H Series Linkage Editor, Librarian,
and Object Converter

User’'s Manual

HITACHI

ADE-702-139
Rev. 1.0
12/18/96
Hitachi, Ltd.
McS-Setsu

o
Hitachy ‘:,

semiconductor

Notice

When using this document, keep the following in mind:

1
2.

This document may, wholly or partially, be subject to change without notice.

All rights are reserved: No oneis permitted to reproduce or duplicate, in any form,
thewhole or part of this document without Hitachi’ s permission.

Hitachi will not be held responsible for any damage to the user that may result from
accidents or any other reasons during operation of the user’s unit according to this
document.

Circuitry and other examples described herein are meant merely to indicate the
characteristics and performance of Hitachi’s semiconductor products. Hitachi
assumes no responsibility for any intellectual property claims or other problems that
may result from applications based on the examples described herein.

No licenseis granted by implication or otherwise under any patents or other rights of
any third party or Hitachi, Ltd.

MEDICAL APPLICATIONS: Hitachi’s products are not authorized for usein
MEDICAL APPLICATIONS without the written consent of the appropriate officer
of Hitachi’s sales company. Such use includes, but is not limited to, useinlife
support systems. Buyers of Hitachi’ s products are requested to notify the relevant
Hitachi sales offices when planning to use the productsin MEDICAL
APPLICATIONS.

Preface

This manual explains how to use the H Series Linkage Editor, Librarian, and Object Converter,
which work on MS-DOS** or UNIX*2 This manual consists of the following three parts:

Part| Linkage Editor Guide
Part Il Librarian Guide
Part 111 Object Converter Guide

Users are encouraged to consult the user’ s manuals for other H Series cross-software. Relevant
manuals include;

e HB8S, H8/300 Series Cross Assembler User’s Manual
e HB8S, H8/300 Series C Compiler User’'s Manual
» HB8S, H8/300 Series Simulator/Debugger User’s Manual

» H8/500 Series Cross Assembler User's Manual
e H8/500 Series C Compiler User’s Manual
» H8/500 Series Simulator/Debugger User’s Manual

» SH Series Cross Assembler User’s Manual
e SH Series C Compiler User's Manual
» SH Series Simulator/Debugger user’s Manual

Notes: 1. MS-DOSisan operating system administrated by Microsoft Corporation.

2. UNIX isaregistered trademark in the United States and other countries, licensed
exclusively through X/Open Company Limited.

Notes:
The following symbols have special meaning in this manual.

<item> : Specificationitem

{} . One of the items between the bracketsis to be selected.
[] . Theenclosed item is optional (i.e., can be omitted)

. The preceding item can be repeated.

A . Blank space(s) or tab(s)

(RET) : Pressthe Return (Enter) key.

File extensions are in uppercase letters on MS-DOS.
Hexadecimal datain thismanual is prefixed by H'. (Example: H'1000)

Data without prefix isin decimal unless otherwise specified.

Contents

Part | Linkage Editor Guide
SECHON L OVEIVIEW ...ttt 3
1.1 Linkage EAItOr FUNCLIONS........ccciiiiiieiie ettt sttt sttt st 4
1.2 Object Module and Load MOUIE............coueiuiireiireienieeere e 4
1.3 UNIT AN SECHON ..ottt bbb sttt e et e st nenae e 5]
Section 2 Linkage Editor FUNCLIONS...........coooirnneesesiseeseeseseesesesesenen 7
2.1 MOQUIE LINKAGE.ccvieeietieeeeetieeeeteeeeesteeetesteeetesteeeteeteeteeseeseeneeeseeneesseensesreensesseensesseessen 7
211 SECtON LINKAGE.....cci ittt st sttt st et sa e e s e eneeneas 7
2.1.2 Inclusion from Library FileS ... 17
2.1.3 Exclusion of Module Linkingc.ccccoueceieeieeieiieieseeeeeeeeeeereeeeeseeeseeseeeneeas 19
| 2.2 AAUrESS RESOIULION......covieeceee e 20
221 Import Symbol RESOIULIONc.coueiriiiiieererere e 20
2.2.2 Address Resolution within aMOdUIE..........ccccivriivriieee e 22
2.2.3 Suppressing the Listing of Unresolved Symbols..........cccccovveveieievecciciceceen, 24
[2.3 Load MOOUIE File REINPUL ... eeeeseeeseeesseeeseeeesees e eess e 24|
231 Automatic Unit EXChaNQe........cccoieiiiiieiieereee e 25
2.3.2 Forced Unit EXCRENGE.cooueuirieirieirieinteesteeeteeei ettt 27
24 MUIHTINKAOE ...ttt ettt nrne 27
mmuggi QoSN oo 29
2.6 AArESS CHECKc.ecvieciiieeiiiieiesie sttt sttt sttt se sttt st e et et et e seebeneebeseenenens 30
2.7 Support of Storing Program iN ROMc.ccuecueieeiieeieeiieieeeecee e seeee e e seaeneeeneenes 30
Section 3 Executing the Linkage EQITOr ... 33
3.1 Command LiNE FOMMEL........cccciirierierierierieieeeeesesestestesesee e eseesae e saesaenseneeseeessessessessens 34
3.2 Executing by Command LiN€.......ccceverueiieieeieirise et se et sa e e e e ene e enens 34
3.3 Controlling by SUDCOMMENGSccceieiiiiiieseriesieee ettt e e sa e eseeam 35
331 Executing in INteractive MOdecooiviieiieeereeeeeree e 36
3.3.2 Executing from a Subcommand File..........cccocriiiniiiinine e 37
[3.4 Terminating the Linkage EQItOrcc...oovvvrrivreiiieiiieiiiii 38|
Section4 Linkage Editor Options and Subcommands...............ccccocvvevrernivrrenn 39
4.1 Option and SUDCOMMANG FOMMEES ..ovv oo oo oeeesooees oo soeeeseeeessseemssmeessoeesssneenns 40
4.2 List of Options and SUDCOMIMENGS.........ccuerrereerreeieisreeneesreeseeseeseeseeseeseesresseesresseesresaeenne 42
G T e | L= g1 (o) TP 47
431 INPUT—SPeCITies INPUL FITEScooiiieiceiece e 47
432 OUTPUT—Specifiesan OUIPUL FIleccoeiriiriiriinenererese e 49

4.3.3 LIBRARY—SpecifiesLibrary Fil€S......ccccovriniiiiisiisie e 50

434 PRINT—SpeCifieSaLiSt File ..o 51

435 EXCLUDE—EXxcludes Modulesfrom LinKiNg........ccccceeeveerierienenenieseeseeneeneeneen 52
4.3.6 DIRECTORY—Specifies Directory Name Replacement..........coceeeveveveevenenne. 53
[4.4 MEMOIY AIIOCAIION.oorveeeeeeeeeeeeeeeeee e eeees e et eees st 54|
441 START—Specifies Start Address and Linkage Order of Sections...........ccc...... 54
442 ENTRY—Specifies Execution Start AdAress.........ccoeeverreneeneienieieseeseeeene 56
443 ALIGN_SECTION—Specifies Linkage of Sections Having Different Boundary
ALGNMENE VEIUES. ...t st s 57
444 CHECK_SECTION—Specifies Section ChecK........c.covevirnieeiineneeisessiee 58
445 AUTOPAGE—Specifies Autopaging FUNCLION..........ccoceviienininene e 59
4.4.6 CPU — Specifies Address Check Using a CPU Information File...........ccccc....... 60
4.4.7 CPUCHECK—Specifies Error Output at Address Check Using CPU Information
T = S 61
448 ROM—Specifies Support of Storing Program in ROMcccceveveviereeneeeennnne. 62
T e e e 63 |
451 EXCHANGE—Forcibly Replaces UNitS.......ocooeieirieririeneneniene e 63
45.2 SUBCOMMAND—Specifies a Subcommand File.........cccoooriiiiiiininenieen 64
453 FORM—Specifies Output Load Module File FOrmat...........cocoooeveneieneneceeene. 65
454 DEBUG—Specifies Output of Debugging Information...........ccocceeveeereccneennen. 66
455 SDEBUG—Specifies Output of Debugging Information to aFile...................... 67
45.6 END—Specifies End of Subcommand [INPUL...........ccevvrereceiiiiesese e 68
45.7 EXIT—Specifies End of Linkage Operation............coeeerereerenieseereenieseeseeeeeenes 69
45.8 ABORT—Specifies Forced End of Linkage Operation...........ccoccveeverereenieneeen 70
459 ECHO—Specifies Subcommand File EChO-BacKccoooeerieercenccniccnices 71
4510 UDF—Specifies Display of Undefined Symbols.........c.ccoveireiniinnincinecs 72
45.11 UDFCHECK—Specifies Output of an Error for Undefined Symbol 73
[4.6 DEDUGYING SUPPOIT.........covereiieieeiicicieiisiieiet et 74 |
4.6.1 LIST—Displays Interim Linkage INformation............ccceoeeeeverinienienienenenene e 74
4.6.2 RENAME—Changes the Names of Units, Export Symbols, or Import Symbols 75
4.6.3 DELETE—Deéletes Unitsor Export Symbols..........coceovirrinniincineeneeseeeee 77
4.6.4 DEFINE—Forcibly Definesan Import Symbol ..., 78
Section5 Input to the Linkage EQItOr ... 81
5.1 ObJeCt MOAUIE FIESocuiieeieiiiee e e e 81
52 Relocatable Load ModUIE FIlES.........cooiiiiiiiiieee e 81
5.3 LIBIaIY FlES ... 81
54 Default Library FilES... ...t 81
Section 6 Output from the Linkage EAItOr ... 83
Lo R I 1 1o L= I 1 PO 83
6.2 L0B MOGUIE FIIEcocooooomeeeerereeeeeeeeeereeeseerresss s eeseeseeeeeeeseeeeeeeeeeeeeeeeeeeeee 92
6.3 CONSOIE MESSAOES.......c.eeevieeiieeieit ettt bttt b ettt ebne 93

SECtiON 7 EITOr MESSAJES.........ovveeeieieeicisste st 95

SECHON 8 RESITICHIONS ... e e e e e e eseseseseseseseseseseseeesesesesesaen 107

Appendix A Example of Use of Linkage EdItorccccocoeiveiniiceiieicciceine, 109

Appendix B File Name SpeCifiCations............co.coovinineninneneeeseeseeeeseseiees 122

Part |1 Librarian Guide

SECHON L OVEIVIBW ...ttt sttt 125
Section 2 Librarian FUNCHIONS............coooiieeee st 127
2.1 Creating Library FIlES.......oc.coiiiiiiiiei et 127
2.2 Editing EXisting Library FIIESccccvviiie ittt 128
2.3 Extracting Modules from aLibrary File.........cccvviiiiiiiiese e 129
24 Displaying the Contents of aLibrary File ... 129
Section 3 Executing the Librarian ... 131
3.1 Command LINE FOMEL.ccuiiiiiiiieteeiieee ettt e s e e e eree e 132
3.2 Executing by ComMMaNGd LiNE........c.ccueeueiuieiueitieiieetieetietieeteeeeeteeeeecteeeeesreeeresseessesseenresseenns 133
3.3 Executing by SUDCOMMENGS........cc.eoveveeeeeieeieieeee ettt e e eseesaeseeeeneeneeneenea 134
331 Executing in INteraCtive MOdecooiuiieieieererene e 134

3.3.2 Executing from a Subcommand File...........ccocriririiinine i 135

| 34 Terminating Librarian OPerations..........ccoeereereerieerieesieesieesiee st ere s ebe s 136
Section4 Librarian Options and Subcommands..............cccceevevveeieiscinireissiennn. 137
4.1 Option and SUBCOMMAN FOIMELS........ccceieiierieieieeeeeeee e st e e s e e e e e eneas 137
4.2 List of Options and SUDCOMMENGS...........coueiuirierierieieireee ettt e e eaeas 141
4.3 B CONIOL. ittt eh st sh e sa b e e se e bt e e e e e eneenea 145
431 LIBRARY—SpecifiestheLibrary Fileto Be Edited..........cooooviniinncnccricens 145

432 OUTPUT—Specifiesan Output Library File ... 146

4.3.3 DIRECTORY—Specifies Directory Name Replacement..........ccccevveveevvevecerenne. 148

[4.4 EXECULION CONIOL.............oeiveeeeceeveseeeeeeseeeeseeseereseseseesesneseeseeseeseeneseseenesnesneseesenesnesnees 149
441 SUBCOMMAND—Specifiesa Subcommand File.........ccooiiiiiiiiieiiiiciee 149

4.4.2 CREATE—Createsalibrary File.......cccoiiiiiiie e 150

443 ADD—AdAS MOUUIES........c.ooirerieiiiirinirieneresietee ettt 151

444 REPLACE—REPIACES MOUUIES.......ceevireeiirieierieierie sttt 154

445 DELETE—DEEESMOUUIES.........ccooereeririireriereires s 157

446 EXTRACT—EXIraCtS MOUUIES........oceeviiiiririereinis et 158

447 RENAME—Modifies SeCtion NAmMES..........ccoevreereeneeneesesseeses e 159

4.4.8 END—Specifies End of Subcommand INPULccoererinieninenenese e 160

449 EXIT—Specifies End of Librarian Operations...........c.coeevenrennenieieneeseennene 161

4.4.10 ABORT—ADorts Librarian Operations...........cccveerererenenienenensesesieseereseeienen 162

A5 LISEDISPIAY. ..ttt et bbbt b e 163

451 LIST—Displays Contentsof aLibrary File.......ccccoceoeiviriecincincnesie e 163
45.2 SLIST—Displays Section Names of Library File..........ccccoovviviivisesescseiene, 165
Section5 INput tO the LibDrarian. ... 167
5.1 ODJECt MOUUIE FITES ...t 167
52 Relocatable Load ModUIE FIlES.........covviiiiieie et 167
LI T I 1o = VA T =SSR 167
Section 6 Output from the Librarian...........cccccoocveieniccvecceseeseeee e, 169
L0 R 1o = VA 1 =TSRSS 169
Lo A 1o = =) £ SRS 169
6.3 SECHON NBME LISES.... et ieiieeieiiieeiesie ettt eee et et e s e sreseeseeseesseseeseeneeneenseneeneas 172
B.4 CONSOIE MESSAOES.......cvieveerieeeeeteeeeiteeetesteeetesteeetesseeaseeseeeseeseeaseeseaseensesseessesseesseseessenneenes 175
[SECtiON 7 EITOr MESSAGES......ccocvrvesvreeteesvesesseesvesensseeseesssseesee s 177 |
[SECtiON 8 RESIICHONS ..o 183 |
Appendix A Examplesof Librarian USage...........ccccooevriniiveiveieeieescesessseo 185
A.1 Librarian Execution by Command LiNe........ccccccevuerieiieiieieeeeese e se et s see e saeeenens 185
A.2 Librarian Execution by SUDCOMMANGS...........cciiiriiriiieieeeerere e e 186
Appendix B Note on Librarian Usage in MS-DOS System...........ccccouevnnrvunnee. 189

Part 111 Object Converter Guide

Section1l Object FOrmat CONVEISION........c.coourireiereieeie et esessesssessessessen 193
1.1 Executing the Object FOrmat CONVEISION.........ccuiiruiiiriinieeerieierieiesee e 193
1.2 EITON IMESSAgES.......ccuieiiritiieetesie sttt sttt r b b e b e e e nn e e 196

Figures

Part |

Figure 1-1
Figure 1-2
Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7
Figure 2-8

Figure 2-9

Figure 2-10
Figure 2-11
Figure 2-12
Figure 2-13
Figure 2-14
Figure 2-15
Figure 2-16
Figure 2-17
Figure 2-18
Figure 2-19
Figure 2-20
Figure 2-21
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure 6-6
Figure 6-7
Figure 6-8
Figure 6-9
Figure A-1
Figure A-2
Figure A-2
Figure A-2
Figure A-2
Figure A-3
Figure A-3

Program Devel opment ProCEAUIE.ooeieieiieeeieere e 3
Interrelation among Module, Unit, and SECHiON..........c.coverererereerieie e 5
Grouping Sections Having the Same Name..........cccoovirrereeneeneeeseeseeees 7
SIMPIE LINKAGE ...ttt ettt 8
(00100100010 1017 o = SR 8
D0 01001V T 13 [TSRS 9
Example of Section Linkage with a Specified Linkage Orderccooeveveeieeenn 10
Example of Section Linkage without a Specified Linkage Ordercccceeeeenee 11

Example of Section Linkage for Same Section Name but Different Attributes.... 12
Linking of Page Type Modules

(Neither Autopaging nor Start Address Specified).......c.ccoevvvvvierievivnenceserceeen 14
Linking of Page Type Modules

(Autopaging Specified, Start Address Not Specified)......c.coovereneneneneiiieneee 15
Linking of Page Type Modules (Autopaging and Start Address Specified) 16
Example of Module Linking (Input Object ModUuI€s)ccoreineineiinieieneeee 18
Example of Module Linking (Input Library FIES) ... 18
Example of Module Linking (Output Load ModUIE)ccevvervreveerieieeeeeienen 19
Example of Module Containing Non-Referenced Import Symbolccc..... 19
Resolution of Import SYMDOIS..........cccoiri e 21
Address Resolution within @aModUle...........cccoiiiiiiinienie e 23
Load Module File Re-INPUE FUNCLIONcouiiieiiiiieieieiceeeeesee e 25
AULtOMELIC UNit EXCREANGE......cc.iiiiiiiitereeie ettt s 26
MUItHTTINKAGE FUNCLION ..ottt nnens 28
Memory Map for Storing Program in ROMccecveeinevesene s 30
Symbol Address for Storing Program in ROM ..o 31
Typical Output of INPUEL INFOrMELIONcoerirerererere e 84
Typical Link Map List Output USINg PRINTccoiiiiiinineeerese e 85
Typical Link Map List Output USING LIST ..o 86
Typical Export Symbol List Output UsSing PRINTcccovvvvivneverceeeeceeenes 88
Typical Export Symbol List Output USiNg LIST........cccovviviiine e 88
Typical Unresolved Import Symbol List Output Using PRINTcoooeiiiiiieieene 89
Typical Unresolved Import Symbol List Output USing LISTccooeiiiinenenne 90
Typical RENAME/DELETE LiSt....ccccveuiiierinieieneresieieenesesie ettt 91
TYPICA DEFINE LiSt....ooceeereeeeeeseeseeeseseseesesssssesssssssssssenssssssssssessssnssssssssnssnssons 92
Subcommand File “exlinK.SUD” ..o 111
Linkage List “programl.map” (Input Information)..........c.ccceeveveiieveveeieeienceeeennns 112
Linkage List “programl.map” (Link Map List)cccocrierenieneninene e 113
Linkage List “programl.map” (Export Symbol List)ccccooevereieinneieirceenne 115
Linkage List “programl.map” (Undefined Symbol List)ccoccoevecineieneicnecnnnn 116
Linkage List “examplemap” (Input INfOrmMation)...........ccceveereieneceneieneieseennene 117
Linkage List “example.map” (Link Map LiSt) ...ccccooveevienenevnsese e 118

Figure A-3

Part 11

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 6-1
Figure 6-2
Figure 6-3
Figure 6-4
Figure 6-5
Figure A-1
Figure A-2

Part 111
Figure1-1

Linkage List “examplemap” (Export Symbol List)cccooeeereinerenenneneneenee 121

Creating aNew Library File ... 127
AdAiNG AMOUUIE ... e e 128
DEleting aMOAUIE ..o 128
RePIaCing @MOTUIE..........coiiiiiie e 129
EXracting MOGUIES........ceieieciecece ettt st 129
Librarian List FOMMEL.........ccoceoiieiieiieeese ettt 169
Librarian List (with (S) specification on UNIX)ccocoviiiniiiinineneneeeeeeeeene 171
Librarian List (no (S) specification on UNIX) ..o 171
Section NamMeE List FOMMELcccoiiiiierereee et 172
SECtON NAME LISt .c.eiiiceiciese ettt s see e s 174
Results of Librarian Execution by Command Line.........ccccoovvvverenenvsierenieereennns 186
Results of Librarian Execution by Subcommandccccceevvevnieieniene s 188
S TYPE ODJEC FOMMELc.eecvieciiieieree ettt 194

Tables

Part |

Table 3-1
Table 3-2
Table 4-1
Table 6-1
Table 7-1
Table 7-2
Table 7-3
Table 8-1
Table A-1
Table A-2

Part 11

Table 3-1
Table 3-2
Table 4-1
Table4-2
Table 7-1
Table 7-2
Table 7-3
Table 8-1

Part 111
Table1-1

Notes on Linkage Editor USAgE........ccoerererirerenese e 33
Return Code Depending 0N Error LEVE! ... 38
List of Options and SUBCOMMENGS...........cccviiriririnieeeee e 42
List of INfOrmative MESSAgEScoueirieirieirieer e 9
List of Warning MESSA0ESevveeereeeeereseeesteseseestesteseesees e saesessseeesesssesessessessens 96
LiSt Of EFTOr MESSAgES. ...c.veveieeeieeeeeseeseseerestestestestestesaesse e steseessessessensessssessessens 101
List Of Fatal Error MESSAgES.c.civervirieriereeieee et sre st et e 103
Restrictions on Linkage Editor ProCESSINGcceoeeererenereriesiesie e seeseeseeseeseeeeam 107
LiSt Of INPUE FITES......cueeieeeeeee e 109
List of ModuleSin Library File ... 110
How Command Line Specification Determines the Form of Execution................ 133
Return Code Depending on Error LEVE ... 136
List of Options and SUBCOMMENGS...........ccviiriririnneeeee e 141
Interrelation among Options and SubcomMmaNdS..........ccoceovveeneineiinecneeeee 142
List of Warning MESSA0ESevveeereeeeereseeesteseseestesteseesees e saesessseseessensesessessessens 178
LiSt Of EFTOr IMESSAgES.veiveieeeeieeeeeeeeseeestestesrestestesaesse e steseessesaessessesesseesessens 179
List Of Fatal Error MESSAgES.cc.ciuiivirierie ettt sttt see st e 181
Restrictions on Librarian ProCESSINGccooereririiinene e 183

Object Format Converter Error MESSAgES........cceveereiesesieseeseeseseeseeseeeesesessennes 197

Part |

Linkage Editor Guide

Section 1 Overview

The growing need for large-scale, complex microcomputer programs has led to the common
practice of developing a program in separate parts and using a high-level language. In generating a
program in this fashion, a compiler or an assembler is used to convert source programs into object
modules. After that, alinkage editor is employed to link and edit the modules into one load
modulefile.

The H Series Linkage Editor (hereafter, referred to as the Linkage Editor) inputs object module
files output by an assembler or C compiler, links and edits them, and generates a single load
modulefile.

Figure 1-1 illustrates the program devel opment procedure using the Linkage Editor.

Assembly- C-language
language source program
source program

| Preprocessor | C compiler

'

| Librarian | | Assembler

Libraries 4@ Object modules

|\ Linkage Editor

CPU Absolute

i Relocatable
informa- | |pad module

tion file load module

!

| Object converter || In-circuit emulator | | Simulator/Debugger

1

Load module
(S-type)

Note: * The Linkage Editor described in this manual.

Figure1-1 Program Development Procedure

HITACHI 3

The Linkage Editor has the following features:

(2) Linkage can be executed by command-line specifications or by subcommands. These two
methods allow flexible control over the Linkage Editor to match the desired application.

(2) The load module file output by the Linkage Editor can be re-input and re-edited to generate a
new load modulefile.

(3) Data used by a simulator/debugger or in-circuit emulator in symbolic debugging can be
included in the load module file by specifying options.

11 Linkage Editor Functions
The Linkage Editor provides the following five basic functions.

Module Linkage: The module linkage function links and edits object modules output by a
compiler or assembler.

Address Resolution: The address resolution function determines absolute addresses for external
reference symbols so that references can be made between modules. It also determines absolute
addresses for relative addresses.

Load Module File Re-input: The re-input function enables aload module file output by the
Linkage Editor to be input again.

Multilinkage: The multilinkage function enables the linkage process to be carried out multiple
times during one execution of the Linkage Editor.

Debugging Support: The debugging support function allows display of interim linkage results
and provisional correction of errors.

1.2 Object Module and Load Module

An object module is output as aresult of compiling or assembling a source program. A load
moduleis obtained by using the Linkage Editor to link object modules.

There are two load module formats: absolute and relocatable. An absolute load module has been
assigned absolute addresses, and isin executable form. It does not contain rel ocation information
for relinking and relocation. A relocatable load module has been assigned relative addresses and
contains relocation information. This information enables the relocatable |oad module to be
re-input into the Linkage Editor for relinking and relocation. The load module format is selected
by the FORM option or subcommand. For details on the FORM option and subcommand, refer to
section 4.5.3, “FORM—Specifies Output Load Module File Format.”

4 HITACHI

Object modules, absolute load modules, and relocatable load modules are collectively referred to
as modules in this manual.

Modules are either page type or non-page type, depending on the H series microcomputer. The
two types differ as to the method of assigning addresses when modules are linked. H8/500 series
modules are page type, whereas H8S, H8/300 series and SH series modules are non-page type.

13 Unit and Section

A unit in amodule refers to a compile unit or assembly unit. An object module output by a
compiler or assembler consists of asingle unit. A load module which represents multiple object
modules that have been linked by the Linkage Editor contains more than one unit.

A unit isdivided into sections. The Linkage Editor processes one section at atime.

Theinterrelation among module, unit, and section isillustrated in figure 1-2.

77777777777

,,,,,,,,,,

Figure1-2 Interrelation among Module, Unit, and Section

A section has a name for identification, an attribute describing its content and usage, and aformat:
either absolute or relocatable. Even if two sections have the same name, they are treated as
separate sections when their attributes or formats are different.

HITACHI 5

Section attributes and formats are classified as follows.

(1) Attributes

e Code: An area containing instructions or constants.
e Data A variable area with values that are changed by the program.
o Stack: A stack or work areawhich cannot be initialized.

e Common: A variable area used in common by multiple modules.
« Dummy: Used, for example, to define the structure of avariable area; does not generate any
actual object code.

(2) Formats

e Absolute: A section in which absolute addresses have already been assigned.
* Relocatable: A section in which absolute addresses have not yet been assigned.

6 HITACHI

Section 2 Linkage Editor Functions

This section gives a more detailed description of the basic functions provided by the Linkage
Editor. The following discussion and examples will make reference to various options and
subcommands used to control the Linkage Editor. Additional information on these options and
subcommands can be found in section 3, “ Executing the Linkage Editor,” and section 4, “Linkage
Editor Options and Subcommands.”

2.1 Module Linkage

The Linkage Editor reads modules from specified input files and links these modules to generate
one load module. Modules are linked by each section, a section being the smallest compl ete part
making up amodule.

211 Section Linkage

A section islinked only if it is relocatable. Since absolute sections have already been assigned
absolute addresses, no further linking is performed. Relocatable sections are linked according to
the procedure described below.

(1) Grouping of Sectionswith the Same Name

Sections having the same name but found in more than one unit are grouped.

Unit X Unit Y
Section A Section A Grouping of sections nhamed A
Section B Section B Grouping of sections named B
Section C Section C Grouping of sections named C

Figure2-1 Grouping Sections Having the Same Name

HITACHI 7

A warning message is output when sections have the same name but different attributes. Such
sections are then processed as separate sections.

(2) Linking of Sectionswith the Same Name
Sections having the same name are linked in one of three ways, depending on their attributes.
(@) Simplelinkage

Sections with the code, data, or stack attribute and having the same name are allocated
consecutively, in the order in which the modules were input.

Unit X UnitY Linkage of sections named A
Section A + Section A I Sectio_n Ain
Unit X
Section A'in
uUnitY

Figure2-2 SimpleLinkage

(b) Common linkage

Sections with the common attribute and having the same name are allocated at the same
address. The address area allocated is equal to the size of the largest section.

Unit X UnitY Linkage of sections named B
: - o
Section B = £ A -
-—-Unit X

Figure2-3 Common Linkage

8 HITACHI

(c) Dummy linkage

Sections with the dummy attribute are not linked, because they do not have any actual
existence in the object modulefile.

Unit X Unit Y

Figure2-4 Dummy Linkage

(3) Linking of different sections

If asection linking order is specified when the Linkage Editor is executed, sections are linked in
that order. If the section linking order is not specified, sections are linked in the order in which

they were input.

HITACHI 9

(a) With a specified linkage order

Unit X Unit Y Unit Z

Section A Section A Section A Section A: Code section

Section B Section B Section B: Common section

Section C Section C Section C: Dummy section

Section D Section D Section D: Data section

Section linkage order A—D—B

]
i

Section A (X)

Section A (Y)

Section A (Z)

Section D (X)

Section D (Y)

Figure2-5 Example of Section Linkage with a Specified Linkage Order

The section linkage order can be specified only when the load module output by the
Linkage Editor has the absolute format. The linkage order is specified using the START
option or subcommand.

10 HITACHI

(b) Without a specified linkage order

Unit X uUnit Y Unit Z

Section A 1 Section A Section A Section A: Data section

Section B 2 Section B Section B: Common section

il

Section C 3 Section C Section C: Dummy section

Section D 4 Section D: Code section

Sections are input in the order 1 through 4

Section A (X)

Section A (Y)

Section A (2)

Section D (Y)

Section D (2)

Figure2-6 Example of Section Linkage without a Specified Linkage Order

Sections having the same name but different attributes are linked in the order in which they
areinput.

HITACHI 11

Unit X Unit Y Unit Z

Section A 1 Section A 2 Section A 3
<data> <stack> <code>

Sections are input in the order of 1 through 3

Section A (X)
<data>

Section A (Y)
<stack>

Section A (2)
<code>

Figure2-7 Example of Section Linkage for Same Section Name but Different Attributes

12 HITACHI

(4) Addressassignment

Addresses are assigned to each section. Absolute addresses are assigned when the output load
module file has the absolute format. The section linkage order and start address can be specified
using the START option or subcommand. Absolute addresses are assigned to each section in
order, beginning with the start address. If no start address is specified, absolute addresses are
assigned beginning from address zero.

If sections with absolute format are linked to sections with rel ocatable format, the same absolute
address may be assighed to more than one section. In that case, the Linkage Editor displaysa

warning message.

When page type modules are linked, if addresses are assigned section by section, one section may
overlap a page boundary. In this case the Linkage Editor will display awarning message.
However, executing aload module one of whose sections overlaps a page boundary is extremely
troublesome. For this reason the Linkage Editor is provided with an autopaging function, which
prevents any section in a unit from overlapping the page boundary by allocating the section to the
top of the next page. Use of this function is designated by means of the AUTOPAGE option or
subcommand. The different methods of assigning addresses to page type modules are shown in
figure 2-8 (neither autopaging nor start address specified), figure 2-9 (autopaging specified, start
address not specified), and figure 2-10 (autopaging and start address specified).

When the output load module file has the relocatable format, addresses in each section are
assigned relative to the beginning of the section. The output format is specified using the FORM
option or subcommand.

HITACHI 13

Unit X Unit Y Unit Z

Section A: Code section

Section A

TN TN TN
Section B: Common section
Section C: Dummy section

X Section D
Section D -
Section C} | Section D: Data section
Section linkage order specified as: A— D —B
Section A (X)
Section A (Y)
Page boundary Section A in Unit Z
Section A (2) overlaps page boundary

Section D (X) Section D in Unit X
Page boundary overlaps page boundary

Section D (Y Section D in Unit Y

overlaps page boundary

Page boundary —

Section B\

Figure2-8 Linking of Page Type Modules (Neither Autopaging nor Start Address
Specified)

14 HITACHI

Unit X Unit Y
Section B Section C
Section D

Section D

Unit Z

Section A

N

Section C

Page boundary

Page boundary

Page boundary

Page boundary

—

—

—

—

Section A (X)

Section A (Y)

Section A (2)

Section D (X)

Section D (Y

“Section B.

Section A:

Section B:

Section C:

Section D:

Code section

Common section

Dummy section

Data section

Section linkage order specified as: A—D —B

Figure2-9 Linking of Page Type M odules (Autopaging Specified, Start Address Not

Specified)

HITACHI 15

Unit X Unit Y Unit Z

Section A: code section

Section A

Section C| Section B: common section
Section C: dummy section

Section D: data section

Section D
Section D

Section linkage order specified as: A—D —B

Start address —»

Section A (X)
Page boundary —

Section A (Y)

Page boundary —

Section A (2)

Page boundary —

Section D (X)

Page boundary —

Section D (Y

Page boundary —

N N N
\Section B

Figure2-10 Linking of Page Type Modules (Autopaging and Start Addr ess Specified)

16 HITACHI

212 Inclusion from Library Files

The Linkage Editor can link object modules and relocatable load modules input from library files
created with the H Series Librarian, and include these modules in the output load module.
Inclusion from library files is accomplished in either of the following two ways.

() Inclusion by Specifying the Module Name: Particular modulesin alibrary file can be
included by specifying the library file name and module name when input file names are
specified. Input file names are specified on the command line or by the INPUT subcommand.

(2) Automatic Inclusion: After all specified modules have been input, the Linkage Editor begins
resolving external reference symbols (after this, external reference symbol is called “import
symbol™). If an import symbol is not defined in any of the modules, the Linkage Editor
searches the specified library files. If it finds a module defining the unresolved import symbol,
the Linkage Editor automatically inputs and links this module. If the unresolved import symbol
isnot defined in any of these library files, the Linkage Editor searches one or more default
library files defined in advance by the user. Again, if it finds a module defining the unresolved
import symbol, the Linkage Editor automatically inputs and links this module.

If no module in the default libraries defines the unresolved import symbol, an undefined import
symbol error occurs.

A detailed explanation of default librariesis given in section 5.4, “Default Library Files.”

Library files are classified into system library files and user library files. The Linkage Editor first
searches user library files. When modules containing externally defined symbols (after this,
externally defined symbol is called “export symbol™) of the same name exist both in a specified
system library file and in auser library file, the module in the user library fileislinked. The order
in which two or more user library files or system library files are searched depends on the order in
which they are specified.

A library file can contain both page type and non-page type modules. If both types of modules are
input into the Linkage Editor at the same time, an error will occur. Care must therefore be taken
both when creating library files and when specifying them.

Library files are specified using the LIBRARY option or subcommand. On the designation of
library files as system files or user files, see Part 1, Librarian Guide.

An example of the order of module linking when library files are specified is given below.

HITACHI 17

(1) Object modules aand b are input by the INPUT subcommand.

Module a Module b
.IMPORT X1, Z1 IMPORT X2, Y2
MOV @X1, RO MOV @X2, RO
MOV @71, R1 MOV @Y2, R1

Figure2-11 Example of Module Linking (Input Object Modules)

(2) Library fileslibl, lib2, and lib3 are input in that order by the LIBRARY subcommand.

Library lib1 Library lib2 Library lib3
Module 10 Module 20 Module 30
.EXPORT X2 .EXPORT Y1 .EXPORT Z1
Module 11 Module 21 Module 31
.EXPORT X1 .EXPORT Y2 .EXPORT Z2

Figure2-12 Exampleof Module Linking (Input Library Files)
(3) The Linkage Editor first collects al import symbols declared in the input files, then searches
for export symbolsin thefirst specified library. If asymbol isfound, the module defining it is
linked.

If two or more symbols are declared in separate modules in the same library, the modules are
linked in their order of appearancein the library. If asymbol isnot found in that library, the
next specified library is searched.

In the above example, modules are linked in the following order.

18 HITACHI

Module a

Module b

Module 10

Module 11
Module 21
Module 30

Figure2-13 Example of Module Linking (Output L oad Module)

213 Exclusion of Module Linking

An option or subcommand selects whether or not to link modules that define non-referenced
import symbols. In the following coding example symbol abc is declared as an import symbol, but
is not referenced in any executable statement. If exclusion is specified, the module defining
symbol abcin alibrary file will not be linked.

.IMPORT xyz, abc
MOV.W @xyz, RO

.END

Figure2-14 Example of Module Containing Non-Referenced Import Symbol

In a C language program, import symbols are described by an extern declaration, but these
symbols are not necessarily referenced. (For example, alarge number of non-referenced import
symbols are declared in stdio.h.) The exclusion function reduces program size by excluding
unnecessary modules. Exclusion of such modulesis specified by the EXCLUDE option or
subcommand.

HITACHI 19

2.2 Address Resolution

When a source program is assembled, the absolute addresses of certain symbols cannot be
decided. These include symbols imported from another module and symbolsin relocatable
sections of the same module. The Linkage Editor determines absolute addresses for these symbols
and sets the absol ute addresses to the reference positions.

221 Import Symbol Resolution

When importing symbols from a separate modul e, the assembler outputs import information in the
object program. It aso declares export of symbols that can be imported in other modules. Asa
result, export information is output in the object program. The Linkage Editor relates this import
and export information. In addition, it uses address information specified by options or
subcommands to determine absol ute addresses for the export symbols, and replaces corresponding
import symbols with the absolute addresses.

The example given in figure 2-15 illustrates how import symbols are resolved. The modules,
sections, and subcommands used in the figure are explained below.

(1) Modulea

« Thismodule consists of one section, section X, having a size of 5000 (hexadecimal) bytes.
e Symbol $4 in module b isimported at position Al.
e Symbol S2 in module b isimported at position A2.

(2) Moduleb

» Thismodule consists of sections X and Y.

e Thesize of section X is 2000 (hexadecimal) bytes.

» Thesizeof section'Y is 3000 (hexadecimal) bytes.

e Slisthe start of section Y. S2 islocated 1000 (hexadecimal) bytes from S1.
» S3isthe start of section X. $4 islocated 1200 (hexadecimal) bytes from S3.

(3) Modulec

» Thismodule consists of one section, section Z, having a size of 4000 (hexadecimal) bytes.
e Symbol S3in module b isimported at position C1.
e Symbol S1inmodule b isimported at position C2.

20 HITACHI

(4) Subcommands

INPUTAa, b, ¢
STARTAX, Y, Z(10000)
EXIT

Three modules a, b, and ¢ are input to the Linkage Editor. Sections are linked inthe order X, Y, Z.
The start address is 10000 (hexadecimal).

5000 bytes
(hexadecimal)

3000 bytes
(hexadecimal)

2000 bytes
(hexadecimal)

,,,,,,,

-

Module a
Al
]
Section X
A2
S
Module b
T s2
VA= -
Section Y
=/ section X
! S3 =-----
: sS4
Module ¢
Section Z C1
C2
————— S

4000 bytes
(hexadecimal)

10000
Al
A2 |
[S .
15000] L
o - L
: s3 7
i s4 :
. 17000 ;
e 7 ;
3 s1 |
! S2
" 1A000
T —]
c1
—————————————————— —
c2
1E000

Absolute address of S1:
Absolute address of S2:
Absolute address of S3:
Absolute address of S4:

17000 (hexadecimal)
18000 (hexadecimal)
15000 (hexadecimal)
16200 (hexadecimal)

Set 16200 (hexadecimal) to position Al.
Set 18000 (hexadecimal) to position A2.
Set 15000 (hexadecimal) to position C1.
Set 17000 (hexadecimal) to position C2.

Figure2-15 Resolution of Import Symbols

HITACHI 21

222 Address Resolution within a Module

When a symbol defined in arelocatable section of amodule is referenced within the same module,
the assembl er expresses the symbol address as arelative address from the start of the section. The
Linkage Editor uses this relative address value and address information specified by options or
subcommands to decide the absolute address. It then replaces the relative address with the absolute
addresses.

The example given in figure 2-16 illustrates the resolution of addresses within amodule. The
modules, sections, and subcommands used in the figure are explained below.

(1) Modulea
» Thismodule consists of one section, section X, having a size of 5000 (hexadecimal) bytes.
(2) Moduleb

* Thismodule consists of sections X, Y, and Z.

» The size of the section X is 6000 (hexadecimal) bytes.

» Thesize of the section Y is 1000 (hexadecimal) bytes.

» Thesize of the section Z is 2000 (hexadecimal) bytes.

» B1references S1.

* B2 references S3.

» B3 references S2.

e Slislocated 3000 (hexadecimal) bytes from the start of section X.
e S2islocated 4500 (hexadecimal) bytes from the start of section X.
e S3islocated 5000 (hexadecimal) bytes from the start of section X.

(3) Subcommands

INPUTAa, b
STARTAX, Y, Z(10000)
EXIT

22 HITACHI

Two modulesaand b are input to the Linkage Editor.

start address is 10000 (hexadecimal).

Sections are linked in the order X, Y, Z. The

Module a

Section X

Module b

| ,% Section Y

Section X

B3

Section Z

!

5000 bytes
(hexadecimal)

1000 bytes
(hexadecimal)

6000 bytes
(hexadecimal)

2000 bytes
(hexadecimal)

10000

15000

S1
-,
————————— —
-,
S3 |
{7 3
Bl i
g — ;
B3 3

Logical address of S1: 18000 (hexadecimal)
Logical address of S2: 19500 (hexadecimal)
Logical address of S3: 1A000 (hexadecimal)

Set 18000 (hexadecimal) to position B1.
Set 1A000 (hexadecimal) to position B2.
Set 19500 (hexadecimal) to position B3.

Figure2-16 AddressResolution within aModule

HITACHI 23

223 Suppressing the Listing of Unresolved Symbols

For arelocatable load module, the display of unresolved symbol names can be suppressed. This
can be selected by the UDF option or subcommand.

2.3 Load Module File Re-Input

Load module files have to be recreated using the Linkage Editor when a program has been
modified or import symbols remain unresolved. The re-input function eliminates the need to
specify each object module separately. By simply specifying the existing load module file and the
object module files that were modified (or the object module files containing the export symbals),
this function will recreate the load module file.

If modules are to be replaced, the re-input function carries out the replacement on a unit basis. A
detailed explanation of unit replacement is given in section 2.3.1, “ Automatic Unit Exchange.”

The load module file to be re-input can be specified on the command line or using the INPUT
subcommand.

Only load module filesin relocatable format can be re-input. The FORM option or subcommand is
used to specify the rel ocatable format when creating aload module file.

An overview of the load module file re-input function is shown in figure 2-17.

24 HITACHI

Load module file a

Object module file b

(" [ons]

Object module file ¢

Linkage
editor

(o {

Load module file d

Unit U1
Unit U2
Unit U3
Unit U4
Unit U5

Unit U6

Figure2-17 Load Module File Re-Input Function

Load module file aand object module files b and ¢ are input to the Linkage Editor, which outputs
anew load modulefile d. Load module file d consists of units U1, U2, U3, U4, U5, and U6.

231 Automatic Unit Exchange

When the Linkage Editor finds units with the same name in two or more modules, it gives
inclusion priority to the unit in the module that was specified first. To replace unitsin aload
modulefile, first specify files containing the replacement units, then specify the relevant load
modulefile. Thiswill produce the same result as using the EXCHANGE subcommand. This

function is called automatic unit exchange.

By using automatic unit exchange, new load module files can be created by simply changing the
specified order of fileinput. This feature is convenient when it is necessary to modify programs

frequently, such as during debugging.

An example of the procedure for automatic unit exchange is shown in figure 2-18.

HITACHI 25

Subcommand contents

(1) Automatic]
exchange Load module file d

NpuTse, e

|
|

Load module file a

Object module file b

((o]

2) No automati
(2) No automatic Load module file d

exchange

ERRREETEES e U !

Pl = INPUT Aa, b, ¢ ! -

R - S R Unit Ul
Object module filec "~ - --= OUTPUTAd

,,,,,,,,,,,]

(o)

Figure2-18 Automatic Unit Exchange

(1) Automatic Exchange: Object modulefiles c and b and load module file aare input in that
order. Unit U2 in load module file ais not included by the Linkage Editor since unit U2 in load
module file ¢ has already been input.

(2) No Automatic Exchange: Load module file aand object module filesb and ¢ are input in that
order. Unit U2 in load module file ¢ is not included by the Linkage Editor since unit U2 in load
module file a has already been input.

26 HITACHI

232 Forced Unit Exchange

In addition to using automatic unit exchange, the EXCHANGE subcommand can a so specify the
units to be replaced. Thisfunction is called forced unit exchange.

By specifying the following subcommands, the result of forced unit exchange will be the same as
that of the automatic unit exchange shown in figure 2-18.

Forced unit exchange Automatic unit exchange
INPUTA a, b INPUT Ac, b, a
EXCHANGE Ac - OUTPUT Ad
OUTPUT Ad

In this example of forced unit exchange, the Linkage Editor inputs units U1, U2, U3, and U4 in
load module file aand unit U5 in object module file b, then forcibly replaces the unit U2 already
input with unit U2 in object module file c. Load module file d output by the Linkage Editor
contains units U1, U3, and U4 from file a, unit U5 from file b, and unit U2 from file c¢. Thus load
module file d has the same unit configuration as load module file d shown in the example of
automatic file exchange in figure 2-18.

2.4 Multilinkage

The Linkage Editor can handle up to 256 input filesin one linkage process. When there are
multiple input files, one way to link them is to re-input the load module file. The multilinkage
function allows several linkage processes to be completed with just one execution of the Linkage
Editor, instead of executing it separately for each linkage process.

The END subcommand indicates the end of one linkage process of the multilinkage function. The
end of the final linkage process, however, is specified by the EXIT subcommand.

An example of the multilinkage function is shown in figure 2-19.

HITACHI 27

Input files

n files

m files

o files

Subcommand contents

INPUTAImM1.rel
INPUTAIfile n+1

\

INPUTAImM2.rel
INPUTA file m+1

/

INPUTAIfilel

OUTPUTAIM1

FORMAR
END

INPUTAIfile m
OUTPUTA Im2

FORMAR
END

INPUTA file o
OUTPUTA Im3

EXIT

INPUTAfflen |

Relocatable
load module file

Relocatable
load module file

Im2

Absolute
i load module file

7~-77 indicates one
+ linkage process

Note: When the default library is used during multi-linkage process, the modules in the
default library are linked in the first linkage process. When the modules must be
linked in the final linkage process, specify the NOLIBRARY command in the
processes except the final process.

28 HITACHI

Figure2-19 Multilinkage Function

2.5 Debugging Support

Debugging support functions confirm the interim linkage results at the program debugging stage
and make provisional recovery from errorsin load module files. Debugging support functions
include displaying interim linkage information as well as defining, changing, and deleting export
and import symbol names. A brief explanation of each function is given below.

(1) Display of Interim Linkage Information: Thisfunction is used during subcommand input
when it is desired to see information about the load module being processed by the Linkage
Editor. Specifying the LIST subcommand outputs interim linkage information to the standard
output device.

Three types of linkage information are displayed.

(a) Linkage map
(b) Unresolved import symbols
(c) Export symbols

(2) Change and Deletion of Unit Names, Export Symbol Names, and Import Symbol Names:
These functions can change or delete any duplicated names of units, export symbols, and
import symbols. Noted that names of import symbols cannot be deleted.

Names are changed by the RENAME subcommand and are deleted by the DELETE
subcommand.

(3) For ced Definition of Import Symbols: This function defines provisional values for import
symbols. The values defined with this function are valid only for the linkage operation being
processed.

The forced definition of these symbol valuesis specified using the DEFINE option or
subcommand.

HITACHI 29

2.6 Address Check

When an absolute load module is created with the Linkage Editor, addresses must be assigned to
sections in accordance with the target CPU memory map. If not, the load module cannot be |oaded
to memory.

The address check function provided with the Linkage Editor confirms the validity of section
address assignments on the basis of CPU memory map information (hereinafter called “ CPU
information”). This CPU information is read from a specified file.

To check an address, the CPU option or subcommand specifies the CPU information file. The
CPU information file is created using the CPU information analysis program (CIA) included in the
simulator/debugger. Note that the CPU information analysis program is not available for CPUs
other than the H8S, H8/300, and SH series; thus the address check function can be used only with
these series.

Regarding the method of creating a CPU information file, refer to the H8/300 Series or SH Series
Simulator/Debugger User’s Manual or the SH Series Simulator/Debugger User’s Manual .

2.7 Support of Storing Program in ROM

When a user program is coded in C language and the load module is to be stored in ROM, data
sections having initial value (D sections) will also be stored in ROM. To assist the user, the
Linkage Editor carry out the following operations.

(1) An area of the same size asthe D section (called the D' section) isreserved in the RAM area
of the output load module. The memory map of the load module looks like this:

Program area ?

Constant area ROM area

Initialized data area (D)

Initialized data area (D’) ?
Non-initialized data RAM area
variable area (B) ¢

Area reserved for data having initial value

Figure2-20 Memory Map for Storing Program in ROM

30 HITACHI

(2) When avariable declared in the D section isreferenced, its address is changed to point to the
RAM area. The variable address becomes:

Start address of D section + relative address within section
The ROM ahility support function changes thisto:

Start address of D’ section + relative address within section
Example: MOV @a, RO

The address of symbol “a”’ declared in the D section becomes (x) + (y) as shown in figure 2-21.
This addressis also stored on the object code.

Start address

of D section Relative address
within section (y)

L Symbol a

D’ section

D section

Start address

of D’ section (X) Relative address
within section (y)

—__]

Figure2-21 Symbol Addressfor Storing Program in ROM
(3) Datais copied from ROM to RAM in the start-up routine.

The copy processisincluded in the start-up routine. The procedure for including this processis
described in the C Compiler User’s Manual.

HITACHI 31

Section 3 Executing the Linkage Editor

To execute the Linkage Editor, start Linkage Editor by entering a command line. This command
line specifies the names of files to be input, and al so specifies options giving various instructions
to the Linkage Editor. If these instructions are sufficient, the Linkage Editor can be executed using
the command line aone. If further instruction are needed, they can be given in subcommands.

Specifying Command Line: This method executes linkage by simply specifying the input files
and options on the command line. It is used when only afew files are to be input and the linkage
operation isrelatively straightforward.

Specifying Subcommands. This method, in addition to a command line, uses subcommandsto
control the Linkage Editor. The subcommands specify files to be input and output, and execution
control parameters for the Linkage Editor. This method is used when alarge number of files or
modules are specified, when the order in which sections are to be linked specified, or when
multilinkage function is used. There are two ways of specifying subcommands. Oneis direct
input from the keyboard or other input device in interactive mode and the other isinput from a
subcommand file.

For file name specifications, refer to appendix B, File Name Specifications. Table 3-1 shows the
notes on Linkage Editor usage.

Table3-1 Noteson Linkage Editor Usage

(O8] Notes
MS-DOS Before using this Linkage Editor, set the MS-DOS configuration file
(CONFIG.SYS) with the editor as follows.
FILES=20)

SHELL=a:\command.com a:\\ /p | (2)

1. The number of files that is allowed to open at one time during Linkage Editor
operation.

2. Directory path specification that is required when COMMAND.COM is
reloaded.

UNIX The OS shell (command interpreter) checks the command line before passing
control to the Linkage Editor. Use characters that the OS allows on the command
line.

HITACHI 33

31 Command Line Format

The following format is used for the Linkage Editor command line.

I nNkKA[<i nput file name>[{,|A}<input file nane>]...]
[[A] -<option nanme>[[A]-<option nane>...]] (RET)

Command Name: “Ink” isinput to start up the Linkage Editor.

Input File Names: Names of filesto be input in the Linkage Editor are specified. These can be
object module files or relocatable load module files. When more than one file is specified, the
names are delimited by acomma.,).

If the file typeis not specified with the input file name, the Linkage Editor automatically assumes
that the typeis*“.obj.”

Option Names: Each option name must be preceded by a hyphen (-). When an option name
follows an input file name or another option name, one or more spaces or tabs can be inserted to
delimit the names, or they can be entered continuously. Option names are described in detail in
section 4, Linkage Editor Options and Subcommands.

Specifying the Execution Mode: Command line specification determines whether linkage isto
be executed by the command line only or subcommands are to be used as well.

(a) Specifying execution by command line: 1f one or more input files are specified on the
command line and no subcommand file is specified, module linkage will be executed
according to the command line only.

(b) Specifying subcommands: If no input files are specified on the command line, or a
subcommand file is specified, the Linkage Editor will be controlled by the subcommands.

3.2 Executing by Command Line

In this method, input files are specified on the command line, and the Linkage Editor executes
module linkage according to the information specified in the command line alone. Output files and
other instructions to the Linkage Editor are specified in the form of options. Command line
execution is sufficient for performing linkage operations when the number of input filesis small,
and when there is no need for detailed instructions to the Linkage Editor such as the order in
which sections are to be linked. Examples of execution by command line only are given below.
For details on options in these examples, see section 4, Linkage Editor Options and
Subcommands.

34 HITACHI

EXAMPLE 1.
| nkAadd, sub, mul , di vA- QUTPUT=ar i t hA- ENTRY=nai n (RET)

Four files “add.obj,” “sub.obj,” “mul.obj,” and “div.obj” are input to the Linkage Editor. They are
linked and output as absolute load module file “arith.abs.” Export symbol “main” isthe start
address for execution of the output load module file. No linkage list is outpult.

EXAMPLE 2

| nkAnai n, key, di spl ay, pri nt - QJTPUT=cal c- PR NT=cal c- FORM=R- DEBUG (RET)

Four files“main.obj,” “key.obj,” “display.obj,” and “print.obj” are input to the Linkage Editor.
They are linked and output as rel ocatable load module file “calc.rel.” Debugging information is
incorporated in this load module file. Linkage list “calc.map” is to be output.

3.3 Controlling by Subcommands

When alarge number of files or modules must be input, or when complex section islinked, the
command line alone may not be sufficient to contain all the specifications. In such cases,
subcommands are used to control the Linkage Editor. Subcommands can be entered one at atime
in interactive mode, from the keyboard or other standard input device, or a subcommand file
consisting of agroup of subcommands can be created in advance, and subcommands can be
entered from this subcommand file.

Interactive Mode: Can be used when the number of subcommands isrelatively small. This
method is also useful when the Linkage Editor is employed during program debugging, where it is
desired to check interim linkage results or make provisional recovery from errors.

Subcommand File: A subcommand file is used to control the Linkage Editor when the number
of subcommandsislarge, or the procedures to be carried out are mostly routine.

A subcommand file is used by specifying the SUBCOMMAND option on the command line. The
name of the subcommand file to be input is specified as a parameter of the SUBCOMMAND
option.

The Linkage Editor can use a subcommand file even when subcommands are input interactively.
Specify the SUBCOMMAND subcommand with the subcommand file name as a parameter.

HITACHI 35

331 Executing in Interactive Mode

In this method, subcommands required for Linkage Editor operations are input directly from the
standard input device. Execution proceeds by this method when no input files are specified on the
command line and the SUBCOMMAND option is not specified. Use the interface mode when the
number of subcommands to beinput is relatively small, or when it is desired to confirm linkage
results while inputting subcommands, asin the first stage of program debugging. When the
debugging support function is used, the interface mode is the most suitable.

An example showing input of subcommands in interactive mode is given below. Functions of the
subcommands listed here are detailed in section 4, Linkage Editor Options and Subcommands.

EXAMPLE:

Ink (RET) ..o 1)
SINPUTAmain (RET) ..o ()]
: I NPUTAsend, r ecei ve, exchange (RET)..... 3
: INPUTAaccount (RET)............ ... 4)
: LIBRARYAsyslib (RET).......... 5)
D PRINTA # (RET) ..o (6)
D FORMAR (RET) . ot @)
DBEXAT O (RED) . (8)

(1) Command line, starting up the Linkage Editor in interactive mode.
(2) Inputs object module file “main.obj.”

(3) Inputs three object module files “ send.obj,
(4) Inputs object module file “account.obj.”
(5) Inputs library file “sydlib.lib.”

(6) Outputs linkage list to standard output device.

(7) Creates aload module in rel ocatable format.

(8) Outputs load module file “main.rel” and ends the linkage operation.

receive.obj,” and “exchange.obj.”

36 HITACHI

332 Executing from a Subcommand File

In this method, a subcommand file is used which has been created in advance and which contains
the subcommands necessary for Linkage Editor operations. This subcommand file is specified as a
parameter of the SUBCOMMAND option or subcommand. This method is used when the number
of subcommands to be specified is large, or the same linkage processis carried out repeatedly. It
saves trouble of inputting subcommands from the keyboard one at atime.

A subcommand file is created using an editor. An example of executing from a subcommand file
is given below. Functions of the subcommands listed here are detailed in section 4, Linkage Editor
Options and Subcommands.

EXAMPLE 1:
| nkA- SUBCOWAND=pr gl nk. sub (RET)..... @

Contents of subcommand file “prglnk.sub”:

QUTPUTAfunction., 2
INPUTAsIin,cos, tan. ©)]
I NPUTAasin,acos,atan. (4)
| NPUTAhsi n, hcos, htan. (5)
I NPUTAI 0g,10910. oo (6)
FORMAA e)
EXI T (8)

(1) Command line, starting up the Linkage Editor and entering subcommands from subcommand
file“prgink.sub.”

(2) Names the output file as“function.” Either “.rel” or “.abs’ is assumed, because thefile typeis
omitted.

(3) Inputs object module files “sin.obj,” “cos.obj,” and “tan.obj.”

(4) Inputs object module files “asin.obj,” “acos.obj,” and “atan.obj.”
(5) Inputs object module files “hsin.obj,” “hcos.obj,” and “htan.obj.”
(6) Inputs object module files “log.obj” and “log10.0bj.”

(7) Creates aload module in absolute format. The file type for the output file name becomes
“.abs.”

(8) Outputs load module file “function.abs’ and ends the linkage operation.

HITACHI 37

EXAMPLE 2:

(1) Command line, starting up the Linkage Editor. Module linkage is executed interactively,
because no parameters are specified.

(2) Inputs subcommands from “pgmink.sub.”

If thereisno EXIT subcommand in the subcommand file, the Linkage Editor waits for further
subcommand inpuit.

34 Terminating the Linkage Editor

When terminated, the Linkage Editor returns an error level to the system as areturn code. This
return code controls the execution of acommand file.

The return code has the values shown in table 3-2, depending on the error level.

Table3-2 Return Code Depending on Error Level

Return Code

Error Level MS-DOS UNIX
Normal termination 0 0
Warning 0 0
Error 2 1
Fatal error 4 1

38 HITACHI

Section 4 Linkage Editor Options and Subcommands

Options and subcommands specify file names and give the Linkage Editor various instructions,
such as the order in which sections are to be linked. Options and subcommands have four types of
functions: file control, memory alocation, execution control, and debugging support. These
functions can be used independently or in combination to edit load modules in various ways.

(1) File Control Functions: File control functions specifiesinput files and output filesto the
Linkage Editor. Input files include object module files, rel ocatable load module files and
library files. Output files are load module files and list files.

(2) Memory Allocation Functions. Memory allocation functions can inform the Linkage Editor
the order in which sections are to be linked and give their start addresses. They can also
specify the address at which the output load module isto start executing. These functions
change the order in which sections are linked, or create aload module that isto execute from a
specified address.

(3) Execution Control Functions: Execution control functions specify the form in which the
Linkage Editor is to input and output information, and end Linkage Editor operations. They
input subcommands from a subcommand file, or incorporate debugging information in aload
module.

(4) Debugging Support Functions: Debugging support functions display contents of aload
module during a linkage operation, or change information such as export and import symbol
names, etc. These are useful at the program debugging stage, for confirming interim linkage
results, or for provisional recovery from errors.

Options and subcommands have the same names and have equivalent functions, but are specified
using different formats. Moreover, some specifications can be made only with either
subcommands or options. Section 4.1, Option and Subcommand Formats, and section 4.2, List of
Options and Subcommands, should accordingly be read carefully.

For details on the functions and means of specifying each option and subcommand, refer to
sections 4.3, File Control, through 4.6, Debugging Support.

HITACHI 39

4.1 Option and Subcommand Formats
(1) Option and Subcommand Structure:

(@) Name: The name part gives the name of the option or subcommand. For details, see
section 4.2, List of Options and Subcommands.

(b) Parameters. The parameter part gives information such as the name of files on which the
option or subcommand operates, and address values. There are different requirements and
methods of specification depending on the option or subcommand. See sections 4.3, File
Control, 4.4, Memory Allocation, 4.5, Execution Control, and 4.6, Debugging Support.

Options and subcommands differ asto the way of separating the name from the parameters.
Options use an equals sign (=), while subcommands use one or more spaces or tabs.

Option format
<Nane>=<par anet er s>

Subcommand format
<Name>A<par amet er s>

EXAMPLES:
-QUTPUT=l oadf Option
QUTPUTAl oadf Subcommand

In these examples, “OUTPUT"” isthe name, and “loadf” is the parameter.

40 HITACHI

(2) Continuation Specification for a Subcommand: When a subcommand istoo long to be
specified on one line (generally, up to 500 characters per line, but it will depend on the OS), a
continuation specifier is used. Thisis an ampersand (&) at the end of the line. It must always
be placed in between two parameters; if it is placed within a parameter, it will be interpreted as
part of the parameter. If a character (other than a space or tab) is typed after the ampersand, an
error will occur and the subcommand will not be continued.

If continuation is specified in interactive mode, a hyphen (-) appears as a prompt for further
input.

EXAMPLES:

© I NPUTA obj 00, | i b(mod0, nod1), & (RET)

~oPI 0L, ob 02 (RED E Continuation specifier

: I NPUTA obj 00, | i b(mod0, nod1), ob& (RET)

: . o 1 Processed under the file name ob& due
Not a continuation line

to specification within parameter

(3) Specifying Commentsin a Subcommand File: A comment specifier adds notes or other
commentsin a subcommand file. The specifier isa semicolon (;) placed on a subcommand
line, indicating that the rest of the line isacomment. At least one space or tab must set off the
semicolon from the subcommand name or parameter.

When asemicolon is placed at the beginning of a subcommand line, the entire line istaken asa
comment.

EXAMPLES:

;. EXAMPLE CF LI NKAGE SUBCOVWAND
...... The entire line is acomment.

LI BRARYAsysl i bA; | NDI CATES LI BRARY FI LE
...... “INDICATESLIBRARY FILE" isacomment.

I NPUTAobj ect . rel ; abc
...... object.rel;abc” istreated as one parameter.

HITACHI 41

4.2 List of Options and Subcommands

There are 20 options and 29 subcommands. The options and subcommands are listed in table 4-1.

Options and subcommands can be written either in uppercase or lowercase |etters.

Table4-1 List of Optionsand Subcommands
Option/ Sub-
No. Type Subcommand Name Function Option command Section
1 File INPUT Specifies input file No Yes 43.1
control OQUTPUT* (NOQUTPUT) Specifies output file Yes Yes 432
LIBRARY (NOLIBRARY)* Specifies library file Yes Yes 4.3.3
PRINT (NOPRINT)* Specifies list file Yes Yes 434
EXCLUDE (NOEXCLUDE)* Excludes modules from Yes Yes 435
linking
DIRECTORY Specifies directory name No Yes 4.3.6
replacement
2 Memory START Specifies section start Yes Yes 4.4.1
allocation address and linking order
ENTRY Specifies execution start Yes Yes 4.4.2
address
ALIGN_SECTION Specifies linkage of Yes Yes 4.4.3
sections having different
boundary alignment
values
CHECK_SECTION Specifies section check Yes Yes 4.4.4
AUTOPAGE (NOAUTOPAGE)* Specifies automatic Yes Yes 445
paging
CPU Specifies address check Yes Yes 4.4.6
CPUCHECK Specifies output of errors Yes Yes 4.4.7
at address check
ROM Specifies support of Yes Yes 448

storing program in ROM

Notes: 1. The shortest permissible abbreviated forms are underlined.

2. Yes and No in the table indicate whether an item can be used as an option or

subcommand.
3. An asterisk indicates the default option or subcommand.

42 HITACHI

Table4-1 List of Optionsand Subcommands (cont)
Option/ Sub-
No. Type Subcommand Name Function Option command Section
3 EXCHANGE Substitutes units No Yes 45.1
SUBCOMMAND Specifies subcommand Yes Yes 4.5.2
file
EFORM Specifies format of Yes Yes 45.3
output load module file
EBUG (NODEBUG)* Specifies output of Yes Yes 45.4
debugging information
SDEBUG Specifies output of Yes Yes 455
debugging information to
a file
END Terminates No Yes 4.5.6
subcommand input
EXIT Terminates linkage No Yes 4.5.7
operation
ABORT Aborts linkage operation No Yes 4.5.8
ECHO* (NOECHO) Specifies subcommand Yes Yes 45.9
file echo-back
UDF* (NOUDF) Specifies display of Yes Yes 4.5.10
undefined symbols
UDFCHECK Specifies output of error Yes Yes 4511
for undefined symbol
4 Debugging LIST Displays interim linkage No Yes 46.1
support information
RENAME Changes name of unit, No Yes 4.6.2
export symbol, or import
symbol
DELETE Deletes unit or export No Yes 4.6.3
symbol
DEFINE Forcibly defines import Yes Yes 4.6.4
symbol
Notes: 1. The shortest permissible abbreviated forms are underlined.

2. Yes and No in the table indicate whether an item can be used as an option or
subcommand.

3. An asterisk(*) indicates the default option or subcommand.

HITACHI 43

(2) Negative Form of Options and Subcommands: For some options and subcommands, a
negative form starting with “NO” can be specified. Parameters cannot be specified with
negative-form options and subcommand. There are eight negative option/subcommand forms,
asfollows:

(@) NOOUTPUT: Suppresses output of load module file

(b) NOLIBRARY: Specifies non-use of alibrary file

(c) NOPRINT: Suppresses output of alist file

(d) NOEXCLUDE: Specifieslinking of modules

(e) NOAUTOPAGE: Suppresses automatic paging

(f) NODEBUG: Suppresses output of debugging information
(g) NOECHO: Suppresses echo-back of a subcommand file
(h) NOUDF: Suppresses display of undefined symbols

(2) Option Default: When an option is omitted, the following are the default choices.

(&) OUTPUT (no parameters)
(b) NOLIBRARY

(c) NOPRINT

(d) NOEXCLUDE

(e) NOAUTOPAGE

(f) FORM=A

(9) NODEBUG

(h) ECHO

(i) UDF

(3) Abbreviating Option and Subcommand Names: Names of options and subcommands can
be abbreviated to the point where the name can still be distinguished from other names. For
example, consider the name “DEBUG.”

D: Cannot be distinguished from DELETE or DEFINE, so an error occurs
DE: Cannot be distinguished from DELETE or DEFINE, so an error occurs
DEB: Recognized as DEBUG

DEBU: Recognized as DEBUG
DEBUG: Recognized as DEBUG
DEBUGS: No such name, so an error occurs

44 HITACHI

(4) Range of Validity of Options: When only acommand lineis specified, linkage is executed
based only on the options specified. When subcommands are specified, options specified in the
command line remain valid up to the first END subcommand specified (or up to the EXIT
subcommand when no END is specified). However, if subcommands are specified which
conflict with the function of an option, an error message is displayed, the option becomes
invalid, and execution proceeds according to the subcommand specification. After the first
END subcommand, al subsequent subcommand specifications are valid.

EXAMPLE:

| nk A - NOOUTPUT (RET ionisi
n : (RET) The NOOUTPUT optionisin effect,

' so no output fileis created.
: END (RET)

. i . The OUTPUT subcommand is now valid,
' ClJTF;)UTA loadfile (RET) so output file “loadfile.abs’ is created.

HITACHI 45

In the following sections the format below is used to describe each option and subcommand.

Heading for each option

4 or subcommand

Option or subcommand

name, and format for
specifying parameters,

No.

Format Name Option Subcommand Negative Form
Parameters

Function

Explanation

Examples

46 HITACHI

underline indicates
shortest abbreviation

~—— Summary of option or
subcommand functions

- Detailed description
of functions, and
restrictions

-—— Examples of option
or subcommand
specifications

4.3 File Control

431 INPUT—Specifies Input Files INPUT
Format Name Option Subcommand Negative Form
None INPUT None

Parameters <Input file name>[(<module name>[,<module name>...])]

[{.,|A} <Input file name> [(< module name>[,<module name>...])]...]

Function Specifies files and modules to be input.

Explanation (1) Outline of functions:

Thefiles specified by parameters, or the specified modules in those files, are
input to the Linkage Editor.

Three kinds of files can be specified: object module files, load module files, and
library files.

Modules can be specified only for library files, in which case only the specified
modules from the library file will be input.

If the file type is omitted from a file name, the Linkage Editor will
automatically assume the type as follows.

No module name specified: “.obj
M odule name specified: “lib”

(2) Restrictionsin use:

Among load module files, only relocatable |oad modules can be specified. If an
absolute load module is specified, an error will occur and the file will not be
input.

If amodule other than that in alibrary fileis specified, an error will occur and
the file will not be input.

The maximum number of input files that can be treated in one linkage process
is 256, including library files. If more than 256 files are specified, an error will
occur, and only thefirst 256 files specified will be input. To process more than
256 files, use the multilinkage function.

Page type and non-page type modules must not be input at the same time. If
both types of modules are input together, an error will occur and the Linkage
Editor will stop execution.

HITACHI 47

Examples | NPUTAnai n
Inputs the object module file “main.obj.”

I NPUTAf uncl i b(sin, cos),tan. o

Inputs the modules “sin” and “cos’ from library file “funclib.lib,” and
inputs the object module file “tan.o.”

48 HITACHI

432 OUTPUT—Specifiesan Output File OUTPUT

Format Name Option Subcommand Negative Form
OUTPUT OUTPUT NOQUTPUT
Parameters [<Output file name>]

Function Specifies aload module output file name.

Explanation (1) Outlineof functions:

» Outputs the load module generated by the Linkage Editor to the specified file.

« If thefiletype is omitted from the file name, the Linkage Editor will
automatically assign afile type according to the format of the load modulefile,
asfollows.

Absoluteformat “.abs”

Relocatable format “.rel”
The format of the load modulefile is specified using the FORM option or
subcommand. If no specification is made, absolute format is used.

» If no output file name is specified using the OUTPUT option or subcommand,
the output file is given the name of the first specified input file plus the above
filetype.

* If the NOOUTPUT option or subcommand is specified, no load module file
will be output.

(2) Redtrictionsin use:
» No parameters can be specified with the NOOUTPUT option or subcommand.
» If an output file name is specified, it must be different from al input file names.

Examples - QUTPUT=pr gl oad
Outputs load module file “prgload.abs’ (or “prgload.rel™).

- QUTPUT
Outputs load module file with the name of the first specified object module
file plus“.abs’ (or “.rel”).

QUTPUTAMai n. 10
Outputs load module file “main.10.”

HITACHI 49

433 LIBRARY—SpecifiesLibrary Files LIBRARY

Format

Name Option Subcommand Negative Form

LIBRARY LIBRARY NOL IBRARY

Parameters <Library file name>[<library file name>...]

Function

Specifiesinput library files.

Explanation

(1) Outline of functions:

Specifies library files which the Linkage Editor isto search if there are
unresolved import symbols after linkage operations among specified input files
are compl eted.

If both user library files and system library files are specified, the Linkage
Editor will search the user library filesfirst.

If no file type is specified with the library file name, the Linkage Editor
automatically assumesthisto be “.lib.”

If the NOLIBRARY option or subcommand is specified, there will be no input
from alibrary file (including default libraries). When linkage is controlled by
subcommand specification, however, the range of validity of this optionis
limited. For details see Range of Validity of Options under section 4.2.

(2) Restrictionsin use:

Only library files created using the H Series Librarian can beinput to the
Linkage Editor.

The maximum number of input files that can be treated in one linkage operation
is 256, including library files. If more than 256 files are specified, an error will
occur, and only the first 256 files specified will be input. To process more than
256 files, use the multilinkage function.

Page type and non-page type modules must not be input at the same time. If
both types of modules are input together, an error will occur and the Linkage
Editor will stop execution.

No parameters must be specified with the NOLIBRARY option or
subcommand.

Examples

- LI BRARY=sysl i b.

Specifieslibrary file“sydlib.”

LI BRARYAsyst em debug

Specifieslibrary files“system.lib” and “debug.lib.”

50 HITACHI

434 PRINT—SpecifiesalList File PRINT

Format Name Option Subcommand Negative Form
PRINT PRINT NOPRINT
Parameters | <List file name>
#
Function Specifiesalist file for output of linkage list.
Explanation (1) Outlineof functions:
» Outputs alinkage list to the specified list file.
« If the parameter “#” is specified, the list fileis output to the standard output
device.
e 1f no PRINT option or subcommand is specified, or if the NOPRINT option or
subcommand is specified, the linkage list will not be output.
» If nofiletypeis specified with the list file name, the Linkage Editor will
automatically assume thisto be “.map.”
* Onthe contents of the linkage list, see section 6.1, Linkage Lists.
(2) Restrictionsin use:
* No parameters must be specified with the NOPRINT option or subcommand.
Examples - PR NT=li nkage

Outputs alinkage list to list file “linkage.map.”

PR NTAearth. prn
Outputs alinkage list to list file “earth.prn.”

HITACHI 51

435 EXCLUDE—EXxcludes Modulesfrom Linking EXCLUDE

Format Name Option Subcommand Negative Form
EXCLUDE EXCLUDE NOEXCLUDE
Parameters None

Function Specifies that modules defining non-referenced import symbols should not be
linked.

Explanation (1) Outline of functions:
e If animport symbol is not referenced, the module defining it is not linked.
* When the NOEXCLUDE option or subcommand is specified, modules defining
non-referenced import symbols are linked. The defining modules are also
linked if the EXCLUDE option or subcommand is omitted.

(2) Redtrictionsin use:
« The EXCLUDE subcommand cannot be used after input files have been
specified by the INPUT or EXCHANGE subcommand.

» The EXCLUDE option or subcommand can be specified only when the output
load moduleisin absolute format. When the multilinkage function is used to
create an absolute load module in the final linkage process, if the default library
function is also used, the modules from the default library will beincluded in
the first linkage process. If you want the default library to be included in the last
linkage process, specify the NOLIBRARY subcommand for the intermediate
linkage processes.

Examples - EXCLUDE
If an import symbol is not referenced, the module defining it is not linked.

52 HITACHI

436 DIRECTORY—Specifies Directory Name Replacement DIRECTORY

Format Name Option Subcommand Negative Form

None DIRECTORY None

Parameters <Symbol name>(<Directory name>)

Function Defines asymbol as an alias of adirectory. This function enables along directory
name to be input with asimple symbol name.

Explanation < Directory name alias definition

A symbol nameis defined as an alias of a directory with the DIRECTORY
subcommand.

DIRECTORY A<symbol name>(<directory name>)

» Directory name reference

To refer to adirectory name, enclose the defined symbol name with adollar
mark ($) and adash (/) (adollar mark ($) and a back-dash (\) in MS-DOS
system). If the symbol name has not been defined, the Linkage Editor does not
replace it with a directory name.

$<symbol name>/ —> Replaced with <directory name>/

» Symbol names for up to 16 directory names can be defined.

Examples D RECTORYAsynbol (dir1/dir2)
| NPUTA$synbol / fi | el. obj
Defines symbol “symbol” as an dias of directory “dirl/dir2”.

Replaces $symbol/with dirl/dir2, and as aresult, specifies file name
“dirl/dir2/filel.obj”.

HITACHI 53

44 Memory Allocation

441 START—Specifies Start Addressand Linkage Order of Sections START
Format Name Option Subcommand Negative Form
START START None

Parameters Option

UNI X <Section name>[,<section name>...][/[<page address>:]<start address>]
[,<section name>[,<section name>...][/[<page address>:]<start address>]...]

MS- <Section name>[,<section name>...][([<page address>:]<start address>)]
DOS:; [,<section name>[,<section name>...][([<page address>:]<start address>)]...]

Sub- <Section name>[,<section name>...][([<page address>:]<start address>)]
com- [,<section name>[,<section name>...][([<page address>:]<start address>)]...]

mand
Function Specifies the order in which sections are linked, and their start addresses.
Explanation (1) Outline of functions:

Sections are allocated from the specified address and in the specified order.

If the start addressis not specified and only the section linkage order is
specified, and sections are assigned addresses starting from zero.

Page address can be specified only for page type modules. If the page addressis
not specified, it is assumed to be zero.

The page address and start address are specified in hexadecimal notation.

When sections not specified in the parameters are input, those sections are
assigned after the series of sections with the highest specified start address.

If no START option or subcommand is specified, sections will be allocated to
addresses starting from zero in the order of appearance.

The START option or subcommand can be specified more than once.
Hexadecimal numbers must start with numbers 0 through 9.

(2) Restrictionsin use:

If the load module to be output isin relocatable format, the START option or
subcommand must not be used.

If apage address is specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

EX: OABCD Correct designation
ABCD Incorrect designation

54 HITACHI

Explanation

Page addresses must be assigned in the range from 0 through OFF
(hexadecimal).

The range of start addresses that can be specified varies with the H series
model.

H8/500 series: 0 through OFFFF (hexadecimal)

H8/300 series: 300HA: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

H8/Sseries: 2600A and 2000A: 0 through OFFFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

SH series: 0 through OFFFFFFFF (hexadecimal)

Examples

- START=CCDE, DATA, BSS, STACK

Links sectionsin the order “CODE,” “DATA,” “BSS,” “STACK,” and
allocates them to addresses starting from O (hexadecimal)

- START=CONTROL, BANKO, BANKL(OF00) (M5- DCS)
- START=CONTRCL, BANKO, BANK1/ OF00 (UNI X)

Links sectionsin the order “CONTROL,” “BANKO,” “BANK1,” and
allocates them to addresses starting from OF00 (hexadecimal).

STARTACONTRCL, BANKO, BANK1(0: OF00)

Links sectionsin the order “CONTROL,” “BANKO,” “BANK1,” and
allocates them to addresses starting from OF0O0 (hexadecimal) in page O.

STARTARAMD, RAML(8000) , ROML, ROVR(1000) , ROVD
Links sections“RAMO” and “RAM1” in that order and allocates them to
addresses starting from 8000 (hexadecimal). Sections “ROM1” and
“ROMZ2" arelinked in that order and are allocated to addresses starting from
1000 (hexadecimal). Section “ROMOQ” is allocated to addresses starting
from zero.

HITACHI 55

442 ENTRY—Specifies Execution Start Address ENTRY

Format Name Option Subcommand Negative Form

ENTRY ENTRY None

Parameters <Export symbol>

Function Specifies the start address for executing aload module.

Explanation (1) Outlineof functions:

» Setsthe address of an export symbol as the execution start address of aload

modul e to be output.

* If no ENTRY option or subcommand is specified and the output load module
format is absolute, the execution start address becomes the start address of the

first code section in the output load module.

(2) Redtrictionsin use:

e If an ENTRY option or subcommand is specified more than once, the last

specified addressis valid.

Examples - ENTRY=PRG_ENT

Specifies the address of export symbol “PRG_ENT” asthe execution start

address.

ENTRYANAI N

Specifies the address of export symbol “MAIN” as the execution start

address.

56 HITACHI

4.4.3 ALIGN_SECTION—Specifies Linkage of Sections Having ALIGN SECTION
Different Boundary Alignment Values B

Format Name Option Subcommand Negative Form
ALIGN_SECTION ALIGN_SECTION None

Parameters None

Function Specifies address assignment for sections having the same name but different
boundary alignment values (specified with the ALIGN operand in the . SECTION
directive of the assembler), handling the sections as the same one.

Explanation Outline of functions:

» Sections having the same name but different boundary alignment values can be
generated by using the ALIGN operand in the .SECTION directive of the
assembler. In this case, the Linkage Editor usually does not handle these
sections as the same section when assigning addresses because they have
different boundary alignment values. Specifying the ALIGN_SECTION option
enables these sections to be handled as the same section.

Examples - ALl GN_SECTI ON

Assigns addresses for sections having different boundary alignment values
handling the sections as the same section.

HITACHI 57

444 CHECK_SECTION—Specifies Section Check CHECK_SECTION

Format Name Option Subcommand Negative Form
CHECK_SECTION CHECK_SECTION None
Parameters None

Function Outputs awarning and continues processing if a section that has not been specified
with the START option/subcommand is found in an input file.

Explanation (1) Outline of functions:
e Checkswhether the input files include a section whose start address has not
been specified with the START option/subcommand, and outputs warning
message 120 when such a section is found.

(2) Restrictionsin use:
» Processing continues after the warning message is output.

Examples - OHECK_SECTI ON

Checks whether the input files include a section whose start address has not
been specified and outputs a warning when such a section is found.

58 HITACHI

445 AUTOPAGE—Specifies Autopaging Function AUTOPAGE

Format Name Option Subcommand Negative Form

AUTOPAGE AUTOPAGE NOAUTOPAGE
Parameters None

Function Specifies autopaging in assignment of addresses to page type modules.

Explanation (1) Outlineof functions:
» When a page type moduleis linked, addresses are assigned by automatic
paging.
» If the AUTOPAGE option or subcommand is not specified, or if the
NOAUTOPAGE option or subcommand is specified, addresses are not
assigned by automatic paging.

(2) Restrictionsin use:

» The AUTOPAGE option or subcommand must not be specified when linking
non-page type modules are linked. Such specification will result in an error, and
the Linkage Editor will stop execution.

» If the NOAUTOPAGE option or subcommand is specified when page type
modules are linked, sections may overlap page boundaries. If overlap occurs,
the Linkage Editor displays awarning.

Examples AUTCPAGE
Assigns addresses by autopaging.

- NQAUTCPACE
Assigns addresses without regard to page boundaries.

HITACHI 59

4.4.6 CPU — Specifies Address Check Using a CPU I nformation File CPU

Format Name Option Subcommand Negative Form
CPU CPU None
Parameters <CPU information file name>

Function Specifies execution of an address check using a CPU information file.

Explanation (1) Outlineof functions:

« Thevalidity of addresses assigned to each section is checked, based on CPU
information. In the following cases the section address assignment is regarded
asinvalid, and the Linkage Editor displays awarning. The sections, however,
are output to the load module file without changing the addresses.

(d) When sections are assigned addresses in areas other than memory.
(b) When one section is assigned to addresses overlapping memory areas
having different memory types and attributes.

« If nofiletypeis specified with the CPU information file, the Linkage Editor
will automatically assume thisto be “.cpu.”

(2) Restrictionsin use:
* Inthefollowing cases the Linkage Editor displays a warning, and the CPU
option or subcommand isinvalid.
(a) Relocatable format is specified for load module output with the FORM
option or subcommand.
(b) The information format of the CPU information fileisinvalid.
(c) A CPU information fileis specified for linkage processing of object
modules that are not for the H8S, H8/300, or SH series.
* When a CPU option or subcommand is specified more than once, awarning
message is displayed, and only the last-specified fileis valid.

Examples - CPU=ci nf
Inputs CPU information file “cinf.cpu.”

CPUAC300. i nf
Inputs CPU information file “c300.inf.”

60 HITACHI

447 CPUCHECK—Specifies Error Output at Address Check CPUCHECK
Using CPU Information File

Format Name Option Subcommand Negative Form
CPUCHECK CPUCHECK None

Parameters None

Function Changes the warning message into an error message when an address check is
executed with the CPU option/subcommand using the CPU information file.

Explanation (1) Outline of functions:

e Outputs error 329 and aborts processing when memory allocation does not
match the memory layout specified in the CPU information file. This error
occursin the same conditions as those generating a warning when the CPU
option/subcommand is specified (see section 4.4.6).

(2) Restrictionsin use:
* When neither the CPU option nor subcommand is specified, the CPFUCHECK
option/subcommand is ignored.

Examples - CPUGEX
Specifies error message output in the conditions that generate a warning at
CPU option/subcommand execution and aborts processing in these cases.

HITACHI 61

448 ROM—Specifies Support of Storing Program in ROM ROM

Format Name Option Subcommand Negative Form
ROM ROM None

Parameters UNIX: <Section 1>/<Section 2>[,<Section 1>/<Section 2>...]
MS-DOS. (<Section 1>,<Section 2>)[(<Section 1>,<Section 2>),...]

<Section 1>: Section name of sourceinitialized data areain ROM
<Section 2>: Section name of destination initialized dataareain RAM

Function Reserves aRAM areafor updating initialized data values stored in ROM.

Explanation (1) Outline of functions:
* Inthe output load module, a section with the same section size as the specified
section 1 isreserved as section 2. Section 2 has the same section attributes as
section 1.

» Referencesto symbols declared in section 1 are relocated to addresses in
section 2. Specify arelocatable section as section 1.

» Upto 64 pairs of section 1 and section 2 pairs can be specified.

» For details of the support of storing program in ROM, see section 2.7, Support
of Storing Program in ROM.

(2) Restrictionsin use:
* The ROM option or subcommand cannot be specified when the output 1oad
module has the rel ocatable format.

 If two sections have the same name and this name is specified as section 1, the
section input first is selected.

* Anerror occurs if section 1 does not exist.
e A dummy section cannot be specified as section 1.

* When an existing section is specified as section 2, the following conditions
must be satisfied.

(a) Thesize of section 2in each unitisO.
(b) Section 2 isthe relocatable section.
(c) Both section 1 and section 2 have the same attribute.

Examples - ROVED' RAM SCT (N X)
- ROME(D, RAM SCT) (M5- DOB)
Reserves section RAM_SCT, equal in sizeto section D, in the output |oad

module. References to symbols allocated to section D are relocated to
addresses on RAM_SCT.

62 HITACHI

45 Execution Control

451 EXCHANGE—Forcibly Replaces Units EXCHANGE
Format Name Option Subcommand Negative Form
None EXCHANGE None

Parameters <Input file name>[(<unit name>[,<unit name>...])]

Function Replaces unitsin an input file by units of the same name in the load module being
processed by the Linkage Editor.

Explanation (1) Outlineof functions:

» Unitsin the specified input file are replaced by units of the same name in the
load module being processed by the Linkage Editor.

» Anobject module file or load module file can be specified as the input file.

» If aload moduleis specified as the input file without specifying unit names, all
the unitsin that load module file will be usable for replacement.

« If nofiletypeisgiven with the input file name, the Linkage Editor will
automatically assume “.obj” asthefile type.

» Unitsare replaced after al input files have been included. If more than one
EXCHANGE subcommand is specified, units will be replaced in the order of
specification.

(2) Restrictionsin use:
* An absolute load module must not be specified. If an absolute load moduleis
specified, an error will occur, and the file will not be input.

e Alibrary file must not be specified asthe input file. If alibrary fileis specified,
an error will occur, and the file will not be input.

Examples EXCHANGEAdat ai n

Replaces unitsin the object module file “datain.obj” by units of the same
name in the load module file being processed.

EXCHANGEAf uncti on. rel (tan, at an)

Replaces the units “tan” and “atan” in relocatable load module file
“function.rel” by units of the same name in the load module file being
processed.

HITACHI 63

452 SUBCOMM AND—Specifies a Subcommand File SUBCOMMAND

Format Name Option Subcommand Negative Form
SUBCOMMAND SUBCOMMAND None
Parameters <Subcommand file name>

Function Specifies a subcommand file for input.

Explanation (1) Outlineof functions:

e Subcommands are input from the specified subcommand file.

e If the SUBCOMMAND option is not specified on the command line, and no
input fileis specified there, the Linkage Editor will link modules according to
the subcommands input in interactive mode.

e If the SUBCOMMAND option is not specified on the command line but one or
more input files are specified there, the Linkage Editor will link modules
according to the command line specification.

(2) Restrictionsin use:

* When a subcommand file is specified on the command line together with input
files or other options, the subcommand file is executed as the last option,
regardless of its specification position. For example:

Ink inl,in2 - SUB = |inkage.sub - FORM = R
(1) @) ©)
This command line isinterpreted and executed in the order (3), (1), (2). If
FORM=A is specified in linkage.sub, FORM=A isvalid (because it is
interpreted afterward).
e The SUBCOMMAND subcommand cannot be specified in a subcommand file.

Examples - SUBCOMVAND=I i nkage. sub

Inputs subcommand file “linkage.sub” and links modules according to the
contents of thisfile.

64 HITACHI

453 FORM —Specifies Output L oad Module File For mat FORM

Format Name Option Subcommand Negative Form
EORM EORM None
Parameters A
N

Function Specifies the output load module file format as either absolute or relocatable.

Explanation (1) Outline of functions:
* If parameter “A” is specified, the load module file will be output in absolute
format.

» If parameter “R” is specified, the load module file will be output in relocatable
format.

« If no FORM option or subcommand is specified, the load module will be output
in absolute format.

(2) Restrictionsin use:
* The parameter “R” cannot be specified when the ROM or START option or
subcommand is specified.

Examples -FCRWR
Outputs the load module filein relocatable format.

FORVAA
Outputs the load module file in absolute format.

HITACHI 65

454 DEBUG—Specifies Output of Debugging Information DEBUG

Format Name Option Subcommand Negative Form
DEBUG DEBUG NODEBUG

Parameters None

Function Specifies incorporation of debugging information in the output load module file.

Explanation (1) Outlineof functions:
 Incorporates debugging information in the output load modulefile. This
information is required for symbolic debugging using the Simulator/Debugger.
» If no DEBUG option or subcommand is specified, or if the NODEBUG option
or subcommand is specified, debugging information will not be incorporated in
the output load modulefile.

(2) Redtrictionsin use:
« |If the NOOUTPUT option or subcommand is specified, the DEBUG option or
subcommand is ignored.

Examples DEBUG
Incorporates debugging information in the output load module file.

- NCDEBUG
Does not incorporate debugging information in the output load module file.

66 HITACHI

455 SDEBUG—Specifies Output of Debugging I nformation to a File SDEBUG

Format Name Option Subcommand Negative Form
SDEBUG SDEBUG None
Parameters None

Function Outputs a debugging information file separately from aload module. Some
debuggers require the object and debugging information as separate files. In this
case, the SDEBUG option/subcommand must be specified.

Explanation (1) Outline of functions:
* Outputs a debugging information file separately from aload module.

Object file: File extension .abs.
Debugging file: File extension .dbg.

* When the debugging information is output as a separate file, the time for
downloading the load module at debugging can be reduced.

(2) Restrictionsin use:

» When therelocatable format is specified for the output |oad module, the
SDEBUG option/subcommand cannot be used.

* If the NOOUTPUT option/subcommand is specified, the SDEBUG
option/subcommand is ignored.

Examples - SDEBUG
Outputs a debugging file and an object file separately.

HITACHI 67

456 END—Specifies End of Subcommand Input END

Format Name Option Subcommand Negative Form
None END None
Parameters None

Function Temporarily endsinput of subcommands and begins linkage operation (after which
subcommand input is resumed).

Explanation (1) Outline of functions:
e Temporarily ends input of subcommands and begins a linkage operation. After
the linkage operation is completed, the Linkage Editor isinitialized and
subcommand input is resumed.

« When the multilinkage function is used to perform multiple linkage operations
during a course of Linkage Editor execution, the END subcommand indicates
the end of one linkage process.

* When the multilinkage function is not used, or when the end of the final linkage
processis specified in amultilinkage operation, use the EXIT subcommand in
place of the END subcommand.

(2) Restrictionsin use:
« If, for asingle linkage process, the END subcommand is specified without
specifying input files, an error will occur.

Examples BE\D
Temporarily ends subcommand input and begins a linkage operation.

68 HITACHI

457 EXIT—Specifies End of Linkage Operation EXIT

Format Name Option Subcommand Negative Form
None EXIT None

Parameters None

Function Ends subcommand input and begins linkage operation (subcommand input is not
resumed).

Explanation Outline of functions:

» Ends subcommand input and begins linkage operation. After the linkage
operation is completed, ends the Linkage Editor execution.

* When execution is controlled from a subcommand file, if no EXIT
subcommand is specified, the Linkage Editor waits for further subcommand
input.

» If, for asingle linkage process, the EXIT subcommand is specified without
specifying input files, an error will occur.

Examples EXT
Ends subcommand input and begins linkage operation.

HITACHI 69

458 ABORT—Specifies Forced End of Linkage Operation ABORT

Format Name Option Subcommand Negative Form
None ABORT None
Parameters None

Function Forcibly ends linkage operation.

Explanation Outline of functions:
« Forcibly ends Linkage Editor operation.
* The ABORT subcommand is useful to interrupt Linkage Editor operation when
amistake such as subcommand input mistake has been made.

Examples ABCRT
Brings Linkage Editor execution to aforced end.

70 HITACHI

459 ECHO—Specifies Subcommand File Echo-Back ECHO

Format Name Option Subcommand Negative Form
ECHO ECHO NOECHO

Parameters None

Function Specifies whether or not to suppress echo-back of subcommands when a
subcommand file is executed.

Explanation Outline of functions:
e The ECHO option or subcommand displays subcommands on the console when
a subcommand file is executed. Subcommands are displayed even if the ECHO
option or subcommand is not specified.
e The NOECHO option or subcommand suppresses display of subcommands on
the console when a subcommand file is executed.

Examples -EGO
Displays executed subcommands on the console when a subcommand fileis
executed.

HITACHI 71

4510 UDF—Specifies Display of Undefined Symbols UDF

Format Name Option Subcommand Negative Form
UDF UDF NOUDF
Parameters None

Function Specifies whether to display awarning message when an undefined symbol
remains.

Explanation (1) Outline of functions:
« Warning message 105 is displayed if an undefined symbol remains when a
relocatable load moduleis created. This message is also displayed if an
undefined symbol remains when the UDF option or subcommand is omitted.

* When the NOUDF option or subcommand is specified, awarning message is
not displayed if there is an undefined symbol when arelocatable load moduleis
created.

(2) Restrictionsin use:
* The NOUDF option or subcommand is ignored when an absolute load module
is created.

Examples - FORVER- NOUDF

Does not display awarning message if there is an undefined symbol when
the relocatable load moduleis created.

72 HITACHI

4511 UDFCHECK—Specifies Output of an Error for Undefined Symbol UDFCHECK

Format Name Option Subcommand Negative Form
UDFCHECK UDFCHECK None
Parameters None

Function Displays an error message for an undefined symbol and stops absolute load module
generation.

Explanation (1) Outline of functions:

» Outputs error message 221 and stops absol ute load modul e generation when an
undefined import symbol is found. (When the UDFCHECK is not specified,
warning message 105 is output instead and absolute load modul e generation
continues.)

(2) Restrictionsin use:
» When relocatable load module generation is specified, the UDFCHECK
option/subcommand is ignored.

Examples - UDFGEX

Displays an error message for an undefined symbol and stops absolute load
modul e generation.

HITACHI 73

4.6 Debugging Support

46.1 L1ST—Displays Interim Linkage Information LIST
Format Name Option Subcommand Negative Form
None LIST None
Parameters M
u
X
Function Displays linkage information of an input file.

Explanation (1) Outline of functions:

Outputs linkage information to the standard output device concerning the files
currently being input.

Content of the displayed information depends on the specified parameters, as
follows.

M: Displaysalink map
U: Displays unresolved import symbols
X: Displays export symbols

(2) Redtrictionsin use:

To display linkage information according to the input files, the information
displayed is restricted as follows.

— When parameter M is specified
The start address of arelocatable section is always 0.

— When parameter U is specified
The display shows import symbols for which there is no corresponding
export symbol in the input files specified in INPUT subcommands up to the
location of the LIST subcommand.

Examples LI STAM

Displays alinkage map for the load module being processed.

LI STAU

Displays unresolved import symbolsin the load module being processed.

74 HITACHI

46.2 RENAM E—Changes the Names of Units, Export Symbols, or RENAME
Import Symbols

Format Name Option Subcommand Negative Form

None RENAME None

Parameters

UN=<unit name 1> (<unit name 2>)

ER=<unit name>.<import symbol 1>
(<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

UN=<unit name 1>(<unit name 2>)

ER=<unit name>.<import symbol 1>
, (<import symbol 2>)

ED=<unit name>.<export symbol 1>
(<export symbol 2>)

Function Changes the names of units, export symbols or import symbolsin input files.

Explanation (1) Outline of functions:

Changes the names of the specified units, export symbols, or import symbolsin
input files to the name designated in parentheses (“()”).

The unit name specified following “UN=" is changed to the unit namein
parentheses.

The import symbol name specified following “ER=" is changed to the name in
parentheses. The import symbol name is preceded by the name of the unit in
which the symbol exists, and is set off from the unit name by a period (.).

The export symbol name specified following “ED=" is changed to the namein
parentheses. The export symbol name is preceded by the name of the unit in
which the symbol exists, and is set off from the unit name by a period (.).

HITACHI 75

Explanation (2) Restrictionsin use:
« The RENAME subcommand will affect the input files specified only in the first
INPUT subcommand after the RENAM E subcommand.

* Only the following five subcommands can be specified immediately after the
RENAME subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand
(c) RENAME subcommand
(d) DELETE subcommand

(e) ABORT subcommand

When more than one RENAME subcommands are specified, or when
RENAME and DEL ETE subcommands are specified together, operation takes
placein the order of specification.

Examples RENAMEAUN=dat al i st (dat al st 1)
Renames unit “ datalist” as “datalst1.”

RENAVEAED=cnt | . TRUNK(P_TRUNK) , ER=cnt | 1. REC_DATA(RECV_DATA)

Changes export symbol “TRUNK” in unit “cntl” to “P_TRUNK.”
Likewise, changes import symbol “REC_DATA” in unit “cntl1” to
“RECV_DATA'

76 HITACHI

46.3 DELETE—Deletes Unitsor Export Symbols DELETE

Format Name Option Subcommand Negative Form
None DELETE None
Parameters {UN:<unit name> }
ED=<unit name >.<export symbol name>

.| UN=<unit name> J
ED=<unit name>.<export symbol hame>

Function Specifies deletion of units or export symbols from input files.

Explanation (1) Outline of functions:
» Deletes the specified units or export symbols from input files.
* Inthe case of aunit, the unit specified following “UN="'is deleted.
* Inthe case of an export symbol, the symbol specified following “ED=" is

deleted. The export symbol nameis set off by aperiod (.) from the name of the
unit in which it exists.

(2) Restrictionsin use:

» The DELETE subcommand will not affect input files already specified. This
subcommand must be specified prior to specification of the input filesin which
the name of the unit or export symbol to be deleted is found.

» Thefollowing five subcommands can be specified immediately after the
DELETE subcommand:

(a) INPUT subcommand

(b) EXCHANGE subcommand
(c) DELETE subcommand

(d) RENAME subcommand

(e) ABORT subcommand

* When RENAME and DELETE subcommands are specified together, operation
takes place in the order of specification.

Examples DELETEAUN=snap_uni t
Deletes unit “snap_unit.”

DELETEAUN=dummy, ED=nai n. DUMW_ENTER

Deletes unit “dummy.” Also, deletes export symbol “DUMMY _ENTER” in
unit “main.”

HITACHI 77

46.4 DEFINE—Forcibly Defines an Import Symbol DEFINE

Format Name Option Subcommand Negative Form
DEFINE DEFINE None
Parameter Option
UNIX: <numeric value>

<Import symbol name>/ ¢ [<page address>:]<address>
<export symbol name>
<numeric value>

[<page address>:]<address>

<export symbol name>

[,<import symbol name>/

]

<numeric value>
[<page address>:]<address>

|
|
|
|
|

MS-DOS:
<Import symbol name>(

)
<numeric value>

[<page address>:]<address>
<export symbol name>

[.<import symbol name>()]

Sub-
command <Import symbol name> (

<numeric value>

[<page address>:]<address> ;)
<export symbol name>
<numeric value>

[<page address>:]<address> })...]
<export symbol name>

[,<Import symbol name> (

— — —

Function Specifies forced definition of import symbols.

Explanation (1) Outline of functions:
» Forcibly defines each specified import symbol with the specified numeric
value, address or export symbol value.
» Page address can be specified only for page type modules. If the page addressis
not specified, zero is assumed.
* Numeric values, page addresses, and addresses are specified in hexadecimal
notation.

78 HITACHI

Explanation

(2) Redtrictionsin use:

When the assigned value is that of an export symbol, it must be one that has
aready been defined.

If apage address is specified for non-page type modules, an error will occur
and the Linkage Editor will stop execution.

Hexadecimal numbers must start with the numbers O through 9.
The range of page addressesis 0 through OFF (hexadecimal).
The range of addresses that can be specified varies with the H series model.

H8/500 series: 0 through OFFFF (hexadecimal)

H8/300 series: 300HA: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

H8S series: 2600A and 2000A: 0 through OFFFFFF (hexadecimal)
Others: 0 through OFFFF (hexadecimal)

SH series: 0 through OFFFFFFFF (hexadecimal)

Values defined by the DEFINE subcommand cannot be used in relocatable |oad
modules.

When the EXCLUDE option or subcommand is specified, non-referenced
import symbols specified by the DEFINE subcommand are ignored.

Examples

- DEFI NE=PORT10(OE8) (M5- DOS)
- DEFI NE=PCRT10/ OE8 (UN X)

Defines undefined import symbol “PORT10” as a symbol having the value
OES8 (hexadecimal).

DEFI NEAMAI N_RTN(PRG EXI T)

Defines undefined import symbol “MAIN_RTN” as having the same value
as export symbol “PRG_EXIT.”

HITACHI 79

Section 5 Input to the Linkage Editor

51 Object ModuleFiles

The Linkage Editor can accept as input the object module files output by the H Series C Compiler
or Assembler.

52 Relocatable L oad M odule Files

Relocatable load module files output by this Linkage Editor can be re-input. Absolute load module
files cannot be re-input.

5.3 Library Files

Library files created using the H Series Librarian can be input to the Linkage Editor. Modulesin
library files can be specified individually, or the LIBRARY option or subcommand can be used to
input modules contained in library files automatically. See further under section 4.3.3,
LIBRARY—Specifies Library Files.

54 Default Library Files

A library file created by the H Series Librarian can be input implicitly without specifying the
LIBRARY option or subcommand. Thisis called the default library function.

A default library isinput when the following three conditions are satisfied:

* Alogical name reserved as a default library name is assigned to the library file before the
library filesisinput to the Linkage Editor.

* The NOLIBRARY option or subcommand is not specified.

e Anunresolved import symbol remains after the libraries specified by the LIBRARY option or
subcommand have been searched.

The Linkage Editor inputs the library files assigned to the following logical namesin the order 1,
2, 3, and searches for modules that define unresolved import symbols.

1. HLNK_LIBRARY1
2. HLNK_LIBRARY2
3. HLNK_LIBRARY3

HITACHI 81

The user can specify library files corresponding to these logical names by using the setenv
command for UNIX system and the SET command for MS-DOS system.

EXAMPLE:

set HLNK LI BRARYl=user.lib (M5 DOB)

User library user.lib is assigned to the logical name HLNK_LIBRARY 1.

82 HITACHI

Section 6 Output from the Linkage Editor

6.1 LinkageLists

When the PRINT option or subcommand or the LIST subcommand is specified, the contents of a
load module file being processed are output to the standard output device or to afile, asfollows.

(2) Input information (PRINT only)
(2) Link map list (PRINT or LIST M)
(3) Export symbol list (PRINT or LIST X)

(4) Unresolved import list ~ (PRINT or LIST U)
(5) RENAME/DELETE list (PRINT only)
(6) DEFINE list (PRINT only)

The output formats for these lists are shown below.

HITACHI 83

(2) Input Information: Information input as command line parameters, interactive mode
subcommands, or subcommand filesis output in the format shown in figure 6-1.

H SERI ES LI NKAGE EDI TOR Ver. 5.3
LI NK COMVAND LI NE
LNK - sub=func. sub

@

LI NK SUBCOMVANDS

inp main

rename ed=sin. si n0(sinl)

del ete ed=sin.sin3

inp sin

define undef 1(100), undef 2(si nl)

print fmap

inp cos

inp tan 2
inp calc.lib(division)

forma

rom (SECT1, SECIN)

out func

exit

** sin0 | S RENAVED TO sinl

** sin3 | S DELETED

** 105 UNDEFI NED EXTERNAL SYMBOL (divi sion. undef 3)

Figure6-1 Typical Output of Input Information

(1) Shows the character string input on the command line.

(2) Shows the character strings input as subcommands in interactive mode, or input from a
subcommand file. Also shows error messages or informative messages in response to this
input.

84 HITACHI

(2) Link Map List:

(a8) When the PRINT option or subcommand is specified, information on each section is output

in the format shown in figure 6-2.

H SERI ES LI NKAGE EDI TOR Ver. 5.

3

xxx LI NKAGE EDI TOR LI NK MAP LI ST

* k%

SECTI ON NAME START - END LENGTH
UNI T NAME
ATTRI BUTE : CODE NOSHR ROM
@ @& @
SECT1 H 00000000 - H 00000004 H 00000005
(1) (5) mai n (6)
(7)
H 00000006 - H 00000017 H 00000012
sin
H 00000018 - H 00000019 H 00000002
cos
H 0000001a - H 0000002d H 00000014
tan
H 0000002e - H 00000043 H 00000016
di vi si on
* TOTAL ADDRESS * H 00000000 - H 00000043 H 00000044
9) (10)

PAGE: 1

MODULE NAME

mai n

®)

sin

cos

tan

di vi si on

Figure6-2 Typical Link Map List Output Using PRINT

HITACHI 85

(b) When parameter “M” is specified in the LIST subcommand, information on each fileis

output in the format shown in figure 6-3.

H SERI ES LI NKAGE EDI TOR Ver. 5.3

*rx LI NKAGE EDI TOR LI NK MAP LI ST

*k k

FI LE NAMVE : mai n. OBJ
(11)

MODULE NAME : nmai n

(8)
UNIT NAME mai n

(7)
SECTI ON NAME ATTRI BUTE

START - END LENGTH
SECT1 CODE NOSHR
Q) H 00000000 - H 00000004 H 00000005

® ©)

PAGE: 1

Figure6-3 Typical Link Map List Output Using LIST

(1) Shows section names in the order in which sections are linked.

(2) Showsthe attribute as follows.
DATA: dataor common section
CODE: code section
DUMMY: dummy section
STACK: stack section
RESV: reserved
UNDEF: undefined
*kkk*x unu%d

(3) Showsthefollowing link attributes.
SHR: common link
NOSHR: simple link
DUMMY: dummy link
UNDEF: link attribute undefined
*rxkk: unused

86 HITACHI

(4)

Q)

(6)
()
(8)
(©)

Displayed for a section related to the support of storing program in ROM

ROM: ROM section (section 1 in the ROM option or subcommand)
RAM: RAM section (section 2 in the ROM option or subcommand)

Shows start address and end address of the object in hexadecimal notation. In the case of
page type modules, the page address and address are separated by a colon (:) asfollows.

H'XXXX © XXXX
[N address
page address

Shows size of object in hexadecimal notation.
Shows unit name.
Shows module name.

Shows start address and end address of the section.

In the case of page type modules, the page address and address are separated by acolon (:) as
follows.

H'XXXX 1 XXXX
1 I address
page address

(10) Showstotal size of the section.

(11) Showsthefile name (LIST only).

HITACHI 87

(3) Export SymbolsList: Thislist isoutput when there are export symbols.

(8) When the PRINT option or subcommand is specified, alist is output in the format shown in
figure 6-4.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

rxx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST ***

SYMBCL NAME ADDR TYPE
cosl H 0000000A EQU
sinl H 0000004A DAT
sin2 H 0000005B DAT

@ @ ®)

Figure6-4 Typical Export Symbol List Output Using PRINT

(b) When parameter “X” is specified by the LIST subcommand, alist is output as shown in
figure 6-5.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

Frx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST ***

SYMBOL NAME ADDR TYPE
cosl H 0000000A EQU
sinl H 00000000 DAT
sin2 H 00000011 DAT

1)) 3

Figure6-5 Typical Export Symbol List Output Using LIST

(1) Shows export symbolsin aphabetical order.
(2) Showsthe value of each export symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by acolon (:) asfollows.

H'XXXX @ XXXX
1 address
page address

88 HITACHI

(3) Shows the type of symbol as follows.
DAT: datal/variable name
EQU: symbol name defined as constant value
ENT: entry name
***: undefined/unused

(4) Unresolved Import Symbol List: Thislist isoutput only when there are remaining undefined
symbols.

(8) When the PRINT option or subcommand is specified, alist is output in the format shown in
figure 6-6.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PACE: 1

rEx LI NKAGE EDI TOR UNRESCLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE : calc.lib
(1)

MODULE NAME : division
(2)

UNI T NAME : division
3)

SYMBOL NAME TYPE
undef 3 * ok x

4) ®)

Figure6-6 Typical Unresolved Import Symbol List Output Using PRINT

HITACHI 89

(b) When parameter “U” is specified by the LIST command, alist is output as shown in figure
6-7.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1

*rx LI NKAGE EDI TOR UNRESCLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE : calc.lib

(1)
MODULE NANME : division

(2
UNI T NAVE : division

3)
SYMBOL NAMVE TYPE
undef 1 * ok x
undef 2 * ok x
undef 3 * ok x

(4) (5)

Figure6-7 Typical Unresolved Import Symbol List Output Using L1ST

(1) Shows name of file containing undefined symbol.
(2) Shows name of module containing undefined symbol.
(3) Shows name of unit containing undefined symbol.
(4) Shows undefined symbol namesin alphabetical order.
(5) Shows undefined symbol attributes as follows.

DAT: data/variable name

ENT: entry name

***: undefined/unused

90 HITACHI

(5) RENAME/DELETE List: When the RENAME or DELETE subcommands are used to
change the name of units or symbols or delete units or symbols, specification of the PRINT
option or subcommand resultsin output of alist in the format shown in figure 6-8.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE: 1
*rx LI NKAGE EDI TOR RENAME/ DELETE LI ST~ ***

FILE NAVE : sin.OBJ
€y
UNIT NAME : sin
@)

FROM NAME TO NAME TYPE RENAME/ DELETE
si n0 sinl ED RENAME
sin3 4 ED DELETE

®) (%) (6)

Figure6-8 Typical RENAME/DELETE List

(1) Shows names of files containing the unit or symbol to be renamed or deleted in the order input.
(2) Showsthe unit name. If the unit was renamed or deleted, the old unit name is shown.

(3) Shows the name before changed.

(4) Shows the name after changed. No nameis shown in case of aDELETE.

(5) Shows the type specified by subcommand, as follows.

UN: unit name
ED: export symbol
ER: import symbol

(6) Shows whether the subcommand was a RENAME or aDELETE.

HITACHI 91

(6) DEFINE List: When animport symbol isforcibly defined using the DEFINE option or
subcommand, specification of the PRINT option or subcommand results in output of alist in
the format shown in figure 6-9.

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PACE: 1

*xx LI NKAGE EDI TOR DEFI NE LI ST ***

UNDEFI NED SYMBCL DEFI NED SYMBOL DEFI NED VALUE
undef 1 H 00000100
undef 2 sinl H 0000004A

@) @ ®

Figure6-9 Typical DEFINE List

(2) Shows forcibly defined symbol name.
(2) Shows the name of the export symbol which is specified.

(3) Shows the value of the defined symbol in hexadecimal notation. In the case of page type
modules, the page address and address are separated by acolon (:) asfollows.

H'XXXX © XXXX
[N address
page address

6.2 Load ModuleFile

The Linkage Editor links a number of object modules or relocatable load module files and outputs
them as a single load module file. Depending on the specification made with the FORM option or
subcommand, the load module file is output in either absolute or rel ocatable format. A detailed
explanation of the FORM option and subcommand is given in section 4.5.3, FORM — Specifies
Output Load Module File Format.

92 HITACHI

6.3 Console M essages
The Linkage Editor shows the following messages on the standard output device.

(1) Opening Message: Thisis displayed when Linkage Editor command name “LNK” isinput.

H SER ES LI NKAGE EDI TCR Ver. 5.3
Copyright (©Q Htachi, Ltd. 1989
Li censed Material of Htachi, Ltd.

(2) Normal Completion Message: Thisisdisplayed when the load module file editing has been
completed normally.

‘ LI NKAGE EDI TOR COVPLETED

(3) Abort Message: Thisis displayed when the load module file editing is ended before
completion, due either to an error or to specification of an ABORT subcommand.

\ LINKAGE EDI TR ABCRT

(4) Subcommand Request Prompt: Ininteractive mode, a colon () indicates that the Linkage
Editor iswaiting for subcommand input.

(5) Subcommand Continuation Prompt: When continuation of a subcommand is specified
during interactive mode execution, aminus sign (—) indicates that the Linkage Editor is waiting
for continuation of the input.

(6) Informative Message: Informative messages indicate the result of Linkage Editor processing,
for example when units are replaced or when an export symbol is renamed. The messages are
output in the following format.

** A <i nformation>

!

1st column

A list of informative messages is given in table 6-1. A unit name can be displayed as <External
name> in table 6-1.

HITACHI 93

Table6-1 List of Informative M essages

(Informative Message)

No. (Meaning of Message)
1 <Unit name 1> IS REPLACED WITH <unit name 2>(<file name>)
<Unit name 1> has been replaced by <unit name 2> from <file name>.
2 <External name 1> IS RENAMED TO <external name 2>
Name of <external name 1> has been changed to that of <external name 2>.
3 <External name> IS DELETED
<External name> has been deleted.
4 DUPLICATE UNIT-(<unit name>) IN (<file name>) IS DELETED
More than one units of the same name <unit name> have been found, and the unit of that
name in <file name> has been deleted.
5 <Ilmport symbol name> CANNOT DEFINE
<Import symbol name> could not be found, and therefore could not be forcibly defined.
6 <External name> CANNOT RENAMED
<External name> could not be found, and therefore could not be renamed.
7 <External name> CANNOT DELETED
<External name> could not be found, and therefore could not be deleted.
8 <Unit name> CANNOT REPLACED

<Unit name> could not be found, and therefore could not be replaced.

94 HITACHI

Section 7 Error Messages

When incorrect options or subcommands are specified, or if an error is detected during the linkage
process, an error message is output. The Linkage Editor outputs error messages in the following
form.

** A <BError nunber>A<error nessage>[(<additional information>)]

!

1st column

Error Number: Thefirst digit indicates the level of the error (xx represent the second and third
digits).

Ixx: Warning . Processing of the particular module is skipped.
2xx: Error . Inthe case of input from the command line or a subcommand file,

processing is stopped. In interactive mode, processing of the
subcommand is stopped when the error is detected, and the next
subcommand is requested.

3xx: Fatal error @ Processing is stopped.

A list of errorsisgiven below in tables 7-1, 7-2, and 7-3 in the following format.

Error Number Error Message Additional Information

Nature of Error

Linkage Editor actions and corrective actions

Notation used in table: —: No additional information

HITACHI 95

Table7-1 List of Warning M essages

101 DUPLICATE OPTION/SUBCOMMAND Option/subcommand name
The same option or subcommand was specified more than once.
Only the last-specified option or subcommand is valid.
102 IDENTIFIERCHARACTEREXCEEDS 251 Name
Name of a unit, section, or symbol over 251 characters was specified.
Name is valid up to 251th character. The rest is ignored.
104 DUPLICATE SYMBOL Symbol name
The same export symbol is defined more than once.
Only the first appearing symbol is valid.
105 UNDEFINED EXTERNAL SYMBOL Unit name, symbol name
An undefined symbol was imported.
The import is invalid, and zero is assumed as the value.
106 REDEFINED SYMBOL Symbol name
A previously defined symbol was defined using the DEFINE subcommand or option.
The DEFINE specification is invalid.
107 SECTION ATTRIBUTE MISMATCH Section name
Two sections with the same name but different attributes or boundary alignment were input.
The sections are processed as separate sections.
108* RELOCATION SIZE OVERFLOW Unit name, section name—offset
value
Relocation result exceeds the relocation size.
Result is rounded off to fit the relocation size.
109 ENTRY POINT MULTIPLY DEFINED —
Execution start addresses were specified in more than one object modules.
The first appearing execution start address is valid.
110 SECTION ADDRESS EXCEED PAGE BOUNDARY Section name
A section overlaps a page boundary.
Specify the AUTOPAGE option or subcommand.
111 DUPLICATE SECTION NAME Section name
Same section name was specified in options or subcommands.
The first section is valid.
112 ILLEGAL CPU INFORMATION FILE FORMAT —

The file format of the CPU information file is incorrect.

The CPU option or subcommand specification is invalid.

96 HITACHI

Table7-1 List of Warning M essages (cont)

113 CONFLICTING DEVICE TYPE —
The specified CPU information file is for a different CPU from that for which the input object
module is intended.
The CPU information file specification is invalid.
114 SECTION IS NOT IN SAME MEMORY AREA Section name: XXXx-yyyy
A section overlaps different memory areas. Addresses xxxx to yyyy are not allocated to one
memory area.
The section is output to the load module without change.
115 INACCESSIBLE ADDRESS RANGE Section name
A section was assigned to a memory area that cannot be used.
The section is output to the load module without change.
116 INVALID CPU OPTION/SUBCOMMAND —
The CPU option or subcommand was specified for a relocatable load module file.
The CPU option or subcommand specification is invalid.
117 ADDRESS SPACE DUPLICATE —
Sections overlap.
The load module is output as is.
118 INVALID UDF OPTION/SUBCOMMAND —
The NOUDF option or subcommand was specified for an absolute output load module.
The NOUDF option or subcommand is invalid.
119 RELOCATION VALUE IS ODD Unit name, section name—offset
value
Relocation value for the displacement is odd.
The LSB is rounded down to fit to the relocation size.
120 START ADDRESS NOT SPECIFIED FOR Section name
SECTION
A section that has not been specified with the START option/subcommand was found.
Check the section name.
121 CANNOT FIND SECTION Section name
The specified section cannot be found.
The section specification is ignored.
122 TOOLONGSUBCOMMANDLINE —

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.

The file name is valid up to the 511th character.

HITACHI 97

Table7-1 List of Warning M essages (cont)

123 TOO MANY DIRECTORY COMMANDS —

More than 16 directory names have been specified with the DIRECTORY subcommand.

Up to 16th specification is valid.

124 NO DEBUG INFORMATION —

The DEBUG or SDEBUG option/subcommand has been specified for the file having no
debugging information.

Specify the debug option at compilation or assembly.

Note: The following describes the generating condition, generating program examples, and
corrective actions for warning 108 (RELOCATIONSIZEOV ERFLOW).

War ning Generating Condition: When the linkage editor determines the program addresses, if a
data size designated at assembly or compilation is exceeded, warning message 108 is output.

Warning Generating Program Examples:

e HB8S, H8/300 series

Example 1
. EXPCRT SYML . | MPCRT SYML
SYML . EQU H 1000 .
M. B #SYML, RIL (1)
Program 1 Program 2

When the above two programs are assembled and linked, the instruction at (1) references
SYM1in byte size and therefore the referenced value must be within the range from -128 to
+255. However, SYM1 is defined as H'1000 (4096) in program 1, which exceeds the range,
and warning 108 is outpult.

Example 2
. EXPCRT SYM . I MPCRT SYM
SYM .EQU HQO (2 .
MOV @YW 8, ROL (3)
Program 3 Program 4

When the above two programs are assembled and linked, SYM 2 isreferenced in 8-bit absolute

addressing mode at (3). The access range in 8-hit absolute addressing is 65280 to 65535

(H'FFO0 to H'FFFF). However, SYM 2 isdefined as H'CO at (2), which exceeds the range, and
98 HITACHI

warning 108 is output. In this case, @SY M2:8 accesses address H'FFCO, and therefore, when
@H'FFCO isthe target address, this warning message can be ignored.

H8/500 series
Example 3
. EXPCRT SYMB . I MPORT SYMB

SYMB . EQU H FF

MV @SYMB:8, R2), R3 (4)
Program 5 Program 6

When the above two programs are assembled and linked, the instruction at (4) references
SYM3 in 8-bit size and therefore the referenced value must be within the range from -128 to
+127. However, SYM3 is defined as H'FF (255) in program 5, which exceeds the range, and
warning 108 is output.

Example 4

. SECTI ON SEC1, CCDE
SYM4 . EQU $; Sets a location value to a symbol

MOV @YMI: 8, R0 ; Transfers 2-byte data at the address pointed
to by the location 5)

When the above program is assembled and linked with specifying the start address of section
(SEC1) as address 1000 (hexadecimal), the SY M4 value becomes H'1000, which exceeds the
1-byte data size, and warning 108 is output. In this case, when the base register (BR) is set to
H'10 before the instruction at (5) is executed, this message can be ignored.

Example 5

. EXPCRT SYM8 . | MPCRT SYMB
SYMB . EQU H FF :

MV @SYMB: 8, R2),R3 (4)
Program 7 Program 8

When the above two programs are assembled and linked, the SY M5 value referenced at (6) is
defined as H'2000 in program 9, which exceeds the 1-byte data size, and warning 108 is output.

HITACHI 99

In the same way as example 4, when the base register (BR) is set to H'20 before the instruction
at (6) is executed, this message can be ignored.

Corrective Actions: When the warning message cannot be ignored, take the following corrective
actions.

H8S, H8/300 series
In example 1, the following two corrective actions can be taken:

— Modifying the instruction operation size to word
Modify, at (1) in program 2, MOV .B to MOV.W and R1L to R1.

— Extracting the high-order or low-order one byte of the label (SYM1) value
To extract the high-order byte, modify #SYM1 to #HIGH SYM1 at (1).
To extract the low-order byte, modify #SYM1 to #LOW SYM 1.

In example 2, modify H'CO to H'FFCO at (2) in program 3.
H8/500 series

In example 3, modify SYM3:8to SYM3:16 at (4) in program 6 when the label (SYM3) value
exceeds the 1-byte data size.

In example 4, modify @SYM4:8 to @SYM4:16 at (5) in the program.

In example 5, modify @SYM5:8 to @SYM5:16 at (6) in program 8.

Warning Message 108 Output Format: Output in the following format:

** 108 RELOCATIONSIZEOVERFLOW (<unit name> . <section name> - <offset value>)

This message means that the data overflow has occurred <offset value> addresses after the start
address of the section indicated by <unit name> . <section name>. Here, <unit name> means the
file name.

100 HITACHI

Table7-2 List of Error Messages

201

ILLEGAL SUBCOMMAND/OPTION

An illegal subcommand (or option) was specified.

Specify a valid subcommand (or option).

202

SYNTAX ERROR

Syntax of the specified subcommand (or option) is incorrect.

Check the syntax and respecify the subcommand (or option).

203

TOO LONG SUBCOMMAND LINE

Length of the subcommand entry exceeds 255 characters.

Respecify, keeping the length within 255 characters.

204

ILLEGAL SUBCOMMAND SEQUENCE

Order of subcommand specification is invalid.

Check the order of subcommand specification and respecify.

207

ILLEGAL SECTION NAME

Section name

The specified section name is invalid.

Specify a proper section name.

208

ILLEGAL SYMBOL NAME

Symbol name

The specified symbol name is invalid.

Specify a proper symbol name.

210

TOO MANY INPUT FILES

Attempt was made to input more than 256 input files at one time.

Create a relocatable load module file, then specify the remaining input files by re-inputting

the load module file.

211

CANNOT FIND FILE

File name

The specified file cannot be found.

Check the specified file name, then respecify.

212

CANNOT FIND UNIT

Unit name

The specified unit cannot be found.

Check the specified unit name, then respecify.

213

CANNOT FIND MODULE

Module name

The specified module cannot be found.

Check the specified module name, then respecify.

HITACHI 101

Table7-2 List of Error M essages (cont)

214

DUPLICATE START ADDRESS SPECIFIED —

The same start address was specified more than once.

Change the start address, then re-input.

216

PAGE ADDRESS EXCEEDED —

A page address exceeds the permitted range.

Check the page address and respecify.

217

SUBCOMMAND COMMAND IN SUBCOMMAND —
FILE

The SUBCOMMAND subcommand appeared in a subcommand file.

Remove the SUBCOMMAND subcommand from the subcommand file.

219

INVALID ADDRESS address

The specified address exceeds the permitted range.

The specified address exceeds the address range of the specified device. Check the value
of the specified address, then re-execute.

220

TOO MANY ROM COMMANDS —

More than 10 pairs of section names were specified in a ROM subcommand.

Specify 10 pairs or less.

221

CANNOT CREATE ABSOLUTE MODULE Module name

An undefined import symbol was found.

Resolve the address for the symbol.

222

DIVISION BY ZERO IN RELOCATION VALUE Unit name . section name—offset

The input object file includes a division by zero.

Check the relocation operation and make the object file that has no division by zero.

102 HITACHI

Table7-3 List of Fatal Error Messages

301 ILLEGAL COMMAND PARAMETER —

An illegal command parameter was specified.

Check the command parameters and re-execute.
302 CANNOT OPEN FILE File name

The file cannot be opened.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

303 CANNOT READ INPUT FILE File name

The file cannot be input.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

304 CANNOT WRITE OUTPUT FILE File name

The file cannot be output.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

305 CANNOT CLOSE FILE File name

The file cannot be closed.

Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.

306 ILLEGAL FILE FORMAT File name

The specified file format is incorrect.

Check the file contents and specified file name, then re-execute. This message is output
when the object file format is illegal, for example because there are two or more import
symbols with the same name in the same unit, or two external symbol names were made
identical by the RENAME subcommand.

307 ILLEGAL RECORD FORMAT File name

There is an illegal record in the specified file, or division by zero occurred.

Check the source program contents. Re-assemble or recompile, then re-execute.
308 SECTION ADDRESS OVERFLOW Section name of the specified device

The address allocated to a section exceeds the allowable range.

The address allocated to the section exceeds the address range of the specified device.
Change the section start address or rearrange the user program, then re-execute.

HITACHI 103

Table7-3 List of Fatal Error M essages (cont)

309 ADDRESS OVERFLOW —
The specified address exceeds the address range allowed for the particular CPU.
Check the specified address, then re-execute.
310 MEMORY OVERFLOW —
There is no space remaining in the Linkage Editor's usable memory.
Expand the memory or revise the user program, then re-execute.
311 PROGRAM ERROR nnn
There is an error in the Linkage Editor program.
The Linkage Editor is inoperable. Check the program error number (nnn), then contact your
Hitachi representative.
312 ILLEGAL START ADDRESS ALIGNMENT Address
The specified address conflicts with the boundary alignment number of the object module.
Check the boundary alignment number of the object module, then re-execute.
314 CANNOT FIND SECTION Section name
The specified section name cannot be found.
Check the section name, then respecify.
319 AUTOPAGE SPECIFIED AT NON-PAGE TYPE —
The AUTOPAGE option/subcommand was specified when non-page type files were input.
Check the input file contents, then respecify.
321 PAGE ADDRESS OVERFLOW —
The page address overflows the allowable range.
Change the section start address or the user program so that the page address will be
within the allowable range of 0 - OFF (hexadecimal), then re-execute.
322 PAGE ADDRESS SPECIFIED AT NON-PAGE —
TYPE
For a non-page type input file, a page address was specified with the START or DEFINE
option/subcommand.
Check the specified file name and option or subcommand content, then re-execute.
323 SECTION SPECIFIED AT ROM OPTION/ Section name

SUBCOMMAND DOES NOT EXIST

A section specified in a ROM command does not exist.

Check the section name, and respecify.

104 HITACHI

Table7-3 List of Fatal Error M essages (cont)

325 ILLEGAL START SECTION Section name
A section specified by a START command has an illegal attribute.
Check the section attributes, and respecify.
326 CANNOT READ —
Input failed from a file (including the standard input device).
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
327 SYMBOL ADDRESS OVERFLOW Symbol name
The address assigned to a symbol exceeded the permitted range for the specified device.
Change the section start address or rearrange the user program, then re-execute.
328 ILLEGAL ROM SECTION Section name
Section 2 specified in a ROM subcommand or option is invalid.
The size of section 2 is not 0, section 2 is the absolute section or the attribute of section 2 is
different from that of section 1. Check the size and attribute of section 2, and respecify.
329 INVALID MEMORY MAP —
Memory allocation does not match the one specified in the CPU information file, or it
overlaps different types of memory.
Check the CPU information file and the input files.
330 ILLEGAL FILE FORMAT (INPUT ABSOLUTE FILE) —
An absolute load module was input.
Check the input files and respecify them.
331 ILLEGAL FILE FORMAT (MISMATCH OBJECT —
FORMAT VERSION)
The input files have different object formats.
Check the input files and respecify them.
332 ILLEGAL FILE FORMAT (INPUT MISMATCH CPU —

TYPE)

The input files are not for the H series or SH series.

Check the input files and respecify them.

HITACHI 105

Section 8 Restrictions

Restrictions on the Linkage Editor are shown in table 8-1. If the numerical restrictions are
exceeded, linkage operations cannot be performed.

Table8-1 Restrictionson Linkage Editor Processing
No. Item Restrictions Remarks
1 Number of input files 256 max.
2 Input file formats » Object module file output by
assembler or compiler.
* Relocatable load module file.
* Library file created using
Librarian.
3 Address/notation Hexadecimal only. H8/500 series: 0-OFFFF
The range depends on the H H8/300 series:
series type. « 300HA: 0-OFFFFFF
» Others: 0-OFFFF
H8S series:
e 2600A and 2000A: 0-OFFFFFFFF
* Others: 0-OFFFF
SH series: 0-OFFFFFFFF
4 Names of modules, Up to 251 characters.
units, sections,
symbols
5 Number of modules, 65,535. Assumes no prior restrictions on

units, sections,
export symbols,
import symbols

memory of system on which
Linkage Editor is executed.

HITACHI 107

Appendix A Example of Use of Linkage Editor

In this sample application, the 11 object modules and one library file shown in table A-1 are input

into the Linkage Editor.

Table A-1 List of Input Files

z
°

File Name

Type of File

main.obj

init.obj

cmndanl.obj

cmndprc.obj

table.obj

term.obj

keyin.obj

file.obj

Ol N OO | W IN|PFP

printer.obj

=
o

display.obj

[N
[N

commu.obj

Object module file

[EY
N

function.lib

Library file

Library file “function.lib” consists of the 14 modules listed in table A-2.

HITACHI 109

TableA-2 List of Modulesin Library File

No. Module Name

mvdata

upshft

comp

expr

rmargin

Imargin

sum

number

© 00 N O | WIN|F

Zerosprs

[EnY
o

aschin

[EEN
[ERN

binasc

[EEY
N

cnvbed

[EnY
w

portio

[y
N

dos

Linkage Execution: Input the following command to execute module linkage. In this example,
subcommands are input from subcommand file “exlink.sub,” and execution is controlled by these
subcommands.

I nkA- SUBCOWAND=ex| i nk. sub (RET)

The contents of subcommand file “exlink.sub” are shown in figure A-1.

110 HITACHI

; First Linkage Process

form r ;. Rel ocat abl e Load Mbdul e
i nput nmai n ; Input "rmain. obj"

i nput init ; Input "init.obj"

i nput cmdanl ; I nput "cmdanl . obj "

i nput cmdprc ; I nput "cmmdprc. obj "

i nput tabl e ; Input "table.obj"

i nput term ; Input "term obj"
library function ; Library "function.!lib"
out put progr anml ; Qutput "programl.rel™
print progr aml ; Print "prograni. map”

end

; Second Linkage Process

i nput progrant. rel ; Input "progranti.rel”

i nput keyin ; I nput "keyin.obj"

i nput file ; Input "file.obj"

i nput printer ; Input "printer.obj"

i nput di spl ay ; Input "display.obj"

i nput conmu ;I nput "conmu. obj "

library function ; Library "function.!lib"
; Sequence of Sections

start progrant, progran®, function, gl obal , 1 ocal ,f_| ocal , stack_area

out put exampl e ; Cut put "exanpl e. abs”

print exampl e ; Print "exanpl e. map"

exit

Figure A-1 Subcommand File “ exlink.sub”

Asfigure A-1 shows, two linkage processes are carried out, using the multilinkage function. In the
first linkage process, six object module files and the library file are input, and relocatable |oad
module file “programl.rel” and linkage list “ programl1.map” are output. In the second linkage
process, load module file “programl.rel” isre-input, and the remaining object module files are
input. Absolute load module file “ example.abs’ and linkage list “example.map” are output.

Linkage list, “ programl.map” output in the first linkage process is shown in figure A-2. Linkage
list “example.map” output in the second linkage process is shown in figure A-3.

HITACHI 111

H SERI ES LI NKAGE EDI TOR Ver.

LI NK COVMAND LI NE
| nk - subconmand=exl i nk. sub

LI NK SUBCOMVANDS

; First Linkage Process

form r ;
i nput mai n ;
i nput init ;
i nput cmdanl ;
i nput cmmdpr c ;
i nput tabl e ;
i nput term ;
library function ;
out put prograni ;
print pr ogr antl ;
end

** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL
** 105 UNDEFI NED EXTERNAL

5.3

Rel ocat abl e Load Modul e

I nput
I nput
I nput
I nput
I nput
I nput
Li brar
CQut put
Print

SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(
SYMBOL(

"mai n. obj "
"init.obj"
"cmdanl . obj "
"cmmdpr c. obj "
"table.obj"
"termobj"
y "function.lib"
"programi.rel "
" prograntl. map"

mai n. keyi n)
cmmdprc. printer)
crmdprce. file)
cmmdpr c. keyi n)
cmmdpr c. conmmu)
cmmdpr c. di spl ay)
termfile)

Figure A-2 LinkagelList “programl.map” (Input Information)

112 HITACHI

SECTI ON NAMVE

ATTRI BUTE :

progrant

* TOTAL ADDRESS *

ATTRI BUTE :

| ocal

* TOTAL ADDRESS *

ATTRI BUTE :

gl obal

* TOTAL ADDRESS *

ATTRI BUTE :

stack_area

* TOTAL ADDRESS *

H SERI ES LI NKAGE EDI TOR Ver.

* % %

START

CODE NOSHR

H 00000000

H 0000034a

H 00000468

H 0000055e

H 000007e8

H 00000000

DATA NOSHR

H 00000000

H 00001e20

H 00001e40

H 00003c80

H 000222c0

H 00000000

DATA NOSHR

H 00000000

H 00000000

STACK NOSHR

H 00000000

H 00000000

LI NKAGE EDI TOR LI NK MAP LI ST

END

5.

3 PAGE: 1

* % %

LENGTH

UNI' T NAME MODULE NAME

H 00000349
mai n

H 00000467
init

H 0000055d
cmdanl

H 000007e7
cmdprc

H 0000091f
term

H 0000091f

H O00001ELF
mai n

H 00001e3f
init

H 00003c7f
cmdanl

H 000222bf
cmdprc

H 000222df
term

H 000222df

H 000015cf
tabl e
H 000015cf

H 00lelfff
tabl e
H 00lelfff

H 0000034a

mai n
H 0000011e

initialize
H 000000f 6

conmand_anal i ze
H 0000028a

conmand_pr ocess
H 00000138

term nate
H 00000920

H 00001e20
mai n
H 00000020
initialize
H 00001e40
conmand_anal i ze
H 0001e640
conmand_pr ocess
H 00000020
term nate
H 000222e0

H 000015d0
gl obal _tabl e
H 000015d0

H 001e2000
gl obal _tabl e
H 001e2000

Figure A-2 Linkagelist “programl.map” (Link Map List)

HITACHI 113

H SERI ES LI NKAGE EDI TOR Ver.

* % %

SECTI ON NAMVE START
ATTRI BUTE : CODE NOSHR
function H 00000000
H 0000001c
H 00000110
H 00000164
* TOTAL ADDRESS * H 00000000
ATTRI BUTE : DATA NOSHR
f_l ocal H 00000000
H 0000000c
H 0000011c
* TOTAL ADDRESS * H 00000000

END

5.3

LI NKAGE EDI TOR LI NK MAP LI ST

LENGTH

UNI'T NAME

H 0000001b
conp
H 0000010f
expr
H 00000163

H 0000001c

H 000000f 4

H 00000054

nmvdat a

H 00000193
upshft
H 00000193

H 0000000b
conp
H 0000011b
expr
H 0000011f
upshft
H 0000011f

H 00000030

H 00000194

H 0000000c

H 00000110

H 00000004

H 00000120

PAGE: 2

* % %

MODULE NAME

conpare_string
expressi on
nove_data_string

upshi ft_character

conpare_string
expressi on

upshi ft _character

Figure A-2 LinkagelList “programl.map” (Link Map List) (cont)

114 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3

*xx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST

SYMBOL NAME

cmdanl
cmdpr c
cmdt bl
conp
expr
fltbl
header
init
keybuf
mai n
nvdat a
pr buf

r ecbuf
st ackarea
term
upshft

ADDR

H 00000000
H 00000000
H 000000C8
H 00000000
H 00000000
H 000003C8
H 00000000
H 00000000
H 000001C8
H 00000000
H 00000000
H 000014C8
H 000013C8
H 00000000
H 00000000
H 00000000

TYPE

DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT

DAT
DAT
DAT
DAT
DAT

PAGE: 1

* k%

Figure A-2 LinkagelList “programl.map” (Export Symbol List)

HITACHI 115

H SERI ES LI NKAGE EDI TOR Ver. 5.3 PAGE:

*** || NKAGE EDI TOR UNRESCLVED EXTERNAL REFERENCE LI ST ***

FI LE NAVE . mai n. obj
MODULE NAME : omain
UNI T NAMVE : main
SYMBOL NAME TYPE
keyin *oxx
FI LE NAVE : cmmdprc. obj
MODULE NAME : conmmand_process
UNI' T NAMVE : cmdprc
SYMBOL NAME TYPE
commu *okox
di spl ay *oxx
file *kx
keyin i
printer *oxx
FI LE NAVE : term obj
MODULE NAME : terminate
UNI' T NAME Dterm
SYMBOL NAME TYPE
file *kx

Figure A-2 LinkagelList “programl.map” (Undefined Symbol List)

116 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3
LI NK COVWWAND LI NE

LI NK SUBCOMVANDS

; Second Li nkage Process

i nput progrant. rel ; Input "programl.rel"

i nput keyin ; Input "keyin.obj"

i nput file ; Input "file.obj"

i nput printer ; Input "printer.obj"

i nput di spl ay ; Input "display.obj"

i nput conmu ; Input "comu. obj"

library function ; Library "function.lib"
; Sequence of Sections

start prograni, progran?, function, gl obal , 1 ocal ,f_| ocal , stack_area

out put exanpl e ; Qutput "exanpl e. abs"

print exanpl e ; Print "exanpl e. map"

exit

Figure A-3 LinkageList “example.map” (Input Information)

HITACHI 117

SECTI ON NAMVE

ATTRI BUTE :
progrant

* TOTAL ADDRESS *

ATTRI BUTE :
progranf

* TOTAL ADDRESS *

ATTRI BUTE :
function

H SERI ES LI NKAGE EDI TOR Ver.

* kK

START

CODE NOSHR

H 00000000

H 0000034a

H 00000468

H 0000055e

H 000007e8

H 00000000

CODE NOSHR

H 00000920

H 00000b20

H 00000c48

H 00000d4a

H 00000e62

H 00000920

CODE NOSHR

H 00001128

H 00001144

H 00001238

H 0000128c

H 000012bc

H 00001344

H 00001374

5.3

END LENGTH

UNI'T NAME

H 00000349 H 0000034a
mai n
H 00000467 H 0000011e
init
H 0000055d H 000000f 6
cmmdanl
H 0000028a
cmdprc
H 00000138
term
H 00000920

H 000007e7
H 0000091f

H 0000091f

H 00000b1f H 00000200
keyin
H 00000c47 H 00000128
file

H 00000d49 H 00000102
printer

H 00000118
di spl ay

H 000002c6
commu

H 00000808

H 00000e61
H 00001127

H 00001127

H 00001143 H 0000001c
conp
H 00001237 H 000000f 4
expr
H 0000128b H 00000054
nmvdat a
H 00000030
upshft
H 00000088
| margin
H 00000030
nunber
H 00000080
rmargin

H 000012bb

H 00001343

H 00001373

H 000013f 3

PAGE: 1

LI NKAGE EDI TOR LI NK MAP LI ST ***

MODULE NAME

progr ant
progr ant
progr ant
progr ant

progr antl

i nput _keyboard
file_io

out put _printer
di spl ay_consol e

conmuni cati on

progr aml

progr aml

progr aml

progr aml
left_margin
nunbering_itens

right_nmargin

Figure A-3 LinkageList “examplemap” (Link Map List)

118 HITACHI

SECTI ON NAMVE

ATTRI BUTE :
function

* TOTAL ADDRESS *

ATTRI BUTE :
gl oba

* TOTAL ADDRESS *

ATTRI BUTE :
| oca

H SERI ES LI NKAGE EDI TOR Ver. 5.3

* Kk k

START

CODE NOSHR

H 000013f 4

H 0000140c

H 000014c8

H 00001534

H 00001574

H 00001640

H 00001648

H 00001128

DATA NOSHR

H 00001658

H 00001658

DATA NOSHR

H 00002c28

H 00004a48

H 00004a68

H 000068a8

H 00024ee8

H 00024f 08

H 00025128

H 00025308

H 0002544c

END

H 0000140b

H 000014c7

H 00001533

H 00001573

H 0000163f

H 00001647

H 00001657

H 00001657

H 00002c27

H 00002c27

H 00004a47

H 00004a67

H 000068a7

H 00024ee7

H 00024f 07

H 00025127

H 00025307

H 0002544b

H 0002554f

LI NKAGE EDI TOR LI NK MAP LI ST

LENGTH
UNI T NAME

H 00000018
sum

H 000000bc
zerosprs

H 0000006¢c
aschi n

H 00000040
bi nasc

H 000000cc
chvbcd

H 00000008
dos

H 00000010
portio

H 00000530

H 000015d0
tabl e
H 00015d0

H 00001e20
mai n

H 00000020
init

H 00001e40
cmmdanl

H 0001e640
cmmdpr c

H 00000020
term

H 00000220
keyi n

H 000001e0
file

H 00000144
printer

H 00000104
di spl ay

PAGE: 2

* ok k

MODULE NAME

sum.itens

zer o_suppress
ascii_to_binary
bi nary_to_asci
convert _to_bcd
interface_of _dos

interface_of port

prograntl

programl
programl
programl
progr aml
programl
i nput _keyboard
file_io
out put _printer

di spl ay_consol e

FigureA-3 LinkagelList “examplemap” (Link Map List) (cont)

HITACHI 119

H SERI ES LI NKAGE EDI TOR Ver. 5.3

il LI NKAGE EDI TOR LI NK MAP LI ST

SECTI ON NAME START

ATTRI BUTE :
| ocal

DATA NOSHR
H 00025550
* TOTAL ADDRESS * H 00002c28

ATTRI BUTE :
f_l ocal

DATA NOSHR
H 00025714

H 00025720
H 00025830
H 00025834
H 00025844
H 00025848
H 00025858
H 0002587c
H 00025884
H 00025888
* TOTAL ADDRESS *

H 00025714

ATTRI BUTE: STACK NOSHR
stack_area H 000258d0

* TOTAL ADDRESS * H 000258d0

END LENGTH
UNI T NAME

H 00025713 H 000001c4
commu

H 00025713 H 00022aec

H 0002571f H 0000000c
conp
H 0002582f H 00000110
expr

H 00025833 H 00000004
upshft

H 00000010
| margi n

H 00000004
nunber

H 00000010
rmargin

H 00000024
zerosprs

H 00000008
aschin

H 00000004
bi nasc

H 00000048
cnvbcd

H 000001bc

H 00025843

H 00025847

H 00025857

H 0002587b

H 00025883

H 00025887

H 000258cf

H 000258cf

H 002078cf H 001e2000
tabl e

H 002078cf H 001e2000

PAGE: 3

* % %

MODULE NAME

conmmuni cati on

progr antl

progr antl

progr anml
left_margin
nunbering_itens
right_margin
zer o_suppr ess
ascii_to_binary
bi nary_to_asci

convert _to_bcd

progr antl

Figure A-3 LinkagelList “example.map” (Link Map List) (cont)

120 HITACHI

H SERI ES LI NKAGE EDI TOR Ver. 5.3

*xx LI NKAGE EDI TOR EXTERNALLY DEFI NED SYMBOLS LI ST

SYMBOL NAME

aschin
bi nasc
cmdanl
cmdprc
cmdt bl
cnvbcd
conmu
conp

di spl ay
dos
expr
file
fltb
header
init
keybuf
keyin

| margi n
mai n
nmvdat a
nunber
portio
pr buf
printer
r ecbuf
rmargin
st ackar ea
sum
term
upshft
zerosprs

ADDR

H 000014c8
H 00001534
H 00000468
H 0000055e
H 00001720
H 00001574
H 00000e62
H 00001128
H 00000d4a
H 00001640
H 00001144
H 00000b20
H 00001a20
H 00001658
H 0000034a
H 00001820
H 00000920
H 000012bc
H 00000000
H 00001238
H 00001344
H 00001648
H 00002b20
H 00000c48
H 00002a20
H 00001374
H 000258d0
H 000013f 4
H 000007e8
H 0000128c
H 0000140c

TYPE

DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT
DAT

PAGE: 1

* k%

Figure A-3 LinkageList “example.map” (Export Symbol List)

HITACHI 121

Appendix B File Name Specifications

File names are specified in the following format:

path name main filename filetype
D @) (©)
(1) Path name

Specify the directory path of the directory containing thefile, using slashes (/) in UNIX or
back-dlashes (\) in MS-DOS to delimit directory names. The default value is the current
directory.

(2) Main file name
Specify the name of thefile.

(3) Filetype
Specify the type of file separated from the main file name by a period (.).

The general rules of file naming for the Linkage Editor conform to the operating-system (OS)
rules.

Example 1 (MS-DOS): \usr \tool\ prog .typ
i

A
?— Filetype

Main file name

Path name

Example 2 (UNIX): ~ /usr/tool/ prog .typ
i

A
?— Filetype

Main file name

Path name

Note: If the same nameis specified for the input file and output file, the input file contents will
be lost. Do not use the same name for the input and output files.

122 HITACHI

Part 11

Librarian Guide

Section 1 Overview

A program is usually developed by dividing it into functional modules and creating a separate
source program for each module. Next, each source program module is compiled or assembled to
create an object module. The object modules are then linked together using a linkage editor,
resulting in an executable program.

The H Series Librarian introduced in this manual (hereafter called the Librarian) plays avita role
in this process. It brings together the many object modules output by the C compiler and
assembler, as well as relocatable load modules output by the linkage editor, to make library files.

The Librarian provides the following advantages.

Simplified Module Management: The many modules making up a program (including
relocatable load modules as well as object modules) are stored in alibrary file for the particular
program. They can then be dealt with all at once. Moreover, it is possible to create generic library
files that can be used later to streamline the creation of other programs.

A library file can be edited by adding, deleting, or replacing individual modules. In thisway the
modules can be kept up to date.

Enhanced Linkage: The Linkage Editor can search library filesto find, extract, and link modules
that define unresolved import symbols. Use of the library files thus makes linkage editing more
efficient.

HITACHI 125

Section 2 Librarian Functions

21 Creating Library Files

This function makesit possible to create new library files, and to enter object modules output by
the C compiler or assembler aswell as rel ocatable load modules output by the linkage editor.

Figure 2-1 isanillustration of the library file creation concept.

Entered modules New library file
A
Module A
[Module A
Creation

vode 5 :> wadue 5
Module C
Module C
J

Figure2-1 CreatingaNew Library File

HITACHI 127

2.2 Editing Existing Library Files
Modules can be added to, deleted from, or replaced in existing library files.

Adding Modules. Modules can be added to aready existing library files. The concept of module
additionisillustrated in figure 2-2.

Existing library file Edited library file

Module A Module A
Update
Modie & :> Modie &

Module C

Addition

A
Module D ——

Figure2-2 AddingaModule

Deleting Modules: Unnecessary modules can be deleted from existing library files. Figure 2-3
illustrates the module deletion concept.

Existing library file Edited library file

[Module A

Module B

Deletion —p
Module C

Module D

Figure2-3 DeletingaModule

128 HITACHI

Replacing Modules: Modulesin existing library files can be replaced with new modules. The
concept of module replacement isillustrated in figure 2-4.

Existing library file Edited library file
Replacement Module A Module A
Update
odue & odkie 5 :> ode &
Module D Module D

Figure2-4 Replacing a Module

2.3 Extracting Modulesfrom aLibrary File

Modules can be extracted from existing library files and used to create new library files. The
concept of module extraction isillustrated in figure 2-5.

Existing library file New library file

Module A
Extraction
Extraction »| Module B |:>

> Module C

Figure2-5 Extracting Modules

2.4 Displaying the Contentsof aLibrary File

A librarian list giving information about the modules and export symbolsin alibrary file can be
output to a standard output device or alist file. A librarian list tells when the library file was
created and when it was last revised, indicates when each module was stored, and gives the names
of export symbols and other useful information.

For further details, see section 6.2, Librarian Lists.

HITACHI 129

Section 3 Executing the Librarian

To execute the Librarian, start the Librarian by entering a command line. The command line
specifies the name of the library file to be edited and various options, which give instructions to
the Librarian. If these instructions are sufficient, the Librarian can be executed using the command
line alone. If further instructions are needed, they can be given in subcommands.

Command Line Execution: The Librarian can be executed simply by specifying alibrary file
and options on the command line. The method is useful when library editing isrelatively
straightforward.

Subcommand Execution: The Librarian can aso be executed by entering both a command line
and subcommands. The subcommands specify input and output files and parameters that control
the Librarian. This method is useful for specifying alarge number of files or modules, or for
editing two or more library files together. Subcommands can be entered interactively, or from a
subcommand file. Details are given in section 3.3, Executing by Subcommands.

File names used on the command line and in the subcommands are specified in the following
format:

path name main filename filetype

) 2 €)

(1) Path name

Specify the directory path of the directory containing the file, using slashes (/) in UNIX system
and back-slashes (\) in MS-DOS system to delimit directory names. The default value isthe
current directory.

(2) Main file name
Specify the name of thefile.

(3) Filetype
Specify the type of file separated from the main file name by a period (.). If omitted, the
implicit typeis used.

The general rules of file naming for the Librarian conform to the operating-system (OS) rules.

HITACHI 131

Note: The OS shell (command interpreter) checks the command line before passing control to
the Librarian. Use characters that the OS alows on the command line.

Example (UNIX): lusr /tool/ prog .typ

[} [}
?— Filetype

Main file name

Path name

Example (MS-DOS): \usr \tool\ prog .typ

A A
?— Filetype

Main file name

Path name

31 Command Line Format
The following format is used for the Librarian command line.

Ibr[A[<library file name>][[A]-<option name>[[A]-<option name>...]]] (RET)
* Command name: “lbr” isthe command that starts the Librarian.

« Library file name: To edit or extract modules from an existing library file, type the name of the
library filein the command line.

e Option names: Each option name must start with a hyphen (-). One or more spaces or tabs
can also be used to separate an option name from a preceding option name
or library file name, but these spaces or tabs are not required. Option names
are described in detail in section 4, Librarian Options and Subcommands.
The Librarian edits the library file according to the order in which the
options are specified.

Specifying the M ode of Execution: The content of the command line determines whether the
Librarian will be executed by the command line specifications only, or by subcommands. See
table 3-1.

132 HITACHI

Table3-1 How Command Line Specification Deter minesthe Form of Execution

Option Specification

Option Other

Library File than CREATE or
Name No Option SUBCOMMAND*! CREATE Option** SUBCOMMAND
Specification Specified Option Specified Specified Specified
Library file name —*? — — Executed by
specified specifying
command line
No library file Executed by Executed by Executed by —
name specified specifying specifying specifying command
subcommands subcommands line
Notes: 1. For SUBCOMMAND and CREATE options, see section 4, Librarian Options and
Subcommands.

2. The combinations of option and library file names indicated by dashes (—) are not
permitted. An error will occur, and the librarian will not be executed.

3.2 Executing by Command Line

In command line execution, the Librarian is executed according to the information specified in the
command line alone. Editing procedures and other conditions are specified to the Librarian in the
form of options. When the editing process is straightforward and simple, command line
specification is sufficient for creating or updating a library. Examples of execution by command
line are given below.

Example 1:

| br A- CREATE- sysl i b. | i b- ADD=obj 00. obj , prg.lib (RET)

@) %))

(1) Creates anew library file named sydlib.lib.
(2) Adds the modules in object module file obj00.0bj and library file prg.lib to sydlib.lib.

The CREATE option by itself will not create alibrary file unless modules are added using the
ADD option.

HITACHI 133

Example 2:

| brA syslib.lib-ADD=obj 00. obj - DELETE=nod| (RET)

) @) ()

(1) Designateslibrary file sydib.lib as the file to be edited.
(2) Adds the module in object module file obj00.0bj to sydib.lib.
(3) Deletes existing module mod1 from sydlib.lib.

3.3 Executing by Subcommands

Since the number of characters that can be typed on the command lineis limited, the command
line may not be able to accommodate a large number of specifications. In such cases,
subcommands are used to execute the Librarian. Subcommands can be input interactively, one a a
time, from the keyboard or other standard input device. Alternatively, a subcommand file
consisting of agroup of subcommands can be created in advance, and subcommands can be input
from this subcommand file.

331 Executing in Interactive Mode

When no library fileis specified in the command line and there are no option specifications,
execution proceeds in interactive mode. A colon (;) appears on the screen as a prompt, indicating
that the Librarian is waiting for a subcommand to be input. In thisway you can enter the necessary
subcommands. This method is useful when the number of subcommandsis relatively small, or
when you want to check Librarian lists as you enter the subcommands.

An example of execution by interactive input of subcommandsis given below. Functions of the
subcommands listed here are detailed in section 4, Librarian Options and Subcommands.

Example:

I br (RET) (1)
: CREATEAprg.lib (RET) (2
: ADDAmai n. obj (RET) .(3)
: ADDAsend. obj, recei ve. obj , exchange. obj (RET) ..(4)
: ADDAaccount . obj (RET) ..(5)
: LISTA(S) (RET) ...(6)
: EXIT (RET) (7

(1) Startsthe Librarian in interactive mode.
(2) Creates anew library file named prg.lib.

134 HITACHI

(3) Adds the module in main.obj to prg.lib.
(4) Adds the modules in send.obyj, receive.obj and exchange.obj to prg.lib.
(5) Adds the module in account.obj to prg.lib.

(6) Outputs alibrarian list, including symbol information, to the standard output device.

(7) Terminates the Librarian operation.

332 Executing from a Subcommand File

This method uses a subcommand file that was created in advance and that contains the
subcommands necessary for Librarian operations. This subcommand file is then specified on the
command line as a parameter of the SUBCOMMAND option. This method is useful when many
subcommands must be specified, or when the same editing processis carried out repeatedly. It
eliminates the need to input subcommands from the keyboard or other standard input device each

time.

Use an editor to create the subcommand file. An example of execution from a subcommand fileis
given below. Functions of the subcommands listed here are detailed in section 4, Librarian

Options and Subcommands.

| br A- SUBCOMMAND=pr gl i b. sub (RET)

Contents of subcommand file prglib.sub:

CREATEAfunction.lib

ADDASI n. obj , cos. obj , t an. obj
ADDAasi n. obj , acos. obj , at an. obj
ADDAhsI n. obj , hcos. obj , ht an. obj
ADDAI og. obj , | 0g10. obj

EXT

(1) Startsthe Librarian and inputs subcommands from subcommand file prglib.sub.
(2) Creates anew library file function.lib.

(D)

(2
)
(4
.. (5)
.. (6)
- (7)

(3) Adds the modules in object module files sin.obj, cos.obj and tan.obj to function.lib.
(4) Adds the modules in object module files asin.obj, acos.obj and atan.obj to function.lib.
(5) Adds the modules in object module files hsin.obj, hcos.obj and htan.obj to function.lib.

(6) Adds the modules in object module files log.obj and log10.0bj to function.lib.

(7) Terminates Librarian operations.

HITACHI 135

34 Terminating Librarian Operations

When the Librarian terminates operations, it gives the system areturn code indicating an error
level. The return code can be used to control the execution of acommand file. The error code has
the values shown in table 3-2, depending on the error level.

Table3-2 Return Code Dependingon Error Level

Return Code

Error level UNIX MS-DOS
Normal termination 0 0
Warning 0 0
Error 1 2
Fatal error 1 4

136 HITACHI

Section 4 Librarian Options and Subcommands

Options and subcommands tell the Librarian what editing operations to perform. The three main
functions of options and subcommands are file control, execution control, and list display. These
functions can be used individually or in combination to create and edit library files.

Options and subcommands have the same names and equivalent functions, but are specified in
different formats. Moreover, there are some specifications which can be made only with options,
and others only with subcommands. Sections 4.1, Option and Subcommand Formats, and 4.2, List
of Options and Subcommands, must accordingly be read carefully. Option and subcommand
functions are outlined below.

File Control Functions: File control functions indicate the name of the library file to be edited, or
the name of alibrary file to which extracted modules are to be output.

Execution Control Functions: Execution control functions instruct the Librarian to perform
editing operations, or terminate its processing. These functions are used, for example, to input
subcommands from a subcommand file, to create a new library file, or to update alibrary file.

List Display Functions: List display functions are used to display information such as names of
modules stored in alibrary file, or export symbol names.

41 Option and Subcommand Formats

Option and Subcommand Structure;
(a) Name

The name gives the name of the option or subcommand. For the names, refer to section 4.2, List of
Options and Subcommands.

HITACHI 137

(b) Parameters

The parameters give the names of files,** module,*? etc. on which the option or subcommand
operates. There are different requirements and methods of specification depending on the type of
option or subcommand. For details, refer to section 4.3, File Control, section 4.4, Execution
Control, and section 4.5, List Display.

Options and subcommands differ asto the way of separating the name from the parameters.
Options use an equal sign (=), while subcommands use one or more spaces or tabs.

Option format

<Name>=<parameters>

Subcommand format
<Name>A<parameters>

Examples:
—OUTPUT=Ibf : option
OUTPUTAIbf : subcommand

In these examples, OUTPUT isthe name, and |bf is the parameter.

Notes: 1. A file name consists of three parts: the path name, main file name, and file type.
If thefile typeis omitted, afile typeis assumed as follows.

Library file : lib
Object modulefile : .obj
Relocatable load modulefile : .obj
Subcommand file :.sub
List file Clst

2. A module name is the name defined in an object module or relocatable load module. In
modul e names, uppercase letters are distinguished from lowercase letters. The pairs of
names below, for example, are treated as different names.

Examples: modull < » MODUL1
abcde =-—————» Abcde

138 HITACHI

Continuation Specification in a Subcommand: When a subcommand istoo long to be specified
on oneline (generally, up to 500 characters per line, but it will depend on the OS), a continuation
specifier is used. A continuation specifier is an ampersand (&) at the end of the line. It must
always be placed between two parameters; if it is placed within a parameter, it will not be treated
as a continuation specifier. Also, if acharacter (including a space or tab) is typed after the
ampersand, an error will occur and the subcommand will not be continued.

In interactive input of subcommands, a hyphen (-) appears as a prompt for further input after
continuation has been specified.

Examples:

- ADDAobj 00. | i b(md0, mod1) , & (RET)

-ibh91,ibh92 (RET) Continuation specifier
: ADDAobj 00. I i b(mod0, nod1), ob& (RET)
|
) N Specifying continuation
in the middle of a
parameter generates an error

A subcommand line in a subcommand file can be continued in the same way. The line after aline
with the continuation specifier becomes the continuation line.

Example:

Subcommand file

DELETEDSUBL, SUB2, & (RET) 4 Continuation specifier

sub3 (RET) o Continuationline

HITACHI 139

Specifying Commentsin a Subcommand File: A comment specifier is used to place notes or
other comments in a subcommand file. The specifier isasemicolon (;) placed on a subcommand
ling, indicating that the rest of the lineis a comment. If the semicolon follows a subcommand
name or parameter, it must be separated by at least one space or tab.

If the semicolon is placed at the beginning of a subcommand line, the entire lineistreated asa
comment.

Examples:

; EXAMPLE CF LI BRAR AN SUBCOMVAND
... the entire line is a comment.

LI BRARYAsysl i bA; | NDI CATES LI BRARY FI LE
... INDICATESLIBRARY FILE isacomment.

ADDAodul e. obj ; abc

... module.obj;abc istreated as a single parameter;
abc is not treated as a comment.

140 HITACHI

4.2 List of Options and Subcommands

There are 10 options and 15 subcommands, aslisted in table 4-1.

Table4-1 List of Optionsand Subcommands

No. Type Name*1 Function Opt.*? Sub.** Section
1 File control LIBRARY Specifies the library file to be No Yes 4.3.1
edited
OUTPUT Specifies an output library file Yes Yes 43.2
DIRECTORY Specifies directory name No Yes 4.3.3
replacement
2 Execution = SUBCOMMAND Specifies a subcommand file Yes No 4.4.1
control CREATE Creates a library file Yes Yes 442
ADD Adds modules Yes Yes 4.4.3
REPLACE Replaces modules Yes Yes 4.4.4
DELETE Deletes modules Yes Yes 4.45
EXTRACT Extracts modules Yes Yes 4.4.6
RENAME Modifies section names Yes Yes 4.4.7
END End of subcommand input No Yes 4.4.8
EXIT End of Librarian operations No Yes 4.4.9
ABORT Aborts Librarian operations No Yes 4.4.10
3 List display LIST Displays contents of library file Yes Yes 45.1
SLIST Displays section names of Yes Yes 45.2

library file

Notes: 1. The underlined letters of a name are the shortest permissible abbreviated form.
2. The Opt. and Sub. columns indicate whether a name is available as an option or

subcommand.

HITACHI 141

Abbreviating Option and Subcommand Names: Names of options and subcommands can be
abbreviated to the point where the name can still be distinguished from other names. Asan
example, consider the name EXTRACT.

E : Cannot be distinguished from EXIT or END, so an error occurs.
EX : Cannot be distinguished from EXIT, so an error occurs.

EXT : Recognized as EXTRACT.

EXTRA : Recognized as EXTRACT.

EXTRACT : Recognized asEXTRACT.
EXTRACTS : No such name, so an error occurs.

Interrelation among Different Options and Subcommands: Once an option or a subcommand has
been specified, other options or subcommands with conflicting functions cannot be specified. This
interrelationship is shown in table 4-2.

Table4-2 Interrelation among Options and Subcommands

Later Specification of Option/Subcommand

2
% >) 5 w %
Specified 8 g:: E % UEJ g <§(lé o — 'g_:
Option/ m T W o a I £ Z B i 52 o £ O
Subcommand 3 5 & <Dt r o o o 8 d o » 4o W %
SUBCOMMAND x O O O O O 0O 0O o o o o o o o
LIBRARY O x x O O O O 0O O o o o o o o
CREATE (0] x x O O O X X x O O O O O o
ADD 0O x x O O O x O x O O O o o o
REPLACE O x x O O O x X x O O O O O o
DELETE O X x O O O X X x O O O O O o
EXTRACT (0] x x x x x O x O O O O O o o
RENAME 0O x x O O O x O x O O O o o o
OUTPUT (0] x x X x x O O X 0O O O O O o
DIRECTORY o 0O 0O o 0O o o o o o o o o o o
LIST 0O x x O O O O o o o o o o o o
SLIST O x x O O O O 0O o o o o o o o
END O O (@] X X X X X X O X X X X O
EXIT X X X X X X X X X X X X X X (@]
ABORT X X X X X X X X X X X X X X X

O: Later specification enabled.
x . Later specification disabled, since it conflicts with already specified option or subcommand.

142 HITACHI

Examples:

| br (RET)
: LI BRARYAf unclib.lib (RET)

: CREATEAnewW i b. lib (RET) -«—— A CREATE subcommand cannot be specified
after aLIBRARY subcommand. An error occurs,
and the CREATE subcommand isignored.

: END (RET)
:LIST (RET) - Specifying aLIST subcommand after an End
“EXIT (RET subcommand generates an error. After END, only the
: (RET)
LIBRARY, CREATE, EXIT or ABORT subcommand
isvalid.

HITACHI 143

In the following sections, the format below is used to describe each option and subcommand.

]

Section number

Format Name Option Subcommand
Parameters

Function

Explanation

Examples

144 HITACHI

Heading for each option or
subcommand

Section number and heading
for option or subcommand

Option or subcommand
name and format for
specifying parameters

The underlined part of the name
isthe shortest abbreviated form

Summary of option or
subcommand functions

Detailed description of
functions and restrictions

Examples of option or
subcommand specifications

LIBRARY

4.3 File Control

431 LIBRARY—SpecifiestheLibrary Fileto Be Edited

Format Name LIBRARY Option Subcommand
No Yes

Parameters <Library file name>

Function Specifies an existing library file for editing.

Explanation (1) Thissubcommand is specified at the beginning of an editing operation that edits
an existing library file or extracts modules from an existing library file.

(2) Only alibrary file created by this Librarian can be specified.

(3) When no file typeis specified as part of the library file name, the typeis
assumed to be .lib.

(4) This subcommand cannot be used together with the CREATE subcommand,
which specifies creation of anew library file.

(5) If, astheresult of editing an existing library file, the number of modules
becomes zero, the library file will not be updated.

(6) The accessright to the updated library file is the same as the access right to a
newly created file. Note that the access right prior to the update is not
preserved.

Examples LI BRARYAsysl i b
Specifies editing of the library file sydlib.lib.

HITACHI 145

OUTPUT

432 OUTPUT—Specifiesan Output Library File

Format Name OUTPUT Option Subcommand
Yes Yes
Parameters Option UNIX <Library file name>

MS-DOS <Library file name> H ©) H
L)

Subcommand <Library file name> { { S H

Function Specifiesalibrary file for output of extracted modules.

Explanation (1) Specify the OUTPUT option or subcommand whenever amoduleisto be
extracted from an existing library file.

(2) Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).

(S) ... System library
(V) ... User library

This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when OUTPUT is specified as an option in
UNIX system.

(4) OUTPUT can be specified either before or after the EXTRACT option or
subcommand, which specifies extraction of modules.

(5) OUTPUT cannot be used together with the CREATE, ADD, DELETE, or
REPLACE options or subcommands.

(6) When the number of extracted modulesis zero, the library file specified by the
OUTPUT option or subcommand is not created.

146 HITACHI

OUTPUT

Examples —CQUTPUT=pr 0g86

Outputs modules extracted using the EXTRACT subcommand to afile
named prog86.lib as a user library.

QUTPUTAC! i b. o(S)

Outputs modules extracted using the EXTRACT subcommand to afile
named clib.o asa system library.

HITACHI 147

DIRECTORY

433 DIRECTORY —Specifies Directory Name Replacement

Format Name DIRECTORY Option Subcommand
No Yes
Parameters ~ <Symbol name>(<directory name>)
Function Defines asymbol as an alias of adirectory. This function enables along directory
name to be input with a simple symbol name.
Explanation (1) Directory name alias definitionA symbol name is defined as an adias of a
directory with the DIRECTORY subcommand.
DIRECTORY A <symbol name> (<directory name>)

(2) Directory name referenceTo refer to adirectory name, enclose the defined
symbol name with adollar sign ($) and adash (/) (adollar sign ($) and a back-
dash (\) in MS-DOS system). If the symbol name has not been defined, the
Librarian does not replace it with a directory name.
$<symbol name>/ —> Replaced with <directory name>/

(3) Symbol name for up to 16 directory names can be defined.

Examples DI RECTCRYAsynbol (dir1/dir2)

ADDASsynbol / fil el. obj

Defines symbol “symbol” as an alias of directory “dirl/dir2".Replaces
$symbol/dirl/dir2, and as aresult, specifies file name dirl/dir2/filel.ob;.

148 HITACHI

SUBCOMMAND

4.4 Execution Control

441 SUBCOM M AND—Specifiesa Subcommand File

Format Name SUBCOMMAND Option Subcommand
Yes Yes

Parameters <Subcommand file name>

Function Inputs subcommands from a specified file.

Explanation (1) Inputs and processes subcommands from a specified subcommand file one at a
time.

(2) When no EXIT subcommand is specified, the Librarian waits for command
input.

(3) When no file type is specified as part of the file name, the type is assumed to be
.sub.

(4) When a SUBCOMMAND option is used together with other options, the
SUBCOMMAND is processed last regardless of the option specification order.

Examples —SUBCOMVAND=nakel i b

Inputs subcommands from the subcommand file makelib.sub for usein
editing alibrary file.

HITACHI 149

CREATE

442 CREATE—Createsalibrary File

Format Name CREATE Option Subcommand
Yes Yes
Parameters Option UNIX: <Library file name>
MS-DOS: <Library file name> H S H
(V)
Subcommand <Library file name> H S H
(V)
Function Createsanew library file.
Explanation (1) Specified at the beginning of a group of options or subcommands ending with
END or EXIT.
(2) Specify anew library file name. When no file type is specified as part of the
library file name, the type is assumed to be .lib.
(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the
attribute is assumed to be (U).
(S) ... System library
(V) ... User library
This attribute determines the order of priority in which library files are searched
by the Linkage Editor. A user library has higher search priority. The (S) and (U)
parameters cannot be included when CREATE is specified as an option in
UNIX system.
(4) CREATE cannot be used together with the LIBRARY subcommand.
(5) If the number of modulesis zero, no library file is created.
Examples —CREATE=userlib.lib

Creates userlib.lib as a new user library.

CREATEAS sl i b(S)
Creates sidib.lib as a new system library.

CREATEAdat ax
Creates datax.lib as a new user library.

150 HITACHI

ADD

443 ADD—Adds M odules

Format Name ADD Option Subcommand

Yes Yes

Parameters ~ Option
UNIX: {<Object module file name>

<Relocatable load module file name> , [{A],}...]
<Library file name>

MS-DOS: | <Object module file name>
<Relocatable load module file name> [{AlL}--]
<Library file name>[(<module name>[{A],} ...])]
Sub- <Object module file name>
command | <Relocatable load module file name> [{AalL}..]
<Library file name>[(<module name>[{A|,} ...])]
Function Adds modules from specified filesto alibrary file.

Explanation (1) ADD isused to store modulesin anew library file, or add modulesto an
existing library file.

(2) When only afile nameis specified, if no file type is specified, the typeis
assumed to be .obj. When a module name is specified after afile name, thefile
isassumed to be alibrary file, so if no file typeis specified, the type is assumed
to be .lib.

(3) When only certain modules from alibrary file are to be added, specify the
module names after the library file name. Up to 10 module names can be
specified. However, module names can not be included when ADD is specified
asan option in UNIX system.

Example: ADD Ibf (m1,m2,m3)

*— Module names
Library file name

HITACHI 151

ADD

Explanation (4) When modulesin alibrary file are specified, the specified module names are
sorted in aphabetical order and the modules are added in that order. They are
not added in the order of specification.

Example: ADD Ibf (e a d, c, b)
1, 4
are added

(5) When the names of modulesin alibrary file are not specified, all modulesin the
library file are added.

Example: ADD Ibf.lib

$— Library file name

(6) When a module to be added has the same nhame as a module aready in the
library file being edited, or when an export symbol defined in the module to be
added has the same name as an export symbol in the library file being edited, a
warning message is displayed and the module is not added.

(7) The name of an object module or rel ocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(8) ADD cannot be used together with the EXTRACT or OUTPUT options or
subcommands.

(9) Errors will occur and the parameters after the error occurs will not be processed
when:

(a) A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d) The number of modules to be stored exceeds 32,767.
(e) Memory capacity isinsufficient to add more modules.
(f) The number of input files exceeds 256.

152 HITACHI

ADD

Examples = —ADD=nodl, nod2, modx. o
Adds al modules from the object module files mod1.obj, mod2.obj and
modx.o.
ADDAI of nc(keyi n, crtout)
Adds the two modules keyin and crtout from the library fileiofnc.lib.

ADDASys! i b. 1i b
Adds all modules from the library file sydlib.lib.

HITACHI 153

REPLACE

4.4.4 REPL ACE—Replaces Modules

Format Name REPLACE Option Subcommand

Yes Yes

Parameters Option
UNIX: <Object module file name>
<Relocatable load modulefile name> » [{Al}...]
<Library file name>

<Object module file name>
<Relocatable load module file name> [{AlL} -]
<Library file name>[(<module name>[{A],} ...])]

MS-DOS:

Sub- <Object module file name>
command ¢ <Relocatable load module file name> [{AlL}..]
<Library file name>[(<module name>[{A],} ...])]

Function Substitutes modules in a specified file for modules of the same namein the library
file being edited.

Explanation (1) When amodulein the library file being edited has the same name as a module
in the specified file, the former is replaced by the latter. If there is no module
with the same name in the library file being edited, the module is simply added.

(2) When only afile nameis specified and no file type is specified, the typeis
assumed to be .obj. When a module name is specified after a file name and no
file typeis specified, thefile is assumed to be alibrary file and the typeis
assumed to be .lib.

(3) To substitute only certain modules from alibrary file, specify the module
names after the library file name. Up to 10 module names can be specified.
However, module names cannot be included when REPLACE is specified as an
option in UNIX system.

Examples REPLACE Ibf (m1,m2,m3)

*— Module names
Library file name

154 HITACHI

REPLACE

Explanation (4) When modulesin library files are specified, the specified module names are
sorted in aphabetical order and modules are replaced in that order. They are not
replaced in the order of specifications.

Example. REPLACEIbf (e a d, ¢, b)
1, 4

(5) When the names of modulesin alibrary file are not specified, all modulesin the
file are substituted.

Example: REPLACE Ibf.lib

Library file name

(6) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(7) REPLACE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

(8) Thefollowing cases will result in error, and the parameters after the error
position will not be processed.

(a) A specified file does not exist.

(b) A specified module does not exist in alibrary file.

(c) The content of the specified fileisinvalid.

(d) The number of modules to be stored exceeds 32,767.
(e) Memory capacity isinsufficient to perform substitution.
(f) The number of input files exceeds 256.

(9) The process of replacing a module involves deleting the module of the same
name in the library file being edited, then inputting the module from the file
specified by the REPLACE option or subcommand and storing it in the library
file. The following special caution isthus required: If amodule to be
substituted contains an export symbol aready defined in another module in the
library file, the old module will be deleted, but the replacement module will not
be stored.

HITACHI 155

REPLACE

Examples —-REPLACE=userlib.lib

Stores all modulesin thelibrary file userlib.lib in the library file being
edited, replacing modules with the same name.

REPLACEAIl oadx. rel , | oady. rel

Substitutes the modules in the relocatable load module files loadx.rel and
loady.rel for modules of the same hame in the library file being edited.

REPLACEAdat ax(menber) , onf

Substitutes the module named member in library file datax.lib, and the
modules in the object module file omf.obj for modules of the same namein
thelibrary file being edited.

156 HITACHI

DELETE

445 DELETE—Deletes M odules

Format Name DELETE Option Subcommand
Yes Yes
Parameters <Module name> [{A],} ...]
Function Deletes specified modules from the library file being edited.
Explanation (1) If a specified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(2) The name of an object module or relocatable load module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(3) DELETE cannot be used together with EXTRACT or OUTPUT options or
subcommands.

Examples —DELETE=i nchar, out char

Deletes the two modules inchar and outchar.

DELETEAdat at bl , sort
Deletes the two modules datatbl and sort.

HITACHI 157

EXTRACT

4.4.6 EXTRACT—EXxtracts M odules

Format Name EXTRACT Option Subcommand

Yes Yes

Parameters <Module name> [{A],} ...]

Function Extracts specified modules from the library file being edited.

Explanation (1) The extracted modules are output in library file format with the file name
specified by the OUTPUT option or subcommand.

(2) The name of an object module or relocatable |oad module is the name defined
in the module. The LIST option or subcommand confirms which modules are
stored in alibrary file.

(3) If aspecified module does not exist in the library file, an error occurs, and the
parameters after the error occurrence are not processed.

(4) EXTRACT cannot be used together with the CREATE, ADD, DELETE or
REPL ACE options or subcommands.

Examples —EXTRACT=add, sub, mul , di v

Extracts the four modules add, sub, mul, and div from the library file being
edited.

EXTRACTAal pha, upper, | ower,digit,cntrl

Extracts the five modules apha, upper, lower, digit, and cntrl from the
library file being edited.

158 HITACHI

RENAME

447 RENAME—M odifies Section Names

Format Name RENAME Option Subcommand
Yes Yes
Parameters ~ <module name>[,...] (<section name 1>=<section name 2>[,...])
Function Modifies section namesin library filesin module units.
Explanation (1) The section namesin library files can be modified to freely allocate sectionsto
memory at linkage.
(2) The section namesin alibrary file including a relocatable |oad module cannot
be modified.
(3) When a section name in the module including debugging information is
modified, symbolswill not be referenced correctly at debugging.
Examples RENAMEANL, n2, nB(A=Al, B=B1, C=C1)

Modifies sections A, B, and C in module m1 to A1, B1, and C1, section A
in module m2 to A1, and section B in module m3 to B1.

ex.lib ex.lib

ml Section A ml| Section Al

| SectonB | | Section B1 |

| seconc | | Section C1 |
m2 Section A m2| Section Al

| SectionM | — | SectionM |

| seconN | | SectionN |
m3 Section B m3| Section B1

| Sectonx | | Section X |

| secony | | SectionY |

HITACHI 159

END

4.4.8 END—Specifies End of Subcommand Input

Format Name END Option Subcommand
No Yes

Parameters None

Function Outputs a newly created or updated library file.

Explanation (1) When more than one library fileis edited in one Librarian execution, the editing
of each library fileisterminated by an END subcommand.

(2) Specification of the END subcommand causes the Librarian to output the edited
library file. If, however, the number of modules stored in the library file is zero,
thelibrary fileis not created or updated.

Examples END
Outputs alibrary file.

160 HITACHI

EXIT

449 EXIT—SpecifiesEnd of Librarian Operations

Format

Name EXIT Option Subcommand
No Yes

Parameters None

Function

Terminates Librarian operations.

Explanation

(1) The EXIT subcommand is used to terminate a set of Librarian operations
executed by the subcommand specification.

(2) When executing from a subcommand file, all subcommands following after an
EXIT subcommand are ignored. If the EXIT subcommand is not specified, a
warning message will be displayed.

(3) When the EXIT subcommand is used, the immediately preceding END
subcommand can be omitted. In that case the EXIT subcommand serves also as
an END subcommand, causing the library file to be output before terminating
the Librarian operation.

Examples

EXT
Terminates Librarian operations.

HITACHI 161

ABORT

4410 ABORT—AbortsLibrarian Operations

Format Name ABORT Option Subcommand

No Yes

Parameters None

Function Aborts Librarian operations.

Explanation (1) When executing by the subcommand specification, the ABORT subcommand
can be used to abort editing operations.

(2) When the ABORT subcommand is specified, the library file being edited will
not be created or updated. If, however, alist file was output by a LIST
subcommand before the ABORT subcommand, the list file will remain
unchanged.

Examples ABCRT
Aborts Librarian operations.

162 HITACHI

LIST

45 List Display

451 LIST—Displays Contentsof aLibrary File

Format Name LIST Option Subcommand
Yes Yes
Parameters Option UNIX: [<List file name>]
MS-DOS: [[<List file name>][(9)]]
Subcommand [[<List file name>][(9)]]
Function Outputs alist of the contents of the library file being edited to the standard output
device or to afile.
Explanation (1) The names of modules stored in the library file, export symbol names, and other

information is output on alist. For the list format, see section 6.2, Librarian
Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When alist file name is specified, the list is output to afile. Specify anew list
file name; the list cannot be appended to an existing file. If an existing fileis
specified, the existing file contents will be replaced.

(4) When no file typeis specified as part of thelist file name, the type is assumed
to be .Ist.

(5) To obtain alist of export symbols designated in modules, specify the (S)
parameter. If the (S) parameter is not specified, only the module names will be
listed. The (S) parameter cannot be included when LIST is specified as an
option in UNIX system.

(6) The LIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

HITACHI 163

LIST

Examples

—LI ST

Outputs alist to the standard output device.
Export symbols are not shown.

LI ST

Outputs alist to the standard output device.
Export symbols are not shown.

LI STAl i bx(S)
Outputs alist including export symbolsto afile named libx.Ist.

164 HITACHI

SLIST

452 SLIST—Displays Section Names of Library File

Format

Name SLIST Option Subcommand

Yes Yes

Parameters [<List file name>]

Function

Outputs alist of the contents of the library file being edited to the standard output
device or to afile.

Explanation

(1) The names of modules stored in the library file, export symbol hames, names of
the sections containing export symbol names, and other information is output
on alist. For the list format, see section 6.3, Section Name Lists.

(2) When no list file name is specified, the list is output to the standard output
device.

(3) When alist file name is specified, the list is output to afile. Specify anew list
file name; the list cannot be appended to an existing file. If an existing fileis
specified, the existing file contents will be replaced.

(4) When no file typeis specified as part of thelist file name, the type is assumed
to be .sct.

(5) The SLIST option or subcommand can be specified any number of times during
the editing process. The library file contents at the point of specification will be
listed.

Examples

—SLI ST
Outputs a section hame list to the standard output device.

SLI STAl i bx
Outputs a section name list to afile named libx.sct.

HITACHI 165

Section 5 Input to the Librarian

51 Object ModuleFiles

Object module files output from a C compiler or assembler can be input to the Librarian and
stored asmodulesin library files.

52 Relocatable L oad M odule Files

A relocatable load module file output from the Linkage Editor can be input and stored in alibrary
file as one module.

5.3 Library Files

The Librarian inputsthe library file it is editing. Also, modules to be stored in this library file can
be input from other library files. Either specified modules can be input, or all the modulesin a
library file can beinput at one time.

Input can be made only from library files created using this Librarian.

HITACHI 167

6.1

Section 6 Output from the Librarian

Library Files

The Librarian combines two or more modulesinto a single output library file. It also updates an
existing library file, or extracts modules from an existing library file, and outputs the result in
library file format.

6.2

Librarian Lists

When the LIST option or subcommand is specified, alist of the library file contentsis output to
the standard output device or to afile. The format of alibrarian list is shown in figure 6-1.

Library file name: (1)

Library file name: (1)
1)
Attribute: (2)
Number of modules: (3) Creation date: &)
Number of symbols: (4) Revision date: ()
() (8) Entry date: (9
(10) (10)
(7) (8) Entry date:)

D)

@)

©)
(4)

Figure6-1 Librarian List Format

Shows the library file name. If the nameistoo long to fit on onelineit is continued to the
next line. When modules are extracted from an existing library file, the list shows the

contents of the existing library file.
Shows the library file attribute.

SYSTEM: System library
USER: User library

Shows the total number of modules stored in the library file, in decimal notation.

Shows the total number of export symbolsin the library file, in decimal notation.

HITACHI 169

(5) Showsthe date and time of library file creation. Thisinformation is given in the following
format.

dd - mmmyy hh:mm:ss

A I
second

minute

hour

year (last 2 digits)
month (3 letters)
day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The
format isthe same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in aphabetical order.
(8) Showsthekind of editing operation performed on the module.

BLANK : A module stored in an existing library file

(A) : An added module
(R) . A replacement module
(B) . An extracted module

Modules deleted by the DELETE option or subcommand are not listed.

(9) Showsthe date and time a module was stored in the library file. The format is the same as for
the library file creation date and revision date.

(10) When the (S) parameter is specified with the LIST subcommand, the export symbolsin each
module are shown. These symbol names are listed in aphabetical order two on each line.

An example of alist when the (S) parameter is specified with the LIST subcommand isgiven in
figure 6-2. Figure 6-3 shows alist without the (S) specification.

170 HITACHI

Library file nane: clib.lib
Attribute: USER

Nurmber of nodul es: 6
Nurmber of synbols: 6

Creation date:
Revi si on dat e:

ABS. C Entry date:
_abs

ATCF. C Entry date:
_at of

ATO . C Entry date:
_atoi

ATOL. C Entry date:
_atol

_ALOCBUF (A) Entry date:
_al cobuf

_Div (A) Entry date:
_di vi

08-Jan-90
01- Mar-90

08-Jan-90

08-Jan-90

08-Jan-90

08-Jan-90

01- Mar - 90

01- Mar - 90

14:
19:

14:

14:

14:

14:

19:

19:

18:
56:

18:

18:

18:

18:

56:

56:

47
33

47

47

47

47

33

33

Figure6-2 Librarian List (with (S) specification on UNIX)

Library file nane: clib.lib
Attribute: USER

Nurmber of nodul es: 6
Nurmber of synbols: 6

Creation date:
Revi si on dat e:

ABS. C Entry date:
ATCF. C Entry date:
ATA . C Entry date:
ATOL. C Entry date:
_ALOCBUF (A) Entry date:
_Div (A) Entry date:

08-Jan-90
01- Mar-90

08-Jan-90
08-Jan-90
08-Jan-90
08-Jan-90
01- Mar - 90
01- Mar-90

14:
19:

14
14
14
14
19:
19:

18:
56:

18:
18:
18:
18:
56:
56:

47
33

47
47
47
47
33
33

Figure6-3 Librarian List (no (S) specification on UNIX)

HITACHI 171

6.3 Section Name Lists

When the SLIST option or subcommand is specified, alist of the section contents of the library
file are output to the standard output device or to afile. The format of a section namelist is shown
in figure 6-4.

Library file name: (1)
@)
Attribute: (2)
Number of modules: (3) Creation date: (5)
Number of symbols: (4) Revision date: (6)
(7) Entry date: (8)
) (10)
(7 Entry date: (8)

Figure6-4 Section NameList Format

(1) Showsthelibrary file name. If the nameistoo long to fit on one lineit is continued to the
next line. When modules are extracted from an existing library file, the list shows the
contents of the existing library file.

(2) Showsthelibrary file attribute.

SYSTEM: Systemlibrary
USER: User library

(3) Showsthetotal number of modules stored in the library file, in decimal notation.

(4) Showsthetotal number of export symbolsin the library file, in decimal notation.

172 HITACHI

(5) Showsthe date and time of library file creation. Thisinformation is given in the following
format.

dd - mmmyy hh:mm:ss

A I
second

minute

hour

year (last 2 digits)
month (3 letters)
day

(6) Shows the date and time of the most recent library file update. When library files are newly
created using the CREATE option or subcommand, this shows the date of creation. The
format isthe same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in aphabetical order.

(8) Showsthe date and time a module was stored in the library file. The format isthe same as for
the library file creation date and revision date.

(9) Showsthe export symbolsin each module.

(10) Shows the name of the section containing the export symbol name.

HITACHI 173

An example of alist specified with the SLIST subcommand is given in figure 6-5.

Li brary file nane:
Attribute:
Nunmber of nodul es:
Nunmber of synbol s:

ABS. C

_abs

ATCF. C

ATAO . C

ATOL. C

_ALOCBUF

Dl VI

at of

at oi

at ol

al cobuf

di vi

USER

clib.lib

Creation date:
Revi si on dat e:

Entry date:
P
Entry date:
P
Entry date:
P1
Entry date:
CODE
Entry date:
P
Entry date:
P2

8-Jan-90 14:18: 47
01- Mar-90 19: 56: 33

08-Jan-90 14:18: 47

08-Jan-90 14:18: 47

08-Jan-90 14:18: 47

08-Jan-90 14:18: 47

01- Mar-90 19: 56: 33

01- Mar-90 19: 56: 33

174 HITACHI

Figure6-5 Section NamelList

6.4 Console M essages
The Librarian displays the following messages on the standard output device.

Opening Message: Displayed when the librarian command isinput.

HSERES OBIECT LIBRARIAN Ver. 1.4
Copyright (©Q Htachi, Ltd. 1988
Li censed Material of Htachi, Ltd.

Normal Completion Message: Displayed when library file editing has ended normally.

GBJECT LIBRARIAN COMPLETED

Abort Message: Displayed when the library file editing is aborted by either an error or an
ABORT subcommand.

CBJECT LI BRARI AN ABCRT

Subcommand Prompt: Indicates that the Librarian isin subcommand input wait state during
interactive execution.

Subcommand Continuation Symbol: Request for a continuation line, when continuation of a
subcommand is specified during interactive execution.

HITACHI 175

Section 7 Error Messages

The Librarian outputs error messages in the following form.
** <Error number> <Error message> [(<Additional information>)]

Error Number: Thefirst digit indicates the level of the error. (xx represents the second and third
digits.)

Ixx : Warning : Processing of a particular moduleis skipped.
2xx : Error . If started by input from the command line or a subcommand file,

processing is stopped. In interactive mode, processing of the subcommand
is stopped when the error is detected, and a prompt is displayed for the
next subcommand.

3xx : Fatal error : Processing is stopped.

A list of error messagesis given below in tables 7-1, 7-2 and 7-3, in the following format.

Error number Error message Additional information

Description of error

Corrective action, etc.

Note: Additional information includes the name of the file in which the error occurred, or the
module name or symbol name. In the list of errors, — means that no additional information
is given.

HITACHI 177

Table7-1 List of Warning M essages

101 DUPLICATE MODULE Module name
An attempt was made to add a module already stored in the library file.

Processing of the module is skipped.

102 DUPLICATE SYMBOL Module name ** Symbol name
An attempt was made to add an export symbol already present in the library file.
Processing of the module is skipped.

103 IDENTIFIER CHARACTER EXCEEDS 251 Module name
A module name of more than 251 characters was specified.

The name is valid up to the 251th character. The rest is ignored.
104 EXIT SUBCOMMAND NOT FOUN—ASSUMED —
No EXIT subcommand was specified.
Processing continues as though an EXIT subcommand had been specified.

105 SUBCOMMAND LINE LENGTH TOO LONG —

Symbols are replaced with the corresponding directory names, and the file name exceeds
511.
The file name is valid up to the 511th character.
106 TOO MANY DIRECTORY COMMANDS —
More than 16 directory names have been specified with the DIRECTORY subcommand.
Up to 16th specification is valid.
107 MODULE COUNT 0 —
The total number of modules becomes zero.
Processing is terminated. Check the specification for editing modules.

108 SECTION NOT FOUND Module name ** Section name
The specified section cannot be found.

Check the section name and respecify it.

109 CANNOT PRINT SECTION LIST Module name
The SLIST option or subcommand is specified for the file containing a relocatable load
module.

Specify the SLIST option or subcommand only for absolute modules.

110 CANNOT RENAME SECTION NAME Module name

The RENAME option or subcommand is specified for the file containing a relocatable load
module.

Specify the RENAME option or subcommand only for absolute modules.

178 HITACHI

Table7-2 List of Error Messages

201

INVALID SUBCOMMAND/OPTION —

The option or subcommand specified is invalid in this context.

Specify a valid option or subcommand.

202

SYNTAX ERROR —

Syntax of the specified option or subcommand is incorrect.

Check the syntax and respecify the option or subcommand.

203

SUBCOMMAND LINE LENGTH TOO LONG —

Length of the subcommand entry exceeds 128 characters.

Respecify, keeping the length within 128 characters.

204

CONFLICTING SUBCOMMAND —

Subcommands are specified in the wrong order, or an illegal combination of subcommands
is specified.

Check the order of subcommands and respecify.

205

ILLEGAL FILE NAME —

The specified file name is not valid.

Specify a correct file name.

206

ILLEGAL MODULE NAME —

The specified module name is not valid.

Specify a correct module name.

207

MODULE NOT FOUND Module name

The specified module cannot be found.

Check the name of the module, then respecify.

208

MISSING OUTPUT FILE NAME —

No output file was specified with the EXTRACT option or subcommand.

Use the OUTPUT option or subcommand to specify an output file.

209

TOO MANY INPUT FILES —

More than 12 input files were specified for input at the same time.

First output the library file, then re-input the library file and input the remaining files.

210

TOO MANY MODULES —

The number of modules exceeds the allowable number.

No more modules can be stored in the library file now being created or edited. Store any
additional modules in a separate library file.

HITACHI 179

Table7-2 List of Error M essages (cont)

211 TOO MANY SYMBOLS —

The number of symbols exceeds the allowable number.

The library file now being created or edited cannot contain any more symbols. Modules with
additional symbols must be stored in a separate library file.

212 ILLEGAL FILE FORMAT —

The specified file format is incorrect.

Check the file contents and re-execute.

213 MEMORY OVERFLOW —

There is no space remaining in the Librarian’s usable memory.

Obtain additional memory and re-execute.

214 FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then respecify.

215 DUPLICATE SECTION Module name ** Section name

The specified section is in a module.

Check the section name and respecify it.

216 ILLEGAL SECTION NAME —

The specified section name is illegal.

Check the section name and respecify it.

180 HITACHI

Table7-3 List of Fatal Error Messages

301 INVALID COMMAND PARAMETER —
An improper command parameter was specified.
Check the command parameters and re-execute.
302 CONFLICTING OPTION —
There is a contradiction among different options specified.
Check the order of option specification, then respecify.
303 CANNOT OPEN FILE File name
File cannot be opened, or the CREATE or OUTPUT option or subcommand specified an
already existing file.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
If an existing file was specified by the CREATE or OUTPUT option or subcommand, delete
the existing file, then re-execute.
304 CANNOT INPUT FILE File name
File cannot be input.
Check the specified file name. If the file name is correct, there may be a disk hardware
error. Correct the problem, then re-execute.
305 CANNOT OUTPUT FILE File name
File cannot be output.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
306 CANNOT CLOSE FILE File name
File cannot be closed.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware error. Correct the problem, then re-execute.
307 CANNOT READ —
Because forcible termination was specified, processing is aborted.
Re-execute the processing.
308 MEMORY OVERFLOW —

The memory space is insufficient for the librarian.

Check the operating environment and re-execute the processing.

HITACHI 181

Note: Inthe UNIX system, the Librarian uses temporary files with names in the format shown
below. These temporary file names may appear as additional information in error

messages.

Annnnn. TEMP
A

5 digits, decimal

182 HITACHI

Section 8 Restrictions

Restriction on the Librarian are shown in table 8-1. If the numerical restrictions are exceeded,
Librarian operations will not operate correctly.

Table8-1 Restrictionson Librarian Processing

No. Item Limits Remarks

1 The number of modules 32,767 max. Assumes that the system on
that can be stored in a which Librarian runs has
library file adequate memory.

2 The number of symbols that 65,535 max.
can be present in a library
file

3 The number of input files 256 max. Total number of files specified

by LIBRARY, ADD, or
REPLACE not including
subcommand files.

4 The number of modules 10 max. When specifying a library file
that can be specified in a with ADD or REPLACE.
library file

5 Length of file name 128 characters max. Includes default file-type

characters. File name format
depends on OS.

6 Length of module name 251 characters max.

7 Length of symbol name 251 characters max.

8 Input file formats « Object module file output

by assembler or C

compiler.

* Relocatable load module

file.

« Library file created using

this Librarian.

HITACHI 183

Appendix A Examples of Librarian Usage

Al Librarian Execution by Command Line

| br A- CREATE=f unc- ADD=abs, nod, sqrt, exp, |l og (RET) ..(1) Crestion

@ (b)
| br Af unc- ADD=si n, cos- DELETE=abs, nod- LI ST (RET) ...(2) Editing
N—— N——
(© (d) C) (®)
| br Af unc- EXTRACT=sqr t , exp- OUTPUT=newf nc (RET) ...(3) Extraction
@) (h) 0]

(a) The CREATE option is specified at the beginning of the option line to create anew library
file.

(b) Thefile names for the modules to be entered are specified using the ADD option.
(c) The name of thelibrary file to be edited is specified.

(d) Thefile names for modules to be added to the existing library file are specified using the
ADD option.

(e) The names of the modules to be deleted from the existing library file are specified using
the DELETE option.

(f) The LIST option is specified to confirm the editing results.
(9) Anexisting library file from which modules are to be extracted is specified.
(h) The names of the modulesto be extracted are specified using the EXTRACT option.

(i) The name of anew library file to which the extracted modules are to be output is specified
using the OUTPUT option.

Thisprocessisillustrated in figure A-1.

HITACHI 185

sqrt.obj

exp.obj

exp

(1) Creation

-

(@ (

func.lib

mod

sqrt

exp

sin.obj

sin

B 0s.0bj

»
J

(2) Editing

-
©to(

func.lib

sqrt

exp

log

sin

cos

List

-

(3) Extraction

el

(9) to (i)

newfnc.lib

sqrt

exp

186 HITACHI

Figure A-1 Resultsof Librarian Execution by Command Line

A.2 Librarian Execution by Subcommands

| br (RET) ..(a)

CREATEAf unc (RET) ...(b)

ADDAsqgrt, exp, | og, sin, cos (RET) ...(c) (2) Creation
END (RET ...(d)

LI BRARYAf unc (RET) ..(e)

REPLACEASi n. new, cos. new, t an. new (RET) ..(f) | (2) Editing
END (RET ..(9)

LI BRARYAf unc (RET) ...(h)

LI ST (RET) (i)
EXTRACTAsqrt, exp (RET) ..(J) » (3) Extraction
QUTPUTAnewf nc (RET) (k)

END (RET ()

EXI T (RET) ...(m)

(a) TheLibrarianis started.

(b) The CREATE subcommand is specified at the beginning of the option line to create a new
library file.

(c) Thefile names of modules to be loaded are specified using the ADD subcommand.

(d) The END subcommand is specified to terminate the creation process.

(e) The name of thelibrary fileto be edited is specified.

(f) Modulesin the existing library file are replaced, using the REPLACE subcommand. The
file names of the modulesto be replaced is specified.

(g9) The END subcommand is specified to terminate the editing process.

(h) Anexisting library file is designated for extraction of modules.

(i) The LIST subcommand is specified to confirm the contents of the existing library file.

(i) The names of the modulesto be extracted are specified using the EXTRACT subcommand.

(k) The name of anew library file to which the extracted modules are to be output is specified
using the OUTPUT subcommand.

(I The END subcommand is specified to terminate the extraction process.
(m)The EXIT subcommand is specified to terminate the Librarian program.

This processisillustrated in figure A-2.

HITACHI 187

sqrt.obj

sqrt

exp.obj

exp

log.obj

sin.obj

sin

€0s.0bj

cos

(1) Creation

- D)

(b) to (d)

func.lib

sqrt

exp

log

sin

cos

(2) Editing

\

(e)to(9)

File name

_>

Module name —b
J

sin.new

sin'

Cos.new

cos

tan.new

func.lib

! sqrt f

exp

log

sin

cos'

tan

(3) Extraction

>
() o ()

List

=

newfnc.lib

exp

188 HITACH

Figure A-2 Resultsof Librarian Execution by Subcommand

Appendix B Noteon Librarian Usage in MS-DOS System

Before using this Librarian, set the MS-DOS configuration file (CONFIG.SY S) with the editor as
follows.

FI LES=20 (1)
SHELL=a: \ coomand. com a: \ (2)
Ip

(1) The number of filesthat is allowed to open at one time during Librarian operation.
(2) Directory path specification that is required when COMMAND.COM s reloaded.

HITACHI 189

Part |11

Object Converter Guide

Section 1 Object Format Conversion

To input the load modules output by the Linkage Editor into an emulator or PROM programmer,
they must first be converted to S-type object format using the Object Format Converter.

11 Executing the Object Format Conversion
The command line format for starting the Object Format Converter is as follows.
cnvsA<input file nane>[A<output file nane>] (RET)

For details on file names, refer to appendix B, File Name Specifications, in Part |, Linkage Editor
Guide.

Command Name: The Object Format Converter is started up by specifying the command “cnvs.”

Input File Name: The name of an absolute-format load module file to be input to the Object
Format Converter is specified. Rel ocatable load module files cannot be specified.

If the file type is omitted from the file name, the Object Format Converter automatically assumes
thisto be “.abs’ when it inputs the file.

Output File Name: The name of the S-type object file to be output by the Object Format
Converter is specified. If thefile type is omitted from the file name, the Object Format Converter
automatically assumesthisto be “.mot” when it outputs the file.

Examples of command line specification are given below.

cnvsAprogl. | ndAprogl. sty (RET) (1)
cnvsAproglAprogl (RET) 2

(1) File“progl.Imd” isinput, and file “progl.sty” isoutput.
(2) File“progl.abs’ isinput, and file “progl.mot” is output.

The S-type object format is shown in figure 1-1.

HITACHI 193

(a) Header record (SO record)

ey«
s|0/0 E|O O O O " ¢ (LE) *3
53|30 30‘45 30‘30‘30‘30 XX‘XX 0A
) {5
Load address Check sum *2
Byte count *1 File type (3 char.: 6 bytes)
Record format Main file name
Record header (8 char.: 16 bytes)
(b) Data record (S1, S2, and S3 record)
(i) When load address is between 0 and OFFFF (hexadecimal)
Ve -
S|1 " (LE} *3
53|31 XX‘XX XX‘XX‘XX‘XX XX‘XX 0A
((

)J

'

Load address (2 bytes) Check sum *2
Byte count *1 Data (16 bytes max.)

Record format
Record header

(i) When load address is between 10000 and OFFFFFF (hexadecimal)

Ve «
S| 2 " (LE) *3
53|32 XX‘XX XX‘XX‘XX‘XX‘XX‘XX XX‘XX 0A

((
)
Load address (3 bytes) Check sum *2
Byte count *1 Data (16 bytes max.)
Record format
Record header
(iii) When load address is between 1000000 and OFFFFFFFF (hexadecimal)
FTEY «
S| 3 ((LF) *3
53|33 XX‘XX XX‘XX‘XX‘XX‘XX‘XX‘XX‘XX XX‘XX 0A
{(
)T
Load address (4 bytes) j Check sum *2

Byte count *1 Data (16 bytes max.)
Record format
Record header

Notes: 1. The byte count is the number of bytes from the load address (or entry address) to check sum.
2. Check sum is the 1's complement of the result of adding the data values from the byte count
to that before check sum, in byte units.
3. “LF” indicates the line feed code.

Figure1l-1 S-TypeObject Format

194 HITACHI

(c) End record (S9, S8, and S7 record)
(i) When load address is between 0 and OFFFF (hexadecimal)

s|o9|o0 3 (LF) *3
53 | 39 30‘33 xx‘xx‘xx‘xx xx‘xx 0A

'

Check sum *2
Entry address (2 bytes)

Byte count *1
Record format
Record header

(i) When load address is between 10000 and OFFFFFF (hexadecimal)

s|8|0 4 (LF) *3
53 | 38 30‘34 xx‘xx‘xx‘xx‘xx‘xx xx‘xx 0A

Entry address (3 bytes) Check sum *2
Byte count *1
Record format
Record header

(iii) When load address is between 1000000 and OFFFFFFFF (hexadecimal)

s|7|0 5 (LF) 3
5337|3035 [XX|XX | XX| XX| XX | XX| XX | XX| XX | XX | 0A

'

Entry address (4 bytes) Check sum *2
— Byte count *1

Record format

Record header

Notes: 1. The byte count is the number of bytes from the load address (or entry address) to the
check sum.
2. The check sum is the 1's complement of the sum of the data values from the byte count
to the byte before the check sum, in byte units.
3. “LF” indicates the line feed code.

Figure1-1 S-Type Object Format (cont)

HITACHI 195

12 Error Messages

When errors are made in command specification, or when an error is detected during the
conversion process, the Object Format Converter outputs error messages in the following format.

** A <Error number>A<error message>[(<additional information>)]

T

1st column

A list of error messagesis given below in table 1-1 in the following format.

Error Number Error Message Additional Information

Nature of Error

Converter actions and corrective actions

Notation used in table: —: No additional information

196 HITACHI

Tablel-1 Object Format Converter Error Messages

301 INVALID COMMAND PARAMETER —
An improper command parameter was specified.
Check the command parameters and re-execute.
302 FILE NOT FOUND File name
The specified file cannot be found.
Check the directory and the specified file name, then re-execute.
303 CANNOT OPEN FILE File name
File cannot be opened.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
304 CANNOT READ FILE File name
File cannot be input.
Check the specified file name. If the file name is correct, there may be a disk hardware
problem. After checking the problem, re-execute.
305 CANNOT WRITE FILE File name
File cannot be output.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
306 CANNOT CLOSE FILE File name
File cannot be closed.
Check the specified file name. If the file name is correct, the disk may be full, or there may
be a disk hardware problem. After checking the problem, re-execute.
307 ILLEGAL FILE FORMAT File name
The specified file format is incorrect.
Check the file contents, then re-execute.
308 ILLEGAL FILE NAME File name
An illegal file name was specified.
Specify a correct file name.
309 MEMORY OVERFLOW —

Insufficient memory is available for use by the Object Format Converter.

Expand the memory or revise the user program, then re-execute.

HITACHI

197

A
Abbreviating name 44, 142
ABORT 70, 162
Abort message 93, 175
Absolute 6,7
Format 11, 13, 30, 49, 65
Load module 4
Absolute address 13, 20, 22
ADD 151
Addition 128, 151
Additional information 95, 177, 196
Address
Assignment 13
Resolution 4, 20, 22, 23
Suppressing the listing of unresolved
symbols 24
Address check 30
Specification 60
ALIGN_SECTION 57
Assembler 3,4, 81, 125
Attribute 86, 146, 150
Automatic inclusion 17
AUTOPAGE 59
Autopaging 13

C

C Compiler 3,81, 125

CHECK_SECTION 58

Command line 34
Execution 4, 33, 34, 133
Format 34

Common linkage 8, 86

Console messages 93, 175

Contentsdisplay 129

Continuation specification 139

CPU 30,60

CPUCHECK 61

CPU information file 30, 60

CREATE 150

Creation 127, 150

Creation date 170

D
DEBUG 66
Debugging

I ndex

Information 4, 66

Information output specification 66

Support 4, 29, 39, 74

Support function 39
Default library 17, 81

File 81

Logical name 81
DEFINE 78
DEFINE list 83, 92
DELETE 29, 77,157
Deletion 128, 157
DIRECTORY 53, 148
Dummy linkage 9, 86

E

ECHO 71

Echo-back specification 71
END 27,68, 160

Enter 127

ENTRY 56

Error 177

Error messages 95, 101, 102, 177, 180, 181,

196
EXCHANGE 27, 63
EXCLUDE 19, 52
Execution control 39, 63
Function 39, 137
Execution mode specification 34, 132
Execution start address specification 56
EXIT 27,69, 161
Export
Number of symbols 107
Symbol 17, 24,75
Symbol deletion 77
Symbol list 83, 88
Symbol name 77
Symbol name change 29, 75
Symbol name deletion 29
EXTRACT 158
Extraction 6, 158
F
Fatal error 95
Message 103, 104, 105, 181, 182
File
Control 39, 47, 137

HITACHI 199

Control function 39
Type 34,47, 48, 49, 50, 60
Filename 131, 137
Length 183
Specification 122
FORM 4, 13, 24, 65
Format 5,12
Format conversion 193

H
HLNK_LIBRARY1-3 81

I

Import
Forced definition 29, 78
Number of symbols 107
Symbol 17, 18, 19, 20, 75
Symbol name 78
Symbol name change 29, 75
Symbol name deletion 29
Symbol resolution 20, 21

Informative message 93

INPUT 17, 24, 47

Input file
Format 107, 183
Name 34
Number of files 107, 183
Specification 47

Input information (list) 83

Interactive mode 35, 36, 134
Execution 36

Interim linkage information display 29, 74

L
Librarian 17, 81, 125
Abort 162
List 169
Termination 136, 161
Library 18
LIBRARY 17,50, 145
Library file 17, 47, 50, 81, 125, 167
Attribute 169
Input from library file 17
Name 132
Specification 17,50
Link attribute 86
Linkage editor 7, 125

200 HITACHI

Example of usage 109
Execution 33, 110
Input to Linkage Editor 81
Output 83,92, 93
Re-input 81
Termination 38
Linkagelist 51, 83, 112, 113, 114, 115, 116,
117, 118, 119, 120, 121
Linkage operation
End specification 69
Abort specification 70
Link map list 83, 85
LIST 29, 74,163
List display 137, 163
List file specification 50
Load module 3, 4, 47,72
File 3,4,24,25,92, 93
File re-input function 4, 24

M

Memory allocation 39
Function 39

Module 4,5, 125
Exclusion of modulelinking 19, 52
Linkage 4,7,17,18,19
Name 47, 107, 137
Name length 107, 183
Name specification 17, 48
Number of modules 107, 183
Specification 81

Multilinkage function 4, 27

N

Name 40, 137

NOAUTOPAGE 59

NODEBUG 66

NOECHO 71

NOEXCLUDE 52

NOLIBRARY 50

Non-pagetype 5, 17, 47, 50, 54, 59, 79

Non-referenced import symbol 52
Module containing non-referenced import
symbol 19

NOOUTPUT 49

NOPRINT 51

Normal completion message 93, 175

NOUDF 72

@]
Object
Format conversion 193
Module 3,4,17,18,125
Modulefile 3, 81, 167
Object converter
Error message 196, 197
Execution 193

Input file name 193
Output file name 193
Start-up command 193
Opening message 93, 175
Option 39, 42, 137, 141
Defaults 46
Format 40, 137
Name 34, 132
Negativeform 45
Range of validity 46
Structure 40, 137
OUTPUT 49, 146
Output file specification 49
Output load module file format specification
65

P

Pagetype 5, 17, 47, 50, 54, 59, 78
Linkage 13,14, 15, 16

Parameter 40, 137

PRINT 51,83

R
Re-input function 4
Relative address 13, 22
Relocatable 6
Format 7, 13, 49, 65
Load module 4,17, 47
Load modulefile 81, 167
Relocation information 4
RENAME 29, 75, 159
RENAME/DELETE list 83, 91
REPLACE 154
Replacement 129, 154
Restrictions 107, 183
Return code 38, 136
ROM 62

S
SDEBUG 67
Section 5
Attribute 5, 8,9
Grouping 7
Linkage 7,8, 10,11, 12
Linkage order 9, 13,54
Name 5, 107
Namelist 172
Number of sections 107
Start address specification 54
Simplelinkage 8, 86
Simulator/debugger 4, 30
SLIST 165
START 10,54
Start-up command 34, 132, 193
Store 151
S-type object format 193
Subcommand 35, 39, 42, 111, 141
Comment specification 41, 139
Continuation prompt 93
Continuation specification 41, 175
End of input 68, 161
Execution 4, 33, 35, 134
File 35,37, 64, 149
File execution 37,135
File specification 64
Format 40, 137
Negative form 44
Request prompt 93, 175
Structure 40
SUBCOMMAND 35, 37, 64, 149
Support of storing program in ROM 30, 62
Symbol
Number of symbols 107, 183
Symbol name 107
Length 183
System library file 17, 50, 146, 150
U
UDF 24,72
UDFCHECK 73
Undefined symbol
Display specification 72
Unit 5,7,75
Automatic exchange 25
Deletion 77
Forced exchange (replace) 27, 63

HITACHI 201

Name 75, 107

Name change 29

Name deletion 29

Number of units 107
Unresolved import symbol 17
Unresolved import symbol list 83, 89
Updating date 170
User library file 17, 50, 146, 150

w

Warning 95, 177

Warning message 8, 12, 72, 96, 97, 98, 178
Warning 108 message 98

202 HITACHI

H SeriesLinkage Editor, Librarian, and Object Converter
User’'sManual

Publication Date: 1st Edition, October 1996
Published by: Semiconductor and IC Div.
Hitachi, Ltd.
Edited by: Technical Documentation Center
Hitachi Microcomputer System Ltd.
Copyright © Hitachi, Ltd., 1996. All rights reserved. Printed in Japan.

	Preface
	Contents
	Part I Linkage Editor Guide
	1 Overview
	1.1 Linkage Editor Functions
	1.2 Object Module and Load Module
	1.3 Unit and Section

	2 Linkage Editor Functions
	2.1 Module Linkage
	2.2 Address Resolution
	2.3 Load Module File Re-Input
	2.4 Multilinkage
	2.5 Debugging Support
	2.6 Address Check
	2.7 Support of Storing Program in ROM

	3 Executing the Linkage Editor
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Controlling by Subcommands
	3.4 Terminating the Linkage Editor

	4 Linkage Editor Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	INPUT
	OUTPUT
	LIBRARY
	PRINT
	EXCLUDE
	DIRECTORY

	4.4 Memory Allocation
	START
	ENTRY
	ALIGN_SECTION
	CHECK_SECTION
	AUTOPAGE
	CPU
	CPUCHECK
	ROM

	4.5 Execution Control
	EXCHANGE
	SUBCOMMAND
	FORM
	DEBUG
	SDEBUG
	END
	EXIT
	ABORT
	ECHO
	UDF
	UDFCHECK

	4.6 Debugging Support
	LIST
	RENAME
	DELETE
	DEFINE

	5 Input to the Linkage Editor
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files
	5.4 Default Library Files

	6 Output from the Linkage Editor
	6.1 Linkage Lists
	6.2 Load Module File
	6.3 Console Messages

	7 Error Messages
	8 Restrictions
	A Example of Use of Linkage Editor
	B File Name Specifications

	Part II Librarian Guide
	1 Overview
	2 Librarian Functions
	2.1 Creating Library Files
	2.2 Editing Existing Library Files
	2.3 Extracting Modules from a Library File
	2.4 Displaying the Contents of a Library File

	3 Executing the Librarian
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Executing by Subcommands
	3.4 Terminating Librarian Operations

	4 Librarian Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Execution Control
	4.5 List Display

	5 Input to the Librarian
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files

	6 Output from the Librarian
	6.1 Library Files
	6.2 Librarian Lists
	6.3 Section Name Lists
	6.4 Console Messages

	7 Error Messages
	8 Restrictions
	A Examples of Librarian Usage
	A.1 Librarian Execution by Command Line
	A.2 Librarian Execution by Subcommands

	B Note on Librarian Usage in MS-DOS System

	Part III Object Converter Guide
	1 Object Format Conversion
	1.1 Executing the Object Format Conversion
	1.2 Error Messages

	Index

