H8/300L Series
Programming Manual

Preface

The H8/300L Series of single-chip microcomputersis built around the high-speed H8/300L
CPU, with an architecture featuring eight 16-bit (or sixteen 8-bit) genera registers and a
concise, optimized instruction set.

This manual gives detailed descriptions of the H8/300L instructions. The descriptions apply to
al chipsin the H8/300L Series. Assembly-language programmers should also read the
separate H8/300 Series Cross Assembler User's Manual.

For hardware details, refer to the hardware manual of the specific chip.

Contents

SECiON 1. CPU ..ot 1
O R O Y1 o1 TSP 1
L1i1 FEAIUMES...ceeeeee ettt ettt st e e b e e e et e sbe e san e e be e e nneebeesnneenes 1
1.1.2 DB SIIUCKUIEeeeeeeeieeesiee ettt ettt te et st e e b e s sne e sbe e sareeneeenneenseesnneenes 2
1.1.3 AQArESS SPACE......cecieeiieeitie it eriee sttt ettt et te et e e e st e e eate e sbe e e nneenreeenee e 4
1.1.4 Register CONfiQUIatioN........cccueeiuieiieeiiie ettt st sre e e 5
A <o 1 = £ TSP 6
121 GeNEral REQISIES.oi ettt et st e e b e e ne e nreeenre e 6
1.2.2 CONIOl REQISIEISveeiieeiee ettt et st e b e e e e nre e enee e 6
1.2.3 Initial REQISIEr VAIUES........coiiieiee ettt st 7
R I 0 (W o (o] TSP 8
1.3.1 TYPeS Of INSIIUCLIONS......cccceiiieeiiee ettt et sr e e 8
1.3.2 INSLrUCHION FUNCLIONScoviiiiiiieieeie sttt 9
1.3.3 BasiC INSruCtion FOIMELScoiiriirieieeie ettt 20
1.3.4 Addressing Modes and Effective Address Calculationccccceveeecieeieennenne. 26
Section 2. INSErUCHION SEL ..., 31
2.1 EXPlanation FOMMELccooiiiieiiececcie ettt ettt e sr e sare e sneesnneennee s 31
P2 1= 10 Tot 0] PSR 36
22.1(1) ADD (add binary) (DY)coouieiiiiiieieccee e 36
2.2.1(2) ADD (add binary) (WOrd)........ccoueeueiieeiie e estee e st 37
2.2.2 ADDS (add with SIgN eXtENSION)ccceeiiicieecie e 38
2.2.3 ADDX (add with extend Carry)cccceeieeceecie et 39
224 AND (AND [OQICaI) ..vveieieiesiesie st 40
225 ANDC (AND CONtrol regiSter) ...c.cccveeieeiie e siee et 41
2.2.6 BAND (DIt AND) ..ooiiiiiicesieeeeee et 42
2.2.7 Bcece (branch conditionally)oocveeveeccie s 43
2.2.8 BCLR (DIt ClEAN ..ottt s 46
2.2.9 BIAND (Dit inVErt AND) ...ocoeiiiieieiesesie e 48
2.2.10 BILD (bit invert 10ad)ccooveiie i 49
2211 BIOR (bit invert iNClUSIVE OR)c.cooiviiiiecie e 50
2212 BIST (DIt INVEIT SLOIQ)eeeieeieieeieeie ettt 51
2.2.13 BIXOR (bit invert excluSiVe OR)........ccoeiiviiieiiecc e 52
2214 oI I T o= o) P 53

2215 BNOT (DIt NOTY .ooovveeeeeeeeeeeeeessseeesessssesseessessesssessssssesssseesssssesessessssesessene 54

2.2.16
2.2.17
2.2.18
2.2.19
2.2.20
2221
2.2.22 (1)
2.2.22(2)
2.2.23
2224
2.2.25
2.2.26
2.2.27
2.2.28
2.2.29
2.2.30
2.2.31
2.2.32 (1)
2.2.32(2)
2.2.32(3)
2.2.32 (4)
2.2.32 (5)
2.2.32 (6)
2.2.33
2234
2.2.35
2.2.36
2.2.37
2.2.38
2.2.39
2.2.40
2241
2.2.42
2.2.43
2.2.44
2.2.45
2.2.46

BOR (Dit INCIUSIVE OR)......cveeiiiciee ettt 56

oIS I (o L = PR 57
BSR (branch to SUDIOULINE)c.coviiiiiieie e 59
Y I (oL S o =) SR 60
BTST (DIt 1ES).eueeeeiiie e 61
BXOR (bit eXCIUSIVE OR)ccviiciieiie et 63
CMP (COMPArE) (IDYLE) ..eoveeiieeiee e riee et rtes sttt ettt st nnee s 64
CMP (cOMPare) (WOId)cccveeiueeeieesiee et esiee e e sree et e e sre e e sreensee s 65
DAA (decimal adjust add)..........cccoerierireiiiinisiseseee e 66
DAS (decimal adjust SUBLIACE)cccveeiveeiieciee e 68
DEC (AECIEMENL).....eciieieee ettt et st nre e e nne e 70
DIVXU (divide extend asunsigned)ccocoeeiieeniieciieesee e 71
EEPMOV (move datato EEPROM).......cccociiiiiiiiiiccccee e 73
INC (INCrEMENL) .. e sr e enre s 74
B 1Y 0 0] o) TR 75
JSR (JUMP tO SUBIOULINE)........eeiiiiiciiecie ettt et e 76
LDC (load to CONtrol rEgISLEr) ..ccveeire e 77
MOV (Move data) (DYLE).......cccueeieeiiiciiecie e 78
MOV (move data) (WOrd)c.ccceeiiiiiieiie e 79
MOV (Move data) (DYLE).......cccueevueeiieiieesie et 80
MOV (move data) (WOrd)ecceeiiiiiieiiecsiee e 81
MOV (Move data) (DYLE).......cccueevueeiieiieesie et 82
MOV (move data) (WOrd)ecceeiiiiiieiiecsiee e 83
MULXU (multiply extend as unsigned)..........ccccveveeiieeneesiieenee e 84
NEG (NEQALE)......cccueeeieeitie ettt st re e enne s 85
NOP (NO OPEIALION)eeivieiiieeieeeiee et e see et sae et sre e sr e e sbe e ssaeesreeenre e 86
NOT (NOT = logical complement)........ccccceeveriiieeiiesie e 87
OR (inclusive OR 10QICal)cccviiiieiiie et 88
ORC (inclusive OR control regiSter)......cccovveceeieeiiieeiee e 89
[@ e (00 o J o I - SR 90
PUSH (PUSN daLa)ceeiieeciieiie ettt 91
ROTL (rotat@ IEft) ...ocveeieeciee et 92
ROTR (FOtate FgNt)eeieeecieece et e 93
ROTXL (rotate with extend carry [€ft)cccoevieeiieciiiie e, 94
ROTXR (rotate with extend carry right)ccccoevieeieiie e, 95
RTE (return from @XCePption)cooueeivieiie ettt 96

RTS (return from SUDFOULINE)covveeiieiie ettt 97

2247 SHAL (SNIft ANMELC IEFL) covvvvvrrreeeeeeeeeeeeeeseseeeseeeeeeeesssssseesseseeeessesesseeeees 98

2.2.48 SHAR (shift arithmetic right)........cccooeieiieie e 99
2.2.49 SHLL (Shift |0giCal T6ft) ...ccueeieieieerese e 100
2.2.50 SHLR (shift logical right)cccoeieiiieciee e 101
2.2.51 SLEEP (SI8ED) c.eeveiiite ettt sttt 102
2.2.52 STC (store from CONtrol regisSter)oovvviieiee e 103
2.2.53 (1) SUB (subtract binary) (DYLE)cccveieiiiiiiie e 104
2.2.53 (2) SUB (subtract binary) (WOrd)..........cccceiiiiiiieiierie s 105
2.2.54 SUBS (subtract with Sign eXtenSiON)ccceeceeiiiiiiecsee e 106
2.2.55 SUBX (subtract with eXtend Carry)cccceveeeieeiie e 107
2.2.56 XOR (exclusiVe OR 10QICA) ...cocueiiiieiiiciee e et 108
2.2.57 XORC (exclusive OR cOntrol register) ...cooveeieeiieecee e e 109
2.3 Operation COUE M@cccueiiieeitie ettt st b e st e e be e e b e e sreesateenbeesnneenseeas 110
2.4 LISt Of INSITUCLTONS.ciieiiiieieiieeie ettt sb et sae e 112
2.5 NUmMber of EXECULION SEALES.cccuiiieiieeieeiesieeie ettt 119
Section 3. CPU Operation SEALES............ccvvcvricvciiceee et 127
3.1 Program EXECULION SEALE.......c.coiueiiieiie ettt ae e nae e 128
3.2 EXCeption HaNAIING SEALES.......ccoiuiiiiieiie ettt ettt 128
321 Types and Priorities of Exception Handlingccccccevieeiieiiecve e, 128
3.2.2 Exception Sources and Vector Table.........cccceviiviiiecieccec e 129
3.2.3 Outline of Exception Handling Operationcccccveveeeieeieesiieesee e 130
T B (=S = B - (OSSPSR 131
3.4 POWEI-DOWN SEBLE......cueiiieieieeiie ettt st e e sne e s e e be e s e e e sne e saneenneesnnas 131
Section 4. Basic Operation TIMING.............c.ccoceueeeeeceeeeeeeeeeeeeeereeee e 133
4.1 On-chip Memory (RAM, ROM)oiiiiiiiiciiecie sttt sttt 133

4.2 On-chip Peripheral Modules and External DeVICeSccovveveeiieciee s 134

Section 1. CPU

1.1 Overview

The H8/300L CPU at the heart of the H8/300L Series features 16 general registers of 8 bits
each (or 8 registers of 16-bits each), and a concise, optimized instruction set geared to high-
speed operation.

1.1.1 Features
The H8/300L CPU has the following features.

General register configuration
16 8-hit registers (can be used as 8 16-hit registers)

55 basic instructions
e Multiply and divide instructions
» Powerful bit manipulation instructions

8 addressing modes

* Register direct (Rn)

* Register indirect (@Rn)

* Register indirect with displacement (@(d:16, Rn))

» Register indirect with post-increment/pre-decrement (@Rn+/@ —Rn)
» Absolute address (@aa:8/ @aa: 16)

* Immediate (#xx:8/#xx:16)

* Program-counter relative (@(d:8, PC))

* Memory indirect (@@aa.8)

64-kbyte address space

High-speed operation
« All frequently used instructions are executed in 2 to 4 states
» High-speed operating frequency: 5 MHz

Add/subtract between 8/16-hit registers: 0.4 ps

8 x 8-bit multiply: 2.8 us

16 + 8-bit divide: 2.8 us

L ow-power operation
e Transition to power-down state using SLEEP instruction

1.1.2 Data Structure

The H8/300L CPU can process 1-bit data, 4-bit (packed BCD) data, 8-bit (byte) data, and

16-bit (word) data.

« Bit manipulation instructions operate on 1-bit data specified ashitn(n=0,1,2, ..., 7) ina
byte operand.

» All operational instructions except ADDS and SUBS can operate on byte data.

e« TheMOV.W, ADD.W, SUB.W, CMPW, ADDS, SUBS, MULXU (8 bits x 8 hits), and
DIV XU (16 bits + 8 hits) instructions operate on word data.

* TheDAA and DAS instruction perform decimal arithmetic adjustments on byte datain
packed BCD form. Each 4-bit of the byte is treated as a decimal digit.

Data Structurein General Registers. Dataof al the sizes above can be stored in general
registers as shown in figure 1-1.

Data type Register No. Data format
7 0
1-Bit data RnH [7[6]5/4[3[2|1]o] Dont-care |
7 0
1-Bit data RnL [Don't-care |[7]6]5|4|3[2]1]o]
7 0
Byte data RnH [: ., ., ;] Dontcare |
7 0
Byte data RnL | Don't-care |: : ’ : : : :l
15 0
Word data Rn BN
7 43 0
4-Bit BCD data RnH [upper | Lower | Don't-care |
7 43 0
4-Bit BCD data RnL | Don't-care | :Up:per: I :Lov:ver: |

RnH:

RnL:

MSB:

LSB:

Upper 8 bits of General Register
Lower 8 bits of General Register
Most Significant Bit
Least Significant Bit

Figure 1-1. Register Data Structure

Data Structurein Memory: Figure 1-2 shows the structure of datain memory. The

H8/300L CPU is able to access word datain memory (MOV.W instruction), but only if the

word data starts from an even-numbered address. If an odd address is designated, no address

error occurs, but the access is performed starting from the previous even address, with the least

significant bit of the address regarded as 0.* The same applies to instruction codes.

* Notethat the LSIsin the H8/300L Series also contain on-chip peripheral modules for which
accessinword size is not possible. Details are given in the applicable hardware manual.

Data type Address Data format

/‘_/

7 0

1-Bit data Address n 7[6(5]4]3[2]1]o
Byte data Address n L
Even address =T Uppergois |

Word data Odd address Lot |
Bvte data (CCR tack Even address : : :CC:R: : :
€ dala on stac [T B B A NV R B ¥

y (CCR) Odd address o ST
Even address : E’PP:er%b“:S : :

Word data on stack 0Odd address | Lowersbits ¢
/‘_/

CCR: Condition code register.
Note: Word data must begin at an even address.
* Ignored when returned.

Figure 1-2. Memory Data For mats

The stack is always accessed aword at atime. When the CCR is pushed on the stack, two
identical copies of the CCR are pushed to make a complete word. When they are returned, the
lower byteisignored.

1.1.3 Address Space
The H8/300L CPU supports a 64-K byte address space (program code + data). The memory

map differs depending on the particular chip in the H8/300L Series and its operating mode.
See the applicable hardware manual for details.

1.1.4 Register Configuration

Figure 1-3 shows the register configuration of the H8/300L CPU. There are 16 8-bit general
registers (ROH, ROL, ..., R7H, R7L), which can also be accessed as eight 16-bit registers (RO
to R7). There are two control registers. the 16-bit program counter (PC) and the 8-bit
condition code register (CCR).

General Registers (Rn)

7 07 0
ROH ROL
R1H Ri1L
R2H R2L
R3H R3L
R4H R4L
R5H R5L
R6H R6L
R7H (SP) R7L SP: Stack Pointer

Control Registers (CR)

15 0
| PC | Program Counter
76543210
ccr [1{ulH|UN Z V|| Condition Code Register
L Carryflag
—— Overflow flag
Zero flag

Negative flag
Half-carry flag

Interrupt mask bit
User bit

Figure 1-3. CPU Registers

1.2 Registers
1.2.1 General Registers

All the general registers can be used as both data registers and address registers. When used as
address registers, the general registers are accessed as 16-bit registers (RO to R7). When used
as dataregisters, they can be accessed as 16-bit registers (RO to R7), or the high (ROH to R7H)
and low (ROL to R7L) bytes can be accessed separately as 8-bit registers. The register length
Is determined by the instruction.

R7 aso functions as the stack pointer, used implicitly by hardware in processing interrupts and
subroutine calls. 1n assembly language, the letters SP can be coded as a synonym for R7. As
indicated in figure 1-4, R7 (SP) points to the top of the stack.

S~ — A

Unused area

SP (R7) >

Stack area

/_/

Figure 1-4. Stack Pointer
1.2.2 Control Registers
The CPU has a 16-bit program counter (PC) and an 8-bit condition code register (CCR).

(1) Program Counter (PC): This 16-bit register indicates the address of the next instruction
the CPU will execute. Instructions are fetched by 16-bit (word) access, so the least significant
bit of the PC isignored (always regarded as 0).

(2) Condition Code Register (CCR): This 8-bit register indicates the internal status of the
CPU with an interrupt mask (1) bit and five flag bits. half-carry (H), negative (N), zero (2),
overflow (V), and carry (C) flags. The two unused bits are available to the user. The bit
configuration of the condition code register is shown below.

Bit 7 6 5 4 3 2 1 0
I U H U N Z C
Initial value 1 * * * * * * *

Read/Write R/W R/W R/W R/W R/W R/W R/W R/W
* Not fixed

Bit 7—Interrupt Mask Bit (1): Whenthishitisset to 1, al interrupts except NMI are
masked. Thisbit isset to 1 automatically at the start of interrupt handling.

Bits 6 and 4—User Bits(U): These bits can be written and read by software for its own
purposes using LDC, STC, ANDC, ORC, and XORC instructions.

Bit 5—Half-Carry (H): Thisbit isused by add, subtract, and compare instructions to indicate
aborrow or carry out of bit 3 or bit 11. It isreferenced by the decimal adjust instructions.

Bit 3—Negative (N): Thisbit indicates the value of the most significant bit (sign bit) of the
result of an instruction.

Bit 2—Zero (Z): Thishitisset to 1 to indicate azero result and cleared to O to indicate a
nonzero result.

Bit 1—Overflow (V): Thishitisset to 1 when an arithmetic overflow occurs, and cleared to
0 at other times.

Bit 0—Carry (C): Thishitisused by:

* Add, subtract, and compare instructions, to indicate a carry or borrow at the most
significant bit

» Shift and rotate instructions, to store the value shifted out of the most or least significant
bit

* Bit manipulation instructions, as a bit accumulator

Note that some instructions involve no flag changes. The flag operations with each instruction
areindicated in the individual instruction descriptions that follow in section 2, Instruction Set.
CCRisused by LDC, STC, ANDC, ORC, and XORC instructions. TheN, Z, V, and C flags
are used by the conditional branch instruction (Bcc).

1.2.3 Initial Register Values
When the CPU is reset, the program counter (PC) is loaded from the vector table and the

interrupt mask bit (1) in CCRissetto 1. The other CCR bits and the general registers are not
initialized.

Theinitial value of the stack pointer (R7) isnot fixed. To prevent program crashes the stack
pointer should beinitialized by software, by the first instruction executed after a reset.

1.3 Instructions

Features:

* TheH8/300L CPU has aconcise set of 55 instructions.

* A genera-register architecture is adopted.

e Allinstructions are 2 or 4 bytes long.

e Fast multiply/divide instructions and extensive bit manipulation instructions are
supported.

» Eight addressing modes are supported.

1.3.1 Typesof Instructions

Table 1-1 classifies the H8/300L instructions by type. Section 2, Instruction Set, gives detailed
descriptions.

Table 1-1. Instruction Classification

Function Instructions Types

Datatransfer MOV, POP*, PUSH* 1

Arithmetic operations ADD, SUB, ADDX, SUBX, | NC, DEC, ADDS, SUBS, 14
DAA, DAS, MULXU, D VXU, CWP, NEG

Logic operations AND, OR, XOR, NOT 4
Shift SHAL, SHAR SHLL, SHLR ROIL, ROIR, ROTXL, 8
ROTXR
Bit manipulation BSET, BCLR, BNOT, BTST, BAND, Bl AND, BOR 14
BIOR, BXOR BIXOR BLD, BILD, BST, BIST
Branch Bcc**, JMP, BSR JSR RTS 5
System control RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP 8
Block datatransfer EEPMOV 1
Total 55

* POP Rnisequivaent to MOV.W @SP+, Rn.
PUSH Rnisequivaent to MOV.W Rn, @-SP.
** Bcc isaconditional branch instruction in which cc represents a condition.

1.3.2 Instruction Functions

Tables 1-2 to 1-9 give brief descriptions of the instructions in each functional group.
The following notation is used.

Notation

Rd General register (destination)
Rs General register (source)
Rn General register

(EAd) Destination operand
(EAs) Source operand

CCR Condition code register
N N (negative) bit of CCR
Z Z (zero) bit of CCR

V V (overflow) bit of CCR
C C (carry) bit of CCR

PC Program counter

SP Stack pointer (R7)

#lmm Immediate data

op Operation field

disp Displacement

+ Addition

- Subtraction

X Multiplication

Division

AND logica

OR logica

Exclusive OR logica
Move

- Not

:3, :8, :16 3-hit, 8-hit, or 16-bit length

Oj0o|Qa

l

Table 1-2. Data Transfer Instructions

Instruction Size* Function

MOV B/W (EAs) - Rd, Rs - (EAd)

Moves data between two general registers or between a general
register and memory, or moves immediate datato a general register.

The Rn, @Rn, @(d:16, Rn), @aa: 16, #xx:8 or #xx:16, @—Rn, and
@Rn+ addressing modes are available for byte or word data. The
@aa:8 addressing mode is available for byte data only.

The @-R7 and @R7+ modes require word operands. Do not
specify byte size for these two modes.

PCP W @SP+ - Rn
Pops a 16-bit genera register from the stack.
Equivalent to MOV.W @SP+, Rn.

PUSH W Rn -~ @-SP
Pushes a 16-bit general register onto the stack.
Equivalent to MOV.W Rn, @-SP.

* Size: Operand size
B: Byte
W: Word

10

Table 1-3. Arithmetic Instructions

Instruction Size*

Function

ADD B/W Rd +Rs - Rd, Rd+#imm - Rd
SUB Performs addition or subtraction on datain two general registers,
or addition on immediate data and datain a general register.
Immediate data cannot be subtracted from data in a general register.
Word data can be added or subtracted only when both words arein
genera registers.
ADDX B Rd+Rs+C - Rd, RAt#mmz+C - Rd
SUBX Performs addition or subtraction with carry or borrow on byte data
in two general registers, or addition or subtraction on immediate data
and datain agenera register.
I NC B Rd+1 - Rd
DEC Increments or decrements a general register.
ADDS W Rd+1 - Rd,Rd*2 - Rd
SUBS Adds or subtracts immediate data to or from datain a general
register. Theimmediate data must be 1 or 2.
DAA B Rd decima adjust - Rd
DAS Decimal-adjusts (adjusts to packed BCD) an addition or subtraction
result in a general register by referring to the condition code register.
MULXU B Rd xRs - Rd
Performs 8-bit x 8-bit unsigned multiplication on datain two
genera registers, providing a 16-bit result.
D VXU B Rd+Rs - Rd
Performs 16-bit + 8-bit unsigned division on data in two general
registers, providing an 8-bit quotient and 8-bit remainder.
awP B/W Rd—Rs, Rd-—#lmm
Compares datain a general register with data in another general
register or with immediate data. Word data can be compared only
between two general registers.
NEG B 0-Rd -~ Rd

Obtains the two’s complement (arithmetic complement) of datain a
general register.

* Size: Operand size
B: Byte
W: Word

11

Table 1-4. Logic Operation Instructions

Instruction Size* Function
AND B RdORs - Rd, Rd O#mm - Rd
Performs alogical AND operation on ageneral register and
another general register or immediate data.
R B RAORs - Rd, Rd O#mm - Rd
Performs alogical OR operation on ageneral register and another
genera register or immediate data.
XCR B Rd 0 Rs- Rd, RdO#mm - Rd
Performs alogical exclusive OR operation on a general register
and another general register or immediate data.
NOT B -Rd - Rd

Obtains the one’s complement (logical complement) of general
register contents.

* Size: Operand size

B: Byte

Table 1-5. Shift I nstructions

Instruction Size* Function

SHAL B Rd shift - Rd

SHAR Performs an arithmetic shift operation on general register contents.
SHLL B Rd shift - Rd

SHLR Performs alogical shift operation on general register contents.
ROTL B Rdrotate —» Rd

ROTR Rotates general register contents.

ROTXL B Rd rotate through carry — Rd

ROTXR Rotates general register contents through the C (carry) bit.

* Size: Operand size

B: Byte

12

Table 1-6. Bit Manipulation Instructions

Instruction Size* Function

BSET B 1 - (<bit-No.> of <EAd>)
Sets a specified bit in ageneral register or memory to 1. Thebitis
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BCLR B 0 - (<hit-No.> of <EAd>)
Clears a specified bit in ageneral register or memory to 0. The bit
is specified by abit number, given in 3-bit immediate data or the lower
three bits of a general register.

BNOT B - (<bit-No.> of <EAd>) - (<bit-No.> of <EAd>)
Inverts a specified bit in ageneral register or memory. Thebitis
specified by a bit number, given in 3-bit immediate data or the lower
three bits of a general register.

BTST B = (<bit-No.> of <EAd>) - Z
Tests a specified bit in agenera register or memory and sets or
clearsthe Z flag accordingly. The bit is specified by abit number,
given in 3-bit immediate data or the lower three bits of a general

register.
BAND B C O(<bit-No.> of <EAd>) - C
ANDsthe C flag with a specified bit in a general register or
memory.
Bl AND B C O[~ (<bit-No.> of <EAd>)] -~ C

ANDsthe C flag with the inverse of a specified bit in ageneral
register or memory.
The bit number is specified by 3-bit immediate data.

BOR B C O(<bit-No.> of <EAd>) - C
ORsthe C flag with a specified bit in a general register or memory.
Bl CR B C O[- (<bit-No.> of <EAd>)] - C

ORsthe C flag with the inverse of a specified bit in agenerd
register or memory.
The bit number is specified by 3-bit immediate data.

13

Table 1-6. Bit Manipulation Instructions (Cont.)

Instruction Size*

Function

BXCR B C O (<bit-No.> of <EAd>) - C
Exclusive-ORs the C flag with a specified bit in a general register
or memory.
Bl XCR B C O [~ (<bit-No.> of <EAd>)] - C
Exclusive-ORs the C flag with the inverse of a specified bitin a
genera register or memory.
The bit number is specified by 3-bit immediate data.
BLD B (<bit-No.> of <EAd>) - C
Copies aspecified bit in ageneral register or memory to the C flag.
Bl LD B = (<bit-No.> of <EAd>) - C
Copiesthe inverse of a specified bit in ageneral register or
memory to the C flag.
The bit number is specified by 3-bit immediate data.
BST B C - (<hit-No.> of <EAd>)
Copiesthe C flag to a specified bit in ageneral register or memory.
Bl ST B - C - (<hit-No.> of <EAd>)

Copiesthe inverse of the C flag to a specified bit in agenerd
register or memory.
The bit number is specified by 3-bit immediate data.

* Size: Operand size
B: Byte

14

Table 1-7. Branching Instructions

Instruction Size

Function

Bcc —

Branchesif condition ccistrue. The branching conditions are as

follows.
Mnemonic Description Condition
BRA (BT) Always (True) Always
BRN (BF) Never (False) Never
BHI High cdz=0
BLS Low or Same chz=1
BCC (BHS) Carry Clear C=0
(High or Same)
BCS (BLO Carry Set (Low) C=1
BNE Not Equal Z=0
BEQ Equal Z=1
BVC Overflow Clear V=0
BVS Overflow Set V=1
BPL Plus N=0
BM Minus N=1
BCGE Greater or Equal NOV=0
BLT Less Than NOV=1
BGT Greater Than ZONOV)=0
BLE Lessor Equd ZOINOV)=1
JwP — Branches unconditionally to a specified address.
BSR — Branches to a subroutine at a specified displacement from the current
address.
JSR — Branches to a subroutine at a specified address.
RTS — Returns from a subroutine.

15

Table 1-8. System Control Instructions

Instruction Size* Function

RTE — Returns from an exception handling routine.
SLEEP — Causes atransition to power-down state.
LDC B Rs - CCR, #lmm - CCR
Moves immediate data or general register contents to the condition
code register.
STC B CCR - Rd
Copies the condition code register to a specified general register.
ANDC B CCR O#lmm - CCR
Logicaly ANDs the condition code register with immediate data.
ORC B CCR O#mm - CCR
Logically ORs the condition code register with immediate data.
XORC B CCRO#mm - CCR
Logically exclusive-ORs the condition code register with immediate
data.
NCP — PC+2 - PC

Only increments the program counter.

* Size: Operand size
B: Byte

Table 1-9. Block Data Transfer Instruction

Instruction Size Function

EEPMOV — if R4L # 0 then
repeat @R5+ - @R6+
RAL —1 - R4AL
until R4L =0
else next;
Moves a data block according to parameters set in general registers
R4L, R5, and R6.

RAL : size of block (bytes)

R5: starting source address

R6: starting destination address

Execution of the next instruction starts as soon as the block transfer is
completed.

Thisinstruction is for writing to the large-capacity EEPROM provided
on chip with some models in the H8/300L Series. For details seethe
applicable hardware manual.

16

Noteson Bit Manipulation Instructions: BSET, BCLR, BNOT, BST, and BIST are read-
modify-write instructions. They read a byte of data, modify one bit in the byte, then write the
byte back. Careisrequired when these instructions are applied to registers with write-only
bits and to the 1/0O port registers.

Sequence Operation

1 Read Read one data byte at the specified address

2 Modify Modify one bit in the data byte

3 Write Write the modified data byte back to the specified address

Example 1. BCLR isexecuted to clear bit O in port control register 4 (PCR4) under the
following conditions.

PA7: Input pin, Low

P4e: Input pin, High

P45 —P4o: Output pins, Low

The intended purpose of this BCLR instruction is to switch P4o from output to input.

Before Execution of BCLR Instruction

P47 Pds Pds Pl PA3s Pl P Pdo

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BCLR Instruction

BCLR #0 @PCR4 : clear bit 0in PCR4

After Execution of BCLR Instruction
P47 P4s P4s P44 P43 P42 P41 P4o

I nput/output Output Output Output Output Output Output Output Input

Pin state Low High Low Low Low Low Low High
PCR4 1 1 1 1 1 1 1 0
PDR4 1 0 0 0 0 0 0 0

17

Explanation: To execute the BCLR instruction, the CPU begins by reading PCR4. Since
PCR4 isawrite-only register, it isread as H'FF, even though its true value is H'3F.

Next the CPU clears bit O of the read data, changing the value to H'FE.

Finaly, the CPU writes this value (H'FE) back to PCR4 to complete the BCLR instruction.

Asaresult, bit 0in PCR4 is cleared to 0, making P4o an input pin. Inaddition, bits 7 and 6 in
PCR4 are set to 1, making P47 and P4e output pins.

Example 2. BSET is executed to set bit O in the port 4 port data register (PDR4) under the
following conditions.

PA7. Input pin, Low

P4e: Input pin, High

P4s —P4o: Output pins, Low

The intended purpose of this BSET instruction isto switch the output level at P4o from Low to
High.

Before Execution of BSET Instruction

P47 Pds P4s Pda P43 Pl Ph Plo

I nput/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low Low
PCR4 0 0 1 1 1 1 1 1
PDR4 1 0 0 0 0 0 0 0

Execution of BSET Instruction

BSET #0 @°DR4 ; set bit O in port 4 port data register

18

After Execution of BSET Instruction

P47 Pds Pds PA P43 Ph P41 Pdo

Input/output Input Input Output Output Output Output Output Output

Pin state Low High Low Low Low Low Low High
PCR4 0 0 1 1 1 1 1 1
PDR4 0 1 0 0 0 0 0 1

Explanation: To execute the BSET instruction, the CPU begins by reading port 4. Since P47
and P4s are input pins, the CPU reads the level of these pins directly, not the value in the port
dataregister. It reads P47 as Low (0) and P46 as High (1).

Since P4s to P4o are output pins, for these pins the CPU reads the valuein PDR4. The CPU
therefore reads the value of port 4 as H'40, although the actual value in PDR4 is H'80.

Next the CPU sets bit O of the read data to 1, changing the value to H'41.

Finally, the CPU writes this value (H'41) back to PDR4 to complete the BSET instruction.

Asaresult, bit 0in PDR4 is set to 0, switching pin P4o to High output. However, bits 7 and 6
in PDR4 change their values.

19

1.3.3 Basic Instruction For mats

(1) Format of Data Transfer Instructions

Figure 1-5 shows the format used for data transfer instructions.

15 8
| op | 'm | !
15 8
| op m | M
15 8
op m | M
disp.
15 8
| op m | n
15 8
| op | n | abs.
15 8
op | 'n
abs.
15 8
L op [m | IMM
15 8
op '
IMM
15 8
op M
Notation
op: Operation field
'm 'n: Reqgister field
disp: Displacement
abs.: Absolute address
IMM: Immediate data

MOV
Rm - Rn

Rn - @Rm,or@Rm - Rn

@(d:16, Rm) - Rn, or
Rn - @(d:16, Rm)
@Rm+ - Rn,orRn - @-Rm

@aa:8 - Rn,orRn - @aa:8

@aa:16 - Rn,or
Rn - @aa:16

#xx:8 - Rn

#xx:16 - Rn

POP, PUSH

Figure 1-5. Instruction Format of Data Transfer Instructions

20

(2) Format of Arithmetic, Logic Operation, and Shift Instructions
Figure 1-6 shows the format used for arithmetic, logic operation, and shift instructions.

15 8 7

| op | 'm | 'n
15 8 7

| op | n
15 8 7

| op rm | 'n
15 8 7

[op | | IMM
15 8 7

| op | 'm 'n
15 8 7

| op [| IMM
15 8 7

| op Mn
Notation
op: Operation field
'm n: Register field
IMM: Immediate data

ADD, SUB, CMP (Rm)
ADDX, SUBX (Rm)

ADDS, SUBS, INC, DEC, DAA,
DAS, NEG, NOT

MULXU, DIVXU

ADD, ADDX, SUBX, CMP
(#xx:8)

AND, OR, XOR (Rm)

AND, OR, XOR (#xx:8)

SHAL, SHAR, SHLL, SHLR,
ROTL, ROTR, ROTXL, ROTXR

Figure 1-6. Instruction Format of Arithmetic, Logic, and Shift Instructions

21

(3) Format of Bit Manipulation Instructions
Figure 1-7 shows the format used for bit manipulation instructions.

15 8 0
| op MM | 1y
15 8 0
| op | 'm |
15 8 0
op | n 0000
op IMM 00O00O
15 8 0
op M 00O00O
op 'm 0000O0
15 8 0
op | abs.
op IMM | 0000
15 8 0
op abs.
op 'm | 000O
15 8 0
op MM [y
15 8 0
op | n 0000
op IMM 0000O0
15 8 0
op | abs.
op MM | 0000
Notation
op: Operation field
Mm» - Register field
abs.: Absolute address
IMM: Immediate data

BSET, BCLR, BNOT, BTST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register direct (Rn)
Bit No.: register direct (Rm)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: register direct (Rm)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: register direct (Rm)

BAND, BOR, BXOR, BLD, BST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Instruction Format of Bit Manipulation I nstructions

22

15 8 0
op IMM n

15 8 0
op 'n 0000
op IMM 0000

15 8 0
op abs.
op IMM | 0000

Notation

op: Operation field

'm n: Register field

abs.: Absolute address

IMM: Immediate data

BIAND, BIOR, BIXOR, BILD, BIST
Operand: register direct (Rn)
Bit No.: immediate (#xx:3)

Operand: register indirect (@Rn)
Bit No.: immediate (#xx:3)

Operand: absolute (@aa:8)
Bit No.: immediate (#xx:3)

Figure 1-7. Instruction Format of Bit Manipulation I nstructions (Cont.)

23

(4) Format of Branching Instructions
Figure 1-8 shows the format used for branching instructions.

15 8 7 0
[op [cc | disp. | Bce
15 8 7 0
| op | ™m | ooo0o0 | JMP (@Rm)
15 8 7 0
op JMP (@aa:16)
abs.
15 8 7 0
| op | abs. | IMP (@ @aa:8)
15 8 7 0
| op | disp. | BSR
15 8 7 0
| op | ™ [o000 0f JSR (@Rm)
15 8 7 0
op JSR (@aa:16)
abs.
15 8 7 0
| op | abs. | JSR (@@aa:8)
15 8 7 0
| op | RTS
Notation
op: Operation field
cc: Condition field
"m: Register field
disp.: Displacement
abs.: Absolute address

Figure 1-8. Instruction Format of Branching I nstructions

24

(5) Format of System Control Instructions
Figure 1-9 shows the format used for system control instructions.

15 8 7 0
I op

15 8 7 0
| op n

15 8 7 0
| op | IMM
Notation
op: Operation field
M Register field
IMM: Immediate data

RTE, SLEEP, NOP

LDC, STC (Rn)

ANDC, ORC, XORC, LDC
(#xx:8)

(6) Format of Block Data Transfer Instruction
Figure 1-10 shows the format used for the block data transfer instruction.

Figure 1-9. Instruction Format of System Control Instructions

15

op

op

EEPMOV

Figure 1-10. Instruction Format of Block Data Transfer Instruction

25

1.3.4 Addressing Modes and Effective Address Calculation

Table 1-10 lists the eight addressing modes and their assembly-language notation. Each
instruction can use a specific subset of these addressing modes.

Arithmetic, logic, and shift instructions use register direct addressing (1). The ADD.B,
ADDX, SUBX, CMPB, AND, OR, and XOR instructions can also use immediate addressing

(6).

The MOV instruction uses all the addressing modes except program-counter relative (7) and
memory indirect (8).

Bit manipulation instructions use register direct (1), register indirect (2), or absolute (5)
addressing to identify a byte operand and 3-bit immediate addressing to identify abit within
the byte. The BSET, BCLR, BNOT, and BTST instructions can also use register direct
addressing (1) to identify the bit.

Table 1-10. Addressing Modes

No. Mode Notation
D Register direct Rn
2 Register indirect @Rn
(©)) Register indirect with 16-bit displacement @(d:16, Rn)
4 Register indirect with post-increment @Rn+
Register indirect with pre-decrement @-Rn
(5) Absolute address (8 or 16 hits) @aa:8, @aa:16
(6) Immediate (3-, 8-, or 16-bit data) #XX:3, #xx:8, #xx:16
@) PC-relative (8-bit displacement) @(d:8, PC)
(8) Memory indirect @@aa:8

(1) Register Direct—Rn: Theregister field of the instruction specifies an 8- or 16-bit
general register containing the operand. In most cases the general register is accessed as an 8-
bit register. Only the MOV.W, ADD.W, SUB.W, CMPW, ADDS, SUBS, MULXU (8 bitsx 8
bits), and DIV XU (16 bits + 8 bits) instructions have 16-bit operands.

(2) Register indirect—@Rn: Theregister field of the instruction specifies a 16-bit general
register containing the address of the operand.

26

(3) Register Indirect with Displacement—@(d:16, Rn): Thismode, which isused only in
MOV instructions, is similar to register indirect but the instruction has a second word (bytes 3
and 4) which is added to the contents of the specified general register to obtain the operand
address. For the MOV.W instruction, the resulting address must be even.

(4) Register Indirect with Post-Increment or Pre-Decrement—@Rn+ or @-Rn:

* Register indirect with post-increment—@Rn+
The @Rn+ mode is used with MOV instructions that |oad registers from memory.
It issimilar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction isincremented after the operand is accessed. The size of
theincrement is 1 or 2 depending on the size of the operand: 1 for abyte operand; 2 for a
word operand. For aword operand, the original contents of the 16-bit general register
must be even.

* Register indirect with pre-decrement—@-Rn
The @-Rn mode is used with MOV instructions that store register contents to memory.
It issimilar to the register indirect mode, but the 16-bit general register specified in the
register field of the instruction is decremented before the operand is accessed. The size of
the decrement is 1 or 2 depending on the size of the operand: 1 for abyte operand; 2 for a
word operand. For aword operand, the original contents of the 16-bit general register
must be even.

(5) Absolute Address—@aa:8 or @aa: 16: The instruction specifies the absolute address of
the operand in memory. The @aa:8 mode uses an 8-bit absolute address of the form H'FFxx.
The upper 8 bits are assumed to be 1, so the possible address range is H'FFO0 to H'FFFF
(65280 to 65535). The MOV.B, MOV.W, JMP, and JSR instructions can use 16-bit absolute
addresses.

(6) Immediate—#xx:8 or #xx:16: The instruction contains an 8-bit operand in its second
byte, or a 16-bit operand in its third and fourth bytes. Only MOV.W instructions can contain
16-bit immediate values.

The ADDS and SUBS instructions implicitly contain the value 1 or 2 asimmediate data.
Some bit manipulation instructions contain 3-bit immediate data (#xx:3) in the second or
fourth byte of the instruction, specifying a bit number.

27

(7) PC-Relative—@(d:8, PC): Thismodeis used to generate branch addressesin the Bcc
and BSR instructions. An 8-bit value in byte 2 of the instruction code is added as a sign-
extended value to the program counter contents. The result must be an even number. The
possible branching range is—126 to +128 bytes (—63 to +64 words) from the current address.

(8 Memory Indirect—@@aa:8: This mode can be used by the IMP and JSR instructions.
The second byte of the instruction code specifies an 8-bit absolute address from H'0000 to
H'00FF (0 to 255). Note that the initial part of the area from H'0000 to H'00FF contains the
exception vector table. See the applicable hardware manual for details. The word located at
this address contains the branch address.

If an odd address is specified as a branch destination or as the operand address of a MOV.W
instruction, the least significant bit is regarded as O, causing word access to be performed at
the address preceding the specified address. See the memory data structure description in
section 1.1.2, Data Structure.

Effective Address Calculation
Table 1-11 explains how the effective address is calculated in each addressing mode.

Table 1-11. Effective Address Calculation (1)

Addressing mode, Effective address Effective
No. instruction format calculation address
1 Register direct Rn None
3 0 3 0
15 87 43 0 | regml | regnl
OoP | regml regni

Operandsarecontainedin
registersmand n

2 Registerindirect @RnN

15 0

>| 16-bit register contents
15 76 |43 0 | 15 0

Y

OoP reg

Operandisat address
indicated by register

28

Table 1-11. Effective Address Calculation (2)

Addressing mode, Effective address Effective
No. instruction format calculation address
3 Register indirect with displacement
@(d:16, Rn)
15 0
16-bit register contents 15
>
15 76 43 0
16-bit displacement Operand addressissum
oP reg .
- A of register contents and
disp displacement
4 Register indirect with pre-decrement
@-Rn
15 0
> | ; ;
>| 16-bit register contents
15 76| 43 o | 2 |_¢ 15
oP reg .
Register isdecremented
beforeoperand access
Register indirect with post-increment
@Rn+
15 0 15
15 76 | 23 0 >I 16-bit register contents IT)
opP | e | | A Register isincremented
9 after operand access
* 1 for abyte operand,
2 for aword operand
5 Absolute address None
@aa:8
15 87
15 87 0 HFF | f
| op abs | -
Operand addressisinrange
from H'FFOO to H'FFFF
Absolute address
@aa:16
15 0 15
OoP ¢
abs
Anyaddress

29

Table 1-11. Effective Address Calculation (3)

Addressing mode, Effective address Effective
No. instruction format calculation address
6 Immediate #xx:8. None
15 87
Operandis 1-byte
IMM
oP immediatedata
Immediate #xx:16 None
15 0
oP Operand is 2-byte
IMM immediatedata
7 PC-relative @(d:8, PC)
15 0
PC contents 15
H—>
15 87 0 Sign extension disp Destination address
op [disp | i
8 Memory indirect @@aa:8
15 87 0
oP | abs i
15 87 y 0
H'00 |
15 0 15

16-bit memory contents |—>

Destination address

reg, regm, regn: General register

op: Operation field
disp: Displacement
abs: Absolute address
IMM: Immediate data

30

Section 2. Instruction Set
2.1 Explanation For mat

Section 2 gives full descriptions of all the H8/300L Series instructions, presenting them in
alphabetic order. Each instruction isexplained in atable like the following:

ADD (add binary) (byte) ADD

Operation Condition Code

Rd + (EAs) - Rd | H N Z V C

— |— [t] =T] T T]

Assembly-L anguage For mat

ADD. B <EAs> Rd I: Previous value remains unchanged.

H: Setto 1 whenthereisacarry from bit 3;
otherwise cleared to 0.
. Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresult iszero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs;
otherwise cleared to 0.
C: Setto1whenthereisacarry from bit 7,
otherwise cleared to 0.

Operand Size
Byte N

Description
This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the general register .

Instruction For mats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sthie(:)sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADD.B | #xx:8,Rd |8 rd IMM 2
Register direct | ADD.B Rs, Rd 0 '8 rs | rd 2

31

The parts of the table are explained bel ow.

Name: The full and mnemonic names of the instruction are given at the top of the page.

Operation: Theinstruction is described in symbolic notation. The following symbols are used.

Symbol M eaning

Rd General register (destination)*

Rs General register (source)*

Rn General register*

<EAd> Destination operand

<EAs> Source operand

PC Program counter

SP Stack pointer

CCR Condition code register

N N (negative) flag of CCR

Z Z (zero) flag of CCR

\% V (overflow) flag of CCR

C C (carry) flag of CCR

disp Displacement

N Transfer from left operand to right operand; or state transition from left state to
right state.

+ Addition

- Subtraction

X Multiplication

+ Division

0 AND logicad

0 OR logical

0 Exclusive OR logica

- Inverselogic (logical complement)

()< > Contents of operand effective address

* Generd registers are either 8 bits (ROH/ROL - R7H/R7L) or 16 bits (RO - R7).

Assembly-L anguage For mat:

The assembly-language coding ADD._ B <E?S>, Blg
of the instruction isgiven. An Mnemonic Size Source Destination
exampleis:

32

The operand sizeisindicated by the letter B (byte) or W (word). Some instructions have
restrictions on the size of operands they handle.

The abbreviation EAs or EAd (effective address of source or destination) is used for operands
that permit more than one addressing mode. The H8/300L CPU supports the following eight
addressing modes. The method of calculating effective addresses is explained in section 1.3.4,
Addressing Modes and Effective Address Calculation, above.

Notation Addressing Mode

Rn Register direct

@Rn Register indirect

@(d:16, Rn) Register indirect with displacement

@Rn+/@ —Rn Register indirect with post-increment/pre-decrement
@aa:8/@aa:16 Absolute address

#xX:8/#xx:16 Immediate

@(d:8, PC) Program-counter relative

@@aa:8 Memory indirect

Operand size. Word or byte. Byte sizeisindicated for bit-manipulation instructions because
these instructions access afull byte in order to read or write one bit.

Condition code: The effect of instruction execution on the flag bitsin CCR isindicated. The
following notation is used:

Symbol M eaning
t Theflag is altered according to the result of the instruction.
0 Theflagisclearedto"0."
— Theflagis not changed.
* Not fixed; the flag isleft in an unpredictable state.

Description: The action of the instruction is described in detail.

33

Instruction Formats. Each possible format of the instruction is shown explicitly, indicating
the addressing mode, the object code, and the number of states required for execution when the
instruction and its operands are located in on-chip memory. The following symbols are used:

Symbol Meaning

Imm. Immediate data (3, 8, or 16 bits)
abs. An absolute address (8 bits or 16 bits)
disp. Displacement (8 bits or 16 bits)

rs, rd, rn General register number (3 bitsor 4 bits) The s, d, and n correspond to the letters
in the operand notation.

Register Designation: 16-bit general registers are indicated by a 3-bit rs, rd, or rn value. 8-bit
registers are indicated by a4-bit rs, rd, or rn value. Address registers used in the @Rn,
@(disp:16, Rn), @Rn+, and @—Rn addressing modes are always 16-bit registers. Data
registers are 8-bit or 16-bit registers depending on the size of the operand. For 8-bit registers,
the lower three bits of rs, rd, or rn give the register number. The most significant bitis1if the
lower byte of the register is used, or O if the upper byteis used. Registers arethusindicated as
follows:

16-Bit register 8-Bit registers
rs, rd, OF n rs, rd, Or n Register
Register 0000 ROH
000 RO 0001 R1H
001 R1 : :
: ; 0111 R7H
111 R7 1000 ROL
1001 R1L
1111 R7L

Bit Data Access. Bit data are accessed as the n-th bit of abyte operand in ageneral register or
memory. The bit number is given by 3-bit immediate data, or by avalue in ageneral register.
When a bit number is specified in ageneral register, only the lower three bits of the register are
significant. Two examples are shown below.

BSET R1L, R2H

RIL | dontcae |0 1 1|

—— Bit number =3

RRH |01 10010 1]

Bit3issetto 1

BLD #5, @i FF02:8

/Tt No.5
H'FF02 10100110
/_\/

Loaded to C (carry) >|C
flagin CCR

The addressing mode and operand size apply to the register or memory byte containing the bit.

Number of States Required for Execution: The number of states indicated is the number
required when the instruction and any memory operands are located in on-chip ROM or RAM.
If the instruction or an operand is located in external memory or the on-chip register field,
additional states are required for each access. See section 2.5, Number of Execution States.

35

2.2 Instructions

2.2.1 (1) ADD (add binary) (byte) ADD
Operation Condition Code
Rd+ (EAs) - Rd | H N Z V C

— |— [t | =] T][

Assembly-L anguage For mat

ADD. B <EAs>, Rd I: Previous value remains unchanged.

H: Set to 1 whenthereisacarry from bit 3;
otherwise cleared to O.
. Set to 1 when the result is negative;
otherwise cleared to O.
Z. Setto1whentheresultiszero;
otherwise cleared to O.
V: Set to 1 when an overflow occurs;
otherwise cleared to O.
C. Setto1lwhenthereisacarry from bit 7,
otherwise cleared to O.

Operand Size
Byte N

Description
This instruction adds the source operand to the contents of an 8-bit general register and places
the result in the general register .

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands gg;[:g
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDB | #xx:8,Rd |8 ' rd IMM 2
Register direct | ADD.B | Rs, Rd 0 '8 |rs | rd 2
| |

36

2.2.1(2) ADD (add binary) (word)

ADD

Operation Condition Code
Rd+Rs - Rd | H N Z V C
— =]t | =]t][t]
Assembly-L anguage For mat
ADD. W Rs, Rd _ _
I: Previous value remains unchanged.
Operand Size H: Setto 1when thereisacarry from bit
11; otherwise cleared to O.
Word . :
N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z:. Setto 1 when theresultiszero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs;
otherwise cleared to 0.
C: Setto1whenthereisacarry from bit
15; otherwise cleared to O.
Description

Thisinstruction adds word data in two general registers and places the result in the second

general register.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sthi:s]c
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct | ADD.W | Rs, Rd 0 19 Oi rsiOi rd 2

37

2.2.2 ADDS (add with sign extension) ADDS

Operation Condition Code
Rd+1 - Rd | H N 7 V C
Rd+2 - Rd

Assembly-L anguage For mat . _
Previous value remains unchanged.

ADDS #1, Rd L Brovious v _ —
42 Rd : ev!ousv ueremamsunc anged.
N: Previous value remains unchanged.
} Z: Previous value remains unchanged.

Operand Size . : J
Word V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

Thisinstruction adds the immediate value 1 or 2 to word datain ageneral register. Unlike the
ADD instruction, it does not affect the condition code flags.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

Mnem. Operands

mode states
1stbyte | 2nd byte | 3rd byte | 4th byte

Register direct | ADDS #1, Rd 0 B| 00rd 2

Register direct | ADDS #2, Rd 0! B| 80 2

Note: Thisinstruction cannot access byte-size data.

38

2.2.3 ADDX (add with extend carry) ADDX
Operation Condition Code

Assembly-L anguage For mat
ADDX <EAs>, Rd

Operand Size
Byte

e el O e R ' I

Previous value remains unchanged.
Set to 1if thereisacarry from bit 3;
otherwise cleared to 0.

Set to 1 when the result is negative;
otherwise cleared to 0.

Set to 1 when the result is zero;
otherwise cleared to 0.

Set to 1 when an overflow occurs,
otherwise cleared to 0.

Set to 1 when thereisa carry from bit 7;
otherwise cleared to 0.

Description

Thisinstruction adds the source operand and carry flag to the contents of an 8-bit general

register and places the result in the general register.

Instruction Formats and Number of Execution States

- Instruction code
Addressin
mode g Mnem. Operands ,s\ltg'teosf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ADDX #xx:8,Rd | 9 i rd IMM 2
Register direct | ADDX Rs, Rd 0 IE rs | rd 2

39

2.2.4 AND (AND logical) AND
Operation Condition Code
Rd O(EAS) - Rd | H N Z V C
— ===t |t [O]|—
Assembly-L anguage For mat
AND <EAs>, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresultiszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous vaue remains unchanged.
Description

Thisinstruction ANDs the source operand with the contents of an 8-bit general register and
places the result in the general register.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sNtca)\ie()sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate AND #xx:8,Rd | E I rd IMM 2
Register direct | AND Rs, Rd 1 16 rs | rd 2

40

2.25 ANDC (AND control register) ANDC
Operation Condition Code
CCR O#IMM - CCR | H N 7z V C

Assembly-L anguage For mat
ANDC #xx:8, CCR

Operand Size
Byte

! ! !]t ! ! !

O<sSNZI~

ANDed with bit 7 of the immediate data.
ANDed with bit 5 of the immediate data.
ANDed with bit 3 of the immediate data.
ANDed with bit 2 of the immediate data.
ANDed with bit 1 of the immediate data.
ANDed with bit O of the immediate data.

Description

Thisinstruction ANDs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits 6 and 4 are ANDed as well as the flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sthie(:)sf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate ANDC #xx:8, CCR| 0 i 6 IMM 2

41

2.2.6 BAND (bit AND) BAND

Operation Condition Code
C O(<Bit No.> of <EAd>) - C | H N Z V C

— | == ===]—=]:

Assembly-L anguage For mat
BAND #xx:3, <EAd>
Previous value remains unchanged.

I
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ANDed with the specified bit.
Description

Thisinstruction ANDs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in ageneral register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 X377 0
1 1 1

<EAd>* - Bytedatain register or memory o |
[T -0e

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

ﬁi?jrsssmg vnem. | Operands Instruction code 'S\ltg'tgsf
1st byte | 2nd byte 3rd byte | 4th byte

Register direct BAND |#xx:3, Rd 7 i 6 OilMl\/;I rd 2

Register indirect | BAND |#xx:3,@Rd 7 i C Oi rd i 0 7 % 6 OiIMI\/;I 0 6

Absolute address| BAND |#xx:3,@aa:8 | 7 i E abs 7 i 6 0% IMI\/;I 0 6

* Register direct, register indirect, or absolute addressing.

42

2.2.7 Bcc (branch conditionally) Bcc

Operation Condition Code

If cc then | 4 N Z V C
PC+d8 - PC

else next;

Assembly-L anguage For mat

Bcc d:8
T—EConditi oncodefield

(For mnemonics, see the table on the
next page.)

Operand Size

OSSNz I~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

43

Bcc (branch conditionally)

Bcc

Description

If the specified condition is false, this instruction does nothing; the next instruction is

executed. If the specified condition is true, a signed displacement is added to the address of
the next instruction and execution branches to the resulting address.
The displacement is a signed 8-bit value which must be even. The branch destination address
can be located in the range —126 to +128 bytes from the address of the Bcc instruction.
The applicable conditions and their mnemonics are given bel ow.

Mnemonic cc Field Description Condition Meaning

BRA (BT) 0000 Always (True) Always true

BRN (BF) 0001 Never (False) Never

BH 0010 High COz=0 X >Y (Unsigned)

BLS 0011 Low or Same cbz=1 X <Y (Unsigned)

BCC (BHS) 0100 Carry Clear C=0 X =Y (Unsigned)

(High or Same)

BCS (BLO 0101 Carry Set (Low) =1 X <Y (Unsigned)

BNE 0110 Not Equal Z=0 X#Y (Signed or
unsigned)

BEQ 0111 Equa Z=1 X =Y (Signedor
unsigned)

BVC 1000 Overflow Clear V=0

BVS 1001 Overflow Set V=1

BPL 1010 Plus N=0

BM 1011 Minus N=1

BCE 1100 GreaterorEqual | NOV =0 X=2Y (Signed)

BLT 1101 Less Than NOV=1 X <Y (Signed)

BGT 1110 Greater Than ZONDOV)=0 | X>Y (Signed)

BLE 1111 Lessor Equal ZOINOV)=1 | X<Y (Signed)

BT, BF, BHS, and BLO are synonyms for BRA, BRN, BCC, and BCS, respectively.

Bcc (branch conditionally) Bcc

I nstruction Formats and Number of Execution States

Adressing Instruction code No . of
mode Mnem. | Operands 1st byte 2nd byte 3rd byte 4th byte | states
PC relative BRA(BT) d:8 4 0 disp. 4
PC relative BRN (BF) d:8 4 1 disp. 4
PC relative BHI d:8 4 2 disp. 4
PC relative BLS d:8 4 3 disp. 4
PC relative BCC (BHS) d:8 4 4 disp. 4
PC relative BCS (BLO) d:8 4 5 disp. 4
PC relative BNE d:8 4 6 disp. 4
PC relative BEQ d:8 4 7 disp. 4
PC relative BVvVC d:8 4 8 disp. 4
PC relative BVS d:8 4 9 disp. 4
PC relative BPL d:8 4 A disp. 4
PC relative BMI d:8 4 B disp. 4
PC relative BGE d:8 4 c disp. 4
PC relative BLT d:8 4 D disp. 4
PC relative BGT d:8 4 E disp. 4
PC relative BLE d:8 4 F disp. 4

* The branch address must be even.

45

2.2.8 BCLR (bit clear) BCLR

Operation Condition Code

0 - (<Bit No.> of <EAd>) | H N Z v C

Assembly-L anguage For mat

BCLR #xx:3, <EAd> Previous value remains unchanged.

I
BCLR Rn, <EAd> H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Byte V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction clears a specified bit in the destination operand to 0. The bit number can be
specified by 3-bit immediate data, or by the lower three bits of an 8-bit general register. The
destination operand can be located in a genera register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn—
Bit No. 7 l

<EAd>* - Bytedatain register or memory Coroa Al oy

|
0

* Register direct, register indirect, or absolute addressing.

46

BCLR (bit clear) BCLR
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BCLR |#xx:3, Rd 7 i 2 Oi IMI\j/I rd 2
Register indirect | BCLR |#xx:3,@Rd 7 % D 0% rdi 0 7 % 2 Oi IMI\/:I 0 8
Absolute address| BCLR |#xx:3,@aa:8 | 7 i F abs 7 i 2 0% IMI\/:I 0 8
Register direct BCLR |Rn, Rd 6 i 2 rn i rd 2
Register indirect | BCLR |Rn, @Rd 7 % D 0% rdi 0 6 i 2 m i 0 8
Absolute address| BCLR |Rn, @aa:8 7 i F abs 6 i 2 m i 0 8

47

2.2.9 BIAND (bit invert AND) BIAND
Operation Condition Code
C O - (<Bit No.> of <EAd>)] - C I H N Z V C

Assembly-L anguage For mat
Bl AND #xx:3, <EAd>

Previous value remains unchanged.

I:

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: ANDed with the inverse of the specified

bit.

Description

Thisinstruction ANDs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

<EAd>* - Bytedatain register or memory

Bit No.

7 #xXx:3

I I 1 \J

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

ﬁqocljoéreessmg Mnem. | Operands gltg'teo;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIAND |#xx:3, Rd 7 i 6 li IMNT/I rd 2
Register indirect | BIAND |#xx:3,@Rd 7 i C Oi rdi 0 7 % 6 1% IMI\i/I 0 6
Absolute address| BIAND |#xx:3,@aa:8 | 7 i E abs 7 i 6 1% IMI\E/I 0 6

* Register direct, register indirect, or absolute addressing.

48

2.2.10 BILD (bit invert load) BILD

Operation Condition Code
= (<Bit No.> of <EAd>) - C | H N Z V C

—|— ===]=]—]:

Assembly-L anguage For mat

Bl LD #xx:3, <EAd> . '
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z:. Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the inverse of the specified

bit.

Description

Thisinstruction loads the inverse of a specified bit into the carry flag. The specified bit can be
located in a general register or memory. The bit number is specified by 3-bit immediate data.
The operation is shown schematically below.

Bit No.
<EAd>* - Bytedatain register or memory

7 #xx:3 0
I

| | - | |
41vert—>|:c

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands ls\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | BILD | #xx:3, Rd 1IMM rd 2

7 37

T 1 | T T

Register indirect | BILD |#xx:3,@Rd | 7 iC O0rd O 7 7 13IMI\/‘I 0 6
7 | E 7 7

Absolute address| BILD |#xx:3,@aa:8 abs LIMM 0 6

* Register direct, register indirect, or absolute addressing.

49

2.2.11 BIOR (bit invert inclusive OR) BIOR
Operation Condition Code
CO[~ (<BitNo.>of <EAd>)] - C | H N Z V C

Assembly-L anguage For mat
Bl OR #xx:3, <EAd>

Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z:. Previous value remains unchanged.

V: Previous value remains unchanged.

C: ORed with theinverse of the specified

bit.

Description

This instruction ORs the inverse of a specified bit with the carry flag and places the result in
the carry flag. The specified bit can be located in a general register or memory. The bit
number is specified by 3-bit immediate data. The operation is shown schematically below.

. HXX:
Bit No. 7 3_¢ 0
1 1 1

<EAd>* - Bytedatain register or memory _

11 1 111
v

Invert

o b :/—>[c

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

,:](l(?jréessmg Mnem. | Operands ls\ltgig
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIOR |#xx:3, Rd 7 i 4 11 IMI\/i rd 2
Register indirect | BIOR |#xx:3,@Rd 7 i C Oi rd i 0 7 % 4 1% IMI\/:I 0 6
Absolute address| BIOR |#xx:3,@aa:8 | 7 i E abs 7 i 4 1% IMM 0 6

* Register direct, register indirect, or absolute addressing.

50

2.2.12 BIST (bit invert store) BIST
Operation Condition Code

Assembly-L anguage For mat
Bl ST #xx:3, <EAd>

Operand Size
Byte

O<SNZI-=

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

Thisinstruction stores the inverse of the carry flag to a specified bit location in a general
register or memory. The bit number is specified by 3-bit immediate data. The operationis

shown schematically below.

BitNo. 7 37y 0
I 1 1 I I
<EAd>* - Bytedatain register or memory o IN
c::|—>lnvertx
The values of the unspecified bits are not changed.
Instruction Formats and Number of Execution States
; Instruction code
Addressin
mode 9 Mnem. | Operands sthig;
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BIST |#xx:3,Rd 6 7 13 IMN"I rd 2
Register indirect | BIST |#xx:3,@Rd |7 ' D |0 rd| 0 6 i 7 11 IMM 0 8
Absolute address| BIST |#xx:3,@aa:8 | 7 i F abs 6 | 7 13 IMM 0 8

51

Register direct, register indirect, or absolute addressing.

2.2.13 BIXOR (bit invert exclusve OR) BIXOR

Operation Condition Code
C O [~ (<BitNo.>of <EAd>)] - C | H N Z V C

—|—|—|—=|—=|=|—]:

Assembly-L anguage For mat

Bl XOR #xx:3, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the inverse of the

specified bit.

Description

Thisinstruction exclusive-ORs the inverse of a specified bit with the carry flag and places the
result in the carry flag. The specified bit can be located in a general register or memory. The
bit number is specified by 3-bit immediate data. The operation is shown schematically below.

BitNo, 7 %37y 0
1 1 1

<EAd>* - Bytedatain register or memory Caa

OF-0c

The value of the specified bit is not changed.

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands ls\ltg'tgsf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct | BIXOR |#xx:3, Rd 11IMM rd 2

13 IMM"I 0 6

Absolute address| BIXOR |#xx:3,@aa:8 abs

7 i 5
T T | T
Register indirect | BIXOR |#xx:3,@Rd 7 i CcC |0rd!' O 7 i 5
| : | | |
7 | E 7 15 13 IMM 0 6

* Register direct, register indirect, or absolute addressing.

52

2.2.14 BLD (bit load) BLD

Operation Condition Code
(<Bit No.> of <EAd>) - C | H N Z V C

— | —[—=[—=—]—[—]

Assembly-L anguage For mat

BLD #xx:3, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Loaded with the specified bit.
Description

This instruction loads a specified bit into the carry flag. The specified bit can be located in a
general register or memory. The bit number is specified by 3-bit immediate data. The
operation is shown schematically below.

BitNo. 7 PX37 0
1 1 1

<EAd>* - Bytedatain register or memory Ly L

_>|:C

The value of the specified bit is not changed.

Instruction For mats and Number of Execution States

Instruction code

Addressing No. of
mode Mnem. | Operands states
1st byte | 2nd byte 3rd byte | 4th byte
1 I T
Register direct BLD |#xx:3, Rd 0 IM rd 2

0 MM 0 6

7 i 7 /
Register indirect | BLD #xx:3,@Rd 7 i Cc |0 rdi 0 7 7
Absolute address| BLD #xx:3,@aa:8 | 7 i E abs 7 7 Oi IMM 0 6

* Register direct, register indirect, or absolute addressing.

53

2.2.15 BNOT (bit NOT) BNOT

Operation Condition Code
- (<Bit No.> of <EAd>) | H N Z V C
- (<Bit No.> of <EAd>)

Assembly-L anguage For mat
BNOT #xx:3, <EAd>

Previous value remains unchanged.

I
H: Previous value remains unchanged.
BNOT' Rn, <EAd> N: Previous value remains unchanged.
- Z: Previous vaue remains unchanged.
Operand Size V: Previous value remains unchanged.
Byte C: Previous value remains unchanged.
Description

Thisinstruction inverts a specified bit in a general register or memory location. The bit
number is specified by 3-bit immediate data, or by the lower three-bits of a general register.
The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 —l 0

<EAd>* - Bytedatain register or memory o I

1
A

| Zlnver\tx

The bit is not tested before being inverted. The condition code flags are not altered.

* Register direct, register indirect, or absolute addressing.

BNOT (bit NOT) BNOT
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BNOT |#xx:3, Rd 7 i 1 Oi IMI\/j1 rd 2
Register indirect | BNOT |#xx:3,@Rd 7 % D 0% rdi 0 7 % 1 0% IMI\/EI 0 8
Absolute address| BNOT |#xx:3,@aa:8 | 7 i F abs 7 i 1 O% IMI\%I 0 8
Register direct BNOT |Rn, Rd 6 i 1 rn i rd 2
Register indirect | BNOT |Rn, @Rd 7 % D Oi rdi 0 6 % 1 m i 0 8
Absolute address| BNOT |Rn, @aa:8 7 i F abs 6 % 1 m % 0 8

55

2.2.16 BOR (bit inclusive OR) BOR

Operation Condition Code

C O(<Bit No.> of <EAd>) — C | H N Z V C

— | —[—=]—=—=]—=]—=]:

Assembly-L anguage For mat

BOR #xx:3, <EAd>
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: ORed with the specified bit.
Description

Thisinstruction ORs a specified bit with the carry flag and places the result in the carry flag.
The specified bit can be located in ageneral register or memory. The bit number is specified
by 3-bit immediate data. The operation is shown schematically below.

BitNo. 7 X3y
<EAd>* - Bytedatain register or memory

The value of the specified bit is not changed.

Instruction For mats and Number of Execution States

ﬁg%tssmg Mnem. | Operands Instruction code 'S\'tg;[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BOR #xx:3, Rd 7 i 4 0% IMM:1 rd 2
Register indirect | BOR |#xx:3,@Rd | 7 i C Oi rdi 0 7 i 4 Oi IMI\E/I 0 6
Absolute address| BOR #xx:3,@aa:8 | 7 i E abs 7 % 4 0% IMI\E/I 0 6

* Register direct, register indirect, or absolute addressing.

56

2.2.17 BSET (bit set) BSET

Operation Condition Code
1 - (<Bit No.> of <EAd>) | H N Z V C

Assembly-L anguage For mat
BSET #xx:3,<EAd>

BSET Rn,<EAd> Previous value remains unchanged.

I
H: Previous value remains unchanged.
: N: Previ a ' hanged.

Operand Size rev! ous value rema! ns unchang
Byte Z: Previous value remains unchanged.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

Thisinstruction sets a specified bit in the destination operand to 1. The bit number can be
specified by 3-bit immediate data, or by the lower three-bits of an 8-bit general register. The
destination operand can be located in a genera register or memory.

The specified bit is not tested before being cleared. The condition code flags are not altered.

#xx:3 or Rn —
Bit No. 7 i 0
I 1 1 I I
<EAd>* - Bytedatain register or memory Ly ;|, L
1

* Register direct, register indirect, or absolute addressing.

57

BSET (bit set) BSET
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BSET |#xx:3,Rd 7 i 0 Oi IMI\/jI rd 2
Register indirect | BSET |#xx:3,@Rd 7 i D Oi rdi 0 7 i 0 0% IMM:1 0 8
Absolute address| BSET |#xx:3,@aa:8 | 7 i F abs 7 i 0 0% IMM:1 0 8
Register direct BSET |Rn, Rd 6 i 0 rn i rd 2
Register indirect | BSET |Rn, @Rd 7 i D Oi rdi 0 6 i 0 m i 0 8
Absolute address| BSET |Rn, @aa:8 7 i F abs 6 i 0 m % 0 8

58

2.2.18 BSR (branch to subroutine)

Operation
PC - @-SP
PC+d:8 - PC

Assembly-L anguage For mat
BSR d:8

Operand Size

Condition Code

H

N Z

OSSNz I~

Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.
Previous value remains unchanged.

Description

Thisinstruction pushes the program counter (PC) value onto the stack, then adds a specified

displacement to the program counter value and branches to the resulting address. The program

counter value used is the address of the instruction following the BSR instruction.

The displacement is asigned 8-bit value which must be even. The possible branching rangeis

—126 to +128 bytes from the address of the BSR instruction.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands ,s\ltg'té)sf
1st byte | 2nd byte | 3rd byte | 4th byte
PC-relative BSR d:8 5 |5 disp 6

59

2.2.19 BST (bit store) BST
Operation Condition Code
C - (<Bit No.> of <EAd>) | H N Z V C

Assembly-L anguage For mat
BST #xx:3, <EAd>

Previous value remains unchanged.

I
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction stores the carry flag to a specified flag location in ageneral register or
memory. The bit number is specified by 3-bit immediate data. The operation is shown
schematically below.

Bit No.
<EAd>* - Bytedatain register or memory

7 #xx:3—¢

1 A

]7

I nstruction Formats and Number of Execution States

Instruction code

ﬁ:ic(ijréassmg Mnem. | Operands 'S\Itgl[eosf
1stbyte | 2nd byte 3rd byte | 4th byte
Register direct BST #xx:3, Rd 6 i 7 0% IMl\/i rd 2
Register indirect | BST #xx:3,@Rd | 7 i D Oi rd i 0 6 i 7 Oi IMM 0 8
Absolute address| BST #xx:3,@aa:8 | 7 i F abs 6 % 7 0% IMM 0 8

* Register direct, register indirect, or absolute addressing.

60

2.2.20 BTST (bit test) BTST

Operation Condition Code
- (<Bit No.> of <EAd>) - Z | H N Z V C

_ | — | — _ —) _] —

Assembly-L anguage For mat
BTST #xx:3, <EAd>

BTST Rn, <EAd> Previous value remains unchanged.

I

H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
Byte Z: Setto 1 when the specified bit is zero;

otherwise cleared to O.

V: Previous value remains unchanged.

C: Previous value remains unchanged.
Description

Thisinstruction tests a specified bit in a general register or memory location and sets or clears
the Zero flag accordingly. The bit number can be specified by 3-bit immediate data, or by the
lower three bits of an 8-bit general register. The operation is shown schematically below.

#xx:3 or Rn
Bit No. 7 —,L 0

<EAd>* - Bytedatain register or memory

The value of the specified bit is not altered.

* Register direct, register indirect, or absolute addressing.

61

BTST (bit test) BTST
Instruction Formats and Number of Execution States
Addressing Instruction code No. of
mode Mnem. | Operands states
1st byte 2nd byte | 3rd byte 4th byte
Register direct BTST |#xx:3,Rd 7 i 3 Oi IMM% rd 2
Register indirect | BTST |#xx:3,@Rd | 7 i C Oi rd i 0 7 i 3 Oi IMM: 0 6
Absolute address| BTST | #xx:3,@aa:8 | 7 i E abs 7 i 3 0% IMM: 0 6
Register direct BTST |Rn, Rd 6 i 3 rn i rd 2
Register indirect | BTST | Rn, @Rd 7 i C Oi rdi 0 6 i 3 m i 0 6
Absolute address| BTST | Rn, @aa:8 7 i E abs 6 % 3 n % 0 6

62

2.2.21 BXOR (bit exclusive OR) BXOR

Operation Condition Code
cQO (<B|t No.> of <EAd>) - C I H N Z V C

— | == —=|—=|=|—]:

Assembly-L anguage For mat
BXOR #xx:3, <EAd>
Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.

Z:. Previous value remains unchanged.

V: Previous value remains unchanged.

C: Exclusive-ORed with the specified bit.
Description

Thisinstruction exclusive-ORs a specified bit with the carry flag and places the result in the
carry flag. The specified bit can be located in ageneral register or memory. The bit number is
specified by 3-bit immediate data. The operation is shown schematically bel ow.

7 #xx:3w 0

Bit No.

<EAd>* - Bytedatain register or memory i

o[Jo[][]e

The value of the specified bit is not changed.

I nstruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands ls\ltg'tgsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct BXOR | #x:3, Rd 0 IMM rd 2

0 IMM 0 6

7 15
Register indirect | BXOR |#xx:3,@Rd |7 | C [0rd! 0 | 7
7 | E 7

Absolute address| BXOR | #xx:3,@aa:8 abs Oi IMM 0 6

* Register direct, register indirect, or absolute addressing.

63

2.2.22 (1) CMP (compare) (byte) CMP
Operation Condition Code
Rd — (EAS); set condition code

I H N Z V C
— |— [t | —]T] T |

Assembly-L anguage For mat

OW. B <EAs> Rd I: Previous value remains unchanged.

H: Set to 1 when thereis aborrow from bit
3; otherwise cleared to 0.
. Set to 1 when the result is negative;
otherwise cleared to 0.
Z. Setto1whentheresultiszero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs;
otherwise cleared to 0.

Operand Size
Byte N

C: Setto 1 when thereisaborrow from bit
7; otherwise cleared to O.

Description

Thisinstruction subtracts an 8-bit source register or immediate data from an 8-bit destination
register and sets the condition code flags according to the result. The destination register is not
altered.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands ls\ltg;[gsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Immediate CMPB | #xx8Rd | A ' rd | IMM 2
Register direct | CMP.B | Rs, Rd 1 1 C|rs | rd 2
| |

2.2.22 (2) CMP (compare) (word)

CMP

Operation
Rd —Rs; set condition code

Condition Code

Assembly-L anguage For mat
CVP. W Rs, Rd

Operand Size
Word

| H N Z V C
— |— | =] T T]

Previous value remains unchanged.

. Set to 1 when thereis a borrow from bit

11; otherwise cleared to O.

. Set to 1 when the result is negative;

otherwise cleared to O.

: Set to 1 when theresult is zero;

otherwise cleared to 0.

Set to 1 when an overflow occurs,
otherwise cleared to 0.

Set to 1 when thereis a borrow from bit
15; otherwise cleared to O.

Description

This instruction subtracts a source register from a destination register and sets the condition
code flags according to the result. The destination register is not altered.

Instruction For mats and Number of Execution States

: Instruction code
Addressin
mode 9 Mnem. Operands 'S\ltg:[eosf
1stbyte | 2nd byte | 3rd byte | 4th byte
] T] T
Register direct | CMPW | Rs, Rd 1 D 03 rs 103 rd 2
L L

65

2.2.23 DAA (decimal adjust add) DAA

Operation Condition Code
Rd (decimal adjust) - Rd | H N Z V C

ol il Bl el 6 6 L

Assembly-L anguage For mat

DAA Rd
I: Previous value remains unchanged.

Operand Size H: Unpredictable.
Byte N: Set to 1 when the adjusted result is
negative; otherwise cleared to O.
Z: Setto 1 when the adjusted result is zero;
otherwise cleared to 0.
Unpredictable.
C: Setto1whenthereisacarry from bit 7;
otherwise left unchanged.

<

Description

When the result of an addition operation performed by the ADD.B or ADDX instruction on 4-
bit BCD datais contained in an 8-bit general register and the carry and half-carry flags, the
DAA instruction adjusts the result by adding H'00, H'06, H'60, or H'66 to the general register
according to the table below.

Valid results are not assured if thisinstruction is executed under conditions other than those
stated above.

Status before adjustment Value Resulting
Cflag | Uppernibble | Hflag | Lowernibble | added | Cflag
0 0-9 0 0-9 H'00 0
0 0_8 0 A-F H'06 0
0 0-9 1 0-3 H'06 0
0 A_E 0 0-9 H'60 1
0 O _F 0 A-F H'66 1
0 A—F 1 0-3 H'66 1
1 O -2 0 O — 9 HIGO 1
1 0_2 0 A-F H'66 1
1 0-3 1 0-3 H'66 1

66

DAA (decimal adjust add) DAA

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode "9 Mnem. | Operands ,s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct DAA Rd 0 i F 0 i rd 2

67

2.2.24 DAS (decimal adjust subtract) DAS
Operation Condition Code
Rd (decimal adjust) - Rd | H N Z V C

Assembly-L anguage For mat
DAS Rd

Operand Size
Byte

0 <

——*—ii*—

Previous value remains unchanged.
Unpredictable.

Set to 1 when the adjusted result is
negative; otherwise cleared to 0.

Set to 1 when the adjusted result is zero;
otherwise cleared to 0.

Unpredictable.

Previous value remains unchanged.

Description

When the result of a subtraction operation performed by the SUB.B, SUBX, or NEG
instruction on 4-bit BCD datais contained in an 8-bit general register and the carry and half-
carry flags, the DAA instruction adjusts the result by adding H'00, H'FA, H'AO, or H'9A to the

general register according to the table below.

Valid results are not assured if thisinstruction is executed under conditions other than those

stated above.
Status before adjustment Value Resulting
Cflag | Uppernibble | Hflag | Lowernibble = added | Cflag
0 0-9 0 0-9 H'00 0
0 0-8 1 6—F H'FA 0
1 7-F 0 0-9 H'AO 1
1 6—F 1 6—F H'9A 1

68

DAS (decimal adjust subtract) DAS
Instruction Formats and Number of Execution States
: Instruction code
Addressin
mode g Mnem. | Operands Sth;[gsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct DAS Rd 1 i F 2

0 | rd

69

2.2.25 DEC (decrement)

DEC

Operation
Rd-1 - Rd

Assembly-L anguage For mat

DEC Rd

Operand Size
Byte

Condition Code
[H

N

Z

I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Setto 1 when the result is negative;

otherwise cleared to 0.

Z: Setto1whentheresultis zero;

otherwise cleared to 0.
V: Set to 1 when an overflow occurs (the

previous value in Rd was H'80);

otherwise cleared to 0.
C: Previous value remains unchanged.

Description

This instruction decrements an 8-bit general register and places the result in the general

register.

I nstruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands ls\ltg'tgsf
1st byte 2nd byte | 3rd byte | 4th byte
Register direct DEC Rd 1 i A 0 'rd 2

70

2.2.26 DIVXU (divide extend as unsigned) DIVXU

Operation Condition Code

Rd+Rs - Rd | H N Z V C

Assembly-L anguage For mat

D VXU Rs, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the divisor is negative;
otherwise cleared to 0.
Z: Cleared to O when divisor # 0;
otherwise not guaranteed.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction divides a 16-bit general register by an 8-bit general register and places the
result in the 16-bit general register. The quotient is placed in the lower byte. The remainder is
placed in the upper byte. The operation is shown schematically below.

Rd
—
Rd Rs (RdH) (RdL)
Dividend - Divisor - Remainder| Quotient
16 bits 8 bits 8 hits 8 bits

Valid results (Rd, N, Z) are not assured if division by zero is attempted or an overflow occurs.
Division by zero isindicated in the Zero flag. Overflow can be avoided by the coding shown
on the next page.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltg'tgsf
1st byte | 2nd byte 3rd byte | 4th byte
| T [l
Register direct DIVXU | Rs, Rd 5 i 1 rs 303 rd 14

71

DIV XU (divide extend as unsigned) DIVXU

Note: DIVXU Overflow

Since the DIV XU instruction performs 16-bit = 8-bit - 8-bit division, an overflow will occur
if the divisor byteisequal to or less than the upper byte of the dividend. For example, H'FFFF
+ H'01 - H'FFFF causes an overflow. (The quotient has more than 8 bits.)

Overflows can be avoided by using a subprogram like the following. A work register is
required.

To perform
Dl VXU ROL, R1: ROL Divisor
MOV. B #H 00, R2H R1 Dividend
CWP. B ROL, R1H ¢
BCC L1 R1| Remainder Quotient (*1)
DI VXU ROL, R1 (*1) V
MOV. B R1L, R2L R1 Dividend
BRA L2 R2 H'00 Dividend(H| (*2)
L1 MOV.B RIH ReL (*2) |
DI VXU ROL, Rz R1 | Partial remai| Dividend (Lov
MOV. B R2H, RILH (*3)
DI VXU ROL, Rl R2 | Partial remai| Quotient(H g (*3)
M. B R2L, R2H >
MOV. B R1L, R2L X -
R1 Remai nder [Quotient (Lo

L2 RTS (*4)

R2 Quotient (*4)

72

2.2.27 EEPMOV (move data to EEPROM) EEPM OV

Operation Condition Code
if R4L # O then | H N Z V C
repeat @R5+ - @R6+ IR
RAL —1 - R4AL
until R4L =0
el se next; Previous value remains unchanged.

I

H: Previous value remains unchanged.
Assembly-L anguage For mat N: Previous value remains unchanged.
EEPMOV Z: Previous value remains unchanged.

V: Previous value remains unchanged.
Operand Size C: Previous vaue remains unchanged.
Description

This instruction moves a block of data from the memory location specified in general register
R5 to the memory location specified in general register R6. General register R4L givesthe
byte length of the block.

Dataare transferred a byte at atime. After each byte transfer, R5 and R6 are incremented and
RAL is decremented. When R4L reaches 0, the transfer ends and the next instruction is
executed. No interrupt requests are accepted during the data transfer.

At the end of thisinstruction, R4L contains H'00. R5 and R6 contain the last transfer address
+1.

The memory locations specified by general registers R5 and R6 are read before the block
transfer is performed.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

— EEPMOV 7 B |5 C | 5 19 |8 F|o+n

* nistheinitial valuein R4L (0 < n < 255). Although n bytes of data are transferred, memory
is accessed 2(n+1) times, requiring 4(n+1) states.

73

2.2.28 INC (increment) INC
Operation Condition Code
Rd+1 - Rd | H N Z V C

Assembly-L anguage For mat

I NC Rd

Operand Size
Byte

Previous value remains unchanged.

. Previous value remains unchanged.
. Set to 1 when the result is negative;
otherwise cleared to O.

. Setto 1 when the result is zero;
otherwise cleared to O.

Set to 1 when an overflow occurs (the

previous value in Rd was H'7F);
otherwise cleared to O.

Previous value remains unchanged.

Description

Thisinstruction increments an 8-bit general register and places the result in the general

register.

Instruction Formats and Number of Execution States

Instruction code

Addressing No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct | INC Rd 0 i Al 0 rd 2

74

2.2.29 JMP (jump)

JMP

Operation
(EAd) - PC

Assembly-L anguage For mat

Condition Code

H

N Z

JMP <EA>
. I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
T N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.

Description

Thisinstruction branches unconditionally to a specified destination address.
The destination address must be even.

Instruction Formats and Number of Execution States

Instruction code

gotljc(jjreessmg Mnem. Operands ,s\ltg:rgsf
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | JIMP @Rn 5 i 9 Oirni 0 4
Absolute address| IMP @aa:16 5 i Al O i 0 abs. 6
Memory indirect | JIMP @@aa:8 5 i B ab‘s. 8

75

2.2.30 JSR (Jump to subroutine) JSR

Operation Condition Code
PC - @SSP | H N Z V C
(EAd) - PC

Assembly-L anguage For mat

JSR <EA> I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
— Z:. Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

This instruction pushes the program counter onto the stack, then branches to a specified
destination address. The program counter value pushed on the stack is the address of the
instruction following the JSR instruction. The destination address must be even.

I nstruction Formats and Number of Execution States

Qizrsssmg Mnem. | Operands Instruction code 'S\ltg'tg;
1stbyte | 2nd byte | 3rd byte | 4th byte
Register indirect | JSR @Rn 5 i D O% m i 0 6
Absolute address | JSR @aa:16 5 i E| O i 0 abs. 8
Memory indirect | JSR @@aa8 | 5 £ abs. 8

76

2.2.31 LDC (load to control register) LDC

Operation Condition Code
(EAs) - CCR | H N Z V C

I I ! 11t o 7

Assembly-L anguage For mat
LDC <EAs>, CCR
L oaded from the source operand.

I:
Operand Size H: Loaded from the source operand.
Byte N: Loaded from the source operand.
Z: Loaded from the source operand.
V: Loaded from the source operand.
C: Loaded from the source operand.
Description

Thisinstruction loads the source operand contents into the condition code register (CCR). Bits
4 and 6 are loaded as well asthe flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts are
deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1stbyte | 2nd byte 3rd byte 4th byte
[
Immediate LDC #xx:8,CCR| O i 7 IMM 2
| [l
Register direct LDC Rs, CCR 0 3 0 i rs 2

77

2.2.32 (1) MOV (movedata) (byte) MOV

Operation Condition Code
Rs ~ Rd | H N Z V C
— | ===t]t |]0O|—

Assembly-L anguage For mat
MOV. B Rs, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Byte otherwise cleared to 0.

Z: Setto1whenthedatavalueis zero;
otherwise cleared to 0.

Cleared to 0.

Previous value remains unchanged.

0 <

Description
This instruction moves one byte of data from a source register to a destination register and sets
condition code flags according to the data value.

Instruction For mats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands [s\ltg't:slj
1stbyte | 2nd byte | 3rd byte | 4th byte
Register direct MOV.B |Rs, Rd 0 i C |rs i rd 2

78

2.2.32 (2) MOV (move data) (word)

Operation
Rs - Rd

Assembly-L anguage For mat

Condition Code

I H N Z V C
—]|1t1 11]0

Previous value remains unchanged.

MOV. W Rs, Rd :

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Word otherwise cleared to O.

Z: Setto 1 when the data value is zero;

otherwise cleared to O.

V: Cleared to 0.

C: Previous value remains unchanged.
Description

Thisinstruction moves one word of data from a source register to a destination register and

sets condition code flags according to the data value.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands No. of
states
1st byte | 2nd byte 3rd byte | 4th byte
| | [
Register direct |MOV.W | Rs, Rd 0 /D [0rs 0ird 2

79

2.2.32 (3) MOV (move data) (byte) MOV

Operation Condition Code
(EAs) - Rd | H N Z V C
—|—]—[—]t]t |O]|—

Assembly-L anguage For mat

MV. B <EAs>, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Byte otherwise cleared to 0.

Z: Setto 1 whenthe datavalueis zero;
otherwise cleared to 0.
Cleared to 0.
Previous value remains unchanged.

0 <

Description

Thisinstruction moves one byte of data from a source operand to a destination register and
sets condition code flags according to the data value.

The MOV.B @R7+, Rd instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands ,s\ltg:rgsf
1st byte | 2nd byte | 3rd byte | 4th byte
Immediate MOV.B |#xx:8, Rd F ird IMM 2
Register indirect | MOV.B | @RS, Rd 6 |8 Oirsi rd 4
Register indirect i b
with displacement |MOV.B | @(d:16,Rs),Rd | 6 | E Oirsi rd disp. 6
Register indirect i Do
with post-increment| MOV.B | @Rs+, Rd 6 ' C Oirsi rd 6
Absolute address | MOV.B | @aa:8, Rd 2 i rd abs 4
} \

Absolute address |MOV.B | @aa:16, Rd 6 A 0O ' rd abs. 6

80

2.2.32 (4) MOV (move data) (word) MOV

Operation Condition Code
(EAs) - Rd | H N Zz vV C
—|—]—=[—]t |t |O]|—

Assembly-L anguage For mat

MOV. W <EAs>, Rd I: Previous value remains unchanged.

H: Previous value remains unchanged.

Operand Size N: Set to 1 when the datavalue is negative;
Word otherwise cleared to 0.
Z: Setto1whenthedatavalueis zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction moves one word of data from a source operand to a destination register and
sets condition code flags according to the data value.

If the source operand isin memory, it must be located at an even address.

MOV.W @R7+, Rd isidentical in machine language to POPW Rd.

Note that the LSIsin the H8/300L Series contain on-chip peripheral modules for which access
in word sizeis not possible. Details are given in the applicable hardware manual.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands Sth'tgsf
1stbyte | 2nd byte | 3rd byte | 4th byte

Immediate MOV.W | #xx:16, Rd 7 19,0 0 IMM 4
Register indirect MOV.W | @RS, Rd 6 | 9 Oirs ioird 4
Register indirect i j i i
with displacement |MOV.W | @(d:16,Rs),Rd| 6 | F 03 rs'0'rd disp. 6
Register indirect i | i i
with post-increment| MOV.W | @Rs+, Rd 6 | D 03 rs !0 rd 6
Absolute address | MOV.W | @aa:16, Rd 6 i B| O 303 rd abs. 6

81

2.2.32 (5) MOV (move data) (byte) MOV

Operation Condition Code
Rs — (EAd) | H N Z V C
—[—]—=]—|t |t [O]|—

Assembly-L anguage For mat
MOV. B Rs, <EAd> I: Previous value remains unchanged.

H: Previous value remains unchanged.
Operand Size N: Set to 1 when the data value is negative;
Byte otherwise cleared to O.

Z: Setto 1 whenthe datavalueis zero;
otherwise cleared to 0.

Cleared to O.

Previous value remains unchanged.

0 <

Description

Thisinstruction moves one byte of data from a source register to memory and sets condition
code flags according to the data value.

The MOV.B Rs, @—R7 instruction should never be used, because it leaves an odd value in the
stack pointer. See section 3.2.3 for details.

The instruction MOV.B RnH, @-Rn or MOV.B RnL, @—Rn decrements register Rn, then
moves the upper or lower byte of the decremented result to memory.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands sth:[eosf
1stbyte | 2nd byte | 3rd byte | 4th byte

Register indirect | MOV.B |Rs, @Rd 6 |8 1 rd! rs 4
Register indirect Rs, | L
with displacement | MOV.B | @(d:16,Rd) 6 |E |1ird rs disp. 6
Register indirect i | i
with pre-decrement | MOV.B |Rs, @-Rd 6 | C |1ird rs 6
Absolute address | MOV.B |Rs,@aa:8 3 i rs abs 4
Absolute address | MOV.B | Rs,@aa:16 6 A |8 !rs abs. 6

82

2.2.32 (6) MOV (move data) (word) MOV

Operation Condition Code

Rs — (EAd) | H N Z V C
—|—|—[—=]t]t]|]O[—

Assembly-L anguage For mat
MOV. W Rs, <EAd>

Operand Size
Word

0 <

Previous value remains unchanged.

. Previous value remains unchanged.
. Set to 1 when the datavalue is negative;

otherwise cleared to 0.

Set to 1 when the datavalueis zero;
otherwise cleared to 0.

Cleared to 0.

Previous value remains unchanged.

Description

This instruction moves one word of datafrom a general register to memory and sets condition

code flags according to the data value.

The destination address in memory must be even.
MOV.W Rs, @-R7 isidentical in machine language to PUSH.W Rs.
Theinstruction MOV.W Rn, @—Rn decrements register Rn by 2, then moves the decremented

result to memory.

Note that the LSIs in the H8/300L Series contain on-chip peripheral modules for which access
inword sizeis not possible. Details are given in the applicable hardware manual.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. Operands Sth'tgsf
1stbyte | 2nd byte | 3rd byte 4th byte

Register indirect MOV.W | Rs, @Rd 6 i 9 13 rd 303 rs 4
Register indirect Rs, | R
with displacement |MOV.W | @(d:16,Rd) | 6 | F [1.rdOjrs disp. 6
Register indirect | .
with pre-decrement | MOV.W | Rs, @-Rd 6 ' D 13 rd'0'rs 6
Absolute address | MOV.W | Rs, @aa:16 6 i B |8 303 rs abs. 6

83

2.2.33 MUL XU (multiply extend as unsigned) MUL XU
Operation Condition Code

Rd xRs - Rd I H N Z V C

Assembly-L anguage For mat

MULXU Rs, Rd I: Previous value remains unchanged.
H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z:. Previous value remains unchanged.
Byte V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction performs 8-bit x 8-bit - 16-bit multiplication. It multiplies a destination
register by a source register and places the result in the destination register. The source
register is an 8-bit register. The destination register is a 16-bit register containing the data to
be multiplied in the lower byte. (The upper byteisignored). Theresult is placed in both bytes
of the destination register. The operation is shown schematically below.

Rd Rs Rd
| Don't-care | Multiplicandl X | Multiplier | - | Product
8 bits 8 bits 16 bits

The multiplier can occupy either the upper or lower byte of the source register.

I nstruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte | 2nd byte 3rd byte 4th byte

] T
Register direct | MULXU | Rs, Rd 5 i 0 |rs 0rd 14

2.2.34 NEG (negate)

Operation
0-Rd - Rd

Condition Code

Assembly-L anguage For mat
NEG Rd

Operand Size
Byte

| H N Z V C

— | ¢

Previous value remains unchanged.

. Set to 1 when thereis a borrow from bit

3; otherwise cleared to O.

. Set to 1 when the result is negative;

otherwise cleared to O.

: Setto 1 when theresult is zero;

otherwise cleared to O.

Set to 1 when an overflow occurs (the
previous contents of the destination
register was H'80); otherwise cleared to
0.

Set to 1 when there is a borrow from bit
7 (the previous contents of the
destination register was not H'00);
otherwise cleared to O.

Description

Thisinstruction replaces the contents of an 8-bit general register with its two's complement
(subtracts the register contents from H'00).
If the original contents of the destination register was H'80, the register value remains H'80

and the overflow flag is set.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1stbyte | 2nd byte 3rd byte 4th byte

Register direct NEG Rd 1 i 7 |8 | 2

85

2.2.35 NOP (no operation) NOP
Operation Condition Code
PC+2 - PC | H N Z V C

Assembly-L anguage For mat

NCP I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
o Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction only increments the program counter, causing the next instruction to be
executed. Theinternal state of the CPU does not change.

I nstruction Formats and Number of Execution States

Addressing
mode

Mnem.

Operands

Instruction code

3rd byte

4th byte

No. of
states

NOP

86

2.2.36 NOT (NOT = logical complement) NOT
Operation Condition Code
= Rd ~ Rd | H N Z VvV C
—|—|—=[—=]t]t |]O|—
Assembly-L anguage For mat
NOT Rd
I: Previous vaue remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to O.
Z: Setto 1 whentheresultiszero;
otherwise cleared to O.
V: Cleared to 0.
C: Previous vaue remains unchanged.
Description

This instruction replaces the contents of an 8-bit general register with its one's complement

(subtracts the register contents from H'FF).

I nstruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. Operands states
1st byte 2nd byte | 3rd byte 4th byte

Register direct NOT Rd 1 7 0 ! rd 2

87

2.2.37 OR (inclusive OR logical) OR
Operation Condition Code
— | —=]—=] =]t |t [O]|—

Assembly-L anguage For mat

OR <EAs>, Rd

Operand Size
Byte

Previous value remains unchanged.

. Previous value remains unchanged.
. Set to 1 when the result is negative;

otherwise cleared to O.

: Set to 1 when theresult is zero;

otherwise cleared to O.

: Cleared to 0.
. Previous value remains unchanged.

Description

Thisinstruction ORs the source operand with the contents of an 8-bit general register and
places the result in the general register.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte
[
Immediate OR #xx:8,Rd | C 3 rd IMM
[|
Register direct | OR Rs, Rd 1 14 rs | rd

88

2.2.38 ORC (inclusive OR control register)

ORC

Operation

CCRU#IMM - CCR

Assembly-L anguage For mat

ORC #xx:8, CCR

Condition Code

I H N Z V C
O R I

ORed with bit 7 of the immediate data.

I

H: ORed with bit 5 of the immediate data.
Operand Size N: ORed with bit 3 of the immediate data.
Byte Z: ORed with bit 2 of the immediate data.

V: ORed with bit 1 of the immediate data.

C: ORed with bit O of the immediate data.
Description

Thisinstruction ORs the condition code register (CCR) with immediate data and places the
result in the condition code register. Bits6 and 4 are ORed as well as the flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts are
deferred until after the next instruction.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of
mode Mnem. Operands states
1st byte 2nd byte 3rd byte 4th byte
Immediate ORC #xx:8,CCR 0 | 4 IMM 2

89

2.2.39 POP (pop data) POP

Operation Condition Code
@SP+ ~ Rn | H N Z V C
— ===t |t [O0]|—
Assembly-L anguage For mat
PCP Rn
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Word N: Set to 1 when the data value is negative;
otherwise cleared to 0.
Z: Setto1whenthe datavalueis zero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction pops data from the stack to a 16-bit general register and sets condition code
flags according to the data value.
POPW Rnisidentical in machine language to MOV.W @SP+, Rn.

Instruction For mats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands L\l;(gig
1st byte 2nd byte | 3rd byte | 4th byte
— POP Rd 6 | D| 7 0m 6

90

2.2.40 PUSH (push data)

PUSH

Operation
Rn - @-SP

Assembly-L anguage For mat
PUSH Rn

Condition Code

| H N Z V C
—|—=|—=|—=]t|:]o|—

I: Previous value remains unchanged.
H: Previous value remains unchanged.

Operand Size
Word N: Set to 1 when the data value is negative;
otherwise cleared to O.
Z: Setto 1 when the datavalueis zero;
otherwise cleared to O.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

Thisinstruction pushes data from a 16-bit general register onto the stack and sets condition

code flags according to the data value.

PUSH.W Rnisidentical in machine language to MOV.W Rn, @-SP.

Instruction Formats and Number of Execution States

- Instruction code
Addressin
mode g Mnem. | Operands ’S\ltgl{gsf
1st byte | 2nd byte 3rd byte | 4th byte
— PUSH Rs 6 D | F 0m 6

91

2241 ROTL (rotate left) ROTL

Operation Condition Code
Rd (rotated left) — Rd

I H N Z V C
— | —|—| =t [t [O] 2
Assembly-L anguage For mat
ROTL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z. Setto1whentheresult iszero;
otherwise cleared to O.
V: Cleared to 0.
C: Receivesthe previousvauein bit 7.
Description

Thisinstruction rotates an 8-bit general register one bit to the left. The most significant bit is
rotated to the least significant bit, and also copied to the carry flag.
The operation is shown schematically below.

MSB LSB
I:IE—— =—
C Bit 7 Bit O
Instruction Formats and Number of Execution States
: Instruction code
Addressin
mode J Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | ROTL Rd 11 2] 8 ! 2

92

2.2.42 ROTR (rotateright) ROTR

Operation Condition Code
Rd (rotated right) - Rd | H N Z V C
— ===t]t [O]
Assembly-L anguage For mat
ROTR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Setto 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresultiszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receivesthe previousvaluein bit O.
Description

This instruction rotates an 8-bit general register one bit to the right. The least significant bit is
rotated to the most significant bit, and also copied to the carry flag.
The operation is shown schematically below.

MSB LSB
L]

Bit 7 Bit0o C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands [s\ltgig;
1st byte 2nd byte | 3rd byte | 4th byte
] T
Register direct ROTR Rd 1 i 3|8 ' 2

93

2.2.43 ROTXL (rotate with extend carry left) ROTXL

Operation Condition Code
Rd (rotated with carry left) - Rd I H N Z V C
— | —]|—=[—=]t]t]|]O]
Assembly-L anguage For mat
ROTXL Rd
I: Previous vaue remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresultiszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receivesthe previousvaluein bit 7.
Description

This instruction rotates an 8-bit general register one bit to the left through the carry flag. The
carry flag isrotated into the least significant bit of the register. The most significant bit rotates
into the carry flag.

The operation is shown schematically below.

MSB LSB

]| -

C Bit 7 Bit 0

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ,s\ltgié)sf
1st byte 2nd byte | 3rd byte | 4th byte
Register direct | ROTXL Rd 1120 ! rd 2

94

2.2.44 ROTXR (rotatewith extend carry right) ROTXR
Operation Condition Code
Rd (rotated with carry right) -» Rd

| H N Z V C
— | —]|—=[—=]t]t]|]O]
Assembly-L anguage For mat
ROTXR Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresultiszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receivesthe previousvauein bit O.
Description

Thisinstruction rotates an 8-bit general register one bit to the right through the carry flag. The
least significant bit is rotated into the carry flag. The carry flag rotates into the most
significant bit.

The operation is shown schematically below.

| MSB LSB
—| |
C

Bit 7 Bit O

I nstruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

Register direct | ROTXR Rd 1 i 3|0 ! rd 2

95

2.2.45 RTE (return from exception)

RTE

Operation Condition Code
@SP+ - CCR | H N Z V C
SP+ . PC
@ o o B o
Assembly-L anguage For mat
RTE I: Restored from stack.
H: Restored from stack.
Operand Size N: Restored from stack.
— Z: Restored from stack.
V: Restored from stack.
C: Restored from stack.
Description

Thisinstruction returns from an exception-handling routine. It pops the condition code
register (CCR) and program counter (PC) from the stack. Program execution continues from
the address restored to the program counter.
The CCR and PC contents at the time of execution of thisinstruction are lost.

The CCRisone bytein size, but it is popped from the stack as aword (in which the lower 8
bitsareignored). Thisinstruction therefore adds 4 to the value of the stack pointer (R7).

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands _Dl’tg't:g
1st byte | 2nd byte 3rd byte | 4th byte
— RTE 5167 |0 10

96

2.2.46 RTS (return from subroutine) RTS
Operation Condition Code
@SP+ ~ PC | H N Z C

Assembly-L anguage For mat
RTS

Previous value remains unchanged.

I:
Operand Size H: Previous value remains unchanged.
_ N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous vaue remains unchanged.
Description

Thisinstruction returns from a subroutine. It pops the program counter (PC) from the stack.

Program execution continues from the address restored to the program counter.
The PC contents at the time of execution of thisinstruction are lost.

Instruction Formats and Number of Execution States

Addressing
mode Mnem. | Operands

Instruction code

1st byte

2nd byte

3rd byte

4th byte

No. of
states

— RTS

5 | 4 7 10

97

2.2.47 SHAL (shift arithmetic |eft) SHAL

Operation Condition Code
Rd (shifted arithmetic left) - Rd | H N Z V C

— |—]—]—]t |||

Assembly-L anguage For mat

SHAL Rd
I: Previous value remains unchanged.

H: Previous value remains unchanged.

N: Set to 1 when the result is negative;
otherwise cleared to 0.

Z:. Setto 1 when theresultiszero;
otherwise cleared to 0.

V: Set to 1 when an overflow occurs;
otherwise cleared to 0.

C: Receivesthe previousvauein bit 7.

Operand Size
Byte

Description

Thisinstruction shifts an 8-bit general register one bit to the left. The most significant bit
shiftsinto the carry flag, and the least significant bit is cleared to 0.

The operation is shown schematically below.

=

MSB LSB
[-
C Bit 7 Bit 0

The SHAL instruction isidentical to the SHLL instruction except for its effect on the overflow
(V) flag.

Instruction Formats and Number of Execution States

Addressing Instruction code No. of

mode Mnem. | Operands states

1st byte | 2nd byte 3rd byte | 4th byte

Register direct | SHAL Rd 1108 " rd 2

98

2.2.48 SHAR (shift arithmetic right)

SHAR

Operation

Rd (shifted arithmetic right) - Rd

Condition Code

H

N

Assembly-L anguage For mat

SHAR Rd
I: Previous vaue remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative,
otherwise cleared to O.
Z: Setto 1 whentheresult is zero;
otherwise cleared to O.
V: Cleared to 0.
C: Receivesthe previousvauein bit 0.
Description

Thisinstruction shifts an 8-bit general register one bit to the right. The most significant bit

remains unchanged. The sign of the result does not change. The least significant bit shiftsinto

the carry flag.

The operation is shown schematically below.

MSB

LSB

£]

L

Bit 7

Bit 0

—{ |

Cc

Instruction Formats and Number of Execution States

Instruction code

Addressin
mode g Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHAR Rd 1.1 8 ' rd 2

99

2.2.49 SHLL (shift logical left)

Operation

Rd (shifted logical left) — Rd

Assembly-L anguage For mat

Condition Code

H

N

SHLL Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z. Setto 1 whentheresult iszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Receivesthe previousvauein bit 0.
Description

This instruction shifts an 8-bit general register one bit to the left. The least significant bit is

cleared to 0. The most significant bit shiftsinto the carry flag.

The operation is shown schematically below.

=

MSB

LSB

[=— 0

|;|E—

Bit 7

The SHLL instruction isidentical to the SHAL instruction except for its effect on the overflow

(V) flag.

Bit 0

Instruction Formats and Number of Execution States

Instruction code

Addressin

mode g Mnem. | Operands ls\ltgigsf
1st byte 2nd byte | 3rd byte | 4th byte

Register direct | SHLL Rd 1100 | 2

100

2.2.50 SHLR (shift logical right) SHLR

Operation Condition Code
Rd (shifted logical right) - Rd

I H N Z V C
— | —[—=]—=]t]t [O]¢
Assembly-L anguage For mat
SHLR Rd
I: Previous vaue remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative,
otherwise cleared to O.
Z: Setto 1 whentheresult is zero;
otherwise cleared to O.
V: Cleared to 0.
C: Receivesthe previousvauein bit O.
Description

Thisinstruction shifts an 8-bit general register one bit to the right. The most significant bit is
cleared to 0. Theleast significant bit shiftsinto the carry flag.
The operation is shown schematically below.

£]
MSB LSB
0 —t —EII:I
Bit 7 Bit0 C

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sthieosf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SHLR Rd 11710 ' rd 2

101

2.2.51 SLEEP (sleep)

Operation

Program execution state — power-

down mode

Assembly-L anguage For mat

Condition Code
I H N Z V C

SLEEP I: Previous value remains unchanged.
H: Previous value remains unchanged.
Operand Size N: Previous value remains unchanged.
_ Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

When the SLEEP instruction is executed, the CPU enters a power-down mode. Itsinternal
state remains unchanged, but the CPU stops executing instructions and waits for an exception-
handling request (interrupt or reset). When it receives an exception-handling request, the CPU
exits the power-down mode and begins the exception-handling sequence.

If the interrupt mask (1) bit is set to 1, the power-down mode can be released only by a
nonmaskable interrupt (NM1) or reset.
For information about the power-down modes, see the applicable hardware manual.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands sth:[eosf
1st byte | 2nd byte 3rd byte | 4th byte
SLEEP 0 1/8 0 2

102

2.2.52 STC (storefrom control register) STC

Operation Condition Code

Assembly-L anguage For mat

STC CCR, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Previous value remains unchanged.
Z: Previous value remains unchanged.
V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction copies the condition code register (CCR) to a specified general register. Bits6
and 4 are copied as well asthe flag bits.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands Sth;[gsf
1st byte | 2nd byte 3rd byte | 4th byte
Register direct STC CCR, Rd 01 2]0 rd 2

103

2.2.53 (1) SUB (subtract binary) (byte)

Operation
Rd-Rs - Rd

Assembly-L anguage For mat
SUB. B Rs, Rd

Operand Size
Byte

Condition Code

I H N Z

!

I: Previous value remains unchanged.

. Set to 1 when there is aborrow from
bit 3; otherwise cleared to O.

. Set to 1 when the result is negative;

otherwise cleared to 0.

Set to 1 when the result is zero;

otherwise cleared to 0.

Set to 1 when an overflow occurs,

otherwise cleared to 0.

Set to 1 when there is a borrow from

bit 7; otherwise cleared to O.

Description

This instruction subtracts an 8-bit source register from an 8-bit destination register and places

the result in the destination register.

Only register direct addressing is supported. To subtract immediate data it is necessary to use
the SUBX.B instruction, first setting the zero flag to 1 and clearing the carry flag to O.

The following codings can aso be used to subtract nonzero immediate data.

ORC #H 05, CCR
SUBX #(Imm— 1), Rd

D)

(2) ADD

#0O0—1mm), Rd
XORC #H 01, CCR

Instruction For mats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands ’s\ltg't:slj
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUB.B Rs, Rd 1 i 8 | rs | 2

104

2.2.53 (2) SUB (subtract binary) (word) SUB

Operation Condition Code

Rd - Rs - Rd | H N Z V C

— |—]t | =] T][

Assembly-L anguage For mat

SUB. WRs, Rd
I: Previous value remains unchanged.

Operand Size H: Set to 1 when thereisaborrow from
Word bit 11; otherwise cleared to 0.
N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z. Setto1whentheresult iszero;
otherwise cleared to 0.
V: Set to 1 when an overflow occurs;
otherwise cleared to 0.
C:. Setto 1 when thereisaborrow from
bit 15; otherwise cleared to O.

Description
Thisinstruction subtracts a 16-bit source register from a 16-bit destination register and places
the result in the destination register.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands gltg:[g
1st byte | 2nd byte 3rd byte | 4th byte
Register direct | SUB.W | Rs, Rd 119 Oirs 0 rd 2

105

2.2.54 SUBS (subtract with sign extension) SUBS
Operation Condition Code

Rd-1 - Rd | H N Z V C
Rd-2 - Rd

Assembly-L anguage For mat

SUBS #1, Rd I: Previous value remains unchanged.
SUBS #2. Rd H: Previous value remains unchanged.
N: Previous value remains unchanged.
Operand Size Z: Previous value remains unchanged.
Word V: Previous value remains unchanged.
C: Previous value remains unchanged.
Description

Thisinstruction subtracts the immediate value 1 or 2 from word datain a general register.
Unlike the SUB instruction, it does not affect the condition code flags.
The SUBS instruction does not permit byte operands.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands [s\lt(e)li(ac)s]c
1st byte | 2nd byte 3rd byte | 4th byte
] 1
Register direct | SUBS #1, Rd 1 i B| O 0rd 2
w BN
Register direct SUBS #2, Rd 1 B| 8 '0r 2

106

2.2.55 SUBX (subtract with extend carry) SUBX
Operation Condition Code
Rd-(EAs)-C - Rd | H N Z V C

Assembly-L anguage For mat
SUBX <EAs>, Rd

Operand Size
Byte

—| I T]e !

— | ¢

I: Previous value remains unchanged.

Set to 1if thereisaborrow from bit 3;
otherwise cleared to O.

Set to 1 when the result is negative,
otherwise cleared to O.

Previous value remains unchanged when
the result is zero; otherwise cleared to 0.
Set to 1 when an overflow occurs;
otherwise cleared to O.

Set to 1 when there is aborrow from

bit 7; otherwise cleared to O.

Description

This instruction subtracts the source operand and carry flag from the contents of an 8-bit
general register and places the result in the general register.

Instruction Formats and Number of Execution States

. Instruction code
Addressin
mode g Mnem. | Operands [s\ltgig;
1st byte | 2nd byte 3rd byte | 4th byte
Immediate SUBX #xx:8, Rd B i rd IMM 2
; I
Register direct SUBX Rs, Rd 1 ' E rs | rd 2
| |

107

2.2.56 XOR (exclusive OR logical)

XOR

Operation
Rd O (EAs) — Rd

Condition Code

I H N Z V C
—|—]|—=[—=]t |t]|O0]—
Assembly-L anguage For mat
XCR <EAs>, Rd
I: Previous value remains unchanged.
Operand Size H: Previous value remains unchanged.
Byte N: Set to 1 when the result is negative;
otherwise cleared to 0.
Z: Setto1whentheresultiszero;
otherwise cleared to 0.
V: Cleared to 0.
C: Previous value remains unchanged.
Description

This instruction exclusive-ORs the source operand with the contents of an 8-bit general
register and places the result in the general register.

I nstruction Formats and Number of Execution States

; Instruction code
Addressin
mode 9 Mnem. | Operands [s\ltgig;
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XOR #xx:8,Rd | D | rd IMM 2
Register direct | XOR Rs, Rd 1 15| rs i rd 2

108

2.2.57 XORC (exclusive OR control register) XORC

Operation Condition Code
CCRO#MM - CCR | H N Z V C

7 I ! 11t T 1 I

Assembly-L anguage For mat

XORC #xx:8, CCR
I: Exclusve-ORed with bit 7 of the

Operand Size immediate data.

H: Exclusive-ORed with bit 5 of the
immediate data.

N: Exclusive-ORed with bit 3 of the
immediate data.

Z:. Exclusive-ORed with bit 2 of the
immediate data.

V: Exclusive-ORed with bit 1 of the
immediate data.

C: Exclusive-ORed with bit O of the
immediate data.

Byte

Description

Thisinstruction exclusive-ORs the condition code register (CCR) with immediate data and
places the result in the condition code register. Bits 6 and 4 are exclusive-ORed as well asthe
flag bits.

No interrupt requests are accepted immediately after thisinstruction. All interrupts, including
the nonmaskable interrupt (NMI), are deferred until after the next instruction.

Instruction Formats and Number of Execution States

; Instruction code
Addressin
mode g Mnem. | Operands ’s\ltgigsf
1st byte | 2nd byte 3rd byte | 4th byte
Immediate XORC | #xx:8,CCR| O } 5 IMM 2

109

2.3 Operation Code Map

Table 2-1 shows the operation code map for instructions of the H8/300L CPU. Only thefirst
byte (bits 15 to 8 of the first word) of the instruction code is indicated here.

Indicates that the most significant bit of the 2nd byte
Y (bit 7 of 1st word of instruction code) is 0.

- Indicates that the most significant bit of the 2nd byte
(bit 7 of 1st word of instruction code) is 1.

110

Table 2-1. Operation Code Map

HI Lo 0 1 2 3 4 5 6 7 8 9 A B C D E F
0 NOP SLEEP STC LDC ORC XORC ANDC LDC ADD INC ADDS MOV ADDX DAA
SHLL SHLR ROTXL " |ROTXI NOT
1 OR XOR AND SuUB DEC SUBS CMP SUBX DAS
SHAL SHAR ROTL ROTR NEG
2
MOV
3
4 BRA BRN BHI BLS BCC BCS BNE BEQ BVvVC BVS BPL BMI BGE BLT BGT BLE
5 MULXU | DIVXU RTS BSR RTE JMP JSR
BST s
6 MOV
BSET BNOT BCLR BTST BIST
BOR BXOR BAND BLD
7 MOV EEPMOV Bit manipulation instructions
BIOR BIXOR BIAND BILD
8 ADD
9 ADDX
A CMP
B SUBX
Cc OR
D XOR
E AND
F MOV

Note: The PUSH and POP instructions are equivalent in machine language to the MOV instruction. See the descriptions of individual instructions in section 2.2, Instructions, for details.

2.4 List of Instructions

Table2-2. List of Instructions (1)

Addressing Mode and

Instruction Length (Bytes)

+ P
& .o 3
< <98 &
s | £/ X g ¥ @ Condition Code |5
. S _ X .22 T 5. e :
Mnemonic | Operation X caadaada el HNZIVIClS
MOV.B #xx:8, Rd B | #xx:8 —» Rd8 2 ——]t|t]|]0|—]2
MOV.B Rs, Rd B| Rs8 - Rd8 2 —|—t]t]|0|—|2
MOV.B @Rs, Rd B| @Rs16 — Rd8 2 —|—]t|t]0|—| 4
MOV.B @(d:16, Rs), Rd | B| @(d:16, Rs16) — Rd8 4 —|—|t]t]|0|—|6
MOV.B @Rs+, Rd B| @Rs16 - Rd8 2 —|—|t]t]|0|—|6
Rs16+1 - Rs16
MOV.B @aa:8, Rd B| @aa:8 - Rd8 —|—t]|t]0|—| 4
MOV.B @aa:16, Rd B | @aa:16 - Rd8 4 —|—]t|t|0|—| 6
MOV.B Rs, @Rd B | Rs8 -~ @Rd16 2 —|—]t|t|0|—| 4
MOV.B Rs, @(d:16, Rd) | B | Rs8 - @(d:16, Rd16) 4 —|—|t]t]0|—| 6
MOV.B Rs, @—-Rd B| Rd16-1 - Rd16 2 —|—|t]t|0|—|6
Rs8 - @Rd16
MOV.B Rs, @aa:8 B | Rs8 - @aa:8 —|—t|t]0|—| 4
MOV.B Rs, @aa:16 B | Rs8 - @aa:16 4 —|—]t|t]|0|—| 6
MOV.W #xx:16, Rd W/ #xx:16 - Rd 4 —|—]t|t|0|—| 4
MOV.W Rs, Rd W| Rsl1l6 - Rd16 2 —|—]t|t]|]0|—]2
MOV.W @Rs, Rd W/| @Rs16 - Rd16 2 —|—|t]t]|0|—|4
MOV.W @(d:16, Rs), Rd |W| @(d:16, Rs16) — Rd16 4 —|—|t]t|0|—|6
MOV.W @Rs+, Rd W| @Rs16 —» Rd16 2 —|—]t|t]|0|—| 6
Rs16+2 - Rs16
MOV.W @aa:16, Rd W| @aa:16 — Rd16 4 —|—|t]t|0|—|6
MOV.W Rs, @Rd W| Rs16 - @Rd16 2 —|—t]|t]0|—| 4
MOV.W Rs, @(d:16, Rd) |W| Rs16 - @(d:16, Rd16) 4 —|—|t]t]0|—|6
MOV.W Rs, @-Rd W| Rd16-2 - Rd16 2 —|—|t]t|0|—|6
Rs16 - @Rd16
MOV.W Rs, @aa:16 W| Rsl6 - @aa:16 4 —|—|t]t]0|—| 6
POP Rd W| @SP - Rd16 2 — =t —| 6
SP+2 -, SP
PUSH Rs W| SP-2 - SP 2 —|—|t]t|0|—|6
Rs16 - @SP

112

Table 2-2. List of Instructions (2)

Addressing Mode and

Instruction Length (Bytes)
+ »
E&.0o £
S s ®] Z
> c| 2| E ‘?‘(é «| & 2 Condition Code | 5
Mnemonic 'E Operation g6 % & & % g g1 /HIN[Z]V]C S
ADD.B #xx:8, Rd B | Rd8+#xx:8 — Rd8 2 —|]2 2
ADD.B Rs, Rd B | Rd8+Rs8 - Rd8 et T I B 2
ADD.W Rs, Rd W/| Rd16+Rs16 - Rd16 2 —ig|t]] 2
ADDX.B #xx:8, Rd B | Rd8+#xx:8+C - Rd8 —| g 2
ADDX.B Rs, Rd B | Rd8+Rs8+C - Rd8 2 —l v g 2
ADDS.W #1, Rd W/| Rd16+1 - Rd16 2 ——|—]—]—|—] 2
ADDS.W #2, Rd W| Rd16+2 - Rd16 2 — = —|—=]—|—] 2
INC.B Rd B | Rd8+1 - Rd8 2 —|—]|t |—2
DAA.B Rd B | Rd8 decimal-adjust — Rd8 2 —|* s *|0O2
SUB.B Rs, Rd B | Rd8-Rs8 - Rd8 2 —l |t 2
SUB.W Rs, Rd W | Rd16-Rsl16 - Rd16 2 —ig|t]]s 2
SUBX.B #xx:8, Rd B | Rd8—#xx:8—-C - Rd8 —| 1]t ! 2
SUBX.B Rs, Rd B | Rd8-Rs8-C - Rd8 2 — 1]t 1 2
SUBS.W #1, Rd W | Rd16-1 - Rd16 2 ——|—]—=]—|—] 2
SUBS.W #2, Rd W/| Rd16-2 - Rd16 2 ——|—|—]—|—] 2
DEC.B Rd B | Rd8-1 - Rd8 2 — =ttt |—]2
DAS.B Rd B | Rd8 decimal-adjust -~ Rd8 2 —| ¥t =2
NEG.B Rd B| 0-Rd - Rd 2 —|]t 2
CMP.B #xx:8, Rd B | Rd8—#xx:8 —|]2 2
CMP.B Rs, Rd B | Rd8-Rs8 2 et T I N 2
CMP.W Rs, Rd W /| Rd16-Rs16 2 —ig|t] e 2
MULXU.B Rs, Rd B | Rd8xRs8 - Rd16 2 —|—|—|—|——14
DIVXU.B Rs, Rd B | Rd16+Rs8 - Rd16 2 ——0jg|—|—14

(RdH: remainder,
RdL: quotient)

AND.B #xx:8, Rd B | Rd8#xx:8 — Rd8 —|—t]t]|0|—|2
AND.B Rs, Rd B | Rd8Rs8 - Rd8 —|—|t]1]0|—] 2
OR.B #xx:8, Rd B | Rd8#xx:8 - Rd8 —|—]t]|t|0|—|2
OR.BRs, Rd B | Rd8ORs8 - Rd8 —|—|t]t|0]|— 2
XOR.B #xx:8, Rd B | Rd80#xx:8 —» Rd8 —|—|t]1]0|—] 2
XOR.B Rs, Rd B | Rd8JRs8 - Rd8 —|—|t]t]0|—] 2
NOT.B Rd B| Rd - Rd —|—|t|¢t|0|—]2

113

Table 2-2. List of Instructions (3)

Addressing Mode and
Instruction Length (Bytes)

+ »
& .0 g
- a &5
% 3 C\i) 5 w I E Condition Code “(g
(] ¢ c e Xl e @ o .
Mnemonic | Operation s & adaadacellHNzZVCS
SHAL.B Rd B 2 — =ttt]2
L[L[[[[]~o
b7 bo
SHAR.B Rd B 2 —|—|t]t]0|]2
PLLLTT] e
b; bg
SHLL.B Rd B 2 ——|t]t]0|]2
L[L[[[[]~o
b b
SHLR.B Rd B 2 —|—|0]t]0|1t]2
o [[[[1]]]e
b; by
ROTXL.B Rd B 2 —|—|t]t]0|1t]2
cyiiinian
b; bg
ROTXR.B Rd B 2 ——|t]t]0|]2
RERNNRENGT
b7 bg
ROTL.B Rd B 2 —|—|t]t]0|1t]2
cullliiinl
b7 bo
ROTR.B Rd B 2 —|—|t]t]0|]2
SERNERENE
b7 bo
BSET #xx:3, Rd B | (#xx:30of Rd8) ~ 1 2 ——|—]—|—— 2
BSET #xx:3, @Rd B | (#xx:3 of @Rd16) ~ 1 4 —|—|—|—|—|—| 8
BSET #xx:3, @aa:8 B | (#xx:3 of @aa:8) ~ 1 4 —|—|—|—|—|—| 8
BSET Rn, Rd B| (Rn8 of Rd8) « 1 2 — == —=|—=—] 2
BSET Rn, @Rd B | (Rn8 of @Rd16) ~ 1 4 —|—|—|—]——1 8
BSET Rn, @aa:8 B | (Rn8 of @aa:8) ~ 1 4 —|—|—|—|—|—| 8

114

Table 2-2. List of Instructions (4)

Addressing Mode and

Instruction Length (Bytes)

x
S50 g
S s ® ° 2]
S - o £/ % @] § 2| Condition Code | 5
Mnemonic 'E Operation g6 % & & % g g1 /HIN[Z]V]C S
BCLR #xx:3, Rd B| (#xx:3 of Rd8) ~ 0 2 — =] === 2
BCLR #xx:3, @Rd B | (#xx:3 of @Rd16) —~ O 4 —_—|—|—=|—|—| 8
BCLR #xx:3, @aa:8 B| (#xx:3 of @aa:8) ~ 0 4 —|—|—=|—|—|—| 8
BCLR Rn, Rd B | (Rn8 of Rd8) — 0 2 ——|—|—|——] 2
BCLR Rn, @Rd B | (Rn8 of @Rd16) — O 4 —|—|—|—|—|—| 8
BCLR Rn, @aa:8 B | (Rn8 of @aa:8) —~ 0 4 —|—|—|—|—|—| 8
BNOT #xx:3, Rd B | (#xx:3 of Rd8) 2 —— =] === 2
(#xx:3 of Rd8)
BNOT #xx:3, @Rd B| (#xx:3 of @Rd16) 4 —|—|—|—|—|—| 8
(#xx:3 of @Rd16)
BNOT #xx:3, @aa:8 B | (#xx:3 of @aa:8) 4 —|—|—|—|—|—| 8
(#xx:3 of @aa:8)
BNOT Rn, Rd B | (Rn8 of Rd8) — 2 — ===]—|—] 2
(Rn8 of Rd8)
BNOT Rn, @Rd B | (Rn8 of @Rd16) — 4 —|—|—|—|—|—| 8
(Rn8 of @Rd16)
BNOT Rn, @aa:8 B | (Rn8 of @aa:8) — 4 —_ =] —|—]—=|—8
(Rn8 of @aa:8)
BTST #xx:3, Rd B| (#xx:3 of Rd8) - Z 2 — ==t |—]|—] 2
BTST #xx:3, @Rd B | (#xx:3 of @Rd16) - Z 4 —|—|—|t | —|—|6
BTST #xx:3, @aa:8 B| (#xx:3 of @aa:8) - Z 4 —|—|—] s |—|—| 6
BTST Rn, Rd B | (Rn8 of Rd8) - Z 2 — ==t |—]|—] 2
BTST Rn, @Rd B | (Rn8 of @Rd16) - Z 4 —|—|—| t|—|—|6
BTST Rn, @aa:8 B | (Rn8 of @aa:8) - Z 4 —|—|—|t|—|—|6
BLD #xx:3, Rd B | (#xx:30of Rd8) - C 2 ——|—]—|— |2
BLD #xx:3, @Rd B | (#xx:3 of @Rd16) — C 4 —|—|—|—|—| t| 6
BLD #xx:3, @aa:8 B | (#xx:3 of @aa:8) - C 4 — | —|—]—=|—] t |6
BILD #xx:3, Rd B| (#xx:30f Rd8) ~ C 2 —|—]——=—] 1] 2
BILD #xx:3, @Rd B| (#xx:3 of @Rd16) - C 4 —|—|—=|—=l=l1]8
BILD #xx:3, @aa:8 B | (#xx:3 of @aa:8) ~ C 4 —|—l—=—=|=]t|6
BST #xx:3, Rd B| C - (#xx:3 of Rd8) 2 — =] === 2
BST #xx:3, @Rd B| C - (#xx:3 of @Rd16) 4 —|—|—|—|—|—| 8
BST #xx:3, @aa:8 B| C - (#xx:3 of @aa:8) 4 —|—|—|—|—|—| 8

115

Table 2-2. List of Instructions (5)

Addressing Mode and
Instruction Length (Bytes)

+ »

£&,0 g

S c g = o

o Branching | @ c D& < < &| 2| condition Code 5

Mnemonic N Operation | Condition | ¥| £/ &l & & & & % gliluInlzlvic] e
BIST #xx:3, Rd B| C - (#xx:3 of Rd8) 2 = === 2
BIST #xx:3, @Rd B| C - (#xx:3 of @Rd16) 4 —|—|—|—|—|—| 8
BIST #xx:3, @aa:8 B| C - (#xx:3 of @aa:8) 4 —|—]—|——|—|8
BAND #xx:3, Rd B | CO#xx:3 of Rd8) -~ C 2 ——|—]—|— |2
BAND #xx:3, @Rd B | CO#xx:3 of @Rd16) - C 4 —|—|—|—|—] t| 6
BAND #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 —|—|—=|—|—| t |6
BIAND #xx:3, Rd B | CO#xx:3 of Rd8) - C 2 — == —=—] 1] 2
BIAND #xx:3, @Rd B | CO#xx:3 of @Rd16) — C 4 —|—|—=—=|l—=l1 86
BIAND #xx:3, @aa:8 B | CO#xx:3 of @aa:8) — C 4 —|——|—=—]t|6
BOR #xx:3, Rd B | CO#xx:3 of Rd8) - C 2 ——|—]—|— |2
BOR #xx:3, @Rd B | CO#xx:3 of @Rd16) -~ C 4 —|—|—|—|—| ¢ |6
BOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 — | —|—|—=|—| 1|6
BIOR #xx:3, Rd B | CO#xx:3 of Rd8) - C 2 ——]———] 1] 2
BIOR #xx:3, @Rd B| CO#xx:3 of @Rd16) — C 4 ——l—=—=l—=l1]s6
BIOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 —|—l—=—=|—]1t|6
BXOR #xx:3, Rd B | CO#xx:3 0of Rd8) - C 2 ——|—]—|— |2
BXOR #xx:3, @Rd B | CO(#xx:3 of @Rd16) -~ C 4 —|—|—|—|—| t| 6
BXOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) - C 4 —|—|—=]—|—| t | 6
BIXOR #xx:3, Rd B | CO(#xx:3 of Rd8) — C 2 ——]——=—] 1] 2
BIXOR #xx:3, @Rd B | CO@#xx:3 of @Rd16) — C 4 —|—|—=—=|l—l1 6
BIXOR #xx:3, @aa:8 B | CO#xx:3 of @aa:8) — C 4 — =] === 16
BRA d:8 (BT d:8) —| PC « PC+d:8 2 —|—|—=|—|—|—| 4
BRN d:8 (BF d:8) —| PC — PC+2 2 —|—|=|—|—|—| 4
BHI d:8 — | if condition | Cz =0 2 === 4
BLS d:8 — ipsctr”fthe“ cz=1 2 S R N N R
BCC d:8 (BHS d:8) —| PC+d:8 C=0 2 —|—|=|—|—|—| 4
BCS d:8 (BLO d:8) _| elsenext; | oy 2 N R O
BNE d:8 — Z=0 2 —|—|=|—|—|—| 4
BEQ d:8 — z=1 2 — || =] =|=|—] 4
BVC d:8 — V=0 2 =] === 4
BVS d:8 — V=1 2 —|—|—=]—=|=|—| 4

116

Table 2-2. List of Instructions (6)

Addressing Mode and
Instruction Length (Bytes)

ANDC #xx:8, CCR

CCRI#xx:8 - CCR

*
& |5 g
14 &
8 %} @ g e gl B 6
~ m - ey .—
° Branching g: £ ;! gl % ?_g é) % Condition Code 5
Mnemonic | Operation | Condition | X| £| @ & a & & al e llHNZIVIC S
BPL d:8 — | ifcondition | N=0 2 —_ =] —|—|— 4
. is true then _
BMI d:8 PC . N=1 2 ——|—|—|—=|—| 4
BGE d:8 PC+d:8 NOV =0 2 — == —=|—|— 4
BLT d:8 elsenext | Noy=1 2 N O I A
BGT d:8 ZONOV) =0 2 —|—|—|—=|—|— 4
BLE d:8 ZONOV) =1 2 — == —=|—|— 4
JMP @Rn PC — Rnl6 | =]=|=|—| 4
JMP @aa:16 PC -~ aa:16 —|—|—|—|—|—| 6
JMP @ @aa:8 PC - @aa:8 —|—|—|—|—|—| 8
BSR d:8 SP-2 - SP S U) N U '
PC - @SP
PC — PC+d:8
JSR @Rn SP-2 -, SP ===
PC - @SP
PC « Rnl16
JSR @aa:16 SP-2 . SP === =
PC - @SP
PC - aa:l6
JSR @@aa:8 SP-2 - SP e] = = —
PC - @SP
PC - @aa:8
RTS PC - @SP ===
SP+2 - SP
RTE CCR -~ @SP 0 I T A A
SP+2 - SP
PC - @SP
SP+2 - SP
SLEEP Transit to sleep mode. ——|—]—|—— 2
LDC #xx:8, CCR #xx:8 - CCR sl s|r))2
LDC Rs, CCR Rs8 - CCR O R A R I A
STC CCR, Rd CCR - Rd8 —|—|—=]—=—]— 2
2
2

ORC #xx:8, CCR

T 0 W | @

CCR#xx:8 - CCR

Table 2-2. List of Instructions (7)

Mnemonic

Operation

Addressing Mode and
Instruction Length (Bytes)

txx:8/16

RN

D-Rn/@Rn+
Daa:8/16

@(d:16, Rn)
@(d:8, PC)
D@aa
mplied

DRN

Condition Code

H

N

4

\Y,

C

XORC #xx:8, CCR

CCRO#xx:8 - CCR

N

!

!

!

!

!

NOP

PC — PC+2

N

EEPMOV

ifR4AL#0
Repeat @R5 - @R6
R5+1 - R5
R6+1 - R6
R4L-1 - R4L
UntilR4L =0
else next;

0[N N . of States *

Notes: * The number of execution states indicated here assumes that the operation code and operand data are

in on-chip memory. For other cases, refer to section 2.5, Number of Execution States.
Set to 1 when there is a carry or borrow at bit 11; otherwise cleared to 0.
When the result is 0, the previous value remains unchanged; otherwise cleared to 0.
Set to 1 when there is a carry in the adjusted result; otherwise the previous value remains unchanged.
The number of execution states is 4n + 9, with n being the value set in R4L.
Set to 1 when the divisor is negative; otherwise cleared to 0.

Set to 1 when the divisor is 0; otherwise cleared to 0.

ooooodg

118

2.5 Number of Execution States

The tables here can be used to calculate the number of states required for instruction execution.
Table 2-3 indicates the number of states required for each cycle (instruction fetch, branch
address read, stack operation, byte data access, word data access, internal operation).

Table 2-4 indicates the number of cycles of each type occurring in each instruction. The total
number of states required for execution of an instruction can be calculated from these two
tables asfollows:

Execution states=1 xS +JXx S+ K xSK+L X S.+ M x Sm + N x SN

Examples: When instruction is fetched from on-chip ROM, and an on-chip RAM is
accessed.

1. BSET #0, @FF00
From table 2-4:
I=L=2, J=K=M=N=0
From table 2-3:
S=2, S =2
Number of statesrequired for execution= 2x2+2x2=8
When instruction is fetched from on-chip ROM, branch addressis read from on-chip ROM,
and on-chip RAM is used for stack area.

2. ISR@@ 30
From table 2-4:
=2, J=K=1, L=M=N=0
From table 2-3:
S=S=S=2
Number of statesrequired for execution= 2x2+1x2+1x2=8

119

Table 2-3. Number of States Taken by Each Cyclein Instruction Execution

Execution Status Access L ocation

(instruction cycle) On-Chip Memory On-Chip Peripheral Module

Instruction fetch
Branch address read

Stack operation

Byte data access 2or3*

Word data access

Q19 0L 00

Internal operation

* Depends on which on-chip moduleis accessed. See the applicable hardware manual for
details.

120

Table 2-4.

Number of Cyclesin Each Instruction

Instruction

M nemonic

Instruction
Fetch

Branch
Addr. Read

Stack
Operation

Byte Data
Access

Word Data
Access

Internal
Operation

J

K

L

M

N

ADD

ADD.B #xx:8, Rd
ADD.B Rs, Rd
ADD.W Rs, Rd

ADDS

ADDSW #1/2, Rd

ADDX

ADDX.B #xx:8, Rd
ADDX.B Rs, Rd

AND

AND.B #xx:8, Rd
AND.B Rs, Rd

ANDC

ANDC #xx:8, CCR

BAND

BAND #xx:3, Rd
BAND #xx:3, @Rd
BAND #xx:3, @aa:8

Bcc

BRA d:8 (BT d:8)
BRN d:8 (BF d:8)
BHI d:8
BLS d:8
BCC d:8 (BHS d:8)
BCSd:8 (BLO d:8)
BNE d:8
BEQ d:8
BvC d:8
BVS d:8
BPL d:8
BMI d:8
BGE d:8
BLT d:8
BGT d:8
BLE d:8

BCLR

BCLR #xx:3, Rd
BCLR #xx:3, @Rd
BCLR #xx:3, @aa:8
BCLR Rn, Rd

P N N PN DN N DN N DN DN DN D DNMNDNDDNMNDNDDNMDNDDNMNMNDNDDMDD PP PP PP PP

121

Instruction| Branch Stack Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N

BCLR BCLR Rn, @Rd 2 2

BCLR Rn, @aa:8 2 2
BIAND BIAND #xx:3, Rd 1

BIAND #xx:3, @Rd 2 1

BIAND #xx:3, @aa:8 2 1
BILD BILD #xx:3, Rd 1

BILD #xx:3, @Rd 2 1

BILD #xx:3, @aa:8 2 1
BIOR BIOR #xx:3, Rd 1

BIOR #xx:3, @Rd 2 1

BIOR #xx:3, @aa:8 2 1
BIST BIST #xx:3, Rd 1

BIST #xx:3, @Rd 2 2

BIST #xx:3, @aa:8 2 2
BIXOR BIXOR #xx:3, Rd 1

BIXOR #xx:3, @Rd 2 1

BIXOR #xx:3, @aa:8 2 1
BLD BLD #xx:3, Rd 1

BLD #xx:3, @Rd 2 1

BLD #xx:3, @aa:8 2 1
BNOT BNOT #xx:3, Rd 1

BNOT #xx:3, @Rd 2 2

BNOT #xx:3, @aa:8 2 2

BNOT Rn, Rd 1

BNOT Rn, @Rd 2 2

BNOT Rn, @aa:8 2 2
BOR BOR #xx:3, Rd 1

BOR #xx:3, @Rd 2 1

BOR #xx:3, @aa:8 2 1
BSET BSET #xx:3, Rd 1

BSET #xx:3, @Rd 2 2

BSET #xx:3, @aa:8 2 2

BSET Rn, Rd 1

BSET Rn, @Rd 2 2

122

Instruction| Branch Stack [Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N
BSET BSET Rn, @aa:8 2 2
BSR BSR d:8 2 1
BST BST #xx:3, Rd 1
BST #xx:3, @Rd 2 2
BST #xx:3, @aa:8 2 2
BTST BTST #xx:3, Rd 1
BTST #xx:3, @Rd 2 1
BTST #xx:3, @aa:8 2 1
BTST Rn, Rd 1
BTST Rn, @Rd 2 1
BTST Rn, @aa:8 2 1
BXOR BXOR #xx:3, Rd 1
BXOR #xx:3, @Rd 2 1
BXOR #xx:3, @aa:8 2 1
CMP CMP. B #xx:8, Rd 1
CMP. B Rs, Rd 1
CMPW Rs, Rd 1
DAA DAA.B Rd 1
DAS DASB Rd 1
DEC DEC.B Rd 1
DIVXU DIVXU.BRs, Rd 1 12
EEPMOV |EEPMOV 2 2n+2* 1
INC INC.B Rd 1
JMP JMP @Rn 2
JMP @aa:16 2 2
JMP @@aa:8 2 1 2
JSR JSR @Rn 2 1
JSR @aa:16 2 1 2
JSR @@aa:8 2 1 1
LDC LDC #xx:8, CCR 1
LDCRs, CCR 1
MOV MOV.B #xx:8, Rd 1
MOV.B Rs, Rd 1
MOV.B @Rs, Rd 1 1

123

Instruction | Branch Stack |Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N
MOV MOV.B @(d:16, Rs), Rd 2 1
MOV.B @Rs+, Rd 1 1 2
MOV.B @aa:8, Rd 1 1
MOV.B @aa:16, Rd 2 1
MOV.B Rs, @Rd 1 1
MOV.B Rs, @(d:16, Rd) 2 1
MOV.B Rs, @Rd 1 1 2
MOV.B Rs, @aa:8 1 1
MOV.B Rs, @aa:16 2 1
MOV.W #xx:16, Rd 2
MOV.W Rs, Rd 1
MOV.W @Rs, Rd 1 1
MOV.W @(d:16, Rs), Rd 2 1
MOV.W @Rs+, Rd 1 1 2
MOV.W @aa:16, Rd 2 1
MOV.W Rs, @Rd 1 1
MOV.W Rs, @(d:16, Rd) 2 1
MOV.W Rs, @-Rd 1 1 2
MOV.W Rs, @aa:16 2 1
MULXU |MULXU.BRs, Rd 1 12
NEG NEG.B Rd 1
NOP NOP 1
NOT NOT.B Rd 1
OR OR.B #xx:8, Rd 1
ORBRs,Rd 1
ORC ORC #xx:8, CCR 1
POP POP Rd 1 1 2
PUSH PUSH Rs 1 1 2
ROTL ROTL.B Rd 1
ROTR ROTR.B Rd 1
ROTXL ROTXL.B Rd 1
ROTXR |ROTXR.BRd 1
RTE RTE 2 2 2
RTS RTS 2 1 2

124

Instruction| Branch Stack [Byte Data|Word Data| Internal
Instruction Mnemonic Fetch |Addr. Read|Operation| Access Access |Operation
I J K L M N

SHLL SHLL.B Rd 1
SHAL SHAL.B Rd 1
SHAR SHAR.B Rd 1
SHLR SHLR.B Rd 1
SLEEP SLEEP 1
STC STC CCR, Rd 1
SUB SUB.BRs, Rd 1

SUB.W Rs, Rd 1
SUBS SUBS.W #1/2, Rd 1
SUBX SUBX.B #xx:8, Rd 1

SUBX.B Rs, Rd 1
XOR XOR.B #xx:8, Rd 1

XOR.B Rs, Rd 1
XORC XORC #xx:8, CCR 1

* n: Initial valuein R4L. The source and destination operands are accessed n + 1 times each.

125

Section 3. CPU Operation States

There are three CPU operation states, namely, program execution state, power-down state, and
exception-handling state. 1n power-down state there are sleep mode, standby mode, and watch
mode. These operation states are shown in figure 3-1. Figure 3-2 shows the state transitions.
For further details please refer to the applicable hardware manual.

State F# Program execution state Active mode |

The CPU executes successive program instructions,
synchronized by the system clock.

Subactive mode } ””” 1

The CPU executes
successive program
instructions in low-
speed operations,
synchronized by the
subclock.

{ Low-power modes

Power-down state Sleep mode } ******

A state in which some or all
of the chip functions are Standby mode } ffffff :

stopped to conserve power.

Watch mode } ””””

4 Exception-handling state

A transient state in which the CPU changes
the processing flow due to a reset or an interrupt.

Figure 3-1. CPU Operation States

127

- Reset cleared Exception-
eset state handling state

—
Reset occurs
Reset Interrupt Interrupt Interrupt handling
raised raised complete

occurs

Power-down state
SLEEP instruction executed

Note: On the transitions between modes, see the applicable hardware manual.

L— —

Program
execution state

Figure 3-2. State Transitions
3.1 Program Execution State
In program execution state the CPU executes program instructions in sequence.
3.2 Exception Handling States
Exception-handling states are transient states occurring when exception handling israised by a
reset or interrupt, and the CPU changes its normal processing flow, branching to a start address
acquired from avector table. In exception handling caused by an interrupt, PC and CCR
values are saved to the stack, with reference made to a stack pointer (R7).
3.2.1 Typesand Priorities of Exception Handling
Exception handling includes processing of reset exceptions and of interrupts. Table 3-1

summarizes the factors causing each kind of exception, and their priorities. Reset exception
handling has the highest priority.

128

Table 3-1. Typesof Exception Handling and Priorities

Timing for start of
Priority Exception source Detection timing exception handling

High Reset Clock-synchronous Reset exception handling starts as
soon as RES pin changes from low
to high.

Interrupt End of instruction When an interrupt request is made,
execution* interrupt exception handling starts
after execution of the present
Low instruction is completed.

* Interrupt detection is not made upon completion of ANDC, ORC, XORC, and LDC
Instruction execution, nor upon completion of reset exception handling.

3.2.2 Exception Sourcesand Vector Table
The factors causing exception handling can be classified asin figure 3-3.

For details of exception handling, the vector numbers of each source, and the vector addresses,
see the applicable hardware manual.

Reset
Exception source External interrupt

Interrupt

Internal interrupt
(interrupt raised by on-chip peripheral module)

Figure 3-3. Classification of Exception Sources

129

3.2.3 Outline of Exception Handling Oper ation

A reset has the highest priority of all exception handling. After the RES pin goesto low level
putting the CPU in reset state, the RES pin is then put at high level, and reset exception
handling is started at the point when the reset conditions are met. For details on reset
conditions refer to the applicable hardware manual. When reset exception handling is started,

the CPU gets a start address from the exception handling vector table, and starts executing the
exception handling routine from that address. During execution of this routine and
immediately after, al interruptsincluding NMI are masked.

When interrupt exception handling is started, the CPU refers to the stack pointer (R7) and
pushes the PC and CCR contents to the stack. The CCR | bit isthen set to 1, a start addressis
acquired from the exception handling vector table, and the interrupt exception handling routine
Is executed from this address. The stack state in this caseis as shown in figure 3-4.

SP-4 SP (R7) — CCR
SP-3 SP+1 CCR*
SP-2 SP+2 PCy
SP-1 SP+3 PC_
SP (R7) — SP+4 Even-numbered
——— Stack — address
Prior to start of interrupt —— > After completion of interrupt
exception handling Contents exception handling

) saved to stack
Notation

PCy: Upper 8 bits of program counter (PC)
PC,: Lower 8 bits of program counter (PC)
CCR: Condition code register

SP: Stack pointer

Notes: * Ignored on return from interrupt.
1. PC shows the address of the first instruction to be executed upon
return from the interrupt.
2. Saving and restoring of register contents must always be done
in word size, and must start from an even-numbered address.

Figure 3-4. Stack State after Completion of Interrupt Exception Handling

130

3.3 Reset State

When the RES pin goesto low level, all processing stops and the system goes to reset state.
The bit of the condition code register (CCR) is set, masking all interrupts.

After the RES pin is changed externally from low to high level, reset exception handling starts
at the point when the reset conditions are met. For details on reset conditions refer to the
applicable hardware manual.

3.4 Power-Down State

In power-down state the CPU operation is stopped, reducing power consumption. For details
see the applicable hardware manual .

131

Section 4. Basic Operation Timing

CPU operation is synchronized by aclock (¢). The period from the rising edge of ¢ to the next
rising edgeis called one state. A memory cycle or bus cycle consists of two or three states.
For details on access to on-chip memory and to on-chip peripheral modules see the applicable
hardware manual.

4.1 On-chip Memory (RAM, ROM)

Two-state access is employed for high-speed access to on-chip memory. The data bus width is
16 hits, allowing access in byte or word size. Figure 4-1 shows the on-chip memory access
cycle.

Bus cycle

T, state i T, state

Internal address bus

Address

Internal read signal

Internal data bus*)
(read access) :>—< | Read data

Internal write signal

Internal data bus*

: Write data
(write access)

X

-
-
—
-

Note: A 16-bit data bus is used making possible access to word-size
data in 2 states.

Figure4-1. On-Chip Memory Access Cycle

133

4.2 On-chip Peripheral Modules and External Devices

On-chip peripheral modules are accessed in two or three states. The data bus width is 8 bits,
S0 access is made in byte size only. Access to word data or instruction codes is not possible.
Figure 4-2 shows the on-chip peripheral module access cycle.

Bus cycle

T, state i T, state

§

Internal address bus >< Address X
Internal data bus* b 1>
(read access) 1> < Read data j

Internal read signal

Internal write signal \—/7
Write data)7

(a) Two-state access

Internal data bus*
(write access)

Bus cycle

T, state i T, state i T; state
-

Internal address bus Address

Internal read signal

\ -

L\ ; /T

memaldsatus —
B — —

Internal write signal

Internal data bus*

(write access) Write data‘

(b) Three-state access

Note: An 8-bit data bus is used.

Figure4-2. On-Chip Peripheral Module Access Cycle

134

	Contents H8/300L Series Programming Manual
	Section 1. CPU
	Section 2. Instruction Set
	Section 3. CPU Operation States
	Section 4. Basic Operation Timing

