

(4) Shows the total number of export symbols in the library file, in decimal notation.

(5) Shows the date and time of library file creation. This information is given in the following
format.

dd - mmm yy hh:mm:ss

second
minute
hour
year (last 2 digits)
month (3 letters)
day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The
format is the same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in alphabetical order.

(8) Shows the date and time a module was stored in the library file. The format is the same as for
HITACHI 173

the library file creation date and revision date.

(9) Shows the export symbols in each module.

(10) Shows the name of the section containing the export symbol name.

An example of a list specified with the SLIST subcommand is given in figure 6-5.

Library file name: clib.lib

Attribute: USER

Number of modules: 6 Creation date: 8-Jan-90 14:18:47

Number of symbols: 6 Revision date: 01-Mar-90 19:56:33

ABS.C Entry date: 08-Jan-90 14:18:47

 _abs P

ATOF.C Entry date: 08-Jan-90 14:18:47

 _atof P

ATOI.C Entry date: 08-Jan-90 14:18:47

 _atoi P1

ATOL.C Entry date: 08-Jan-90 14:18:47

 _atol CODE

_ALOCBUF Entry date: 01-Mar-90 19:56:33

 _alcobuf P
174 HITACHI

_DIVI Entry date: 01-Mar-90 19:56:33

 _divi P2

Figure 6-5 Section Name List

6.4 Console Messages

The Librarian displays the following messages on the standard output device.

Opening Message: Displayed when the librarian command is input.

H SERIES OBJECT LIBRARIAN Ver. 1.4

Copyright (C) Hitachi, Ltd. 1988

Licensed Material of Hitachi, Ltd.

Normal Completion Message: Displayed when library file editing has ended normally.

OBJECT LIBRARIAN COMPLETED

Abort Message: Displayed when the library file editing is aborted by either an error or an
ABORT subcommand.

OBJECT LIBRARIAN ABORT

Subcommand Prompt: Indicates that the Librarian is in subcommand input wait state during
interactive execution.

:

HITACHI 175

Subcommand Continuation Symbol: Request for a continuation line, when continuation of a
subcommand is specified during interactive execution.

-

Section 7 Error Messages

The Librarian outputs error messages in the following form.

** <Error number> <Error message> [(<Additional information>)]

Error Number: The first digit indicates the level of the error. (xx represents the second and third
digits.)

1xx : Warning : Processing of a particular module is skipped.

2xx : Error : If started by input from the command line or a subcommand file,
processing is stopped. In interactive mode, processing of the subcommand
is stopped when the error is detected, and a prompt is displayed for the
next subcommand.

3xx : Fatal error : Processing is stopped.

A list of error messages is given below in tables 7-1, 7-2 and 7-3, in the following format.

Error number Error message Additional information

Description of error

Corrective action, etc.
HITACHI 177

Note: Additional information includes the name of the file in which the error occurred, or the
module name or symbol name. In the list of errors, — means that no additional information
is given.

Table 7-1 List of Warning Messages

101 DUPLICATE MODULE Module name

An attempt was made to add a module already stored in the library file.

Processing of the module is skipped.

102 DUPLICATE SYMBOL Module name ** Symbol name

An attempt was made to add an export symbol already present in the library file.

Processing of the module is skipped.

103 IDENTIFIER CHARACTER EXCEEDS 251 Module name

A module name of more than 251 characters was specified.

The name is valid up to the 251th character. The rest is ignored.

104 EXIT SUBCOMMAND NOT FOUN—ASSUMED —

No EXIT subcommand was specified.

Processing continues as though an EXIT subcommand had been specified.

105 SUBCOMMAND LINE LENGTH TOO LONG —

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.

The file name is valid up to the 511th character.

106 TOO MANY DIRECTORY COMMANDS —

More than 16 directory names have been specified with the DIRECTORY subcommand.

Up to 16th specification is valid.

107 MODULE COUNT 0 —

The total number of modules becomes zero.

Processing is terminated. Check the specification for editing modules.

108 SECTION NOT FOUND Module name ** Section name

The specified section cannot be found.

Check the section name and respecify it.

109 CANNOT PRINT SECTION LIST Module name

The SLIST option or subcommand is specified for the file containing a relocatable load
module.

Specify the SLIST option or subcommand only for absolute modules.

110 CANNOT RENAME SECTION NAME Module name
178 HITACHI

The RENAME option or subcommand is specified for the file containing a relocatable load
module.

Specify the RENAME option or subcommand only for absolute modules.

Table 7-2 List of Error Messages

201 INVALID SUBCOMMAND/OPTION —

The option or subcommand specified is invalid in this context.

Specify a valid option or subcommand.

202 SYNTAX ERROR —

Syntax of the specified option or subcommand is incorrect.

Check the syntax and respecify the option or subcommand.

203 SUBCOMMAND LINE LENGTH TOO LONG —

Length of the subcommand entry exceeds 128 characters.

Respecify, keeping the length within 128 characters.

204 CONFLICTING SUBCOMMAND —

Subcommands are specified in the wrong order, or an illegal combination of subcommands
is specified.

Check the order of subcommands and respecify.

205 ILLEGAL FILE NAME —

The specified file name is not valid.

Specify a correct file name.

206 ILLEGAL MODULE NAME —

The specified module name is not valid.

Specify a correct module name.

207 MODULE NOT FOUND Module name

The specified module cannot be found.

Check the name of the module, then respecify.

208 MISSING OUTPUT FILE NAME —

No output file was specified with the EXTRACT option or subcommand.

Use the OUTPUT option or subcommand to specify an output file.

209 TOO MANY INPUT FILES —

More than 12 input files were specified for input at the same time.

First output the library file, then re-input the library file and input the remaining files.

210 TOO MANY MODULES —
HITACHI 179

The number of modules exceeds the allowable number.

No more modules can be stored in the library file now being created or edited. Store any
additional modules in a separate library file.

Table 7-2 List of Error Messages (cont)

211 TOO MANY SYMBOLS —

The number of symbols exceeds the allowable number.

The library file now being created or edited cannot contain any more symbols. Modules with
additional symbols must be stored in a separate library file.

212 ILLEGAL FILE FORMAT —

The specified file format is incorrect.

Check the file contents and re-execute.

213 MEMORY OVERFLOW —

There is no space remaining in the Librarian’s usable memory.

Obtain additional memory and re-execute.

214 FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then respecify.

215 DUPLICATE SECTION Module name ** Section name

The specified section is in a module.

Check the section name and respecify it.
180 HITACHI

216 ILLEGAL SECTION NAME —

The specified section name is illegal.

Check the section name and respecify it.

Table 7-3 List of Fatal Error Messages

301 INVALID COMMAND PARAMETER —

An improper command parameter was specified.

Check the command parameters and re-execute.

302 CONFLICTING OPTION —

There is a contradiction among different options specified.

Check the order of option specification, then respecify.

303 CANNOT OPEN FILE File name

File cannot be opened, or the CREATE or OUTPUT option or subcommand specified an
already existing file.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
If an existing file was specified by the CREATE or OUTPUT option or subcommand, delete
the existing file, then re-execute.

304 CANNOT INPUT FILE File name

File cannot be input.

Check the specified file name. If the file name is correct, there may be a disk hardware
error. Correct the problem, then re-execute.

305 CANNOT OUTPUT FILE File name

File cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.

306 CANNOT CLOSE FILE File name

File cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.

307 CANNOT READ —

Because forcible termination was specified, processing is aborted.

Re-execute the processing.
HITACHI 181

308 MEMORY OVERFLOW —

The memory space is insufficient for the librarian.

Check the operating environment and re-execute the processing.

Note: In the UNIX system, the Librarian uses temporary files with names in the format shown
below. These temporary file names may appear as additional information in error
messages.
182 HITACHI

Annnnn.TEMP

5 digits, decimal

Section 8 Restrictions

Restriction on the Librarian are shown in table 8-1. If the numerical restrictions are exceeded,
Librarian operations will not operate correctly.

Table 8-1 Restrictions on Librarian Processing

No. Item Limits Remarks

1 The number of modules
that can be stored in a
library file

32,767 max. Assumes that the system on
which Librarian runs has
adequate memory.

2 The number of symbols that
can be present in a library
file

65,535 max.

3 The number of input files 256 max. Total number of files specified
by LIBRARY, ADD, or
REPLACE not including
subcommand files.

4 The number of modules
that can be specified in a
library file

10 max. When specifying a library file
with ADD or REPLACE.

5 Length of file name 128 characters max. Includes default file-type
characters. File name format
depends on OS.

6 Length of module name 251 characters max.

7 Length of symbol name 251 characters max.

8 Input file formats • Object module file output
by assembler or C
compiler.

• Relocatable load module
HITACHI 183

file.

• Library file created using
this Librarian.

Appendix A Examples of Librarian Usage

A.1 Librarian Execution by Command Line

lbr∆-CREATE=func-ADD=abs,mod,sqrt,exp,log (RET)

lbr∆func-ADD=sin,cos-DELETE=abs,mod-LIST (RET)

lbr∆func-EXTRACT=sqrt,exp-OUTPUT=newfnc (RET)

...(1) Creation

...(2) Editing

...(3) Extraction

(a) (b)

(c) (d) (e) (f)

(g) (h) (i)

(a) The CREATE option is specified at the beginning of the option line to create a new library
file.

(b) The file names for the modules to be entered are specified using the ADD option.

(c) The name of the library file to be edited is specified.

(d) The file names for modules to be added to the existing library file are specified using the
ADD option.

(e) The names of the modules to be deleted from the existing library file are specified using
the DELETE option.

(f) The LIST option is specified to confirm the editing results.

(g) An existing library file from which modules are to be extracted is specified.

(h) The names of the modules to be extracted are specified using the EXTRACT option.

(i) The name of a new library file to which the extracted modules are to be output is specified
HITACHI 185

using the OUTPUT option.

This process is illustrated in figure A-1.

newfnc.lib

sqrt

exp

abs

mod

sqrt

exp

log

sin.obj

sin

cos.obj

cos

(a), (b)

abs.obj

mod.obj

abs

mod

sqrt.obj

sqrt

exp.obj

exp

lob.obj

log

func.lib func.lib

sqrt

exp

log

sin

cos

(g) to (i)

(c) to (f)

List

File name

(1) Creation (2) Editing

(3) Extraction
186 HITACHI

Module name

Figure A-1 Results of Librarian Execution by Command Line

A.2 Librarian Execution by Subcommands

lbr (RET)

CREATE∆func (RET)

ADD∆sqrt,exp,log,sin,cos (RET)

END (RET)

LIBRARY∆func (RET)

REPLACE∆sin.new,cos.new,tan.new (RET)

END (RET)

LIBRARY∆func (RET)

LIST (RET)

EXTRACT∆sqrt,exp (RET)

OUTPUT∆newfnc (RET)

END (RET)

EXIT (RET)

...(a)

...(b)

...(c) (1) Creation

...(d)

...(e)

...(f) (2) Editing

...(g)

...(h)

...(i)

...(j) (3) Extraction

...(k)

...(l)

...(m)

(a) The Librarian is started.

(b) The CREATE subcommand is specified at the beginning of the option line to create a new
library file.

(c) The file names of modules to be loaded are specified using the ADD subcommand.

(d) The END subcommand is specified to terminate the creation process.

(e) The name of the library file to be edited is specified.

(f) Modules in the existing library file are replaced, using the REPLACE subcommand. The
file names of the modules to be replaced is specified.

(g) The END subcommand is specified to terminate the editing process.

(h) An existing library file is designated for extraction of modules.

(i) The LIST subcommand is specified to confirm the contents of the existing library file.

(j) The names of the modules to be extracted are specified using the EXTRACT subcommand.

(k) The name of a new library file to which the extracted modules are to be output is specified
using the OUTPUT subcommand.

(l) The END subcommand is specified to terminate the extraction process.
HITACHI 187

(m)The EXIT subcommand is specified to terminate the Librarian program.

This process is illustrated in figure A-2.

func.lib func.lib

newfnc.lib

sqrt

exp

sqrt

exp

log

sin'

cos'

sqrt.obj

sqrt

exp.obj

exp

log.obj

sin.obj

sin

cos.obj

sqrt

exp

log

sin

cos

tan'

tan.new

cos'

cos.new

sin'

sin.new

(h) to (l)

(e) to (g)(b) to (d)

cos

log

(3) Extraction

(2) Editing(1) Creation

List

File name
188 HITACHI

tan'Module name

Figure A-2 Results of Librarian Execution by Subcommand

Appendix B Note on Librarian Usage in MS-DOS System

Before using this Librarian, set the MS-DOS configuration file (CONFIG.SYS) with the editor as
follows.

FILES=20

SHELL=a:\command.com a:\

/p

(1)

(2)
HITACHI 189

(1) The number of files that is allowed to open at one time during Librarian operation.

(2) Directory path specification that is required when COMMAND.COM is reloaded.

Part III

Object Converter Guide

Section 1 Object Format Conversion

To input the load modules output by the Linkage Editor into an emulator or PROM programmer,
they must first be converted to S-type object format using the Object Format Converter.

1.1 Executing the Object Format Conversion

The command line format for starting the Object Format Converter is as follows.

cnvs∆<Input file name>[∆<output file name>] (RET)

For details on file names, refer to appendix B, File Name Specifications, in Part I, Linkage Editor
Guide.

Command Name: The Object Format Converter is started up by specifying the command “cnvs.”

Input File Name: The name of an absolute-format load module file to be input to the Object
Format Converter is specified. Relocatable load module files cannot be specified.

If the file type is omitted from the file name, the Object Format Converter automatically assumes
this to be “.abs” when it inputs the file.

Output File Name: The name of the S-type object file to be output by the Object Format
Converter is specified. If the file type is omitted from the file name, the Object Format Converter
automatically assumes this to be “.mot” when it outputs the file.

Examples of command line specification are given below.

cnvs∆prog1.lmd∆prog1.sty (RET) (1)

cnvs∆prog1∆prog1 (RET) (2)

(1) File “prog1.lmd” is input, and file “prog1.sty” is output.

(2) File “prog1.abs” is input, and file “prog1.mot” is output.
HITACHI 193

The S-type object format is shown in figure 1-1.

S

53

0

30

0

30

E

45

0

30

0

30

0

30

0

30 XX XX

LF

0A

Byte count
Record format
Record header

Load address
File type (3 char.: 6 bytes)
Main file name
(8 char.: 16 bytes)

Check sum *2

*3

*1

S

53

1

31 XX XX XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Load address (2 bytes) Check sum *2

*3

*1 Data (16 bytes max.)

S

53

2

32 XX XX XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Load address (3 bytes) Check sum *2

*3

*1 Data (16 bytes max.)

XX XX

S

53

3

33 XX XX XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Load address (4 bytes) Check sum *2

*3

*1 Data (16 bytes max.)

XX XX XX XX

(a) Header record (S0 record)

(b) Data record (S1, S2, and S3 record)
(i) When load address is between 0 and 0FFFF (hexadecimal)

(ii) When load address is between 10000 and 0FFFFFF (hexadecimal)

(iii) When load address is between 1000000 and 0FFFFFFFF (hexadecimal)

Notes: 1. The byte count is the number of bytes from the load address (or entry address) to check sum.
194 HITACHI

2.

3.

Check sum is the 1’s complement of the result of adding the data values from the byte count
to that before check sum, in byte units.
“LF”“LF” indicates the line feed code.

Figure 1-1 S-Type Object Format

S

53

7

37

0

30

5

35 XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Entry address (4 bytes) Check sum *2

*3

*1

XX XX XX XX

(iii) When load address is between 1000000 and 0FFFFFFFF (hexadecimal)

S

53

8

38

0

30 XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Entry address (3 bytes) Check sum *2

*3

*1

XX XX

(ii) When load address is between 10000 and 0FFFFFF (hexadecimal)

S

53

9

39

0

30 XX XX XX XX XX XX

LF

0A

Byte count
Record format
Record header

Entry address (2 bytes)

Check sum *2

*3

*1

(i) When load address is between 0 and 0FFFF (hexadecimal)
(c) End record (S9, S8, and S7 record)

4

34

3

33

Notes: 1. The byte count is the number of bytes from the load address (or entry address) to the
check sum.
HITACHI 195

2.

3.

The check sum is the 1’s complement of the sum of the data values from the byte count
to the byte before the check sum, in byte units.
“LF” indicates the line feed code.

Figure 1-1 S-Type Object Format (cont)

1.2 Error Messages

When errors are made in command specification, or when an error is detected during the
conversion process, the Object Format Converter outputs error messages in the following format.

** <Error number> <error message>[(<additional information>)]

1st column

∆ ∆

A list of error messages is given below in table 1-1 in the following format.

Error Number Error Message Additional Information
196 HITACHI

Nature of Error

Converter actions and corrective actions

Notation used in table: —: No additional information

Table 1-1 Object Format Converter Error Messages

301 INVALID COMMAND PARAMETER —

An improper command parameter was specified.

Check the command parameters and re-execute.

302 FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then re-execute.

303 CANNOT OPEN FILE File name

File cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

304 CANNOT READ FILE File name

File cannot be input.

Check the specified file name. If the file name is correct, there may be a disk hardware
problem. After checking the problem, re-execute.

305 CANNOT WRITE FILE File name

File cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

306 CANNOT CLOSE FILE File name

File cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

307 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents, then re-execute.

308 ILLEGAL FILE NAME File name

An illegal file name was specified.

Specify a correct file name.
HITACHI 197

309 MEMORY OVERFLOW —

Insufficient memory is available for use by the Object Format Converter.

Expand the memory or revise the user program, then re-execute.

Inde

A
Abbreviating name 44, 142
ABORT 70, 162
Abort message 93, 175
Absolute 6, 7

Format 11, 13, 30, 49, 65
Load module 4

Absolute address 13, 20, 22
ADD 151
Addition 128, 151
Additional information 95, 177, 196
Address

Assignment 13
Resolution 4, 20, 22, 23
Suppressing the listing of unresolved
symbols 24

Address check 30
Specification 60

ALIGN_SECTION 57
Assembler 3, 4, 81, 125
Attribute 86, 146, 150
Automatic inclusion 17
AUTOPAGE 59
Autopaging 13

C
C Compiler 3, 81, 125
CHECK_SECTION 58
Command line 34

Execution 4, 33, 34, 133
Format 34

Common linkage 8, 86
Console messages 93, 175
Contents display 129
Continuation specification 139
CPU 30, 60
CPUCHECK 61
CPU information file 30, 60
CREATE 150
Creation 127, 150
Creation date 170
D
DEBUG 66
Debugging
x

Information 4, 66
Information output specification 66
Support 4, 29, 39, 74
Support function 39

Default library 17, 81
File 81
Logical name 81

DEFINE 78
DEFINE list 83, 92
DELETE 29, 77, 157
Deletion 128, 157
DIRECTORY 53, 148
Dummy linkage 9, 86

E
ECHO 71
Echo-back specification 71
END 27, 68, 160
Enter 127
ENTRY 56
Error 177
Error messages 95, 101, 102, 177, 180, 181,

196
EXCHANGE 27, 63
EXCLUDE 19, 52
Execution control 39, 63

Function 39, 137
Execution mode specification 34, 132
Execution start address specification 56
EXIT 27, 69, 161
Export

Number of symbols 107
Symbol 17, 24, 75
Symbol deletion 77
Symbol list 83, 88
Symbol name 77
Symbol name change 29, 75
Symbol name deletion 29

EXTRACT 158
Extraction 6, 158
F
Fatal error 95

Message 103, 104, 105, 181, 182
HITACHI 199

File
Control 39, 47, 137

Control function 39
Type 34, 47, 48, 49, 50, 60

File name 131, 137
Length 183
Specification 122

FORM 4, 13, 24, 65
Format 5, 12
Format conversion 193

H
HLNK_LIBRARY1–3 81

I
Import

Forced definition 29, 78
Number of symbols 107
Symbol 17, 18, 19, 20, 75
Symbol name 78
Symbol name change 29, 75
Symbol name deletion 29
Symbol resolution 20, 21

Informative message 93
INPUT 17, 24, 47
Input file

Format 107, 183
Name 34
Number of files 107, 183
Specification 47

Input information (list) 83
Interactive mode 35, 36, 134

Execution 36
Interim linkage information display 29, 74

L
Librarian 17, 81, 125

Abort 162
List 169
Termination 136, 161

Library 18
LIBRARY 17, 50, 145
Library file 17, 47, 50, 81, 125, 167

Attribute 169
Input from library file 17
Name 132
200 HITACHI

Specification 17, 50
Link attribute 86
Linkage editor 7, 125
Example of usage 109
Execution 33, 110
Input to Linkage Editor 81
Output 83, 92, 93
Re-input 81
Termination 38

Linkage list 51, 83, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121

Linkage operation
End specification 69
Abort specification 70

Link map list 83, 85
LIST 29, 74, 163
List display 137, 163
List file specification 50
Load module 3, 4, 47, 72

File 3, 4, 24, 25, 92, 93
File re-input function 4, 24

M
Memory allocation 39

Function 39
Module 4, 5, 125

Exclusion of module linking 19, 52
Linkage 4, 7, 17, 18, 19
Name 47, 107, 137
Name length 107, 183
Name specification 17, 48
Number of modules 107, 183
Specification 81

Multilinkage function 4, 27

N
Name 40, 137
NOAUTOPAGE 59
NODEBUG 66
NOECHO 71
NOEXCLUDE 52
NOLIBRARY 50
Non-page type 5, 17, 47, 50, 54, 59, 79
Non-referenced import symbol 52

Module containing non-referenced import
symbol 19

NOOUTPUT 49
NOPRINT 51
Normal completion message 93, 175
NOUDF 72

O
Object

Format conversion 193
Module 3, 4, 17, 18, 125
Module file 3, 81, 167

Object converter
Error message 196, 197
Execution 193
Input file name 193
Output file name 193
Start-up command 193

Opening message 93, 175
Option 39, 42, 137, 141

Defaults 46
Format 40, 137
Name 34, 132
Negative form 45
Range of validity 46
Structure 40, 137

OUTPUT 49, 146
Output file specification 49
Output load module file format specification

65

P
Page type 5, 17, 47, 50, 54, 59, 78

Linkage 13, 14, 15, 16
Parameter 40, 137
PRINT 51, 83

R
Re-input function 4
Relative address 13, 22
Relocatable 6

Format 7, 13, 49, 65
Load module 4, 17, 47
Load module file 81, 167

Relocation information 4
RENAME 29, 75, 159
RENAME/DELETE list 83, 91
REPLACE 154
Replacement 129, 154
Restrictions 107, 183

Return code 38, 136
ROM 62
S
SDEBUG 67
Section 5

Attribute 5, 8, 9
Grouping 7
Linkage 7, 8, 10, 11, 12
Linkage order 9, 13, 54
Name 5, 107
Name list 172
Number of sections 107
Start address specification 54

Simple linkage 8, 86
Simulator/debugger 4, 30
SLIST 165
START 10, 54
Start-up command 34, 132, 193
Store 151
S-type object format 193
Subcommand 35, 39, 42, 111, 141

Comment specification 41, 139
Continuation prompt 93
Continuation specification 41, 175
End of input 68, 161
Execution 4, 33, 35, 134
File 35, 37, 64, 149
File execution 37, 135
File specification 64
Format 40, 137
Negative form 44
Request prompt 93, 175
Structure 40

SUBCOMMAND 35, 37, 64, 149
Support of storing program in ROM 30, 62
Symbol

Number of symbols 107, 183
Symbol name 107

Length 183
System library file 17, 50, 146, 150
U
UDF 24, 72
UDFCHECK 73
Undefined symbol

Display specification 72
Unit 5, 7, 75

Automatic exchange 25
Deletion 77
Forced exchange (replace) 27, 63
HITACHI 201

Name 75, 107
Name change 29
Name deletion 29
Number of units 107

Unresolved import symbol 17
Unresolved import symbol list 83, 89
Updating date 170
User library file 17, 50, 146, 150

W
Warning 95, 177
Warning message 8, 12, 72, 96, 97, 98, 178
Warning 108 message 98
202 HITACHI

H Series Linkage Editor, Librarian, and Object Converter
User’s Manual

Publication Date: 1st Edition, October 1996
Published by: Semiconductor and IC Div.

Hitachi, Ltd.
Edited by: Technical Documentation Center

Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1996. All rights reserved. Printed in Japan.

	Preface
	Contents
	Part I Linkage Editor Guide
	1 Overview
	1.1 Linkage Editor Functions
	1.2 Object Module and Load Module
	1.3 Unit and Section

	2 Linkage Editor Functions
	2.1 Module Linkage
	2.2 Address Resolution
	2.3 Load Module File Re-Input
	2.4 Multilinkage
	2.5 Debugging Support
	2.6 Address Check
	2.7 Support of Storing Program in ROM

	3 Executing the Linkage Editor
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Controlling by Subcommands
	3.4 Terminating the Linkage Editor

	4 Linkage Editor Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	INPUT
	OUTPUT
	LIBRARY
	PRINT
	EXCLUDE
	DIRECTORY

	4.4 Memory Allocation
	START
	ENTRY
	ALIGN_SECTION
	CHECK_SECTION
	AUTOPAGE
	CPU
	CPUCHECK
	ROM

	4.5 Execution Control
	EXCHANGE
	SUBCOMMAND
	FORM
	DEBUG
	SDEBUG
	END
	EXIT
	ABORT
	ECHO
	UDF
	UDFCHECK

	4.6 Debugging Support
	LIST
	RENAME
	DELETE
	DEFINE

	5 Input to the Linkage Editor
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files
	5.4 Default Library Files

	6 Output from the Linkage Editor
	6.1 Linkage Lists
	6.2 Load Module File
	6.3 Console Messages

	7 Error Messages
	8 Restrictions
	A Example of Use of Linkage Editor
	B File Name Specifications

	Part II Librarian Guide
	1 Overview
	2 Librarian Functions
	2.1 Creating Library Files
	2.2 Editing Existing Library Files
	2.3 Extracting Modules from a Library File
	2.4 Displaying the Contents of a Library File

	3 Executing the Librarian
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Executing by Subcommands
	3.4 Terminating Librarian Operations

	4 Librarian Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Execution Control
	4.5 List Display

	5 Input to the Librarian
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files

	6 Output from the Librarian
	6.1 Library Files
	6.2 Librarian Lists
	6.3 Section Name Lists
	6.4 Console Messages

	7 Error Messages
	8 Restrictions
	A Examples of Librarian Usage
	A.1 Librarian Execution by Command Line
	A.2 Librarian Execution by Subcommands

	B Note on Librarian Usage in MS-DOS System

	Part III Object Converter Guide
	1 Object Format Conversion
	1.1 Executing the Object Format Conversion
	1.2 Error Messages

	Index

