
HITACHI MICROCOMPUTER SUPPORT SOFTWARE

H SERIES LIBRARIAN

USER'S MANUAL

HS6400LBCU1SE

ADE-702-087

Preface

This manual describes how to use the H Series Librarian. The manual is divided into the following

eight sections.

Sections 1 and 2 Librarian functions

Section 3.. Executing the Librarian

Section 4.. Librarian options and subcommands

Section 5.. Input to the Librarian

Section 6.. Output from the Librarian

Section 7.. Error messages

Section 8.. Restrictions

Appendix A... Examples of Use of Librarian

Installation of the Librarian is covered in the Installation Guide supplied with the Librarian.

Refer to the following user's manuals for additional information on the other support tools in the

H series cross system.

• H Series Linkage Editor User's Manual

• H8/300 Series Cross Assembler User's Manual

• H8/500 Series Cross Assembler User's Manual

• H32 Series Cross Assembler User's Manual

• SH Series Cross Assembler User's Manual

• H8/300 Series C Compiler User's Manual

• H8/500 Series C Compiler User's Manual

• H32 Series C Compiler User's Manual

• SH Series C Compiler User's Manual
i

Notes:
The following symbols have special meanings in this manual.

<item> : <specification item>

{ } : One of the items between the brackets is to be selected.

[] : The enclosed item is optional (i.e., can be omitted).

 ... : The preceding item can be replaced.

 ∆ : Blank space(s) or tab(s)

3 : Press the Return (Enter) key.

UNIX is an operating system administrated by the UNIX System Laboratories (United States).
MS-DOS is an operating system administrated by the Microsoft Corporation (United States).
ii

iii

Contents

Section 1. Overview.. 1

Section 2. Librarian Functions ... 2

2.1 Creating Library Files .. 2

2.2 Editing Existing Library Files.. 2

2.3 Extracting Modules from a Library File .. 4

2.4 Displaying the Contents of a Library File.. 4

Section 3. Executing the Librarian.. 5

3.1 Command Line Format .. 5

3.2 Executing by Command Line .. 6

3.3 Executing by Subcommands.. 7

3.3.1 Executing in Interactive Mode.. 7

3.3.2 Executing from a Subcommand File .. 8

3.4 Terminating Librarian Operations ... 9

Section 4. Librarian Options and Subcommands .. 10

4.1 Option and Subcommand Formats... 10

4.2 List of Options and Subcommands .. 14

4.3 File Control ... 18

4.3.1 LIBRARY — Specifies the library file to be edited..................................... 18

4.3.2 OUTPUT — Specifies an output library file .. 19

4.4 Execution Control .. 20

4.4.1 SUBCOMMAND — Specifies a subcommand file 20

4.4.2 CREATE — Creates a library file.. 21

4.4.3 ADD — Adds modules... 22

4.4.4 REPLACE — Replaces modules.. 24

4.4.5 DELETE — Deletes modules... 27

4.4.6 EXTRACT — Extracts modules .. 28

4.4.7 END — Specifies end of subcommand input .. 29

4.4.8 EXIT — Specifies end of Librarian operations ... 30

4.4.9 ABORT — Aborts librarian operations.. 31

4.5 List Display.. 32

4.5.1 LIST — Displays contents of a library file .. 32

iv

Section 5. Input to the Librarian...34

5.1 Object Module Files... 34

5.2 Relocatable Load Module Files ... 34

5.3 Library Files... 34

Section 6. Output from the Librarian.. 35

6.1 Library Files... 35

6.2 Librarian Lists.. 35

6.3 Console Messages.. 38

Section 7. Error Messages ... 39

Section 8. Restrictions.. 44

Appendix A Examples of Use of Librarian... 45

A.1 Librarian Execution by Command Line .. 45

A.2 Librarian Execution by Subcommands.. 47

Index.. 49

v

Figures

Figure 2-1 Creating a New Library File .. 2

Figure 2-2 Adding a Module ... 3

Figure 2-3 Deleting a Module.. 3

Figure 2-4 Replacing a Module ... 4

Figure 2-5 Extracting Modules.. 4

Figure 6-1 Librarian List Format... 35

Figure 6-2 Librarian List (with (S) specification) ... 37

Figure 6-3 Librarian List (no (S) specification)... 37

Figure A-1 Results of Librarian Execution by Command Line .. 46

Figure A-2 Results of Librarian Execution by Subcommand .. 48

vi

Tables

Table 3-1 How Command Line Specification Determines the Form of Execution 6

Table 4-1 List of Options and Subcommands .. 14

Table 4-2 Interrelation among Options and Subcommands... 15

Table 7-1 List of Warning Messages.. 40

Table 7-2 List of Error Messages ... 41

Table 7-3 List of Fatal Error Messages .. 43

Table 8-1 Restriction on Librarian Processing... 44

Section 1. Overview

A program is usually developed by dividing it into functional modules and creating a separate

source program for each module. Next, each source program module is compiled or assembled to

create an object module. The object modules are then linked together using a linkage editor,

resulting in an executable program.

The H Series Librarian introduced in this manual (hereafter called the Librarian) plays a vital role in

this process. It brings together the many object modules output by the C compiler and assembler, as

well as relocatable load modules output by the linkage editor, to make library files.

The Librarian provides the following advantages.

Simplified Module Management: The many modules making up a program (including relocatable

load modules as well as object modules) are stored in a library file for the particular program. They

can then be dealt with all at once. Moreover, it is possible to create generic library files that can be

used later to streamline the creation of other programs.

A library file can be edited by adding, deleting, or replacing individual modules. In this way the

modules can be kept up to date.

Enhanced Linkage: The Linkage Editor can search library files to find, extract, and link modules

that define unresolved import symbols. Use of the library files thus makes linkage editing more

efficient.
1

Section 2. Librarian Functions

2.1 Creating Library Files

This function makes it possible to create new library files, and to enter object modules output by the

C compiler or assembler as well as relocatable load modules output by the linkage editor.

Figure 2-1 is an illustration of the library file creation concept.

Module A

Module B

Module C

Module A

Module B

Module C

Creation

Entered modules New library file

Figure 2-1. Creating a New Library File

2.2 Editing Existing Library Files

Modules can be added to, deleted from, or replaced in existing library files.

Adding Modules: Modules can be added to already existing library files. The concept of module

addition is illustrated in Figure 2-2.
2

UpdateModule A Module A

Module B Module B

Module C Module C

Module D Module D

Addition

Existing library file Edited library file

Figure 2-2. Adding a Module

Deleting Modules: Unnecessary modules can be deleted from existing library files. Figure 2-3

illustrates the module deletion concept.

Module A

Module A

Module B

Module B

Module C

Module D

Module D

Update

Deletion

Existing library file Edited library file

Figure 2-3. Deleting a Module

Replacing Modules: Modules in existing library files can be replaced with new modules. The

concept of module replacement is illustrated in Figure 2-4.
3

Module A Module A

Module B Module B'

Module D Module D

Module B'

UpdateReplacement

Existing library file Edited library file

Figure 2-4. Replacing a Module

2.3 Extracting Modules from a Library File

Modules can be extracted from existing library files and used to create new library files. The

concept of module extraction is illustrated in Figure 2-5.

Module A

Module B

Module B

Module C

Module C

Extraction

Extraction

Existing library file New library file

Figure 2-5. Extracting Modules

2.4 Displaying the Contents of a Library File

A librarian list giving information about the modules and export symbols in a library file can be

output to a standard output device or a list file. A librarian list tells when the library file was

created and when it was last revised, indicates when each module was stored, and gives the names

of export symbols and other useful information.

For further details, see section 6.2, Librarian Lists.
4

Section 3. Executing the Librarian
5

To execute the Librarian, first start the Librarian by entering a command line. The command line

specifies the name of the library file to be edited and various options, which give instructions to the

Librarian. If these instructions are sufficient, the Librarian can be executed using the command line

alone. If further instructions are needed, they can be given in subcommands.

Command Line Execution: The Librarian can be executed simply by specifying a library file and

options on the command line. The method is useful when library editing is relatively

straightforward.

Subcommand Execution: The Librarian can also be executed by entering both a command line

and subcommands. The subcommands specify input and output files and parameters that control

the Librarian. This method is useful for specifying a large number of files or modules, or for

editing two or more library files together. Subcommands can be entered interactively, or from a

subcommand file. Details are given in section 3.3, Executing by Subcommands.

3.1 Command Line Format

The following format is used for the Librarian command line.

UNIX System:

lbr[∆[<library file name>][[∆]-<option name>[[∆]-<option name>...]]]3

MS-DOS system:

lbr[∆[<library file name>][[∆]/<option name>[[∆]/<option name>...]]]3

Command Name: "lbr" is the command that starts the Librarian.

Library File Name: To edit or extract modules from an existing library file, type the name of the

library file in the command line.

Option Names: Each option name must start with a hyphen (-) at UNIX system or with a slash (/)

 at MS-DOS system. One or more spaces or tabs may also be used to separate an option name from

a preceding option name or library file name, but these spaces or tabs are not required. Option

names are described in detail in section 4, Librarian Options and Subcommands. The Librarian

edits the library file according to the order in which the options are specified.

Specifying the Mode of Execution: The content of the command line determines whether the

Librarian will be executed by the command line specifications only, or by subcommands. See
Table 3-1.

The library file name and each option name must be specified in 128 characters or less (not

including the final carriage return).

Table 3-1. How Command Line Specification Determines the Form of Execution

Option Specification

Library File Name

Specification

No Option

Specified

SUBCOMMAND

Option Specified

CREATE Option

Specified

Option Other than

CREATE or

SUBCOMMAND

Specified

Library file name

specified

— — — Executed by

specifying

command line

No library file name

specified

Executed by

specifying

subcommands

Executed by

specifying

subcommands

Executed by

specifying

command line

—

Notes: 1. For SUBCOMMAND and CREATE options, see section 4, Librarian Options and

Subcommands.

2. The combinations of option and library file names indicated by dashes (—) are not permitted.

An error will occur, and the librarian will not be executed.

3.2 Executing by Command Line

With this method, the Librarian is executed according to the information specified in the command

line alone. Editing procedures and other conditions are specified to the Librarian in the form of

options. When the editing process is straightforward and simple, command line specification is

sufficient for creating or updating a library. Examples of execution by command line are given

below.
6

EXAMPLE 1 (UNIX system):
7

lbr∆-CREATE=syslib.lib-ADD=obj00.obj,prg.lib 3

1

%

2

1 Creates a new library file named syslib.lib.

2 Adds the modules in object module file obj00.obj and library file prg.lib to syslib.lib.

 The CREATE option by itself will not create a library file unless modules are added using the ADD

 option.

EXAMPLE 2 (MS-DOS system):

% lbr∆syslib.lib/ADD=obj00.obj/DELETE=mod13

1 2 3

1 Designates library file syslib.lib as the file to be edited.

2 Adds the module in object module file obj00.obj to syslib.lib.

3 Deletes existing module mod1 from syslib.lib.

3.3 Executing by Subcommands

Since the number of characters that can be typed on the command line is limited, the command line

may not be able to accommodate a large number of specifications. In such cases, subcommands are

used to execute the Librarian. Subcommands can be input interactively, one at a time, from the

keyboard or other standard input device. Alternatively, a subcommand file consisting of a group of

subcommands can be created in advance, and subcommands can be input from this subcommand

file.

3.3.1 Executing in Interactive Mode

When no library file is specified in the command line and there are no option specifications,

execution proceeds in interactive mode. A colon (:) appears on the screen as a prompt, indicating

that the Librarian is waiting for a subcommand to be input. In this way you can enter the necessary

subcommands. This method is useful when the number of subcommands is relatively small, or

when you want to check Librarian lists as you enter the subcommands.

An example of execution by interactive input of subcommands is given below. Functions of the

subcommands listed here are detailed in section 4, Librarian Options and Subcommands.
EXAMPLE:
% lbr 3 ...1

————————————

: CREATE∆prg.lib 3 ...2
——————————————————————————————

: ADD∆main.obj 3 ...3
———————————————————————————

: ADD∆send.obj,receive.obj,exchange.obj 3 ...4
———

: ADD∆account.obj 3 ...5
——————————————————————————————

: LIST∆(S) 3 ...6
—————————————————————

: EXIT 3 ...7
———————————————

1 Starts the Librarian in interactive mode.

2 Creates a new library file named prg.lib

3 Adds the module in main.obj to prg.lib.

4 Adds the modules in send.obj, receive.obj and exchange.obj to prg.lib.

5 Adds the module in account.obj to prg.lib.

6 Outputs a librarian list, including symbol information, to the standard output device.

7 Terminates the Librarian operation.

3.3.2 Executing from a Subcommand File

This method uses a subcommand file that was created in advance and that contains the

subcommands necessary for Librarian operations. This subcommand file is then specified on the

command line as a parameter of the SUBCOMMAND option. This method is useful when many

subcommands must be specified, or when the same editing process is carried out repeatedly. It

eliminates the need to input subcommands from the keyboard or other standard input device each

time.

Use an editor to create the subcommand file. An example of execution from a subcommand file is

given below. Functions of the subcommands listed here are detailed in section 4, Librarian Options

and Subcommands.
8

% lbr∆-SUBCOMMAND=prglib.sub 3 ... 1
——

Contents of subcommand file prglib.sub:
CREATE∆function.lib ... 2

ADD∆sin.obj,cos.obj,tan.obj ... 3

ADD∆asin.obj,acos.obj,atan.obj ... 4

ADD∆hsin.obj,hcos.obj,htan.obj ... 5

ADD∆log.obj,log10.obj ... 6

EXIT ... 7

1 Starts the Librarian and inputs subcommands from subcommand file prglib.sub.

2 Creates a new library file function.lib.

3 Adds the modules in object module files sin.obj, cos.obj and tan.obj to function.lib.

4 Adds the modules in object module files asin.obj, acos.obj and atan.obj to function.lib.

5 Adds the modules in object module files hsin.obj, hcos.obj and htan.obj to function.lib.

6 Adds the modules in object module files log.obj and log10.obj to function.lib.

7 Terminates Librarian operations.

3.4 Terminating Librarian Operations

When the Librarian terminates operations, it gives the system a return code indicating an error level.

The return code can be used to control the execution of a command file. The error levels and their

return codes are:

UNIX system:

Normal completion 0

Warning 0

Error 1

Fatal error 1

MS-DOS system:

Normal completion 0

Warning 0

Error 2

Fatal error 4
9

Section 4. Librarian Options and Subcommands
10

Options and subcommands tell the Librarian what editing operations to perform. The three main

functions of options and subcommands are file control, execution control, and list display. These

functions can be used individually or in combination to create and edit library files.

Options and subcommands have the same names and equivalent functions, but are specified in

different formats. Moreover, there are some specifications which can be made only with options,

and others only with subcommands. Sections 4.1, Option and Subcommand Formats, and 4.2, List

of Options and Subcommands, must accordingly be read carefully. Option and subcommand

functions are outlined below.

File Control Functions: File control functions indicate the name of the library file to be edited, or

the name of a library file to which extracted modules are to be output.

Execution Control Functions: Execution control functions instruct the Librarian to perform

editing operations, or terminate its processing. These functions are used, for example, to input

subcommands from a subcommand file, to create a new library file, or to update a library file.

List Display Functions: List display functions are used to display information such as names of

modules stored in a library file, or export symbol names.

Note: The examples are written for UNIX system, please write slash (/) instead of hyphen (–) for

MS-DOS system and write all options and commands in capital letters.

4.1 Option and Subcommand Formats

Each option or subcommand consists of a name and parameters, which together must not exceed

 128 characters.

Option and Subcommand Structure: Options and subcommands differ as to the way of

separating the name from the parameters. Options use an equals sign (=), while subcommands use

 one or more spaces or tabs.

 Option format

<Name>=<parameters>

 Subcommand format
11

<Name>∆<parameters>

EXAMPLES:

–OUTPUT=lbf... option

OUTPUT∆lbfsubcommand

In these examples, OUTPUT is the name, and lbf is the parameter.

(a) Name

The name gives the name of the option or subcommand.

(b) Parameters

The parameters give the names of files,*1 module,*2 etc. on which the option or subcommand

operates. There are different requirements and methods of specification depending on the type of

option or subcommand. For details, refer to section 4.3, File Control, section 4.4, Execution

Control, and section 4.5, List Display.

Notes:

1. A file name consists of three parts: the path name, main file name, and file type.

If the file type is omitted, a file type is assumed as follows.

Library file.. .lib

Object module file.................................. .obj

Relocatable load module file.................. .obj

Subcommand file.................................... .sub

List filelst

2. A module name is the name defined in an object module or relocatable load module. In

module names, capital letters are distinguished from small letters. The pairs of names

below, for example, are treated as different names.

EXAMPLES: modul1 MODUL1

abcde Abcde
Continuation Specification in a Subcommand: When a subcommand is too long to be specified

on one line, a continuation specifier is used. This consists of an ampersand (&) at the end of the

line. It must always be placed between two parameters; if it is placed within a parameter, it will not

be treated as a continuation specifier. Also, if a character (including a space or tab) is typed after

the ampersand, an error will occur and the subcommand will not be continued.

In interactive input of subcommands, a hyphen (-) appears as a prompt for further input after

continuation has been specified.

EXAMPLES:

ADD∆obj00.lib(mod0,mod1),& 3 :

Continuation specifier
obj01.obj02 3 -

: ADD∆obj00.lib(mod0,mod1),ob& 3

Specifying continuation
in the middle of a
parameter occurs in
error.

A subcommand line in a subcommand file can be continued in the same way. The line after the line

with the continuation specifier becomes the continuation line.
12

EXAMPLE:
Subcommand file

sub3 3

Continuation specifier

Continuation line

DELETE∆sub1,sub2,& 3

Specifying Comments in a Subcommand File: A comment specifier is used to place notes or

other comments in a subcommand file. The specifier is a semicolon (;) placed on a subcommand

line, indicating that the rest of the line is a comment. If the semicolon follows a subcommand name

 or parameter, it must be separated by at least one space or tab.

If the semicolon is placed at the beginning of a subcommand line, the entire line is treated as a

comment.

EXAMPLES:

; EXAMPLE OF LIBRARIAN SUBCOMMAND

... the entire line is a comment.

LIBRARY∆syslib∆; INDICATES LIBRARY FILE

... INDICATES LIBRARY FILE is a comment.

ADD∆module.obj;abc

... module.obj;abc is treated as a single parameter

 abc is not treated as a comment.
13

4.2 List of Options and Subcommands
There are eight options and eleven subcommands, as listed in Table 4-1.

Table 4-1. List of Options and Subcommands

No. Type Name Function Opt. Sub. Section

1 File control LIB RARY

 O UTPUT

Specifies the library file to be

edited

Specifies an output library file

No

Yes

Yes

Yes

4.3.1

4.3.2

2 Execution

control

 S UBCOMMAND

 C REATE

 AD D

 R EPLACE

 D ELETE

 EXT RACT

 EN D

 EXI T

 AB ORT

Specifies a subcommand file

Creates a library file

Adds modules

Replaces modules

Deletes modules

Extracts modules

End of subcommand input

End of Librarian operations

Aborts Librarian operations

Yes

Yes

Yes

Yes

Yes

Yes

No

No

No

No

Yes

Yes

Yes

Yes

Yes

Yes

Yes

Yes

4.4.1

4.4.2

4.4.3

4.4.4

4.4.5

4.4.6

4.4.7

4.4.8

4.4.9

3 List

display

 LIS T Displays contents of library file Yes Yes 4.5.1

Notes: 1. The underlined letters of a name are the shortest permissible abbreviated form.

2. The Opt. and Sub. columns indicate whether a name is available as an option or

subcommand.

Abbreviating Option and Subcommand Names: Names of options and subcommands may be

abbreviated to the point where the name can still be distinguished from other names. As an

example, consider the name EXTRACT.

E ... Cannot be distinguished from EXIT or END, so an error occurs.

EX ... Cannot be distinguished from EXIT, so an error occurs.

EXT ... Recognized as EXTRACT.

EXTRA ... Recognized as EXTRACT.

EXTRACT ... Recognized as EXTRACT.

EXTRACTS ... No such name, so an error occurs.
14

Interrelation among Different Options and Subcommands: Once an option or a subcommand

has been specified, other options or subcommands with conflicting functions cannot be specified.
This interrelationship is shown in Table 4-2.

Table 4-2. Interrelation among Options and Subcommands

Later Specification

Specified

Option/

Subcommand

S
U

B
C

O
M

M
A

N
D

L
IB

R
A

R
Y

C
R

E
A

T
E

A
D

D

R
E

P
L

A
C

E

D
E

L
E

T
E

E
X

T
R

A
C

T

O
U

T
P

U
T

L
IS

T

E
N

D

E
X

IT

A
B

O
R

T

SUBCOMMAND

LIBRARY

CREATE

ADD

REPLACE

DELETE

EXTRACT

OUTPUT

LIST

END

EXIT

ABORT

× × × × × × × × × × × ×

× × × o o o o o o o o o

× × × o o o × × o o o o

× × × o o o × × o o o o

× × × o o o × × o o o o

× × × o o o × × o o o o

× × × × × × o o o o o o

× × × × × × o × o o o o

× × × o o o o o o o o o

× o o × × × × × × × o o

× × × × × × × × × × × ×

× × × × × × × × × × × ×

o : Later specification enabled.

× : Later specification disabled, since it conflicts with already specified option or subcommand.
15

EXAMPLES:
This results in an error since no other option can
 be specified after a SUBCOMMAND option.

A CREATE subcommand cannot be specified
after a LIBRARY subcommand. An error occurs,
and the CREATE subcommand is ignored.

CREATE∆newlib.lib 3

LIBRARY∆funclib.lib 3

lbr 3 %

:

: END 3

: LIST 3

EXIT 3 :

Specifying a LIST subcommand after an End
subcommand, occurs in an error. After END, only the
LIBRARY, CREATE, EXIT or ABORT subcommand
is valid.

lbr∆-SUBCOMMAND=funlib.sub-LIST 3 %
16

In the following sections, the format below is used to describe each option and subcommand.
Section number, and
heading for option or
subcommand

 Parameters

Section
number

Format Name Option Subcommand

Function

Explanation

Examples

Summary of option or
subcommand functions

Detailed description of
functions and restrictions

Examples of option or
subcommand specifications

Option or subcommand
name, and format for
specifying parameters
The underlined part of the name
is the shortest abbreviated form

Heading for each option or
subcommand
17

LIBRARY
4.3 File Control

4.3.1 LIBRARY — Specifies the library file to be edited.

Format Name LIB RARY Option Subcommand

No Yes

Parameters <Library file name>

Function Specifies an existing library file for editing.

Explanation (1) This subcommand is specified at the beginning of an editing operation that

edits an existing library file or extracts modules from an existing library file.

(2) Only a library file created by this Librarian can be specified

(3) When no file type is specified as part of the library file name, the type is

assumed to be .lib.

(4) This subcommand cannot be used together with the CREATE subcommand,

which specifies creation of a new library file.

(5) If, as the result of editing an existing library file, the number of modules

becomes zero, the library file will not be updated.

(6) The access right to the updated library file is the same as the access right to a

newly created file. Note that the access right prior to the update is not

preserved.

Examples LIBRARY∆syslib

Specifies editing of the library file syslib.lib.
18

OUTPUT
19

4.3.2 OUTPUT — Specifies an output library file.

Format Name O UTPU Option Subcommand

Yes Yes

Parameters Option <Library file name>

Subcommand <Library file name>
(S)
(U)

Function Specifies a library file for output of extracted modules.

Explanation (1) Specify the OUTPUT option or subcommand whenever a module is to be

extracted from an existing library file.

(2) Specify a new library file name. When no file type is specified as part of the

library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the

attribute is assumed to be (U).

(S) ... System library

(U) ... User library

This attribute determines the order of priority in which library files are

searched by the Linkage Editor. A user library has higher search priority. The

(S) and (U) parameters cannot be included when OUTPUT is specified as an

option.

(4) OUTPUT may be specified either before or after the EXTRACT option or

subcommand, which specifies extraction of modules.

(5) OUTPUT cannot be used together with the CREATE, ADD, DELETE, or

REPLACE options or subcommands.

(6) When the number of extracted modules is zero, the library file specified by

the OUTPUT option or sub-command is not created.

Examples –OUTPUT=PROG86

Modules extracted using the EXTRACT subcommand will be output as a user

library to a file named prog86.lib.

OUTPUT∆clib.o(S)

Modules extracted using the EXTRACT subcommand will be output as a

system library to a file named clib.o.

SUBCOMMAND
4.4 Execution Control

4.4.1 SUBCOMMAND — Specifies a subcommand file.

Format Name S UBCOMMAND Option Subcommand

Yes Yes

Parameters <Subcommand file name>

Function Inputs subcommands from a specified file.

Explanation (1) Inputs and processes subcommands from a specified subcommand file one at

a time.

(2) When an EXIT subcommand or the end of the subcommand file (EOF) is

detected, Librarian operations end.

(3) When no file type is specified as part of the file name, the type is assumed to

be .sub.

(4) A SUBCOMMAND option cannot be specified more than once, or used

together with other options.

Examples –SUBCOMMAND=makelib

Subcommands are input from the subcommand file makelib.sub for use in

editing a library file.
20

CREATE
21

4.4.2 CREATE — Creates a library file.

Format Name C REATE Option Subcommand

Yes Yes

Parameters Option <Library file name>

Subcommand <Library file name>
(S)
(U)

Function Creates a new library file.

Explanation (1) Specified at the beginning of a group of options or subcommands ending with

END or EXIT.

(2) Specify a new library file name. When no file type is specified as part of the

library file name, the type is assumed to be .lib.

(3) The attribute (S) or (U) is assigned to the output file. If unspecified, the

attribute is assumed to be (U).

(S) ... System library

(U) ... User library

This attribute determines the order of priority in which library files are

searched by the Linkage Editor. A user library has higher search priority. The

(S) and (U) parameters cannot be included when CREATE is specified as an

option.

(4) CREATE cannot be used together with the LIBRARY subcommand.

(5) If the number of modules is zero, no library file is created.

Examples –CREATE=userlib.lib

Creates userlib.lib as a new user library.

CREATE∆sislib(S)

Creates sislib.lib as a new system library.

CREATE∆datax

Creates datax.lib as a new user library.

ADD
22

4.4.3 ADD — Adds modules.

Format Name AD D Option Subcommand

Yes Yes

Parameters Option

<Object module file name>
<Relocatable load module file name>
<Library file name>

[,...]

Subcommand

<Object module file name>
<Relocatable load module file name>
<Library file name>[(<module name>[,...])]

[,...]

Function Adds modules from specified files to a library file.

Explanation (1) ADD is used to store modules in a new library file, or add modules to an

existing library file.

(2) When only a file name is specified, if no file type is specified, the type is

assumed to be .obj. When a module name is specified after a file name, the

file is assumed to be a library file, so if no file type is specified, the type is

assumed to be .lib.

(3) When only certain modules from a library file are to be added, specify the

module names after the library file name. Up to 10 module names may be

specified. However module names can not be included when ADD is

specified as an option.

EXAMPLE: ADD lbf (m1,m2,m3)

Module names
Library file name

(4) When modules in a library file are specified, the specified module names are

sorted in alphabetical order and the modules are added in that order. They are

not added in the order in which specified.

EXAMPLE: ADD lbf (e, a, d, c, b)

 5, 1, 4, 3, 2... Order in which modules are

added

(Continued on next page)

Explanation (5) When the names of modules in a library file are not specified, all modules in

(cont) the library file are added.
EXAMPLE: ADD lbf.lib

 Library file name

(6) When a module to be added has the same name as a module already in the

library file being edited, or when an externally defined symbol defined in the

module to be added has the same name as an externally defined symbol in the

library file being edited, a warning message is displayed and the module is not

added.

(7) The name of an object module or relocatable load module is the name defined

in the module. The LIST option or subcommand is a convenient way of

confirming which modules are stored in a library file.

(8) ADD cannot be used together with EXTRACT or OUTPUT options or

subcommands.

(9) Errors will occur and the parameters after the error occurs will not be

processed when:

(a) A specified file does not exist.

(b) A specified module does not exist in a library file.

(c) The content of the specified file is invalid.

(d) The number of modules to be stored exceeds 32,767.

(e) Memory capacity is insufficient to add more modules.

(f) The number of input files exceeds 12.

Examples –ADD=mod1,mod2,modx.o

Adds all modules from the object module files mod1.obj, mod2.obj and

modx.o.

ADD∆iofnc(keyin,crtout)

Adds the two modules keyin and crtout from the library file iofnc.lib.

ADD∆syslib.lib

Adds all modules from the library file syslib.lib.
23

REPLACE
24

4.4.4 REPLACE — Replaces modules.

Format Name R EPLACE Option Subcommand

Yes Yes
Parameters Option

<Object module file name>
<Relocatable load module file name>
<Library file name>

[,...]

Subcommand

<Object module file name>
<Relocatable load module file name>
<Library file name>[(<module name>[,...])]

[,...]

Function Substitutes modules in a specified file for modules of the same name in the

library file being edited.

Explanation (1) When a module in the library file being edited has the same name as a module

in the specified file, the former is replaced by the latter. If there is no module

with the same name in the library file being edited, the module is simply

added as with the ADD option or subcommand.

(2) When only a file name is specified, if no file type is specified, the type is

assumed to be .obj. When a module name is specified after a file name, the

file is assumed to be a library file, so if no file type is specified, the type is

assumed to be .lib.

(3) To substitute only certain modules from a library file, specify the module

names after the library file name. Up to 10 module names may be specified.

However, module names cannot be included when REPLACE is specified as

an option.

EXAMPLE: REPLACE lbf (m1,m2,m3)

Module names
Library file name

(4) When modules in library files are specified, the specified module names are

sorted in alphabetical order and modules are replaced in that order. They are

not replaced in the order in which specified.

EXAMPLE: REPLACE lbf (e, a, d, c, b)

 5, 1, 4, 3, 2 ...Order of replacement

(Continued on next page)

Explanation

(cont) (5) When the names of modules in a library file are not specified, all modules in
the file are substituted.

EXAMPLE: REPLACE lbf.lib

 Library file name

(6) The name of an object module or relocatable load module is the name defined

in the module. The LIST option or subcommand is a convenient way of

confirming which modules are stored in a library file.

(7) REPLACE cannot be used together with EXTRACT or OUTPUT options or

subcommands.

(8) The following cases will result in error, and the parameters after the error

position will not be processed.

(a) A specified file does not exist.

(b) A specified module does not exist in a library file.

(c) The content of the specified file is invalid.

(d) The number of modules to be stored exceeds 32,767.

(e) Memory capacity is insufficient for the substitution to be performed.

(f) The number of input files exceeds 12.

(9) The process of replacing a module involves deleting the module of the same

name in the library file being edited, then inputting the module from the file

specified by the REPLACE option or subcommand and storing it in the

library file. The following special caution is thus required: If a module to be

substituted contains an externally defined symbol already defined in another

module in the library file, the old module will be deleted, but the replacement

module will not be stored.

(Continued on next page)
25

Examples –REPLACE=userlib.lib

All modules in the library file userlib.lib are stored in the library file being
edited, replacing modules with the same name.

REPLACE∆loadx.rel,loady.rel

The two modules in the relocatable load module files loadx.rel and

loady.rel are substituted for modules of the same name in the library file

being edited.

REPLACE∆datax(member),omf

The module named member in library file datax.lib, and the module in the

object module file omf.obj, are substituted for modules of the same name in

the library file being edited.
26

DELETE
4.4.5 DELETE — Deletes modules.

Format Name D ELETE Option Subcommand

Yes Yes

Parameters <Module name> [,...]

Function Deletes specified modules from the library file being edited.

Explanation (1) If a specified module does not exist in the library file, an error occurs, and the

parameters after the error occurrence are not processed.

(2) The name of an object module or relocatable load module is the name defined

in the module. The LIST option or subcommand is a convenient way of

confirming which modules are stored in a library file.

(3) DELETE cannot be used together with EXTRACT or OUTPUT options or

subcommands.

Examples –DELETE=inchar,outchar

Deletes the two modules inchar and outchar.

DELETE∆datatbl,sort

Deletes the two modules datatbl and sort.
27

EXTRACT
4.4.6 EXTRACT — Extracts modules.

Format Name EXT RACT Option Subcommand

Yes Yes

Parameters <Module name> [,...]

Function Extracts specified modules from the library file being edited.

Explanation (1) The extracted modules are output in library file format with the file name

specified by the OUTPUT option or subcommand.

(2) The name of an object module or relocatable load module is the name defined

in the module. The LIST option or subcommand is a convenient way of

confirming which modules are stored in a library file.

(3) If a specified module does not exist in the library file, an error occurs, and the

parameters after the error occurrence are not processed.

(4) EXTRACT cannot be used together with the CREATE, ADD, DELETE or

REPLACE options or subcommands.

Examples –EXTRACT=add,sub,mul,div

Extracts the four modules add, sub, mul, and div from the library file being

edited.

EXTRACT∆alpha,upper,lower,digit,cntrl

Extracts the five modules alpha, upper, lower, digit, and cntrl from the library

file being edited.
28

END
4.4.7 END — Specifies end of subcommand input.

Format Name EN D Option Subcommand

No Yes

Parameters None

Function Outputs a newly created or updated library file.

Explanation (1) When more than one library file is edited in one Librarian execution, the

editing of each library file is terminated by an END subcommand.

(2) Specification of the END subcommand causes the Librarian to output the

edited library file. If, however, the number of modules stored in the library

file is zero, the library file is not created or updated.

Examples END

Outputs a library file.
29

EXIT
4.4.8 EXIT — Specifies end of Librarian operations.

Format Name EXI T Option Subcommand

No Yes

Parameters None

Function Terminates Librarian operations.

Explanation (1) The EXIT subcommand is used to terminate a set of Librarian operations

executed by the subcommand specification.

(2) When executing from a subcommand file, all subcommands following after

an EXIT subcommand are ignored. If the EXIT subcommand is not specified,

a warning message will be displayed.

(3) When the EXIT subcommand is used, the immediately preceding END

subcommand may be omitted. In that case the EXIT subcommand serves also

as an END subcommand, causing the library file to be output before

terminating the Librarian operation.

Examples EXIT

Terminates Librarian operations.
30

ABORT
4.4.9 ABORT — Aborts Librarian operations.

Format Name AB ORT Option Subcommand

No Yes

Parameters None

Function Aborts Librarian operations.

Explanation (1) When executing by the subcommand specification, the ABORT subcommand

can be used to abort editing operations.

(2) When the ABORT subcommand is specified, the library file being edited will

not be created or updated. If, however, a list file was output by a LIST

subcommand before the ABORT subcommand, the list file will remain

unchanged.

Examples ABORT

Aborts Librarian operations.
31

LIST
4.5 List Display

4.5.1 LIST — Displays contents of a library file.

Format Name LIS T Option Subcommand

Yes Yes

Parameters Option [<List file name>]

Subcommand [[<List file name>][(S)]]

Function Outputs a list of the contents of the library file being edited to the

standard output device or to a file.

Explanation (1) The names of modules stored in the library file, export symbol names, and

other information is output on a list. For the list format, see section 6.2,

Librarian Lists.

(2) When no list file name is specified, the list is output to the standard output

device.

(3) When a list file name is specified, the list is output to a file. Specify a new

list file name; the list cannot be appended to an existing file. If an existing file

is specified, the existing file contents will be replaced.

(4) When no file type is specified as part of the list file name, the type is assumed

to be .lst.

(5) To obtain a list of export symbols designated in modules, specify the (S)

parameter. If the (S) parameter is not specified, only the module names will

be listed. The (S) parameter cannot be included when LIST is specified as an

option.

(6) The LIST option or subcommand may be specified any number of times

during the editing process. The library file contents at the point of

specification will be listed.

(Continued on next page)
32

Examples –LIST

A list is output to the standard output device.
Export symbols are not shown.

LIST

A list is output to the standard output device.

Export symbols are not shown.

LIST∆libx(S)

A list including export symbols is output to a file named libx.lst.
33

Section 5. Input to the Librarian
5.1 Object Module Files

Object module files output from a C compiler or assembler can be input to the Librarian and stored

as modules in library files.

5.2 Relocatable Load Module Files

A relocatable load module file output from the Linkage Editor can be input and stored in a library

file as one module.

5.3 Library Files

The Librarian inputs the library file it is editing. Also, modules to be stored in this library file can

be input from other library files. Either specified modules can be input, or all the modules in a

library file can be input at one time.

Input can be made only from library files created using this Librarian.
34

Section 6. Output from the Librarian
35

6.1 Library Files

The Librarian can combine two or more modules into a single output library file. It can also update

an existing library file, or extract modules from an existing library file, and output the result in

library file format.

6.2 Librarian Lists

When the LIST option or subcommand is specified, a list of the library file contents is output to the

standard output device or to a file. The format of a librarian list is shown in Figure 6-1.

 Library file name: (1)

 (1)

Attribute: (2) Creator: (11)

Number of modules: (3) Creation date: (5)

Number of symbols: (4) Revision date: (6)

 (7) (8) Entry date: (9)

 (10) (10)

 : :

 (7) (8) Entry date: (9)

Figure 6-1. Librarian List Format

(1) Shows the library file name. If the name is too long to fit on one line it is continued to the next

line. When modules are extracted from an existing library file, the list shows the contents of the

existing library file.

(2) Shows the library file attribute.

SYSTEM ... System library

USER ... User library

(3) Shows the total number of modules stored in the library file, in decimal notation.

(4) Shows the total number of externally defined symbols in the library file, in decimal notation.

(5) Shows the date and time of library file creation. This information is given in the following

format.
36

dd - mmm - yy hh : mm : ss

second
minute
hour
year (last 2 digits)
month (3 letters)
day

(6) Shows the date and time of the most recent library file update. In the case of library files

newly created using the CREATE option or subcommand, this is the same as the date of

creation. The format is the same as for the creation date, above.

(7) Shows the names of modules stored in the library file, in alphabetical order.

(8) Shows the kind of editing operation performed on the module.

BLANK ... a module stored in an existing library file

(A) ... an added module

(R) ... a replacement module

(E) ... an extracted module

Modules deleted by means of the DELETE option or subcommand are not listed.

(9) Shows the date and time a module was stored in the library file. The format is the same as for

the library file creation date and revision date.

(10) When the (S) parameter is specified with the LIST subcommand, the export symbols in each

module are shown. These symbol names are listed in alphabetical order two on each line.

An example of a list when the (S) parameter is specified with the LIST subcommand is given in

Figure 6-2. Figure 6-3 shows a list without the (S) specification.

MS-DOS system:

(11) Shows the name of the tool used to create the library file (Librarian model). If the name is

longer than 40 characters, only the first 40 characters are shown.

Library file name: clib.lib
Attribute: USER

Number of modules: 6 Creation date: 08-Jan-90 14:18:47

Number of symbols: 6 Revision date: 01-Mar-90 19:56:33

ABS.C Entry date: 08-Jan-90 14:18:47

_abs

ATOF.C Entry date: 08-Jan-90 14:18:47

_atof

ATOI.C Entry date: 08-Jan-90 14:18:47

_atoi

ATOL.C Entry date: 08-Jan-90 14:18:47

_atol

_ALOCBUF (A) Entry date: 01-Mar-90 19:56:33

_alcobuf

_DIVI (A) Entry date: 01-Mar-90 19:56:33

_divi

Figure 6-2. Librarian List (with (S) specification)

Library file name: clib.lib

Attribute: USER

Number of modules: 6 Creation date: 08-Jan-90 14:18:47

Number of symbols: 6 Revision date: 01-Mar-90 19:56:33

ABS.C Entry date: 08-Jan-90 14:18:47

ATOF.C Entry date: 08-Jan-90 14:18:47

ATOI.C Entry date: 08-Jan-90 14:18:47

ATOL.C Entry date: 08-Jan-90 14:18:47

_ALOCBUF (A) Entry date: 01-Mar-90 19:56:33

_DIVI (A) Entry date: 01-Mar-90 19:56:33

Figure 6-3. Librarian List (no (S) specification)
37

6.3 Console Messages
The Librarian displays the following messages on the standard output device.

Opening Message: Displayed when the librarian command is input.

H SERIES OBJECT LIBRARIAN Ver. 1.2B

Copyright (C) Hitachi, Ltd. 198X

Licensed Material of Hitachi, Ltd.

Normal Completion Message: Displayed when library file editing has ended normally.

OBJECT LIBRARIAN COMPLETED

Abort Message: Displayed when the library file editing is aborted by either an error or an ABORT

subcommand.

OBJECT LIBRARIAN ABORT

Subcommand Prompt: Indicates that the Librarian is in subcommand input wait state during

interactive execution.

 :

Subcommand Continuation Symbol: Request for a continuation line, when continuation of a

subcommand is specified during interactive execution.

 -
38

Section 7. Error Messages
The Librarian outputs error messages in the following form.

** <Error number> <Error message> [(<Additional information>)]

Error number: The first digit indicates the level of the error. (xx represents the second and

third digits.)

1xx : Warning Processing of a particular module is skipped.

2xx : Error If started by input from the command line or a

subcommand file, processing is stopped. In

interactive mode, processing of the subcommand is

stopped when the error is detected, and a prompt is

displayed for the next subcommand.

3xx : Fatal error Processing is stopped.

A list of error messages is given below in Tables 7-1, 7-2 and 7-3, in the following format.

Error number Error message Additional information

Description of error

Corrective action, etc.

Note:Additional information includes the name of the file in which the error occurred, or the

module name or symbol name. In the list of errors, --- means that no additional

information is given.
39

Table 7-1. List of Warning Messages
101 DUPLICATE MODULE Module name

An attempt was made to add a module already stored in the library file.

Processing of the module is skipped.

102 DUPLICATE SYMBOL Module Symbol

name ** name

An attempt was made to add an export symbol already present in the library file.

Processing of the module is skipped.

103 MODULE NAME TOO LONG Module name

- ALLOWED UP TO 32

A module name of more than 32 characters was specified.

The name is valid up to the 32nd character. The rest is ignored.

104 EXIT SUBCOMMAND NOT ---

FOUND - ASSUMED

No EXIT subcommand was specified.

Processing continues as though an EXIT subcommand had been specified.
40

Table 7-2. List of Error Messages
201 INVALID SUBCOMMAND/OPTION ---

The option or subcommand specified is invalid in this context.

Specify a valid option or subcommand.

202 SYNTAX ERROR ---

Syntax of the specified option or subcommand is incorrect.

Check the syntax and re-specify the option or subcommand.

203 SUBCOMMAND LINE LENGTH ---

TOO LONG

Length of the subcommand entry exceeds 128 characters.

Re-specify, keeping the length within 128 characters.

204 CONFLICTING SUBCOMMAND ---

Subcommands are specified in the wrong order, or an illegal combination of subcommands is

specified.

Check the order of subcommands and re-specify.

205 ILLEGAL FILE NAME ---

The specified file name is not valid.

Specify a correct file name.

206 ILLEGAL MODULE NAME ---

The specified module name is not valid.

Specify a correct module name.

207 MODULE NOT FOUND Module name

The specified module cannot be found.

Check the name of the module, then re-specify.

(Continued on next page)
41

Table 7-2. List of Error Messages (cont)
208 MISSING OUTPUT FILE NAME ---

No output file was specified with an EXTRACT option or subcommand.

Use the OUTPUT option or subcommand to specify an output file.

209 TOO MANY INPUT FILES ---

More than 12 input files were specified for input at the same time.

First output the library file, then re-input the library file and input the remaining files.

210 TOO MANY MODULES ---

The number of modules exceeds the allowable number.

No more modules can be stored in the library file now being created or edited. Store any

additional modules in a separate library file.

211 TOO MANY SYMBOLS ---

The number of symbols exceeds the allowable number.

The library file now being created or edited cannot contain any more symbols. Modules with

additional symbols must be stored in a separate library file.

212 ILLEGAL FILE FORMAT ---

The specified file format is incorrect.

Check the file contents and re-execute.

213 MEMORY OVERFLOW ---

There is no space remaining in the Librarian's usable memory.

Obtain additional memory and re-execute.

214 FILE NOT FOUND File name

The specified file cannot be found.

Check the directory and the specified file name, then re-specify.

(Continued on next page)
42

Table 7-3. List of Fatal Error Messages
301 INVALID COMMAND PARAMETER ---

An improper command parameter was specified.

Check the command parameters and re-execute.

302 CONFLICTING OPTION ---

There is a contradiction among different options specified.

Check the order of option specification, then re-specify.

303 CANNOT OPEN FILE File name

File cannot be opened, or the CREATE or OUTPUT option or subcommand specified an

already existing file.

Check the specified file name. If the file name is correct, the disk may be

full, or there may be a disk hardware error. Check the problem, then re-execute.

If an existing file was specified by the CREATE or OUTPUT option or subcommand,

delete the existing file, then re-execute.

304 CANNOT INPUT FILE File name

File cannot be input.

Check the specified file name. If the file name is correct, there may be

a disk hardware error. Check the problem, then re-execute.

305 CANNOT OUTPUT FILE File name

File cannot be output.

Check the specified file name. If the file name is correct, the disk may be

full, or there may be a disk hardware error. Check the problem, then re-execute.

306 CANNOT CLOSE FILE File name

File cannot be closed.

Check the specified file name. If the file name is correct, the disk may be

full, or there may be a disk hardware error. Check the problem, then re-execute.

Note: The Librarian uses temporary files with names in the format shown below. These

temporary file names may appear as additional information in error messages.

Annnnn.TEMP

5 digits, decimal
43

Section 8. Restirictions
Restriction on the Librarian are shown in Table 8-1. If the numerical restrictions are exceeded,

Librarian operations will not execute correctly.

Table 8-1. Restrictions on Librarian Processing

No. Item Limits Remarks

1 The number of modules

that can be stored in a

library file

Max. 32,767 Assumes that the system on which

Librarian runs has adequate

memory.

2 The number of symbols

that can be present in a

library file

Max. 65,535

3 The number of input files Max.12 Total number of files specified by

LIBRARY, ADD, or REPLACE not

including subcommand files.

4 The number of modules

that can be specified in a

library file

Max. 10 When specifying a library file with

ADD or REPLACE

5 Length of command line Depends on OS

6 Length of option or

subcommand

Max. 128 characters Not including 3

7 Length of file name Max. 128 characters Includes default file-type

characters. File name format

depends on OS.

8 Length of module name Max. 32 characters

9 Length of symbol name Max. 32 characters

10 Input file formats • Object module file output by

assembler or C compiler.

• Relocatable load module file.

• Library file created using this

Librarian.
44

Appendix A Examples of Use of Librarian
A.1 Librarian Execution by Command Line

lbr∆func-ADD=sin,cos-DELETE=abs,mod-LIST 3

lbr∆-CREATE=func-ADD=abs,mod,sqrt,exp,log 3%

lbr∆func-EXTRACT=sqrt,exp-OUTPUT=newfnc 3%

...(1) Creation

...(2) Editing

...(3) Extraction

1 2

3 4 5 6

7 8 9

%

1. The CREATE option at the beginning of the option line is specified to create a new

library file.

2. The file names for the modules to be entered are specified using the ADD option.

3. The name of the library file to be edited is specified.

4. The file names for modules to be added to the existing library file are specified using

the ADD option.

5. The names of the modules to be deleted from the existing library file are specified using

the DELETE option.

6. The LIST option is specified to confirm the editing results.

7. An existing library file from which modules are to be extracted is specified.

8. The names of the modules to be extracted are specified using the EXTRACT option.

9. The name of a new library file to which the extracted modules are to be output is specified

using the OUTPUT option.

This process is illustrated in Figure A-1.
45

newfnc.lib

sqrt

exp

abs

mod

sqrt

exp

log

sin.obj

sin

cos.obj

cos

1, 2

abs.obj

mod.obj

abs

mod

sqrt.obj

sqrt

exp.obj

exp

lob.obj

log

func.lib func.lib

sqrt

exp

log

sin

cos

7 to 9

3 to 6

List

File name

Module name

(1) Creation (2) Editing

(3) Extraction

Figure A-1. Results of Librarian Execution by Command Line
46

A.2 Librarian Execution by Subcommands
lbr 3

CREATE∆func 3

ADD∆sqrt,exp,log,sin,cos 3

END 3

LIBRARY∆func 3

REPLACE∆sin.new,cos.new,tan.new 3

END 3

LIBRARY∆func 3

LIST 3

EXTRACT∆sqrt,exp 3

OUTPUT∆newfnc 3

EXIT 3

%

:

:

:

:

:

:

:

:

:

:

:

:

END 3
...11
...12

...10

...13

...7

...2

...1

...3

...4

...5

...6

...8

...9
(3) Extraction

(1) Creation

(2) Editing

 1. The Librarian is started.

 2. The CREATE subcommand at the beginning of the option line is specified in order to create a

new library file.

 3. The file names of modules to be loaded are specified using the ADD subcommand.

 4. The END subcommand is specified to terminate the creation process.

 5. The name of the library file to be edited is specified.

 6. Modules in the existing library file are replaced, using the REPLACE subcommand. The file

names of the modules to be replaced is specified.

 7. The END subcommand is specified to terminate the editing process.

 8. An existing library file is designated for extraction of modules.

 9. The LIST subcommand is specified to confirm the contents of the existing library file.

10. The names of the modules to be extracted are specified using the EXTRACT subcommand.

11. The name of a new library file to which the extracted modules are to be output is specified

using the OUTPUT subcommand.

12. The END subcommand is specified to terminate the extraction process.

13. The EXIT subcommand is specified to terminate the Librarian program.

This process is illustrated in Figure A-2.
47

func.lib func.lib

newfnc.lib

sqrt

exp

sqrt

exp

log

sin'

cos'

sqrt.obj

sqrt

exp.obj

exp

log.obj

sin.obj

sin

cos.obj

sqrt

exp

log

sin

cos

tan'

tan.new

cos'

cos.new

sin'

sin.new

8 to 12

5 to 72 to 4

tan'

cos

log

(3) Extraction

(2) Editing(1) Creation

List

File name

Module name

Figure A-2. Results of Librarian Execution by Subcommand
48

49

Index

A

Aborts librarian 31

Abbreviated form 14, 17

Abort message 38

Addition 2

Additional information 39, 43

Assembler 1, 2, 34, 44

Attribute 19, 21, 35, 37

C

C compiler 1, 2, 34, 44

Command line 5, 6, 44, 45, 46

Command line format 5

Comment 13

Console message 38

Continuation specification 12

Creation 1, 2, 18, 36, 47

Creation date 35, 37

D

Deletion 3

E

Error message 39, 41, 42, 43

Error number 39

Examples of use of librarian 45

Execution control 10, 20

Extraction 4

F

Fatal error 39

Fatal error message 43

File control 10, 11, 14, 18

File name 5, 11, 44

I

Input file format 44

Input files 23, 25, 42, 44

Interactive mode 7, 8, 39

L

Length of file name 44

Librarian 1

Librarian list 35, 37

Library file 35

Library file attribute 35

Library file name 5, 6, 35

Linkage editor 1, 2, 19, 21, 34

M

Module 1, 2, 3, 4, 34

Module name 11, 44

N

Normal completion message 38

Number of input files 23, 25, 44

Number of symbols 35, 37, 42, 44

O

Object module

(Object module file) 11, 34, 44

Option 10

Option format 10

Option name 5

R

Relocatable load module

(Relocatable load module file) 11, 34, 44

Replacement 3, 24, 25, 36

Restrictions 44

50

S

Subcommand 5, 6, 7, 10, 20, 38, 44, 47

Subcommand file 8, 20

Subcommand continuation symbol 38

Subcommand format 11

System library 19, 21, 35

U

User library 19, 21, 35

W

Warning 9, 39

Warning message 40

	Preface
	Contents H Series Librarian
	1 Overview
	2 Librarian Functions
	2.1 Creating Library Files
	2.2 Editing Existing Library Files
	2.3 Extracting Modules from a Library File
	2.4 Displaying the Contents of a Library File

	3 Executing the Librarian
	3.1 Command Line Format
	3.2 Executing by Command Line
	3.3 Executing by Subcommands
	3.4 Terminating Librarian Operations

	4 Librarian Options and Subcommands
	4.1 Option and Subcommand Formats
	4.2 List of Options and Subcommands
	4.3 File Control
	4.4 Execution Control
	4.4.1 SUBCOMMAND
	4.4.2 CREATE
	4.4.3 ADD
	4.4.4 REPLACE
	4.4.5 DELETE
	4.4.6 EXTRACT
	4.4.7 END
	4.4.8 EXIT
	4.4.9 ABORT

	4.5 List Display

	5 Input to the Librarian
	5.1 Object Module Files
	5.2 Relocatable Load Module Files
	5.3 Library Files

	6 Output from the Librarian
	6.1 Library Files
	6.2 Librarian Lists
	6.3 Console Messages

	7 Error Messages
	8 Restirictions
	A Examples of Use of Librarian
	A.1 Librarian Execution by Command Line
	A.2 Librarian Execution by Subcommands

	Index

