Hitachi Microcomputer H8/300H Series
Application Notes for CPU

HITACHI

ADE-502-033

Notice

When using this document, keep the following in mind:
1. Thisdocument may, wholly or partialy, be subject to change without notice.

2. All rights are reserved: No oneis permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’ s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the exampl es described herein.

5. Nolicenseisgranted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for usein MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’ s products are requested to notify the relevant Hitachi sales offices when planning to
use the productsin MEDICAL APPLICATIONS.

Section 1 CPU AFChITECIUNE........eeieeeieeieceeieee et 1

0 O g 10T (1 1 o SR 1

11T FEAIUMES ..o 1

112 Register CONfigUIationcccoiiiiiierereeeccee st st e 2

1.1.3 Data CONfiQUIAIONc.eiuereeeeieieeeeieeee ettt sttt e sbe e 4

114 ACArESS SPACE ... coecueeterierie sttt ettt be b b e bt st e e e e e e et eneeneene 6

115 AddresSiNg MOCE........coicirieirierietesee e e 7

00 G T 1S 0 o o 16

S Gt e 17

21 DataTransfer INSIIUCTIONScciiiiriiieereeee e 17

1225 5 | 1 VST 17

212 PUSH, POP ...ttt et ne e s e ssanssnenes 19

22 Arithmetic Operation INSIMUCLIONScoveiiiiriiireee e 21

221 ADD, SUB ...ttt 21

W A 1D) G U =) TR 22

223 INC, DEC..... ittt ettt naeneneens 23

224 ADDS, SUBS ...ttt aenen 24

225 DAA,DAS ...t a e b ranen 25

22.6 MULXU, DIVXU, MULXS, DIVXS.... et 25

227 CMP bbbttt 27

228 NEG ..ot ettt 28

229 EXTS EXTU ottt ssenes 28

2.3 LOgiC Operation INSLIUCHIONScceiiirieieeeeeeriere sttt e e se e sne e eaea 30

231 AND, OR, XOR, NOT ...cciicisieirietisietinietesteeee st ssesassesessessssenes 30

S 0T 1 4 o (L 32

241 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXRcccccccvvrurunnen 32

25 Bit Manipulation INSITUCLIONS..........coueieiieieeeeieise et e e ae e eneas 34
251 BSET,BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,

BXOR, BIXOR ...oviuiiiiieiiietisieiesieesiesestesesissesseessese e se s e stesestesessensssensssessssessesessesessens 34

2.6 BranCh INSITUCHIONSc.ooeiiieieieeee ettt st enenne e 36

25T R =T o TSRS 36

2.8.2 IMP bbbttt nenes 38

2.6.3 BSR, ISRttt nenes 38

BT S = 11 TSP 40

27 System Control INSLIUCHIONScuetereeieieeeeeieeieee ettt se e e e ae e eaea 41

2 A5 R = I TP 41

A s I 41

2.7.3 LDC, STC ittt ettt 42

274 ANDC, ORC, XORCciieiirirtirisiirentenestesesieseseestesesseesseessenessesessesessesessesessenes 43

B2 A T V[TSR 44

276 TRAPA ettt nenes 44

2.8 BIoCk Transfer INSIIUCHIONScoeiiriiereree et ene s 45

2.8 1L EEPMOV ...ttt ettt et nneennne s 45

| Section 3 Load Module Conversion Procedures..................c.evereereerreenrenenene. 47

[Section 4 Examples of Software APPliCatiONS...........cveeevereeeerereeeereveerrerseren 49 |

41
42

43

44

4.5

46

47

4.8

49

Software Applications EXAMPIEScceveierieeeececese s s enens 49
USING SOftWare EXAMPIES.......ccveiieeeieeseeeeeeee ettt et ne e erenns 50
4.2.1 Program Listing Page Format (FOrmat 4)ccceererineneniereiesee e 51
2] T ot I 7= = USSR 52
431 Description Of FUNCLIONS.........coueiriieriiiriiieieie et 54
I T O U1 o /=] (o] U= 56
4.3.3 Description Of DataMEMONYcccccereeieeeeeeeeesee e e e e se e 56
434 EXAMPIES Of USE ..cviciiieiiesiceeeee ettt st sttt neens 57
4.35 PrinCiples Of OPErationccccoeeeiriirienirere et e 57
4.3.6 Program LiStiNg......ccoooeieriieiereeseeese sttt st 59
Block Transfer Using Block Transfer INStrUCLioN..........ccooeereenieieneinescreeeseeeee 60
441 Description Of FUNCIONS.........coiiriiiriiiriieeie e e 63
442 CaUtiONSTOr USEocviiiieciceesese e 64
4.4.3 Description Of DaaMEMOTYcccceveerieieieeeeees et e e 64
444 EXAMPIES OF USE ..ot e 65
445 PrinCiples Of OPEration ...t e sae s 65
446 Program LiStiNg.... ..o 66
Branching USiNg @ Table.......cc.oiiiiriieeere e 67
451 Description Of FUNCHONSccerieiceeeeeceee s sne s 69
452 CaUtiONSTOr USE ..ottt 70
4.5.3 Description Of DataMEMOIYcooiiiiriiireeenere e 70
454 EXAMPIES OF USE ..ottt s 71
455 PrinCiples of OPEraioncccoeorirriniriieee et 72
456 Program LiStiNg. ...t e 74
Counting the Number of Logical 1Sin 8-Bit Data.........ccccveevivrvreneresrreeseeseseseseenens 75
4.6.1 Description Of FUNCHONS........cceiieicieeeececese e 76
4.6.2 CaUtiONSTOr USE ..ot 77
4.6.3 Description Of Data MEMOIYc.coiiiiieirirerenere e e 77
4.6.4 EXAMPIES OF USE ...oiiiiiicie et 77
4.6.5 PrinCiples of OPErationcccvicriririrnirieee et 78
4.6.6 Program LiStiNG......cccceeieierererereeseeeeese st ne e e e enenns 80
Find the First 1in 32-Bit DALccccvrvereireriereeresie et 81
4.7.1 Description Of FUNCHONScouiieiiiieieeeicrere e e 83
4.7.2 CaUtIONSTOr USE ..ottt et 83
4.7.3 Description Of DA MEMONYcccoiiiriirieiereeereeie sttt ere e 83
474 EXEMPIES OF USE ..ot 84
475 PrinCiples Of OPErationcccccvereeieeieeecerese e s e e eneens 84
4.7.6 Program LiStiNG......cccecieieiiiesiesieseceeese sttt st n e neens 86
64-Bit BiNary AGitiON........cooiiiiiiiiierereeeee s e e sne s 87
4.8.1 Description Of FUNCHONScouiiiiiiirieeeeceere st 90
4.8.2 CaUtiONSTOr USE ..oeiiiieie et s 90
4.8.3 Description Of DA@MEMONYccoiriiiiririirre ettt ere e 90
4.8.4 EXAMPIES Of USE ..oiiiiiecieseieereeeeee sttt ene s 91
4.85 PrinCiples Of OPErationcccceveevieieeieeieciee e st e e eneens 92
4.8.6 Program LiStiNg......ccocooeieririeiereereceeeeesiesie st e 93
64-Bit Binary SUDIFACIONccooiiiiiiiie ettt e 94
4.9.1 Description Of FUNCLIONS.........coueiriiiriiiriiieieeesie e e 97

4,9.2 CAULIONSTOr USE oiieeieieeei ettt ettt s e st s et e s st e s s ebe e e sesaeesaraeessreeesaneeesanees 97

4.10

411

412

4.13

414

4.15

4.16

4.9.3 Description Of DA@MEMONYccoiiiiiriiireereie et 97

4.9.4 EXAMPIES Of USE ..oviiiiecieseieeseeeee ettt s et ene s 98
4.95 PrinCiples Of OPEratioNccceieierieicieese et re e 99
4.9.6 Program LiStiNg......ccoooeieiirieieseeeeeeeee et st e 100
Unsigned 32-Bit Binary MUItipliCaHONcoooeeiiiiiiiienirere e 101
4.10.1 Description Of fUNCLIONS.........couiueirieirieiriee et e 104
4.10.2 CaUtiONSTOr USE ..oviivicieriesieieie et s enenns 104
4.10.3 Description Of DataMEMOTYccccereereeieeeeeesese e s e e ene s 104
4.10.4 EXAMPIES Of USE ..c.viiiieie ettt sttt neens 105
4.10.5 PrinCiples Of OPEIrationccccoereeeriirierirere e e 106
4.10.6 Program LiStiNg......coeeeieierieiereeseeeseseeesie s st s se e saennas 109
Unsigned 32-Bit Binary DiVISION........ccccciiiriiineeneeie et 110
4.11.1 Description Of FUNCLIONSciuiiriiiriiiriieeie s e 113
4.11.2 CaUtiONSTOr USEocvieiiecieeeses e 113
4.11.3 Description Of DataMEMOTYcccceveeieeieieeeeetese e s se e 113
4.11.4 EXAMPIES OF USE ..ottt et st 114
4.11.5 PrinCiples Of OPErationcccoeoeeiiriirieiirere e sae s 115
4.11.6 Program LiStiNg. ..o e 117
Signed 16-Bit Binary MUItipliCatioN..........cccoeireineineseese e 118
4.12.1 Description Of FUNCHONSccerieeceeieecese e s sne s 120
4.12.2 CaUtIONSTOr USE ..ottt 120
4.12.3 Description Of Data MEMOIYc.coeiiiieieireeeneere e 120
4.12.4 EXBMPIES OF USE ..ttt et 121
4125 PrinCiples of OPEralioNcccoeirireriiniriieesiee et 121
4.12.6 Program LiStiNg. ..o e 122
Signed 32-Bit Binary MUItIPliCaHION.........ccceiieieeeceeereceee e 123
4.13.1 Description Of FUNCHONScceiieecieeeecece et 126
4.13.2 CaUtiONSTOr USE ..ot 126
4.13.3 Description Of Data MEMOIYc.coiiiieerieeeeeeere e 126
4.13.4 EXAMPIES OF USE ...oiiiiiicee e e 127
4.13.5 PrinCiples of OPErationcccveerieierieerieirieesie et 128
4.13.6 Program LiStiNG......ccceeievereeiereeseeesiesesesese st s sae e enes e enesnennes 132
Signed 32-Bit Binary DiviSion (16-Bit DiVISOr)ccccceeeriieeiiseiereeieeese s sresiesaeseeeenens 133
4.14.1 Description Of FUNCHONScoueieiiiieieeeicrcne e e 136
4.14.2 CaUtiONSTOr USE ..cviiiiiiie ittt et et 136
4.14.3 Description Of DA MEMONYccoiiiiiirieiereeeieeie ettt ere e 136
4.14.4 EXEMPIES OF USE ...ttt e 137
4.14.5 PrinCiples Of OPErationcccccvereeieeieeeeisese s se e s e e e enesnes 137
4.14.6 Program LiStiNG......cccecieiiiiiesesiesecesese ettt st eneens 140
Signed 32-Bit Binary DiviSion (32-Bit DiVISOr)cccoriririniinieniereeeecsesee e 141
4.15.1 DesCription Of FUNCHONScouiiiieiirieeeceene et 144
4.15.2 CaUtiONSTOr USE ..o s e ene s 144
4.15.3 Description Of DA@MEMONYccoiriiiiriiirerereee et ere e 144
4.15.4 EXAMPIES Of USE ..oviiiieiieseieereeeeee ettt s e ene s 145
4.15.5 PrinCiples Of OPErationcccceveeeeeiieieeieeesese e s e e e e e e ereens 146
4.15.6 Program LiStiNg......coooe ettt e 147
8-Digit DeCimal AdGitiON........cceiiieiieiereeeeeeee e e 148
4.16.1 Description Of FUNCLIONScoueiriieriiiriiieieieesie e e 151

4.16.2 CaAULIONSTOr USE oiieeieieeei sttt sttt s e st et s et e s saa e e s s ebe e e sasseeseraeessbeeesaseeesanees 151

4.16.3 Description Of DA@MEMONYccoiririiriiireereie st 151

4.16.4 EXAMPIES Of USE ..oviiiieciesiieereee et s e ene e 152
4.16.5 PrinCiples Of OPErationcccccvueeeeieeieeieeisese s e e e e e ereens 152
4.16.6 Program LiStiNg......coooeieieerieiereeeeee ettt e 154
4.17 8-Digit Decimal SUBLIaCHiONooiieiieeeeere e e 155
4.17.1 DesCription Of FUNCLIONSciueiriieriiiriiieieieese et 158
R = U1 o =Y (o] = 158
4.17.3 Description Of DataMEMOTYccccereerieieeeeeesese s see e e e e e ese s 158
4.17.4 EXAMPIES Of USE ..o.viiiieiie ettt sttt neens 159
4.17.5 PrinCiples Of OPEIrationccccoereeeriirierirere e e 159
4.17.6 Program LiStiNG......ooeoereiiieiereeseeee et s snennas 161
418 SUM Of PrOTUCES ...ttt ae st e e e e e e e e eneeneeneeneas 162
4.18.1 Description Of FUNCLIONS.........ciiiriiiriiiriieeie e 165
4.18.2 CaUtiONSFOr USE ...ocviiciiieiirie et e 165
4.18.3 Description Of DataMEMOTYcccceveeiieieieeceeter st se e 166
4.18.4 EXAMPIES OF USE ..ottt st 166
4.18.5 PrinCiples Of OPErationcccoeeeeieriirierirene e e 166
4.18.6 Program LiStiNg......ccoeereirieirieiriiesiesie e e 168
7SS o 4 1] o [OOSR 169
4.19.1 Description Of FUNCHONSc.cceiieeeeeieeceee e s ene s 171
4.19.2 Description Of DaaMEMOTYcccceveevieieieeeeeres e s e e 171
4.19.3 EXAMPIES OF USE ...ttt et e 172
4.19.4 PrinCiples Of OPEIrationcccoeeeeieriireecrere et sae s 173
4.19.5 Processing Method in Program ... 173
4.19.6 Program LiStiNG. ..ot e 175
[APPENAIX A TNSEUCHION Scooeveeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeereeseeereeeneesneeseeeeena 177 |
Al Number of EXECULION SEALES........ceiuiriirieieereeieee ettt e sne s 178
[Appendix B ASSEMDIEN oo 100]
= 1 R 190
B.2 .SECTION ..ttt et r e 191
B.3 LEQU e 193
B4 LORG .ottt b bt e e e 194
B LD D AT A bbb e bR e b bRt e bbbt bt e e e 195
BB LRES bbbt e e bRt et se bRt et s e nenas 196
A ! | 5 SR 197

Section 1 CPU Architecture

1.1 I ntroduction

The H8/300H is a high-speed CPU with an internal 32-bit
configuration and architecture that is upward-compatible with the
H8/300. The H8/300H CPU has sixteen 16-bit general registers, can
handle 16 Mbyte of linear address space, and isideal for reatime
control.

1.1.1 Features

The H8/300H has the following features:
» Upward compatibility with the H8/300: H8/300 abject programs can be run without any changes
* Sixteen 16-bit general registers (can also be used as a sixteen 8-bit registers or eight 32-bit registers)

 Sixty two basic instructions: 8/16/32 bit operation instructions, multiplication/division instructions,
powerful bit-manipulation instructions

« Eight types of addressing modes:
— Register direct (Rn)
— Register indirect (@ERnN)
— Register indirect with displacement (@(d: 16, ERn)/@(d:24, ERn))
— Post-increment/pre-decrement register indirect (@ERN+/@-ERn),
— Absolute addressing (@aa:8/ @aa: 16/ @aa 24)
— Immediate (#xx:8/#xx:16/#xx:32)
— Program counter relative (d:8, d:16)
— Memory indirect (@@aa:8)
» 16 Mbyte address space
 High-speed operation:
— Almost all common instructions executed in 2, 4, or 6 states
— Maximum operating frequency: 16 MHz
— Addition/subtraction between 8/16/32-bit registers: 0.17 ps
— Multiplication of two 8-hit registers: 1.2 us
— Division of a 16-bit by an 8-bit register: 1.2 ps
— Multiplication of two 16-hit registers: 1.8 s
— Division of a 32-bit by a 16-bit register: 1.8 ps
» Two CPU operating modes: Normal mode/advanced mode
» Power-down mode: SLEEP instruction activates power-down mode

1.1.2 Register Configuration

Figure 1.1 shows the register configuration for the H8/300H. The
H8/300H CPU is composed of sixteen 8-bit general register
(ROH/ROL—R7H/R7L), eight 16-bit extended registers (EO—E7), one 24-
bit program counter (PC) and one 8-bit condition code register (CCR),
which are used as control registers.

Extension registers General registers

4 N N\
15 07 07 0
EO ROH ROL
El R1H RI1L
E2 R2H R2L
E3 R3H R3L
E4 R4H R4L
E5 R5H R5L
E6 R6H R6L
Stack pointer E7 (SP) R7H R7L
23 0
Program counter | PC |
Control
registers 76543210
Condition code register CCR[IUH[U|N|Z|V|C
Carry flag
— Overflow flag
Zero flag
Negative flag
User bit
Half-carry flag
User bit

Interrupt mask bit

Figurel.1 Composition of Registers

Extended Registers. There are two ways of using extended

registers:

» When working with 32-bit data and addresses (24 hits), 16-bit general registers (RO-R7) are combined as
shown in table 1.1 and used as the upper 16 bits of 32-bit registers (ERN).

» They can aso be used as independent 16-bit registers (En).

Note: The function of E7 asthe upper 16 bits of the stack pointer (SP) is already allocated and is used
implicitly in exception processing and subroutine calls.

General Registers:
» Genera registers can be used as independent 8-bit registers (ROH/ROL-R7H/R7L).
* 8-bit registers can be combined with each other as shown in figure 1.2 for use as 16-bit registers (Rn).

» When working with 32-bit data and addresses (24 bits) and combining extended registers (EO-E7) as
shown in figure 1.3, general registers can be used as the lower 16 bits of 32-bits registers (ERn).

Note: The function of R7 asthe lower 16 bits of the stack pointer (SP) is already allocated and is used
implicitly in exception processing and subroutine calls.

RO ROH ROL EO
R1 R1H R1L E1l
R2 R2H R2L E2
R3 R3H R3L E3
R4 R4H R4L E4
R5 R5H R5L ES5
R6 R6H R6L E6
R7 R7H R7L E7

Figurel1.2 16-Bit Registers(Rn)

ERO EO RO
ER1 El R1
ER2 E2 R2
ER3 E3 R3
ER4 E4 R4
ERS ES R5
ERG E6 R6
ER7 E7 R7

Figure 1.3 32-Bit Registers(ERnN)

Program counter (PC): The PC is a 24-bit counter that indicates
the address of the next instruction to be executed by the CPU.
Condition Code Register (CCR): The CCR isan 8-hit register that
indicates the internal status of the CPU (table 1.1).

Tablel.l Condition Code Register

Bit Function

Description

7 Interrupt mask bit (1)

When this bit is 1, interrupts are masked. Note that a
nonmaskable interrupt is received regardless of the status of the |
bit. When exception processing begins, this bit is set to 1.

6 User bit (Ul)

Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions). Can also be used as an interrupt mask bit. For more
information, see the hardware manual for the product in question.

5 Half carry flag (H)

When executing the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B,
or NEG.B instructions results in a borrow or carry at bit 3, or when
executing an ADD.W, SUB.W, CMP.W, or NEG.W instruction
results in a borrow or carry at bit 11, or when executing an
ADD.L, SUB.L, CMP.L, or NEG.L instruction results in a borrow
or carry at bit 27, the bit is set to 1; otherwise, it is set to 0.

4 User bit (U)

Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions).

3 Negative flag (N)

The MSB of the data is considered a sign bit and its value is
saved.

2 Zero flag (2)

When the data is zero this bit is set to 1; when the data is
nonzero, the bit is cleared to 0.

1 Overflow flag (V)

When execution of an arithmetic operation instruction creates an
overflow, this bit is set to 1. In all other cases, it is set to 0.

0 Carry flag (C)

When execution of an operation creates a carry, this bit is set to
1; otherwise, it is set to 0. There are three types of carries:

1. Carries caused by addition
2. Borrows caused by subtraction
3. Carries caused by shift/rotates

The carry flag has a bit accumulator function that can be used by
bit manipulation instructions.

1.1.3 Data Configuration

The H8/300H can work with 1-bit, 4-bit BCD, 8-bit (byte), 16-bit
(word), and 32-bit (longword) data. 1-bit datais handled with bit
manipulation instructions and accessed asthe nth bit (n=0, 1, 2, ...,
7) of the operand data (byte). In the DAA and DAS decimal adjust
Instructions, byte data is two columns of 4-bit BCD data.

Data Configuration of Registers: Table 1.2 shows the
configuration of datain the registers.

Tablel2 Register Data Configuration

Data Type Register No. Data Image

1 bit RnH 7 o __________
7l6[5]4[3[2[1]o] = Don'tcare |
RnL 7 o __________
7l6[5]4[3[2[1]o] ~ Don'tcare |

4-bitBCD RnH Lower column
7 43 o
Don'tcare |

Upper column

RnL Lower column
7 43 0

Byte RnH 7 o
Don'tcare |
rRo 7 0
| _Dontcare [,]
Word Rn 15 0
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
En 15I T T T T T T T T T T T T T T 0
| 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
Long Word ERn |3]-I T T T T T T T T T T T T T];6|15I T T T T T T T T T T T T T T Ol
En Rn
Legend

ERnN: General register (long word size)
RnH: Top of general register

RnL: Bottom of general register

MSB: Most significant bit

LSB: Least significant bit

Data Configuration in Memory: Table 1.3 shows the configuration
of datain memory. The H8/300H CPU can access word and longword
datain memory. The MOV.W and MOV .L instructions are limited to
data that starts from even addresses. When accessing word or long
word data that starts from odd addressees, the LSB of the addressis
considered 0 and data is accessed starting from the address one
before. In such cases, no address errors are produced. The same
applies to instruction code.

Tablel1.3

Memory Data Configuration

Data Type Memory Image
1 bit

nthaddress | 7 | 6 | 5| 4 [3]2]1]o0
Byte

nth address | MSB LSB
Word

Even address | MSB

Odd address LSB
Long word

Even address | MSB

Odd address

Even address

Odd address LSB

1.1.4 Address Space

There are two H8/300H operating modes. normal mode and
advanced mode. Table 1.4 describes the operating modes and figure
1.4 shows the memory maps for these two modes. The mode pin of
the LSl is used to select the mode. See the hardware manual of the

product in question for more information.

Tablel.4

Address Space for Normal and Advanced Operating M odes

CPU Operating Mode Description

Normal Supports up to a maximum of 64 kbytes of address space. In this mode,
the top 8 bits of the address are ignored and memory is accessed on 16-
bit addresses.

Advanced Supports up to a maximum of 16 Mbytes of address space. Can access

continuous space by using the 24-bit PC and extended registers in

combination.

Normal mode

H
0000 On-chip ROM
On-chip RAM

H'EEFE I/O space

Advanced mode

"
000000 On-chip ROM
On-chip RAM

HFFFFFF| VO space

Figure1.4 Memory Map

1.15 Addressing Mode

The H8/300H supports the eight addressing modes shown in table
1.5. The usable addressing modes vary for each instruction.
Addressing modes are explained below using the various MOV

commands as the primary example.

Tablel5 Addressing Modes

Addressing Mode

Use

Register direct

Specify registers

Absolute addressing

Register indirect

Post-increment register indirect

Pre-decrement register indirect

Register indirect with displacement

Memory indirect

Program counter relative

Specify address

Immediate

Specify constants

Register Direct: The register name (ERO-ER7, RO-R7, EO-E7,
ROH/ROL—R7H/R7L) is written in the operand and the contents of
that register become the subject of the instruction (figure 1.5).

Example: MOV.L EROQ, ER1

Specify
register

————— +(ERQ)| 01234567

Transfer

A 4

ER1 | 01234567

Figurel5 Register Direct

Absolute Addressing: Specifies the address directly. Addresses

are usually specified as 24 bits in advanced mode and 16 bitsin

normal mode, but can be accessed by specifying only the lowest 16

bits or 8 bits when the absolute address area is 16 bits (H'000000—
H'007FFF, H'FF8000—H'FFFFFF) or 8 bits (H'FFFFOO-H'FFFFFF) (figure
1.6).

MOV. L @H'1000:16, ER1

Value sign-extended to
24 bits becomes the

Transfer

|
|
Specify !
ad%re?sl | address.
| 001000
| Sign extension
77000000
! N
|
16-bit 001000 g%
absolute
45
address =
area _
_3___007FFF
ER1 | 01234567

MOV. L @H'100000:24, ER1

Transfer

|
|
|
Specify |
address:
|
|
'»100000y 01
100001 23
100002 | 45
100003 67
ER1 | 01234567

MOV. L @H'9000:16, ER1

Value sign-extended to
24 bits becomes the

|
|
Specify : address
address | :
! FF9000
! Sign extension
“F 1" FrB000
| :
|
16-bit | F9000 :(2%
absolute 45
address 67
area
: Transfer
_y__FFFFFE
ER1| 01234567

MOV. B @H'30:8, R1H
=20

The value with the upper
bits all 1 becomes the

|
|
i |
an%?ggZ : address.
! FFFF 30
|
—_—— I ______
F 1 FFFFOO|
| :
|
8-bit ~EFFF3O 45 |
absolute
address
area
Transfer
_y__FFFFFE
Y
R1H 45

Figure1.6 Absolute Addressing

Register Indirect: The addressis specified by the lowest 24 hits of
the 32 bit register (figure 1.7).

Example: MOV. L @ERO, ER1

31 24 23 0
ERO | Don't care | 100000
N

Address
Address specified by the lowest 24 bits of ERO

address

|
I
|
|
;
Specify |
|
|
|
|
|
|
|
|

----- »00000| 01

100001 23
100002 45
100003 67

Figurel.7 Register Indirect

Post-Increment Register Indirect: The addressis specified by
the lowest 24 bits of the 32 bit register ERn. After instruction
execution, the operand sizevalue (B: 1, W: 2, L: 4) isadded to the
contents of the 32-bit register ERn (figure 1.8).

Example: MOV. L @ERO+, ER1

v 31 24 23 0 h

ERO | Don't care | 100000 |
N J
Specifiy After instruction Address
executioni
31 24 23 0
ERO | Don't care | 100004 |

After address is specified by the lowest 24 bits of ERO,

|
|
|
|
|
|
|
|
|
|
;
address !
|
|
|
|
|
|
|
|
|
|
|
|
|

_ ERQO is incremented by four. Y.
bmmm - 00000 01

100001 23
100002 45
100003 67

Figure1.8 Post-Increment Register Indirect

Pre-Decrement Register Indirect: The addressis specified by the
lowest 24 hits of the 32 bit register ERn. Before instruction execution,
the operand size value (B: 1, W: 2, L: 4) is subtracted from the
contents of the 32-bit register ERn (figure 1.9).

Example: MOV. L @-ERO, ER1

v 31 24 23 0 N

|
|
|
|
: ERO | Don't care | 100008 |
! N J
| Address
Specify | ERO is decremented
address ! by four.l
! 31 24 23 0
! ERO | Don't care | 100004 |
|
i After ERO is decremented by four, the address is specified
! _ by the lowest 24 bits of ERO. Y,
|
|
|
b 00004 01

100005 23
100006 45
100007 67

Figure1.9 Pre-Decrement Register Indirect

Register Indirect with Displacement: The address is specified

by the lowest 24 bits of the 32 bit register ERn plus a signed
displacement of 16 bits or 24 bits. The results of this addition are not
saved in the 32-bit register ERn (figure 1.10).

Example: MOV. L @(H'1000:16. ERO), ER1

24 23

0 h

ERO | Don't care |

100000 |

address

+)

(+1000) <«— Displacement

The address is the lowest 24 bits of ERO
plus the signed 16-bit displacement (+1000).

101000 <— Address

I
|
|
|
|
|
|
|
|
|
Specify :
|
|
|
|
|
|
|
|
|
|
|

o %
----+101000 01
101001 23
101002 45
101003 67

Transfer
31 A 0
ER1 | 01234567

Mnemonic:

@(displacement:16, ERn): signed displacement is 16 bits
@(displacement:24, ERn): signed displacement is 24 bits

Figure1.10 Register Indirect with Displacement

Example: MOV. L @(H'FO0000:24, ERO), ER1

N

24 23

0

ERO | Don't care |

300000 |

address

+) (-10000)

200000 <— Address

The address is the lowest 24 bits of ERO
plus the signed 24-bit displacement (-100000).

\

<— Displacement

/

|
|
|
|
|
|
|
|
|
|
|
Specify :
|
|
|
|
|
|
|
|
|
|
|

200001

01
23

200002

200003

45
67

31 \4

Transfer

ER1 |

01234567

Figure1.10 Register Indirect with Displacement (cont)

Memory Indirect: Uses branch address specification with the JISR
and JMP instructions. The branch addressis on the 8-bit memory
indirect address area (advanced mode: H'000000—H'0000FF, normal
mode: H'0000—H'00FF). To specify the branch address, specify the
lower 8 bits of the address that stores the branch address. The
addressis stored in 2-byte unitsin normal mode and in 4-byte units
for advanced mode (the first byte isignored). Note that the top
region of the 8-bit memory indirect address area is shared with the
exception processing vector area. For more information, see the
hardware manual for the LSI in question (figure 1.11).

Example: JSR @ @H'F8

(Advanced mode)

4 H'000000

Exception
processing
vector
region

8-bit
memory | H0000F3

indirect H'0000F4
address

area

H'0000F8| Don't care

10
00 Branch address

00

¥_H'0000FF

Figure1.11 Memory Indirect

Example: JSR @@H'BA (subroutine branch to address 1000)

(Normal mode)

Exception
processing
vector
Hoo7g| egion
H'007A
8-hit
memory
indirect
address
area
H'O0BA 10 Branch address
00
Y H'OOFF

Figure1.11 Memory Indirect (cont)

Program Counter Relative: Used to specify branch addresses

using the Becc or BSR instructions. It specifies the displacement of the
branch address (signed 8-bit or signed 16-bit). Displacement is

added to the contents of the PC and the address at the branch
destination is generated. The PC contents become the start address of
the next instruction, so the branchable areafor the Bcc and BSR
Instructions are —126 to +128 bytes or —32766 to +32678 bytes.
Normally, the branch destination symbol is specified rather than the
displacement (figure 1.12).

BSR ABC

ABC: ADD. W RO, E1

Figure1.12 Program Counter Relative

Immediate: Directly specifies the data on the instruction (figure

1.13).
Example: MOV.L #H'01234567, ERO
Transfer
\ 4 0
ERO | 01234567 |
Figure1.13 Immediate Addressing
116 Instructions

H8/300H CPU instructions have the following features:
« Instructions use ageneral register architecture

» A simplified and optimized 62-instruction basic set

« The common instruction length is 2 or 4 bytes

* High-speed executable multiplication and division instructions and powerful bit manipulation

instructions

» 8typesof addressing modes

Instruction Types: There are atotal of 62 H8/300H CPU
instructions that are categorized according to function (table 1.6).

Tablel.6 Instruction Categories
Function Instruction Type
Data transfer instructions MOV, PUSH, POP 3
Arithmetic operations ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS, 18
instructions DAA, DAS, MULXU, DIVXU, MULXS, DIVXS, CMP,
NEG, EXTS, EXTU
Logic operations instructions AND, OR, XOR, NOT 4
Shift instructions SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,
ROTXR
Bit manipulation instructions BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR, 14
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST
Branching instructions Bcc, JMP, BSR, JSR, RTS 5
System control instructions RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP, 9
TRAPA
Block transfer instructions EEPMOV 1

Section 2 Instructions

21 Data Transfer Instructions

211 MOV
MOV (Move): Transfers 8-bit, 16-bit or 32-bit data (figure 2.1).

B
Mov. {va} [
—" —I_— Destination operand

Source operand
Operand size
Mnemonic

Figure2.1 MOV

Table21 MOV

Mnem- Op. Source Dest.
onic Sz. Operand Op. Description
MOV B RnHor RnL RnH or 7 0 7 0
RnL | > |
RnH or RnL RnH or RnL
W RnorEn Rn or 15 0 15 0
En | > |
L ERnN ERnN 31 0 31 0
[-] |
ERnN ERnN
B @ERnN RnH or 7 0
@(d:16,ERn) RnL
@(d:24,ERn) RnH or RnL
@-ERn
w gaa:ie Rn or
aa:
En
@aa24 Even address
15yRnor Eny 0O
L ERnN
Even
address

3lvy v ERn l v O

B RnHorRnL @ERnN 7 0

@(d:16, C —»
ERn) RnH or RnL

@(d:24,
w Rn or En ERnN)
@ERN+
@aa:8 15 [RnorEn| O
@aa:16

@aa:24

Even address

A 4

L ERn >

Even

» address
31 ERN 0

Table21 MOV (cont)

Mnem- Op. Source Dest.
onic Size Operand Op. Description
MOV B #xx:8 RnH 7 0
(Con’[) or RnL #xx:8 E
RnH or RnL
W #xx:16 Rn or 15 0
En wocle—»]
Rn or En
L #xx:32 ERn 31 0
#xx:32 —» |

ERnN

212 PUSH, POP

PUSH (Push Data): Saves the contents of register to stack (figure 2.2).
POP (Pop Data): Recovers the contents of register from stack (figure
2.2).

PUSH. [VIY] [

—|__ Source operand

Operand size

Mnemonic
w
POP. [L]]
—I: J Destination operand
Operand size
Mnemonic

Figure2.2 PUSH, POP

Table22 PUSH, POP

Destination
Operand
Mnem- Source (Source
onic Operand Operand) Description

PUSH W (Rn, En) After 2 is subtracted from the stack pointer, the contents of
16-bit registers Rn and En are saved to the stack.

Stack

«-SP
E:

15 0 «sp
Enor Rn
The instruction is the same as MOV.W Rn, @-SP or MOV.W
En, @-SP.

L (ERN) After 4 is subtracted from the stack pointer, the contents of
32-bit register ERn are saved to the stack.

Stack
«SP
>_4
<SP

The instruction is the same as MOV.L ERn, @SP—.

o
\A/

31
[H'xx][xx [xx | xx |
ERn

POP w Rn, En The contents of 16-bit registers Rn and En saved to the stack
are recovered. After recovery 2 is added to the stack pointer.

Stack
H'Xx |«-Sp
) +2

XX

15y 0 «Sp

En or Rn

The instruction is the same as MOV.W @SP+,Rn or MOV.W
@SO+, En.

L ERn The contents of 32-bit register ERn saved to the stack are
recovered. After recovery 4 is added to the stack pointer.

Stack
H'xX e—gp

XX
X X +4
XX
|31v | v | v | £0| e SP
ERn

The instruction is the same as MOV.> @SP+, ERn.

2.2 Arithmetic Operation Instructions

221 ADD, SUB

ADD (ADD binary): Summand (8 bit) + addend (8 bit) = sum (8
bit), or

Summand (16 bit) + addend (16 bit) = sum (16 bit),
or
Summand (32 bit) + addend (32 bit) = sum (32 hit)
SUB (Subtract binary): Subtrahend (8 bit) — minuend (8 bit) =
difference (8 bit), or
Subtrahend (16 bit) — minuend (16 bit) = difference
(16 bit), or
Subtrahend (32 bit) — minuend (32 bit) = difference
(32 bit)
Figure 2.3 shows examples of ADD and SUB.

ADD| [B
su||lw[E2 LI

j— Destination operand
Source operand
Operand size
Mnemonic

Figure2.3 ADD, SUB
Table23 ADD, SUB

Mnem- Operand Destination Source

onic Size Operand Operand Description
ADD B RmH or RmL #xx:8
SuUB or RnH
or RnL H'xx
7v O #xX:8
Hxx [£9 7 0 =
RmH or RmL
L RnH or RnL
w Rm or Em #xx:16
Cél’ Rn or H'xxxx
n v .
[CHoooo g X0 =
Rm or Em
L RnorEn
L ERmM #xX:32 or
ERn H')XXXXX XXX
Y . _
H'xxxxxxxx | E #xx:32 -
e
ERmM
ERnN

222 ADDX, SUBX

ADDX (ADD with Extend Carry): Adds with C flag (carry from bottom)
included (figure 2.4).

SUBX (Subtract with Extend Carry): Subtracts with C flag (borrow
from bottom) included (figure 2.4).

ADDX}

susx |- B O, CJ

—I_— Destination operand
Source operand

Mnemonic

Figure2.4 ADDX, SUBX

Table24 ADDX, SUBX

Mnem- Operand Source Destination
onic Size Operand Operand Description
ADDX B #xx:8 or RmH or
SUBX RnH or RnL RmL H'xx
H'xx | % =
H'xx
RnH or RnL

223 INC,DEC

INC (Increment): Adds 1 to contents of 8-hit, registers RnH or RnL
(figure 2.5). Adds 2 to the contents of 16-bit registers Rn or En and
32-bit register ERnN.

DEC (DECrement): Subtracts 1 from contents of 8-bit, registers RnH or
RnL (figure 2.5). Subtracts 2 from the contents of 16-bit registers Rn

or En and 32-bit register ERn.

INC W | |#1
DEC('] L [J#2[B2
j - Destination operand
Operand size

Mnemonic
|NC} B [
DEC (-
—I_— Destination operand
Operand size
Mnemonic

Figure2.5 INC, DEC

Table25 INC, DEC

Mnem- Operand Destination

onic Size Operand Description
INC B RnH or RnL 7 0
DEC £1=
RnH or RnL
W Rnor En

15 0 (1
[oo |+,

Rn or En

L ERn

H'XXXXX XXX

ERnN

T

224 ADDS, SUBS

ADDS (Add with Sign Extension): Adds 1, 2 or, 4 to the contents of the
32-bit register ERn (figure 2.6).

SUBS (Subtract with Sign Extension): Subtracts 1, 2 or 4, from the
contents of the 32-bit register ERn (figure 2.6).

ADDS} Z; r
SUBS » ERN
T #4
Destination operand

Source operand
Mnemonic

Figure2.6 ADDS, SUBS
Table26 ADDS, SUBS

Mnem- Operand Source Destination

onic Size Operand Operand Description
ADDS — #lor#2 ERn v
SUBS or #4 p ~
31 0 1
| H'xXxxxxxxx |i 2=
ERnN 4

225 DAA,DAS

DAA (Decimal Adjust Add): Adjusts the sum from binary addition of
2 columns of 4-bit BCD datato 4-bit BCD data (figure 2.7).

DAS (Decimal Adjust Subtract): Adjusts the difference from binary
subtraction of 2 columns of 4-bit BCD data to 4-bit BCD data (figure
2.7).

DAA

DAS } :l—E
Destination operand

Mnemonic

Figure2.7 DAA,DAS
Table2.7 DAA, DAS

Mnem- Destination
onic Operand Description

DAA RnH or RnL The results of binary addition or subtraction of 2 columns of 4-bit BCD data
is adjusted to 2 columns of 4-bit BCD data.

DAS

Upper Lower
column column

226 MULXU,DIVXU, MULXS, DIVXS

MULXU (Multiply Extended Unsigned): Multiplicand (8 bit) +
multiplier (8 bit) = Product (16 bit), or Multiplicand (16 bit) +
multiplier (16 bit) = Product (32 bit)

DIV XU (Divide Extended Unsigned): Dividend (16 bit) + divisor (8
bit) = Quotient (8 bit), Remainder (8 bit), or Dividend (32 bit) +
divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)

MULXS (Multiply Extended Signed): Multiplicand (8 bit) + multiplier
(8 bit) = Product (16 bit), or Multiplicand (16 bit) + multiplier (16

bit) = Product (32 hit)

DIV XS (Divide Extended Signed): Dividend (16 bit) + divisor (8 bit) =
Quotient (8 bit), Remainder (8 bit), or Dividend (32 bit) + divisor (16
bit) = Quotient (16 bit), Remainder (16 bit)

Figure 2.8 shows examples of MUL XU, DIVXU, MULXS, and DIVXS.

MULXU
MULXS B
DIVXU [w2

DIVXS “T—— Destination operand

T Source operand
Operand size

Mnemonic

Figure2.8 MULXU, DIVXU, MULXS, DIVXS

Table28 MULXU, DIVXU, MULXS, DIVXS

Mnem- Op. Source Destination
onic Size Operand Operand Description
MULXU B RnH or Rm or Em p lj
MULXS RnL roduct
H'xxxx
f_/%
15 87 0 7 0
L—THxx] x [Hxx | =
Rmor Em RnHor RnL
W Rn or En ERmM Proauct
H'xXXXXXXX
v
4 N\
31 16 15 0 15 0
| | H'xxxx |><| H'xxxx |=
ERmM Rn or En
DIVXU B RnH or Rm or Em — L
DIVXS RnL Remainder Quotient
H'xx H'xx

|

——— ——

15 87 0 7 0

| H'xxxx |+ H'xx]=
Rm or Em RnH or RnL

w RnorEn ERm ,—i—\

Quotient Remainder

H'xxxx H'xxxx
v v
r N\ Al
31 16 15 0 15 0
| H'XXXXXXXX |[+[H'xxxx |=
ERm Rn or En

227 CMP

CMP (Compare): Compares pairs of 8-bit, 16-bit, or 32-bit data
(figure 2.9).

Operand size
Mnemonic

B

- {W} .1
L —I_— Destination operand
T Source operand

Figure2.9 CMP

Table29 CMP

Mnem- Op. Source Dest.

onic Size Op. Op. Description
CMP B #xx:8 RnH Hrxx
RnHor or

RnL RnL 0 #xx:8
H' x x|— 7 0
RnH or RnL H'xx

RnH or RnL
W #xx:16 Rnor H'sxxx
orRnor En
#xx:16
En
H XXX X
Rn or En IMI
Rn or En
L #xx:32 ERnN H')Xx XXX XXX
or ERn 31 0 #xx:32
| H'XXXXXXXX | -
ERnN 31 0
| H'XXXXXXXX |
ERnN

228 NEG

NEG (Negate): Takes the two complement of 8-bit registers RnH and
RnL, 16-bit registers Rn and En, and 32-bit register ERn. (figure 2.10)

B
NEG. {W} [
L
‘I: —I__ Destination operand
Operand size

Mnemonic

Figure2.10 NEG

Table2.10 NEG

Mnem- Op. Destination
onic Size Operand Description
NEG B RnH or RnL 7 0
0 [Chwe =
RnH or RnL
w Rnor En 15 0
0- -
Rn or En

L ERnN 31 { 0
0-] ' |

H')XXXXXXX =

ERnN

229 EXTS EXTU

EXTS (Extend as Signed): Sign-extends from 8 bit to 16 bit or from 16
bit to 32 bit (figure 2.11).

EXTU (Extend as Unsigned): Zero-extends from 8 bit to 16 bit or from
16 bit to 32 hit (figure 2.11).

EXTU
EXTS

T Destination operand

Operand size
Mnemonic

Figure2.11 EXTS, EXTU

Table2.11 EXTS, EXTU

Mnem- Op. Destination
onic Size Operand Description
EXTU W Rn or En Zero extended
—
15 87 0
Rn or En
L ERN Zero extended
——
31 16 15 0
[Ho0000 | Hxxxx |
ERN
—N
15 87 0
When positive
Rn or En
Sign extension
——
15 87 0
When negative
Rn or En
L ERnN Sign extended
31 16 15 0
When positive | H' 0000 | H'xxxx |
ERnN

Sign extension

31 16 15 0
When negative | H FFFE | H'xxxx |
ERnN

2.3 Logic Operation Instructions

231 AND,OR, XOR,NOT

AND (And logical): Takesthelogical product of pairs of 8-bit, 16-bit,
or 32-bit data (figure 2.12).

OR (Inclusive Or Logical): Takesthelogical sum pairs of 8-bit, 16-bit,
or 32-bit data (figure 2.12).

XOR (Exclusive Or Logical): Takesthe exclusive logical sum of pairs of
8-bit, 16-hit, or 32-hit data (figure 2.12).

NOT (NOT = Logical Complement): Logically inverts pairs of 8-bit, 16-
bit, or 32-bit data(figure 2.12).

AND B
£ s

X_‘O,R _||: Jj — Destination operand

Source operand
Operand size
Mnemonic

B
NOT. {W}]
—[L J Destination operand
Operand size

Mnemonic

Figure2.12 AND, OR, XOR, NOT

Table2.12 AND, OR, XOR, NOT

Mnem- Op. Dest. Source
onic ~ Size Op. Op. Description
AND B RmH #xx:8 .
OR or or RnH H'xx
XOR RmL orRnL 7 0 #xX:8 _
Hxx | D 7 0 =
RmH or RmL
RnH or RnL
\W Rmor #xx:16
Em or Rn or H'xxxx
En 15 0 #xx:16
H'xxxx 03 15 o=
Rm or Em
Rn or En
L ERm #xx:32
or ERn H')XxXXXXXX
31 0 ' ~
| H'xxxxxxxx ||:| 31 #xx:32 0r=
ERmM | H XX XXX XXX |
ERnN
NOT B RmH —
o 7 0
RmL H'xx |=
RmH or RmL
W Rmor —
Em 15 0
[Hoooxx =
Rm or Em
L ERm —

H'xxXxXXXXX

ERm

24 Shift Instructions

241 SHAL,SHAR,SHLL,SHLR,ROTL, ROTR, ROTXL, ROTXR

The contents of 8-bit, 16-bit, and 32-bit registers can be shifted in
the eight ways shown below (figure 2.13).
SHAL (Shift Arithmetic Left): Does an arithmetic shift 1 bit | eft.

SHAR (Shift Arithmetic Right): Does an arithmetic shift 1 bit right.

SHLL (Shift Logical Left): Doesalogica shift 1 bit left.

SHLR (Shift Logical Right): Does alogical shift 1 bit right.

ROTL (Rotate Left): Rotates 1 bit left.

ROTR (Rotate Right): Rotates 1 bit right.

ROTXL (Rotate with eXtend carry Left): Rotates 1 hit left including the C flag.

ROTXR (Rotate with eXtend carry Right): Rotates 1 bit right including the C flag.

SHAL)

SHAR

SHLL

SHLR B

ROTL w ||

ROTR | - L

ROTXL L

ROTXR | T —Destlnatlor_l operand
Operand size
Mnemonic

Figure2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Table2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Mnem- Destination

onic Operand Description
SHAL RnH or Cflag MSB LSB
RnL, Rn or [4—F]« [4—o0
En, ERNn RnH or RnL, Rn or En, ERN
SHAR MSB LSB Cflag
Al >
RnH or RnL, Rn or En, ERN
SHLL Cflag MSB LSB
= [4—o0
RnH or RnL, Rn or En, ERNn
SHLR MSB LSB Cflag

o—+ | [+

RnH or RnL, Rn or En, ERN

ROTL

Cflag | MSB LSB
[+ T< [«
RnH or RnL, Rn or En, ERN
ROTR MSB LSB | Cflag
— | [+

RnH or RnL, Rn or En, ERN

ROTXL Cflag MSB LSB
| < | «—

RnH or RnL, Rn or En, ERnN

ROTXR MSB LSB Cflag
— | > |

RnH or RnL, Rn or En, ERN

2.5 Bit Manipulation Instructions

251 BSET,BCLR,BNOT,BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR,
BIXOR

Bit data can be accessed in the format of the nth bit (n=0, 1, 2, ..., 7)
of the 8-bit datain the 8-bit registers (ROH—-R7H, ROL—R7L) or on
memory. The bit numbers for such accesses are specified as 3-bit
immediate data or 8-bit register contents (lower 3 bits) (figure 2.14).

8-bit data

~ Memory
BSET 8-bit register (register indirect,
BCLR (ROH-R7H, ROL-R7L) 8-bit absolute address)
BNOT P 76543210 76543210
BIST #0 HEEEEEEN R HEEEEE
BLD #1
BILD #2
BST B #3
BIST #4
BAND #5
BIAND #6 Bit numbers (0-7)
BOR \HT 8-bit register (lower 3 bits)
BIOR (ROH-R7H, ROL-R7L) _
BXOR or Immediate data
BIXOR —111] HO—#7

- 000-111

Figure2.14 BSET, BCLR,BNOT,BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR

Table2.14 BSET,BCLR, BNOT,BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,

BXOR, BIXOR
Mnem-
Cate- onic (Full
gory Name) Description
Bit set BSET (Bit Sets the specified bit to 1. Specified bit
set) 1— |
Bit clear BCLR (Bit Clears the specified bit to O. Specified bit
clear) 0 _,l:,
Bit BNOT (Bit Inverts the specified bit. Specified bit
inversion not) I:l _>|:|
Bit test BTST (Bit Transfers the specified bit to the zero Specified bit Z bit
test) flag. D _,I:,
Bit BLD (Bit Transfers the specified bit to the carry Specified bit C bit
transfer load) flag. D _>|:|
BILD (Bit Transfers the inversion of the Specified bit C bit
invert load) specified bit to the carry flag. D _>|:|
BST (Bit Transfers the carry flag to the C bit Specified bit
store) specified bit. |:| _>|:|
BIST (Bit Transfers the inversion of the carry C bit__Specified bit
Invert store) flag to the specified bit. D _>|:|
Bit AND BAND (Bit Takes the AND of the specified bit Specified bit C bit C bit
and) and the carry flag and transfers the D A D ,D

result to the carry flag.

BIAND (Bit Takes the AND of the inversion of the Specified bit C bit C bit

invert and) specified bit ad the carry flag and A >
transfers the result to the carry flag. D D D

Table2.14 BSET, BCLR, BNOT,BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR (cont)

Mnem-
Cate- onic (Full
gory Name) Description
Bit OR BOR (Bit Takes the OR of the specified bit and Specified bit C bit C bit
inclusive or) the carry flag and transfers the result V. >
to the carry flag. D D D
BIOR (Bit Takes the OR of the inversion of the Specified bit C bit C bit
invert specified bit and the carry flag and V; >
inclusive or) transfers the result to the carry flag. D D D
Bit BXOR (Bit Takes the exclusive OR of the Specified bit C bit C bit
exclusive exclusive or) specified bit and the carry flag and D > D .,I:l
Or transfers the result to the carry flag.
BIXOR (Bit Takes the exclusive OR of the Specified bit C bit C bit
invert inversion of the specified bit and the D fas D ,D

exclusive or) carry flag and transfers the result to
the carry flag.

2.6 Branch Instructions

2.6.1 Bcc

Bcc (Branch Conditionally): Thisinstruction branches when a
condition is met (figure 2.15).

Bcc _

"T— Operand

Mnemonic

Figure2.15 Bcc

Table2.15 Bcc

Mnem-
onic Operand Description
Bcc d:8 or d:16 When the condition is met, the displacement (signed 8 bit or 16 bit) to
the branch
23 0 J
| H'xxxxXxx | + H'xx =
PC d:8
23 0 J
| H'xxxxxx | + H'xxxx =
PC d:16
Mnemonic Description Branch Condition
BRA (BT) Always (True) Always
BRN (BF) Never (False(never
BHI High CVvZz=0
BLS Low or same Cvz=1
BCC(BHS) Carry clear (highorsame) C=0
BCS(BLO) Carry set (Low) c=1
BNE Not equal Z=0
BEQ Equal zZ=1
BVC Overflow clear V=0
BVS Overflow set V=1
BPL Plus N=0
BMI Minus N=1
BGE Greater or equal NOV=0
BLT Less than NOV=0
BGT Greater than ZV(NOV) =0
BLE Less or equal ZV(NOV) =0
26.2 JMP

JMP (Jump): Jumps unconditionally to branch destination (figure
2.16).

JMP =

— Operand

Mnemonic

Figure2.16 JMP

Table2.16 JMP

Mnem-
onic Operand Description

JMP @ERNn or Branch destination address transferred to PC
@aa:24 or

31 2423 0)
Q@Q@aa:8 @ERn | | H XXX XXX |
ERn
@aa:24 H' xxxxxx 23
————>
PC

. H'xx
@@aa:8 X
XX

_/

263 BSR,JSR

JSR (Jump to Subroutine, BSR (Branch to Subroutine): Instructions
that jump to subroutines (figure 2.17).

=
"T— Operand

Mnemonic

BSR
JSR

Figure2.17 BSR,JSR

Table2.17 BSR,JSR

Mnem-
onic Operand Description

BSR d:8 ord:16 The contents of the PC are saved to the stack and the displacement (signed
8 bit or signed 16 bit) tot he subroutine start destination is added to the PC

contents
(Advanced mode) (Normal mode)
<SP
—4 fSPj
-2
23 0 <SP 15 0 <SP
[Hxx | xx | xx | | [Hxx | xx |

PC

23 v 0 J
[H'xxxXxX |+ H'xx =

PC d:8
23 v 0 J
[H'xxXXXxx [+ H'xxxx =
PC di6

JSR @ERn or The contents of the PC are saved to the stack

@aa:24 or
@@aa:8 (Advanced mode) (Normal mode)
Stack
<SP Stack
_4 > <‘SP3
23 0 <«SP 15 0 <SP
|H'><x|><><|x><| | |H'xx|><><|
pC PC
31 24 23 0 A
@ERN | [H > xxx X x |
ERN
@aa:24 H'xxxxxx 23 0
— |
PC
H'xx
@@aa:8 XX
XX
/
264 RTS

RTS (Return from Subroutine): Returns from a subroutine (figure
2.18).

RTS
J B Mnemonic

Figure2.18 RTS

Table2.18 RTS

Mnem- Op. Source Destination
onic Size Operand Operand Description
RTS — — — When jumping to a subroutine using BSR or JSR,

the contents of the PC saved in the stack are
transferred back to the PC. After the transfer, the
stack pointer is incremented (+2 for normal mode
and +4 for advanced mode

(Normal mode)
Stack

pC*SP)_'_Z

Y : <« SP

(Advanced mode)
Stack

<« SP
PC] >+4

Y Y ; . <« SP

2.7 System Control Instructions

271 RTE

RTE (Return from Exception): Returns for exception processing
program. (figure 2.19)

RTE
- Mnemonic

Figure2.19 RTE

Table2.19 RTE

Mnem- Op. Source Dest.
onic Size Op. Op. Description

RTE — — — When a hardware interrupt or software interrupt (TRAPA
instruction) occurs, the CCR and PC automatically saved to the
stack by the hardware are returned from the stack

Stack

CCR [+SP

pC >+4

7v 0 23y v ; 0 l«SP

272 SLEEP

SLEEP (Sleep): The SLEEP instruction places the CPU in power-down
status (figure 2.20). In power-down status, the internal state of the

CPU is maintained and instruction execution halted to wait for a
reguest for exception processing to occur. When arequest for
exception processing does occur, the power-down state is cleared and
the CPU begins exception processing. Any interrupt requests other

than NM1 will be masked on the CPU side at this time so the power-
down status will not be cleared.

SLEEP
Mnemonic

Figure2.20 SLEEP

273 LDC,STC

LDC (LodD to Control Register): Transfers 8-bit data to the CCR (figure
2.21).

STC (Store from Control Register): Transfers the contents of the CCR to
register or memory (figure 2.21).

stchlw! B8
T Destination operand
Source operand
Operand size
Mnemonic

Figure2.21 LDC,STC

Table2.20 LDC,STC

Mnem- Op. Destination Source
onic Size Operand Operand Description
LDC B #xx:8 CCR The 8-bit immediate data or the contents of the
or RnH or RnH or RnL 8-bit registers are transferred to the
RnL CCR
H'xx
#xx:8 7 0
7 0
CCR
RnH or RnL
W @ERnN The contents of the even address are transferred
@(d:16,ERn) to the CCR
@(d:24,ERn)
ER 7 0
@-ERn Even address | H'xx —s[|
@aa:8 CCR
@aa:16
@aa:24
STC B CCR RnH or RnL The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR
7 0 7 0
L]
CCR RnHor RnL
w @ERnN The contents of the even address are transferred
@(d:16,ERn) tothe CCR
@(d:24,ERn) 0 7
@ERn+ [Hxx > Even address
@aa:8 CCR
@aa:16
@aa:24

274 ANDC, ORC, XORC

These instructions do logical operations with the contents of the CCR

(figure 2.22).
ANDC (AND Control Register): Takesthe logical product.

ORC (Inclusive OR Control Register): Takes the logical sum.

XORC (Exclusive OR Control Register): Takesthe exclusive logical sum.

ANDC

ORC } #xx:8, CCR

XORC Destination operand

Source operand
Mnemonic

Figure2.22 ANDC, ORC, XORC

Table2.21 ANDC, ORC, XORC

Mnem- Op. Destination Source

onic Size Operand Operand Description

ANDC B CCR #xx:8

ORC 7 v O(U

XORC H'xx | O Hxx =
CCR 'O/ #xx:8

275 NOP

NOP (No Operation): Only increments the PC by 2. No effect on the
internal status of the CPU (figure 2.23).

NOP
J I Mnemonic

Figure2.23 NOP

276 TRAPA
TRAPA (Trap Always): Generates a software interrupt (figure 2.24).

40

TRAPA < 71
#2
43

Figure2.24 TRAPA

Table2.22 TRAPA

Mnem-
onic Operand Description

ANDC #0 or #1 or CCR and PC saved to stack
ORC #2 or #3

XORC > le—SpP
- 4
«—SP
|H'><><| |H'><x| XX | XX |
CCR PC
|
i]
CCR

Vector Address

#XX Normal Mode Advanced Mode

0 H'0008-H'0009 H'000010-HO00013
1 H'000A-H'000B H'000014-H000017
2 H'000C-H'000D H’'000018-H0O0001B
3 H'000E-H'000F H’00001C-HO0001F

2.8 Block Transfer Instructions

281 EEPMOV

EEPMOV (Move datato EEPROM): Transfer block data to any address.
No interrupts will be detected during the data transfer (figure 2.25).

B
EEPMOV - {w}
- Operand size

Figure2.25 EEPMOV

Table2.23 EEPMOV

Mnem- Op.

onic Size Description

EEP- B Transfers the block data that starts at the address in ER5 to the address in ERG6.
MOV The maximum block data length is 255 bytes.

Number of bytes to transfer H'xxxxxX

R4L
Transfer source

address

Transfer destination ER5

H' OO byte

address

ER6

H'AAAAAN

H' OO byte

The maximum block data length is 65535 bytes.

Number of bytes to transfer[H' 0000 H 0

R4L
Transfer source

address L__H0ooox]

ER5
Transfer destination

address

ERG6
H'AAAAAA

Transfers the block data that starts at the address in ER5 to the address in ER6.

H'O0O0OO byte

H'O0O0OO byte

Section 3 Load Module Conversion Procedures

Figures 3.1 through 3.4 show the load module conversion procedures
for the H8/300H.

Editor
(e.g. MIFES)

Assembler source file
(xxx.SRC)

Create the assembler source program using any editor (such as MIFES).

Figure3.1 Load Module Conversion Procedures (Step 1)

Assembler
(ASM38.EXE)

Input file Output file

iy Lyl

Assembler source flle Relocatable object file
(xxx.SRC) (xxx.OBJ), List file (xxx.LIS)

Convert the assembler source program to an object module using the assembler (ASM38.EXE).

Figure3.2 Load Module Conversion Procedures (Step 2)

Linkage editor
(LNK.EXE)

I fil fil .
nput file Output file Simulator
debugger
S In-circuit
emulator

Load module file
(xxx.ABS)

Relocatable object flle
(xxx.0OBJ)

Convert the object module to a load module using the linkage editor (LNK.EXE).

Figure3.3 Load Module Conversion Procedures (Step 3)

Load module converter
(CNVS.EXE)

Input file Output file

ﬁ — PROM writer

S -type format load

Load module file Pl
(xxx.ABS) module file (xxx.MOT)

Convert the load module to an S-type format load module using the load module compiler
(CNVS.EXE).

Figure3.4 Load Module Conversion Procedures (Step 4)

Section 4 Examples of Software Applications

41

Softwar e Applications Examples

Table 4.1 lists software application examples.

Table4.1 List of Software Application Examples

Software title Label Use Section

Block transfer MOVE MOV.L instruction, post-increment 43
register indirect

Block transfer using block transfer EEPMOV EEPMOV.W instruction 4.4

instruction

Branching using a table CCASE Register indirect with displacement 4.5

Count of number of logical 1 bits in HCNT ROTL.B instruction, ADDX.B 4.6

8-bit data instruction

Find first 1 in 32-bit data FIND1 SHLL.L instruction 4.7

64-bit binary addition ADD ADD.L instruction 48

64-bit binary subtraction SUB SUB.L instruction 49

Unsigned 32-bit binary multiplication MUL MULXU.W instruction 4.10

Unsigned 32-bit binary division DIV SHLL.L instruction, ROTL.L 411
instruction

Signed 16-bit binary multiplication MULXS MULXS.W instruction 4.12

Signed 32-bit binary multiplication MULS MULXU.W instruction 413

Signed 32-bit binary division (16-bit DIVXS DIVXS.W instruction 4.14

divisor)

Signed 32-bit binary division (32-bit DIVS SHLL.L instruction, ROTL.L 4.15

divisor) instruction, NEG.L instruction

8-digit decimal addition ADDD DAA.B instruction 4.16

8-digit decimal subtraction SUBD DAS.B instruction 4.17

Product/sum operations SEKIWA MULXU.W instruction 418

Sorting SORT Post-increment register indirect, pre- 4.19
decrement register indirect

4.2 Using Softwar e Examples

Sections 4.3 through 4.19 provide detailed information about the
software applications listed in table 4.1. The following information is
consistent throughout sections 4.3 through 4.19.

* Internal registers:

— ERO-ER7: 32-bit general registersthat link EnandRnn=0,1, 2, ... 7.
— EO-E7: 16-bit extended registers
— RO-R7: 16-bit general registersthat link RnH and RnL n=0, 1, 2, ... 7.
— ROH-R7H and ROL-R7L: 8-bit general registers

 Condition code register (shown in figures labeled “Changes in Internal Registers and Flag Changes ..."):

— C: Carry flag

— V: Overflow flag
— Z: Zeroflag

— N: Negativeflag
— U: User hit

— H: Half carry hit
— U: User hit

— |1 Interrupt mask bit

» Programming Specifications. Describes the specifications of the software.

— Program memory bytes.: Indicates the amount of ROM used by the software.
— Datamemory bytes.: Indicates the amount of RAM used by the software.

— Stack bytes.: Indicates the amount of stack used by the software. This does not include the stack used
by subroutine callsin the user program. When executing software, the amount of stack in bytes
indicated for the stack areais required, so ensure that the stack requirements are available in the data
memory before execution.

— Number of states: Indicates the number of statesin which the software is executed. The execution
time of the software is calculated as follows:

Execution time (s) = No. of states x Cycle time (s),

where
Cycle time (s) = 1/system clock frequency ¢ (Hz),

and
System clock frequency @ (Hz) = External pulse generator frequency 2 divider circuit version/2,

or
External pulse frequency 1:1 oscillation versions.

— Re-entrant: Indicates whether the structure can be used simultaneously from multiple programs.

— Relocation: Indicates whether the software will run normally no matter where in the memory space it
isplaced.

— Interrupts during execution: Indicates whether the software will run normally even after an interrupt

routine is executed when the software is running. If it won't, inhibit interrupts prior to calling the
software.

421 Program Listing Page Format (Format 4)

Thefollowing list explains the format of the programming list
software.

1. List line numbers

2. Location counter values

3. Object code

4. Source line numbers

5. Source statements

6. Comments

7-10 Assembler control instructions

Table 4.2 lists the assembler control instructions used by this
software. These instructions are described further in Appendix B,
Assembler Control Instruction Functions. For control instructions not
listed in table 4.2, see the H8/300H Series Cross-Assembler Users
Manual.

Table4.2 Assembler Control InstructionsList

Control Instruction Function

.CPU Specifies CPU

.SECTION Specifies section

.EQU Sets symbol value

.ORG Sets location counter values
.DATA Reserves integer data

.RES Reserves integer data space
.END End of source program

4.3 Block Transfer

M CU: H8/300H Series

Label Name: MOVE

Functions Used: MOV L Instruction, Post-Increment Register
Indirect

Function: Transfers block data (up to 65535 bytes) to any even
address.

Table4.3 MOVE Arguments

Contents Storage Location Data Length (Bytes)
Input Start address of transfer source ERO 4

Start address of transfer destination ER1 4

Number of bytes transferred ER2 2

Output — — —

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31

16 15 87

Start address of transfer source

Start address of transfer destinlation

Numtl)er of

bytes transferred

Work

>

: No change
: Changes

: Locked to O
: Locked to 1

Figure4.1 Changesin Internal Registersand Flag Changesfor MOVE

Program memory (bytes)

38

Data memory (bytes)

0

Stack (bytes)

0

Number of states

491580

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when H'FFFF bytes
are being transferred.

Figure4.2 Programming Specifications

431 Description of Functions

Arguments are as follows:

» ERO: Setsthe start address of the transfer source as the input argument

» ER1: Setsthe start address of the transfer destination as the input argument
» R2: Setsthe number of bytes to be transferred as the input argument

Figure 4.3 is an example of execution of the software MOV E. When
the input arguments are set as shown, the data at the transfer source
istransferred as a block to the transfer destination (results).

Input arguments

Results

s ERO
|Don'tcare|2:0|0:0|0:0|
ER1
|Don'tcare|1:0|0:0|0:0|
R2
!
-
Address 100000 47
FF
C6
Address 200000 47
FF
C6
-

1FFF bytes

1FFF bytes

Figure4.3 Executing MOVE

432 Cautionsfor Use

* Since R2is 2 bhytes, set datain the region H'0001 < R2 < H'FFFF.

 Set the input arguments so that the block data of the transfer source (area (A) of figure 4.4) and the block
data of the transfer destination (area (B) of the figure) do not overlap.

» When the transfer source and transfer destination overlap as shown in figure 4.4, the data of the transfer
source that overlaps (area (C) in the figure) is destroyed.

Memory space

Start address of
transfer source

Start address of @

transfer destination ﬁm }©

Figure4.4 Block Transfer with Overlapping Data

4.3.3 Description of Data Memory
No data memory is used by MOVE.

434 Examplesof Use

After setting the start address of the transfer source, the start
address of the transfer destination and the number of bytesto be
transferred, do a subroutine call to MOVE.

Table4.4 Block Transfer Example (MOVE)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the start
address of the transfer source in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the start
address of the transfer destination in the user program.
WORK 3 .RES. W1 Reserves the data memory area that sets the number
of bytes to be transferred in the user program.
MOV. L @WORK1,ERO Sets the start address of the transfer source as set in
the user program as an input argument.
MOV. L @WORK2,ER1 Sets the start address of the transfer destination as set
in the user program as an input argument.
MOV. L @WORK3, R2 Sets the number of bytes to be transferred as set in the

user program as an input argument.
Subroutine call to MOVE.

|| 3sR @move ||

435 Principlesof Operation
» When the datato be transferred is 4 bytes or more, the MOV .L instruction is used to do repeated
transfersin 4-byte units.

» When the data to be transferred isless than 4 bytes, the software switches to the MOV .B instruction to do
transfersin byte units.

Is number
of transfer bytes 4
or more?

No

| Number of transfer bytes + 4| @

| Number of transfer bytes — l|

Is the
number of transfer
bytes 0?

| 1-byte transfer

®

Figure4.5 MOVE Flowchart

436 Program Listing

4.4 Block Transfer Using Block Transfer Instruction

MCU: H8/300H Series

L abel Name: EEPM OV

Functions Used: EEPMOV.W Instruction

Function: Transfers block data (up to 65535 bytes) to any even
address using the block transfer instruction (EEPMOV.W).
Table45 EEPMOV Arguments

Contents Storage Location Data Length (Bytes)
Input Start address of transfer source ER5 4
Start address of transfer destination ER6 4
Number of bytes transferred R4 2
Output — — —
31 16 15 87 0
ERO
ER1
ER2
ER3

Number of bytes

ER4
transferred
ER5 Start address of transfer source
ERG6 Start address of transfer destination
ER7(SP)
| JU[HJU[INT]Z [V [c |—:Nochange
— |- | =] =] =] —=|—|— | t:Changes

0 : Lockedto O
1 :Lockedtol

Figure4.6 Changesin Internal Registersand Flag Changesfor EEPM OV

Program memory (bytes)

4

Data memory (bytes)

0

Stack (bytes)
0

Number of states

262148

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when H'FFFF bytes
are being transferred.

Figure4.7 Programming Specifications

44.1

Description of Functions

Arguments are as follows:

* ERS5: Setsthe start address (even address) of the transfer source.
» ERG6: Setsthe start address (even address) of the transfer destination.
* RA4: Setsthe number of bytesto be transferred.

Figure 4.8 is an example of execution of the software EEPMOVE.
When input arguments are set as shown, the data at the transfer
source istransferred as a block to the transfer destination (result).

Input arguments

Result

- ER5

|Don'tcare| 1 : 0 | 0 0 | 0

o]

ER6

|Don'tcare| 2 : 0 | 0 : 0 | 0

0]

R4

!

Address 200000 47

FF

C6

Address 100000 47

FF

C6

1FFF bytes

1FFF bytes

Figure4.8 Executing EEPMOVE

442 Cautionsfor Use

» Since R2is 2 bytes, set datain the region H'0001 < R2 < H'FFFF.

* Interrupts cannot be detected while EEPMOVE is executing.

 Set the input arguments so that the block data of the transfer source (area (A) of figure 4.9) and the block
data of the transfer destination (area (B) of the figure) do not overlap. When the transfer source and
transfer destination overlap as shown in figure 4.9, the data of the transfer source that overlaps (area (C)
in the figure) is destroyed.

Memory space

Start address of
transfer source

»

Start address of ®

transfer destination ﬁ‘m }©

Figure4.9 Block Transfer with Overlapping Data

443 Description of Data Memory
No data memory is used by EEPMOVE.

444 Examplesof Use

After setting the start address of the transfer source, the start
address of the transfer destination and the number of bytesto be
transferred, do a subroutine call to EEPMOVE.

Table4.6 Block Transfer Example (EEPMOVE).

Label Instruction

Action

WORK RES.L1

Reserves the data memory area that sets the start

1 address of the transfer source in the user program.
WORK RES.L1 Reserves the data memory area that sets the start

2 address of the transfer destination in the user program.
WORK RES.W1 Reserves the data memory area that sets the number
3 of bytes to be transferred in the user program.

MOV. L @WORK1,ER5

Sets the start address of the transfer source as set in
the user program as an input argument.

MOV. L @WORK2,ER6

Sets the start address of the transfer destination as set
in the user program as an input argument.

MOV. L @WORKS, R4

Sets the number of bytes to be transferred as set in
the user program as an input argument.

Subroutine call to EEPMOVE.

| | JsR @EEPMOV

445 Principlesof Operation

Use the block transfer instruction (EEPMOV.W).

EEPMOV

Blocks are transferred
using the block transfer
instruction (EEPMOV.W)

Figure4.10 EEPMOV Flowchart

446 Program Listing

45 BranchingUsing a Table

MCU: H8/300H Series

Label Name: CCASE

Functions Used: Register Indirect with Displacement

Description: Searchesfor the start address of the processing routine
for the input command. This function is useful and convenient for
decoding commands input from the keyboard and for processing the
input command.

Table4.7 CCASE Arguments

Contents Storage Location Data Length (Bytes)
Input Input command RO 2

Start address of data table ER1 4
Output Start address of processing routine ER1 4

Existence of a processing routine for the Z flag (CCR) 1

input command (yes =0, no = 1)

31 16 15 87 0
I
ERO Work Input colmmand
Start address of data table',
ER1 . .
start address of processing routine
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N 7 Y, c | — :Nochange
— | = T | — 1 1 0 1 t : Changes

0 :Lockedto O
1 :Lockedto1l

Figure4.11 Changesin Internal Registersand Flag Changesfor CCASE

Program memory (bytes)

26

Data memory (bytes)

0

Stack (bytes)
0

Number of states

156

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the last of 6
groups of data is detected.

Figure4.12 Programming Specifications

451 Description of Functions

Arguments are as follows:
* RO: Setsthe 16-hit command as an input argument.

» ER1: Setsthe start address of the data table as an input argument. Also set the start address of the
processing routine for the command as the output argument.

» Z flag (CCR): Indicates whether there are any errors after execution of CCASE.

— When Z flag = 0: Indicates that there is acommand on the data table that corresponds to the one set
in RO.

— When Z flag = 1: Indicates that there is no command on the data table that corresponds to the one set
in RO.

Figure 4.13 is an example of execution of the software CCASE. When
the input arguments are set as shown, the data table is checked and
the start address of the processing routineis set in ER1.

ER1
|Don'tcare|F:0|O:O|0:0|

Input arguments RO

0,0[4 2]

Start address
of data table ~ F00000 — (00
0A command
41
Don't care
Data group 1
10 Start address of
00 processing routine
L 00
t 00
0B command
42
Don't care
Data group 2
20 Start address of
00 processing routine
L 00
t 00
0C command
43
Don't care
Data group 3
30 Start address of
00 processing routine
L 00
L 00
Division data
00
Z flag ER1

Output arguments EI |Don'tcare| 2 | 0 | 0 : 0 | 0 : 0 |

Figure4.13 Executing CCASE

452 Cautionsfor Use

Since H'0000 is used as the division data, do not use H'0000 as a
command in the data table.

453 Description of Data Memory
No data memory is used by CCASE.
454 Examplesof Use

After setting the command and the start address of the data table, do
asubroutine call to CCASE.

Table4.8

Block Transfer Example (CCASE)

Label Instruction Action
WORK1 .RES.W1 Reserves the data memory area that sets the
command in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the start
address of the data table in the user program.
MOV. L @WORK2,ER1 Sets the start address of the data table as set in the
user program as an input argument.
MOV. W @WORKZ1,R0 Sets the command set in the user program as an
input argument.
Subroutine call of CCASE
| | 3sR @ccase | |
BEQ ERROR When there is no command in the data table that
corresponds to the command input, the routine
branches to an error program.
Program that branches to
the processing routine*
ERROR | | Error program | |

Table4.8 Block Transfer Example (CCASE) (cont)

Label Instruction Action
DTABLE .ORG H’FO00 Start address of data table
.DATAW H0041 0A command
.DATAW HF100 Start address of processing routine for OA command
.DATA.W H0042 0B command
.DATAW HF200 Start address of processing routine for 0B command

.DATA.W H0000 Division data

Subroutine call of CCASE

| | 3sR @ccase | |

BEQ ERROR Branches to ERROR when the Z flag is set

1 JMP @ER1 Jumps to processing routine
Bran-

ches to

pro-

cessing

routine

!

ERROR | | Error program | |

Note: Example of program that branches to a processing routine: CCASE only sets the start address of the
processing routine in ER. When actually branching to a processing routine, create a program like that
shown below.

455 Principlesof Operation

» ER1isused as apointer to the address storing the command on the data table.

» The command at the address indicated in ER1 of the datatable is set in EQ and compared to the input
command.

» When the input command and the data table command match, the start address of the processing routine
located after the command is set, the Z flag is cleared and CCASE ends.

» When H'0000 is detected (indicating the end of the data table), the Z flag is set and CCASE ends.

CCASE

The first command in the
data table is set in EQ

>

No

»

End of data
table?

ER1 is incremented to the
address where the next
command is stored

The next command is
setin ER1

Same command?

Set the start address of the
processing routine in ER1

Clear the Z flag |

<
«

RTS

Figure4.14 CCASE Flowchart

456 Program Listing

4.6 Counting the Number of Logical 1sin 8-Bit Data

M CU: H8/300H Series
Label Name: HCNT

Functions Used: ROTL.B Instruction, ADDX.B Instruction
Function: Counts the number of logical 1sin 8-bit data.

Table49 HCNT Arguments
Contents Storage Location Data Length (Bytes)
Input 8-bit data ROL 1
Output Number of logical 1 bits ROH 1
31 16 15 87 0

ERO k;\:]‘i‘g?irb?tfs 8-bit data

ER1 Work

ER2

ERS3

ER4

ER5

ER6

ER7(SP)
HIlUu]|N Z | v | ¢ | — :Nochange

1 1 : Changes

0 :Lockedto O
1 :Lockedto 1l

Figure4.15 Changesin Internal Registersand Flag Changesfor HCNT

Program memory (bytes)

16

Data memory (bytes)

0

Stack (bytes)

0

Number of states

126

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 8-bit data
is H'FF.

Figure4.16 Programming Specifications

4.6.1 Description of Functions

Arguments are as follows:

* ROL: Setsthe 8-bit data.

* ROH: Setsthe number of bits of logical 1sin the 8-bit data.

Figure 4.17 is an example of execution of the software HNCT. When
the input arguments are set as shown, the number of bits of logical
1sare set in ROH.

ROL
Inputarguments|0|1|l|1|0|1|1|0|
AN J

Five 1s

|

ROH

Output arguments 0 : 5

Figure4.17 ExecutingHCNT

46.2 Cautionsfor Use

When counting the number of logical O bits, first take the 1
complement of ROL and then execute HCNT.

4.6.3 Description of Data Memory
No data memory is used by HNCT.

4.6.4 Examplesof Use

After setting the 8-hit data, do a subroutine call to HCNT.
Table4.10 Block Transfer Example (HCNT)

Label Instruction Action

WORK1 .RES.B1 Reserves the data memory area that sets the 8-bit
data in the user program.

WORK?2 .RES.B1 Reserves the data memory area that sets the
number of bits of logical 1s in the 8-bit data in the
user program.

MOV. L @WORK1,R0OL Sets the 8-bit data as set in the user program as an
input argument.

Subroutine call to HCNT.

| | ISR @HCenNT | |

MOV. B ROH,@WORK2 Stores the number of bits of logical 1s set in the
output argument in the data memory area of the
user program.

4.6.5 Principlesof Operation

» Therotateinstruction (ROTL.B) is used and the 8-bit data (ROL) is set 1 bit at atimein the C hit.

e Whenthelogica 1 counter (ROH) is added to 0 using the add instruction with carry (ADDX.B), 1is
added to the logical 1 counter if the C bitis1 and O is added to the logical 1 counter if the C bit isO.

» Thetwo steps above are repeated until the rotate counter (R1L) becomes 0, which reveal's the number of
logical 1sin the 8-bit data.

(HCNT)

The rotate counter
is set to 8 (R1L)

The logical 1 counter
(ROH) is cleared

<
B

The MSB of the 8-bit data
(ROL) is set to the C bit

The logical 1 counter (ROH)
is added to the C bit

The rotate counter (R1L)
is decremented

Rotate counter = 0?

To return the 8-bit data to its input
state, it is shifted 1 bit to the left

RTS

Figure4.18 HCNT Flowchart

466 Program Listing

4.7 Find theFirst 1in 32-Bit Data

M CU: H8/300H Series

Label Name: FIND1

Functions Used: SHLL.L Instruction

Function: Identifies the bits of 32-bit datain order from bit 31 and
finds the number of the first bit that isa 1.

Table4.11 FIND1 Arguments

Contents Storage Location Data Length (Bytes)
Input 32-bit data ERO 4
Output Bit number (bit 31-bit 0) R1L 1
31 16 15 87 0
I
ERO 32-bit data
ER1 Bit number
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N 7 \V/ c |—: No change
— =] =1l=1o0 t 0 1 t : Changes
0 :LockedtoO
1 :Lockedto1

Figure4.19 Changesin Internal Registersand Flag Changesfor FIND1

Program memory (bytes)

14

Data memory (bytes)

0

Stack (bytes)

0

Number of states

398

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 32-bit data
is H'00000000.

Figure4.20 Programming Specifications

4.7.1 Description of Functions

Arguments are as follows:
» ERO: Setsthe 32-bit data.
* RI1L: Setsthe number of the first bit found to have a 1 (bit 31 to bit 0).

Figure 4.21 s an example of execution of the software FIND1. When
the input arguments are set as shown, the number of the first bit
withalissetin R1L.

Input Bit31 Bit 27 Bit 0
arguments ERO[o]JoJoJof1]ofofoJo[1]ofoJofafoas]s[a s ofs]a[ofoe]s]a[of1]1]0]
Bit number
Output | 5]
arguments RIL '

Figure4.21 Executing FIND1

472 Cautionsfor Use

When the 32-bit data is H'00000000, H'FF is set as the bit number
(R1L).

4.7.3 Description of Data Memory
No data memory isused by FIND1.

474 Examplesof Use

After setting the 32-bit data, do a subroutine call of FIND1.
Table4.12 Block Transfer Example (FIND1)

Label Instruction

Action

WORK1 .RES.L1

Reserves the data memory area that sets the 32-bit
data in the user program.

WORK?2 .RES.B1

Reserves the data memory area that sets the
number of the bit that has the first 1.

MOV. L @WORKZ1,ERO

Sets the 32-bit data set in the user program as an
input argument.

| | 3SR @FINDL

Subroutine call of FIND1

MOV. B ROH,@WORK2

Stores the number of the first bit set in the output
argument that has a 1 in the data memory area of
the user program.

475 Principlesof Operation

e The SHLL.L instruction stores the bits of 32-bit datain the C bit in order from bit 31 in order to identify

the bits.

» When the C bit becomes 1, the counter for finding the bit number (R1L) is decremented and FIND1

ends.

FIND1

The counter (R1L)
is set to H'20

»
P

The MSB of the 32-bit data
(ERO) is set to the C bit by
the SHLL.L instruction

No

Yes

The counter (R1L)
is decremented

Counter (R1L) = 0?

Yes

<
€

Counter (R1L)
is decremented

RTS

Figure4.22 FIND1 Flowchart

476 Program Listing

4.8 64-Bit Binary Addition

MCU: H8/300H Series

L abel Name: ADD

Functions Used: ADD.L Instruction

Function: Does binary addition in the format: Summand (signed 64
bits) + addend (signed 64 bits) = sum (signed 64 bits).

Table4.13 ADD Arguments

Contents Storage Location Data Length (Bytes)
Input Bottom 32 bits of summand (signed 64 ER1 4
bits)
Top 32 bits of addend (signed 64 bits) ER2
Bottom 32 bits of addend (signed 64 ER3
bits)
Output Top 32 bits of sum (signed 64 bits) ERO
Bottom 32 bits of sum (signed 64 bits) ER1
Existence of carrying (yes =0, no = 1) C flag (CCR) 1
31 16 15 87 0
I I
ERO Top 32 bits of summand, top 32 bits of sum
ER1 | Bottom 32 bits of summand, bottom 32 bits of sum
ER2 Top 32 bits of addend
ER3 Bottom 32 bits of addend
ER4
ER5
ERG6
ER7(SP)
[U|H|U|N]|z]|V |c |—:Nochange
— | — O . 1 0 0 P t : Changes

0 :Lockedto O
1 :Lockedto 1l

Figure4.23 Changesin Internal Registersand Flag Changesfor ADD

Program memory (bytes)

18

Data memory (bytes)

0

Stack (bytes)

0

Number of states

26

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.24 Programming Specifications

48.1 Description of Functions

Arguments are as follows:
» ERO: Setsthe top 32-bits of the summand (signed 64 bits) as an input argument. Sets the top 32 bits of
the sum (signed 64 bits) as an output argument.

» ER1: Setsthe bottom 32-hits of the summand (signed 64 bits) as an input argument. Sets the bottom 32
bits of the sum (signed 64 bits) as an output argument.

» ER2: Setsthe top 32-bits of the addend (signed 64 bits) as an input argument.
» ER3: Setsthe bottom 32-hits of the addend (signed 64 bits) as an input argument.
» Cflag (CCR): Indicates whether a carry has occurred after execution of ADD.
— When C flag = 0: Indicates a carry has occurred.
— When Cflag = 1: Indicates no carry has occurred.

Figure 4.25 is an example of execution of the software ADD. When
the input arguments are set as shown, the results of addition are set
in ERO and ER1.

48.2 Cautionsfor Use

Since the results of addition are set in the register used to set the
summand, the summand is destroyed when ADD is executed. When
you will still require the summand after executing ADD, save the
summand elsewhere in memory beforehand.

483 Description of Data Memory
No data memory is used by ADD.

~

Bit 63 ERO ER1 Bit O
[a73]6 7[5 c[e 8]1 Fl3 clo o[A 8]
Input
arguments Bit 63 ER2 ER3 Bit 0
[2,0/p Efc 5][9,8[A,0]6 2|1 5[0 4]
)
output ~ Cbit Bit63 ERO ER1 Bit O

arguments Izl|C:4|4:6|2:2|5:3|B:F|9:E|1:5|A:F|

Figure4.25 Executing ADD

484 Examplesof Use

After setting the summand and addend, does a subroutine call to

ADD.

Table4.14 Block Transfer Example (ADD)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the
top 32-bits of the summand (signed 64 bits) in
the user program.

WORK?2 .RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the summand (signed 64 bits)
in the user program.

WORK3 .RES.L1 Reserves the data memory area that sets the
top 32-bits of the addend (signed 64 bits) in the
user program.

WORK4 RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the addend (signed 64 bits) in
the user program.

MOV. L @WORK1,ERO Set as the input argument the top 32-bits of the
summand set in the user program.
MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of
the summand set in the user program.
MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
addend set in the user program.
MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of
the addend set in the user program.
Subroutine call to ADD.
| | IR @ADD | |
BCS OVER When carryi_ng oceurs, the routi_ne branches to
: the processing routine for carrying.
OVER |[Processing routine for carrying over

485 Principlesof Operation

» Bits0-31 are added using the ADD.L instruction.

* Bits 3263 are added in 1-byte units from the bottom using the addition instruction with carrying
(ADDX.B), which can handle carrying. Since bits 48-55 are on the extended register, the addition
instruction with carry istransferred into a usable general register and addition is then performed.

ADD

Bits 0—31 added using
the ADD.L instruction

Bits 32—39 added using
the ADDX.B instruction

Bits 40—-47 added using
the ADDX.B instruction

Top 16 bits of the summand
transferred to general register (R2)

Top 16 bits of the addend
transferred to general register (R3)

Bits 48-55 added using
the ADDX.B instruction

Bits 56—63 added using
the ADDX.B instruction

RTS

Figure4.26 ADD Flowchart

486 Program Listing

4.9 64-Bit Binary Subtraction
MCU: H8/300H Series

L abel Name: SUB

Functions Used: SUB.L Instruction

Function: Does binary subtraction in the format: minuend (signed
64 bits) — subtrahend (signed 64 bits) = difference (signed 64 bits).
Table4.15 SUB Arguments

Contents Storage Location Data Length (Bytes)
Input Top 32 bits of minuend (signed 64 bits) ERO 4

Bottom 32 bits of minuend (signed 64 ER1 4

bits)

Top 32 bits of subtrahend (signed 64 ER2 4

bits)

Bottom 32 bits of subtrahend (signed 64 ERS3 4

bits)

Output Top 32 hits of difference (signed 64 bits) ERO

Bottom 32 bits of difference (signed 64 ER1

bits)

Existence of carrying C flag (CCR) 1

ERO

ER1

ER2

ER3

ER4

ERS5

ERG6

ER7(SP)

31 16 15 87 0

I I
Top 32 bits of minuend,ltop 32 bits of difference

Bottom 32 bit's of minuend',
bottom 32 bitls of differenczla

I
Top 32 bits of subtrahend

Bottom 32 bits of subtrahend

U H u N 7 Y, Cc | — : Nochange
0 1 t : Changes

0 :Lockedto O
1 :Lockedto1l

Figure4.27 Changesin Internal Registersand Flag Changesfor SUB

Program memory (bytes)

18

Data memory (bytes)

0

Stack (bytes)

0

Number of states

26

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.28 Programming Specifications

49.1 Description of Functions

Arguments are as follows:
» ERO: Setsthe top 32-bits of minuend (signed 64 bits) as an input argument. Sets the top 32 bits of the
difference (signed 64 bits) as an output argument.

» ER1: Setsthe bottom 32-bits of the minuend (signed 64 bits) as an input argument. Sets the bottom 32
bits of the difference (signed 64 bhits) as an output argument.

» ER2: Setsthe top 32-bits of the subtrahend (signed 64 bits) as an input argument.
» ER3: Setsthe bottom 32-hits of the subtrahend (signed 64 bits) as an input argument.
» Cflag (CCR): Indicates whether a borrow has occurred after execution of SUB.

— When C flag = 1: Indicates a borrow has occurred.

— When C flag = 0: Indicates no borrow has occurred.

» Figure 4.29 is an example of execution of the software SUB. When the input arguments are set as shown,
the results of subtraction are set in ERO and ER1.

Bit 63 ERO ER1 Bit O
[F.Elp,clB alo 8|F F[F FIF F[F F]
Input
arguments Bit 63 ER2 ER3 Bit O
[e.ofc B[a o8 7[F F|F F|F FIF F|
)

C bit Bit 63 ERO ER1 Bit O

Output T T T T T T T T
arguments [t,1]2 1)1 1)1 20 0fo 0f0 o]0, 0]

Figure4.29 Executing SUB

49.2 Cautionsfor Use

Since the results of subtraction are set in the register used to set the
minuend, the minuend is destroyed after SUB is executed. When you
will still require the minuend after executing SUB, save the minuend
elsewhere in memory beforehand.

4.9.3 Description of Data Memory
No data memory is used by SUB.

49.4 Examplesof Use

After setting the subtrahend and minuend, does a subroutine call to

SUB.
Table4.16 Block Transfer Example (SUB)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the top
32-bits of the minuend (signed 64 hits) in the user
program.

WORK?2 .RES.L1 Reserves the data memory area that sets the

bottom 32-bits of the minuend (signed 64 bits) in
the user program.

WORK3 .RES.L1 Reserves the data memory area that sets the top
32-bits of the subtrahend (signed 64 bits) in the
user program.

WORK4 RES.L1 Reserves the data memory area that sets the
bottom 32-bits of the subtrahend (signed 64 bits) in
the user program.

MOV. L @WORK1,ERO Set as the input argument the top 32-bits of the
minuend set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of the
minuend set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
subtrahend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of the

subtrahend set in the user program.

Subroutine call to SUB.

|| ISR @suB | |

BCS OVER When borrowing occurs, the routine branches to
: the processing routine for borrowing.

OVER | Processing routine for borrowing

495 Principlesof operation

» Bits0-31 are subtracted using the SUB.L instruction.

* Bits 3263 are subtracted in 1-byte units from the bottom using the subtraction instruction with carrying
(SUBX.B), which can handle borrowing. Since bits 48-55 are in the extended register, the subtraction
instruction with borrow is transferred into the usable general register and subtraction is then performed.

SUB

Bits 0—31 subtracted using
the SUB.L instruction

Bits 32—39 subtracted using
the SUBX.B instruction

Bits 40-47 subtracted using
the SUBX.B instruction

Top 16 bits of the minuend
transferred to the general register (R2)

Top 16 bits of the subtrahend
transferred to the general register (R3)

Bits 48-55 subtracted using
the SUBX.B instruction

Bits 56—63 subtracted using
the SUBX.B instruction

RTS

Figure4.30 SUB Flowchart

496 Program Listing

410 Unsigned 32-Bit Binary Multiplication
MCU: H8/300H Series

Label Name: MUL

Functions Used: MULXU.W Instruction
Function: Does multiplication in the format: Multiplicand (unsigned
32 bits) x multiplier (unsigned 32 bits) = product (unsigned 64 bits).

Table4.17 MUL Arguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (unsigned 32 bits) ERO 4
Multiplier (unsigned 32 bits) ER1 4
Output Top 32 bits of product (unsigned 64 bits) ERO 4
Bottom 32 bits of product (unsigned 64 ER1 4
bits)
31 16 15 87 0
Multiplicand
ERO Top 32 bits of product
Mult'iplier
ER1 :
Bottom 32 b!ts of product
I
ER2 Work
ERS3 Work
ER4
ER5
ER6
ER7(SP)
Ul HTUINTZ C | — :Nochange
— | — T | — 1 1 b : Changes
: Locked to O
: Locked to 1

Figure4.31 Changesin Internal Registersand Flag Changesfor MUL

Program memory (bytes)

34

Data memory (bytes)

0

Stack (bytes)

0

Number of states

126

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating as
H'FFFFFFFF x H'FFFFFFFF.

Figure4.32 Programming Specifications

4.10.1 Description of functions

Arguments are as follows:

* ERO: Setsthe multiplicand (unsigned 32 hits) as an input argument. Sets the top 32 bits of the product
(unsigned 64 bits) as an output argument.

» ER1: Setsthe multiplier (unsigned 32 hits) as an input argument. Sets the bottom 32 bits of the product
(unsigned 64 bits) as an output argument.

» Figure 4.33 isan example of execution of the software MUL. When the input arguments are set as
shown, the product is set in ERO and ER1.

ERO
[F FlF FlF FIF F]
Input ER1
BERGRGEEE
\ x)
Output . .ERO. . . .ERl. .
arguments [F.FlF FlF FIF EJo 0fo o]0 00 1]

Figure4.33 Executing MUL

4.10.2 Cautionsfor Use

Since the product is set in the register used to set the multiplicand
and multiplier, the multiplicand and multiplier are destroyed after
MUL isexecuted. When you will still require the multiplicand and
multiplier after executing MUL, save them elsewhere in memory
beforehand.

4.10.3 Description of Data Memory
No data memory isused by MUL.

4.10.4 Examplesof Use

After setting the multiplicand and multiplier, do a subroutine call to

MUL.

Table4.18 Block Transfer Example (MUL)

Label Instruction Action

WORK1 .RES.L1 Reserves the data memory area that sets the
multiplicand (unsigned 32 hits) in the user program.

WORK?2 .RES.L1 Reserves the data memory area that sets the

multiplier (unsigned 32 bits) in the user program.

MOV. L @WORKZ1,ERO

Sets as the input argument the 32-bit binary
multiplicand set in the user program.

MOV. L @WORK2,ER1

Sets as the input argument the 32-bit binary
multiplier set in the user program.

| | 3SR @wmuL

| | Subroutine call to MUL.

4.10.5 Principlesof Operation

» Thepartial products of two 16-hit binary numbers are found using the multiplication instruction

(MULXU.W) and the results of multiplication are then integrated to perform 32-bit binary multiplication,

as shown in figure 4.34.

EO RO
Top 16 bits Bottom 16 bits
of multiplicand of multiplicand
El R1
Top 16 bits Bottom 16 bits
of multiplier of multiplier

ER1 Bottom 16 bits of multiplicand x | ...Partial
bottom 16 bits of multiplier product (1)
ER3 Top 16 bits of multiplicand x ...Partial
bottom 16 bits of multiplier product (2)
ER2 Bottom 16 bits of multiplicand x | ...Partial
top 16 bits of multiplier product (3)
ERO Top 16 bits of multiplicand x ...Partial
top 16 bits of multiplier product (4)
ERO ER1
| ...Results of
| multiplication

Figure4.34 Multiplication

MUL

Bottom 16 bits of multiplicand
x bottom 16 bits of multiplier:
Partial product 1
I
Top 16 bits of multiplicand
x bottom 16 bits of multiplier:
Partial product 2
I
Bottom 16 bits of multiplicand
x top 16 bits of multiplier:
Partial product 3
I

Top 16 bits of multiplicand
x top 16 bits of multiplier:

Partial product 4
I

Partial product 2 +
partial product 3

Is there a carry?

No Increment top 16 bits of
results of multiplication (EO)

A

®

Figure4.35 MUL Flowchart

©

Top 16 bits of partial product 1
+ bottom 16 bits of (partial
product 2 + partial product 3)

Is there a carry?

No Increment top 32 bits of
results of multiplication

<
<«

Bottom 16 bits of partial
product 4 + top 16 bits of (partial
product 2 + partial product 3)

Is there a carry?

No Increment top 16 bits of
results of multiplication

A

RTS

Figure4.35 MUL Flowchart (cont)

4.10.6 Program Listing

411 Unsigned 32-Bit Binary Division

MCU: H8/300H Series

L abel Name: DIV

Functions Used: SHLL.L Instruction, ROTXL.L Instruction
Function: Does division in the format: Dividend (unsigned 32 bits) /
divisor (unsigned 32 bits) = quotient (unsigned 32 bits) ... remainder
(unsigned 32 bits). Dividing by O setsthe Z flag.

Table4.19 DIV Arguments

Contents Storage Location Data Length (Bytes)
Input Dividend (unsigned 32 bits) ERO 4

Divisor (unsigned 32 bits) ER1 4
Output Quotient (unsigned 32 bits) ERO 4

Remainder (unsigned 32 bits) ER2 4

Presence of error (division by 0) Z flag (CCR) 1

(Yes, Z=0;No,Z=1)

31 16|15 87 0

R

ER1 Divlisor

ER2 Remainder

ER3 Work

ER4

ER5

ER6

ER7(SP)

| JU[JHJU][N]zZ][V [c |—:Nochange
— | — 1 _ 1 1 1 1 ¢ : Changes

0 :Lockedto O
1 :Lockedto 1

Figure4.36 Changesin Internal Registersand Flag Changesfor DIV

Program memory (bytes)

30

Data memory (bytes)

0

Stack (bytes)

0

Number of states

762

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating as
H'FFFFFFFF / H'1.

Figure4.37 Programming Specifications

4111 Description of Functions

Arguments are as follows:
* ERO: Setsthe dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32 bits) as
an output argument.

» ER1: Setsthe divisor (unsigned 32 bits) as an input argument.

* ER2: Setsthe remainder (unsigned 32 bits) as an output argument.

» Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV.
— When Z flag = 1: Indicates that there is an error in the division executed.
— When Z flag = 0: Indicates that there is no error in the division executed.

Figure 4.38 is an example of execution of the software DIV. When the
Input arguments are set as shown, the quotient is set in ERO and the
remainder is set in ER1.

With the software DIV, the first thing done is to determine if the
divisor is0 or nonzero; if itis 0, DIV ends.

Output arguments

‘z flag
EI ERO ER2

R R
[F.FIF F[F F]F F|~[0,0]0 00 0]0 O]

|EZD|CZB|AZ9|817I>IFZFIFZFIFZFIFZFI

ER1 ERO
N y

Input arguments

Figure4.38 Executing DIV

411.2 Cautionsfor Use

Since the quotient is set in ERO, the dividend is destroyed after DIV
Is executed. When you will still require the dividend after executing
DIV, save it elsewhere in memory beforehand.

4.11.3 Description of Data Memory
No data memory isused by DIV.

4114 Examplesof Use

After setting the dividend and divisor, do a subroutine call to DIV.
Table4.20 Block Transfer Example (DIV)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
dividend (unsigned 32 bits) in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the divisor
(unsigned 32 bits) in the user program.
MOV. L @WORK1,ERO Sets as the input argument the dividend (unsigned
32 bits) set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the divisor (unsigned 32

bits) set in the user program.

| | JSR @DIV | |Subroutinecal|toDIV.

4115 Principlesof Operation

 Binary division finds the quotient and remainder by repeatedly subtracting. In figure 4.39, H'OD is
divided by H'03 as an exampl e of the division operation.

®®

100 < Quotient

Divisor - 11) 1101 -~ Dividend

0 o1 @)
00 @
o 11 @
01 ®
+) 11
001
9 1
-10
+) 11

001 ~ Remainder

Figure4.39 Division

* Detailed description of the program:

Sets the number of shiftsin the counter R3L (which indicates the number of shifts).

The dividend is shifted 1 bit to the left and the M SB loaded in the C bit is set in the LSB of ER2
(which stores the remainder).

Thedivisor is subtracted from ER2. When the result of subtraction is positive, the LSB of ERO is set
(1to2to 3infigure 4.39). When the results of subtraction is negative, the LSB of EROis cleared
and the divisor is added to the results of subtraction, returning it to the state prior to subtraction. ((4)
to (5) to (6) in figure 4.39).

The shift counter set in step (i) is decremented.

Steps (ii) through (iv) are repeated until the shift counter reaches —1.

Divisor = 0? Yes

Set the number of shifts (32)
in the shift counter (R3L)

Clear the work area

‘I

Vl

Set the MSB of the dividend to
the LSB of the work area

Subtract the divisor from
the work area

No

Are the results
of subtraction = 0?

No

Add the divisor to the
| Set the LSB of the dividend | results of subtraction

<
<

| Decrement the shift counter |

Is the shift counter = 0?

| Clear the Z flag |

<
<

RTS

Figure4.40 DIV Flowchart

411.6 Program Listing

412 Signed 16-Bit Binary Multiplication

MCU: H8/300H Series

Label Name: MULXS

Functions Used: MULXS.W Instruction

Function: Does multiplication in the format: Multiplicand (signed 16
bits) x multiplier (signed 16 bits) = product (signed 32 hits).
Table4.21 MULXSArguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (signed 16 bits) RO 2
Multiplier (signed 16 bits) EO 2
Output Product (signed 32 bits) ERO 4
31 16 15 87 0
Multiplier Multiplicand
ER
0 Product
ER1
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U H U N Z vV C — :No Change
N IO R 1 T | — | — t : Changes
0 : Lockedto O
1 :Lockedtol

Figure4.41 Changesin Internal Registersand Flag Changesfor MUL XS

Program memory (bytes)

4

Data memory (bytes)

0

Stack (bytes)

0

Number of states

24

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.42 Programming Specifications

4121 Description of Functions

Arguments are as follows:

» EO: Setsthe multiplicand (signed 16 bits) as an input argument.
* RO: Setsthe multiplier (signed 16 bits) as an input argument.

» ERO: Setsthe product (signed 32 hits) as an output argument.

Figure 4.43 is an example of execution of the software MULXS.B
When the input arguments are set as shown, the results of
multiplication are set in ERO.

EO
Input
arguments RO
L X
Output T T ERO T T
arguments |0.0|0.0|0.0|0.1|

Figure4.43 Executing MUL XS

412.2 Cautionsfor Use

Since the results of multiplication are set in the register used to set
the multiplicand and multiplier, the multiplicand and multiplier are
destroyed after MUL XS is executed. When you will still require the
multiplicand and multiplier after executing MULXS, save them
elsewhere in memory beforehand.

4.12.3 Description of Data Memory
No data memory is used by MULXS.
4.12.4 Examplesof Use

After setting the multiplicand and multiplier, do a subroutine call to
MULXS.
Table4.22 Block Transfer Example (MULXYS)

Label Instruction Action
WORK1 RES. W1 Reserves the data memory area that sets the
multiplicand (signed 16 bits) in the user program.
WORK?2 RES. W1 Reserves the data memory area that sets the
multiplier (signed 16 bits) in the user program.
MOV. L @WORK1,R0 Sets as the input argument the 16-bit binary
multiplicand set in the user program.
MOV. L @WORK2,E0 Sets as the input argument the 16-bit binary

multiplier set in the user program.

| | JSR @MULXS | | Subroutine call to MULXS.

4125 Principlesof Operation
Use the signed 16-bit multiplication instruction MULXS.W.

MULXS

Multiplication by the signed 16-bit
multiplication instruction MULXS.W

RTS

Figure4.44 MULXS Flowchart

412.6 Program Listing

413 Signed 32-Bit Binary Multiplication
MCU: H8/300H Series

Label Name: MULS

Functions Used: MULXU.W Instruction
Function: Does binary multiplication in the format: Multiplicand
(signed 32 bits) x multiplier (signed 32 bits) = product (signed 64

bits).

Table4.23 MULSArguments

Contents Storage Location Data Length (Bytes)
Input Multiplicand (signed 32 bits) ERO 4
Multiplier (signed 32 bits) ER1 4
Output Top 32 bits of product (signed 64 bits) ER3 4
Bottom 32 bits of product (signed 64 ERO 4
bits)
31 16 15 87 0
T
Multiplicand
ERO Bottom 32 bits of product
ER1 Multiplier
ER2 Work
ER3 Top 32 bhits of product
ER4 Work
ER5
ER6
ER7(SP)
U H U N Z | Vv | ¢ | —:Nochange
— | — t | — 1 ! ¢ ! ¢ : Changes
0 : Lockedto O
1 :Lockedtol

Figure4.45 Changesin Internal Registersand Flag Changesfor MULS

Program memory (bytes)

66

Data memory (bytes)

0

Stack (bytes)

0

Number of states

156

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 x H'7FFFFFFF.

Figure4.46 Programming Specifications

4131 Description of Functions

Arguments are as follows:

» ERO: Setsthe multiplicand (signed 32 bits) as an input argument. Sets the bottom 32 bits of the product
(signed 64 bits) as an output argument.

» ER1: Setsthe multiplier (signed 32 hits) as an input argument. Sets the bottom 32 hits of the product
(signed 64 hits) as an output argument.

» Setsthetop 32 bits of the product (signed 64 bits) as an output argument.

Figure 4.47 is an example of execution of the software MULS. When
the input arguments are set as shown, the product is set in ER3 and
ERO.

ERO
7. FlF FlF F[F F]
Input
arguments ER1
[8,0]o 00, 0]0 0]
\ X)
Output . .ER3. . . .ERO. .
arguments |C.0|0.0|0.0|0.0|8.0|0.0|0.0|0.0|

Figure4.47 ExecutingMULS

4.13.2 Cautionsfor Use

Since the results of multiplication are set in the register used to set
the multiplicand and multiplier, the multiplicand and multiplier are
destroyed after MULS is executed. When you will still require the
multiplicand and multiplier after executing MULS, save them
elsewhere in memory beforehand.

4.13.3 Description of Data Memory
No data memory is used by MULS.

4.13.4 Examplesof Use

After setting the multiplicand and multiplier, do a subroutine call to

MULS.
Table4.24 Block Transfer Example (MULYS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
multiplicand (signed 32 bits) in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the
multiplier (signed 32 bits) in the user program.
MOV. L @WORK1,ERO0 Sets as the input argument the multiplicand
(signed 32 bits) set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the multiplier (signed

32 bits) set in the user program.

| | JSR @MULS | | Subroutine call to MULS.

4135 Principles of Operation

* Negative multiplicands and multipliers are converted to positive.

e The product isfound by taking the partial products ((1), (2), (3) and (4) in figure 4.48) and then
accumulating the results of multiplication (figure 4.48 (5)). The partial products are found by using the
signed multiplication instruction (MULXU.W) on two 16-bit binary numbers.

e The product isthen converted to negative if the sign flag is 1, as shown in table 4.25.

EO RO
Top 16 bits Bottom 16 bits
of multiplicand of multiplicand
El R1
Top 16 bits Bottom 16 bits
X) of multiplier of multiplier
ERO Bottom 16 bits of multiplicand x | ...Partial
bottom 16 bits of multiplier product (1)
ER1 Top 16 bits of multiplicand x ...Partial
bottom 16 bits of multiplier product (2)
ER2 Bottom 16 bits of multiplicand x | ...Partial
top 16 bits of multiplier product (3)
ER3 Top 16 bits of multiplicand x ...Partial
top 16 bits of multiplier product (4)
ER3 ERO

...Results of
multiplication (5)

Figure4.48 Multiplication

Table4.25 Sign of Results of Multiplication and Sign Flag

Multiplicand Multiplier Product Sign Flag

Positive Positive Positive 0
Negative Negative 1

Negative Positive Negative 1
Negative Positive 0

MULS

| Clear sign flag |

Is multiplicand = 0?

Multiplicand converted
Yes to positive

I
Sign flag inverted

Is multiplier = 0?

Multiplier converted
Yes to positive
I
Sign flag inverted
|

<
<

Bottom 16 bits of mutiplicand
x bottom 16 bits of multiplier:
Partial product 1
I
Top 16 bits of mutiplicand
x bottom 16 bits of multiplier:
Partial product 2
I
Bottom 16 bits of mutiplicand
x top 16 bits of multiplier:
Partial product 3
I
Top 16 bits of mutiplicand
x top 16 bits of multiplier:
Partial product 4

®

Figure4.49 MULSFlowchart

&

Partial product 2 +
partial product 3

Is C flag = 1?

Increment register E3

No

<
<«

Top 16 bits of partial product 1
+ bottom 16 bits of (partial
product 2 + partial product 3)

Is C flag = 1?

Increment register ER3

No

<
<«

Bottom 16 bits of partial
product 4 + top 16 bits of (partial
product 2 + partial product 3)

| Increment register E3

No

L

Figure4.49 MULS Flowchart (cont)

Yes

Is the sign flag = 0?

Invert bottom 32 bits of the

results of multiplication
I

Invert top 32 bits of the
results of multiplication
I

Increment bottom 32 bits of
the results of multiplication

Is Z flag = 1?

Increment register ER3

No

A

RTS

Figure4.49 MULS Flowchart (cont)

4.13.6 Program Listing

414 Signed 32-Bit Binary Division (16-Bit Divisor)

M CU: H8/300H Series
Label Name: DIVXS

Functions Used: DIVXS.W Instruction
Function: Doesdivision in the format: Dividend (signed 32 hits) /
divisor (signed 16 bits) = quotient (signed 32 hits) ... remainder

(signed 16 hits).
Table4.26 DIVXSArguments

Contents Storage Location Data Length (Bytes)
Input Dividend (signed 32 bits) ER1 4
Divisor (signed 16 bits) RO 2
Output Quotient (signed 32 bits) ER2 4
Remainder (signed 16 bits) El 2
Presence of error Z flag (CCR) 1
31 16 15 87 0
I
ERO Divisor
ER1 _ Dividend
Remainder
ER2 Quotient
ER3
ER4
ER5
ER6
ER7(SP)
U H u N Z vV Cc | — :Nochange
_ — | = 1 ! 0 | — : Changes
: Locked to O
: Locked to 1

Figure4.50 Changesin Internal Registersand Flag Changesfor DIVXS

Program memory (bytes)

26

Data memory (bytes)

0

Stack (bytes)

0

Number of states

76

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 / H7FFF'.

Figure4.51 Programming Specifications

4.14.1 Description of Functions

Arguments are as follows

* RO: Setsthe divisor (signed 16 bits) as an input argument.

» ER1: Setsthe dividend (signed 32 hits) as an input argument.

* ER2: Setsthe quotient (signed 32 bits) as an output argument.

» E1: Setsthe remainder (signed 16 hits) as an output argument.

Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV XS.
— When Z flag = 1. Indicates that there isan error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

Figure 4.52 is an example of execution of the software DIVXS. When
the input arguments are set as shown, the quotient is set in ER2 and
the remainder is set in ERL.

Output arguments

‘z flag
IEI ER2 El

[F.FlF FIF F[F F|~[0,0]0 0]

|AZ9|817I>IFZFIFZFIFZFIFZFI

RO ER1
N y

Input arguments

Figure4.52 Executing DIVXS

* With the software DIV XS, the first thing done is to determine if the divisor is 0 or nonzero; if itisO,
DIVXSends.

4.14.2 Cautionsfor Use

Since the remainder is set in E1 and the bottom 16 bits of the
guotient are set in R1, the dividend is destroyed after DIVXSis
executed. When you will still require the dividend after executing
DIVXS, save it elsewhere in memory beforehand.

4.14.3 Description of Data Memory
No data memory is used by DIVXS.

4144 Examplesof Use

After setting the dividend and divisor asinput arguments, do a
subroutine call to DIVXS.
Table4.27 Block Transfer Example (DIVXS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.
WORK?2 .RES. W1 Reserves the data memory area that sets the
divisor (signed 16 bits) in the user program.
MOV. L @WORK1,ER1 Sets as the input argument the dividend set in the
user program.
MOV. L @WORK2,R0 Sets as the input argument the divisor set in the
user program.
| | JSR @DIVXS | | Subroutine call to DIVXS.
BEQ ERROR When division by 0 is attempted, the program

branches to the processing routine for errors.

ERROR | Processing routine for errors |

4145 Principlesof Operation

« First, the program searches for zero-division errors. If thereis such an error, the divisor istransferred to
the register inwhich it isitself stored so that the resulting Z bit can be used to determine if the divisor is
0. If theZ bitis1 (divisor = 0), DIVXSends.

» When 32 hitsis being divided by 16 bits using the signed division instruction (DIVXS.W), a quotient of
16 hitsisfound. The quotient will thus overflow when division such as H'FFFFF/H'1 is performed. For
that reason, a quotient of 32 bitsis found using the following procedure.

— Thetop 16 bits of the dividend are sent to R2 and sign-extended into 32 bits (figure 4.53 (1)).

— Thetop 16 bits of the dividend are divided to obtain the top 16 hits of the quotient (ii) (figure 4.53
2)).

— Theremainder of (ii) (remainder 1) is sent to R1 (figure 4.53 (3)).

— Division is performed on the bottom 16 bits of the dividend to find the bottom 16 bits of the quotient
and the remainder (remainder 2) (figure 4.53 (4)).

ER1

Dividend Dividend
(top 16 bits) |(bottom 16 bits)

L e

ER2 v RO ER2
Sign Dividend o . Quotient
extension (top 16 bits) / Divisor Remainder 1 (top 16 bits)
5 |
¢ ER1 RO ER1
Remainder 1 Dividend / Divisor Remainder 2 Quotient

(bottom 16 bits)

(bottom 16 bits)

Figure4.53 Overflow Processing

DIVXS

Is divisor = 0?
(Zbit=1)

Yes

Sign-extend the top 16 bits of
the dividend to 32 bits

Divide the top 16 bits of the
dividend that was extended to
32 bits (ER2) by the divisor (RO)

Divide the bottom 16 bits (ER1)
of the dividend, whose top 16
bits are the remainder (E2)
from the division of the top 16
bits of the dividend(ER2),
by the divisor (RO)

Set the top 16 bits of the
quotient (R2) as an output
argument (E2)

Set the bottom 16 bits of the
quotient (R1) as an output
argument (R2)

| Clear the Z flag

|A

<

RTS

Figure4.54 DIVXS Flowchart

4.14.6 Program Listing

415 Signed 32-Bit Binary Division (32-Bit Divisor)

M CU: H8/300H Series
Label Name: DIVS

Functions Used: SHLL.L Instruction, ROTL.L Instruction, NEG.L

I nstruction

Function: Does division in the format: Dividend (signed 32 hits) /
divisor (signed 32 bits) = quotient (signed 32 bits) ... remainder

(signed 32 hits).
Table4.28 DIVSArguments

Contents Storage Location Data Length (Bytes)
Input Dividend (signed 32 bits) ERO 4
Divisor (signed 32 bits) ER1 4
Output Quotient (signed 32 bits) ERO 4
Remainder (signed 32 bits) ER2 4
Presence of error Z flag (CCR) 1
31 16 15 87 0
ERO D|V|(Ij§nd
Quatient
I
ER1 Divisor
ER2 Remainder
ER3 Work Work
ER4
ER5
ER6
ER7(SP)
U N Zz | v | ¢ | —:Nochange
— | — ? 0 0 0 ¢ : Changes
0 : Lockedto O
1 :Lockedtol

Figure4.55 Changesin Internal Registersand Flag Changesfor DIVS

Program memory (bytes)

66

Data memory (bytes)

0

Stack (bytes)

0

Number of states

770

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 / H7FFFFFFF.

Figure4.56 Programming Specifications

4.15.1 Description of Functions

Arguments are as follows:
* ERO: Setsthe dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32 bits) as
an output argument.

» ER1: Setsthe divisor (unsigned 32 bits) as an input argument.

* ER2: Setsthe remainder (unsigned 32 bits) as an output argument.

» Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVS.
— When Z flag = 1: Indicates that there is an error in the division.
— When Z flag = 0: Indicates that there is no error in the division.

» Figure 4.57 isan example of execution of the software DIV S. When the input arguments are set as
shown, the quotient is set in ERO and the remainder is set in ER2.

» When the divisor is 0, DIVS ends immediately.

Output arguments

7 flag
Izl 2

ERO ER
[F.FlF FIF F|F F|~[0 0]0 0]0 0]0, O]

|010|010|010|011|>IFZFIFZFIFZFIFZFI

ER1 ERO
N y

Input arguments

Figure4.57 Executing DIVS

4.15.2 Cautionsfor Use

Since the quotient is set in ERO, the dividend is destroyed after DIVS
is executed. When you will still require the dividend after executing
DIVS, save it elsewhere in memory beforehand.

4.15.3 Description of Data Memory
No data memory is used by DIVS.

4.15.4 Examplesof Use

After setting the dividend and divisor, do a subroutine call to DIVS.
Table4.29 Block Transfer Example (DIVYS)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the divisor
(signed 32 bits) in the user program.
MOV. L @WORK1,ERO Sets as the input argument the dividend (signed 32
bits) set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the divisor (signed 32

bits) set in the user program.

| | JSR @DIVS | | Subroutine call to DIVS.

4155 Principlesof Operation

* Negative dividends and divisors are converted to positive.

« Division finds the quotient and remainder by repeatedly subtracting. In figure 4.58, H'OD is divided by
H'03 as an example of the division operation.

i. Setsthe number of shiftsin the counter R3L (which indicates the number of shifts).

ii. Thedividend is shifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of ER2
(which stores the remainder).

iii. Thedivisor issubtracted from ER2. When the result of subtraction is positive, the LSB of ERO is
set. ((1) to (2) to (3) infigure 4.58). When the results of subtraction is negative, the LSB of ERO is
cleared and the divisor is added to the results of subtraction, returning it to the state prior to
subtraction. ((4) to (5) to (6) in figure 4.58).

iv. The shift counter set in step (i) is decremented.

v. Steps(ii) through (iv) are repeated until the shift counter reaches -1.

» The quotient and/or remainder is then converted to negative if the sign flag is 1, as shown in table 4.30.

®®

100 < Quotient

Divisor - 11) 1101 -~ Dividend

o) 11 e @
00 @
o 11 e @
—01 ®
+) 11
001
9 1
-10
+) 11

001 ~ Remainder

Figure4.58 Division Example

Table4.30 Sign of Results of Division and the Sign Flag

Dividend Divisor Quotient Remainder Quotient Sign Flag Remainder Sign Flag

Positive Positive Positive Positive 0 0
Negative Negative Positive 1 0
Negative Positive Negative Negative 1 1
Negative Positive Positive 0 0

4.15.6 Program Listing

416 8-Digit Decimal Addition

MCU: H8/300H Series

Label Name: ADDD

Functions Used: DAA.B Instruction

Function: Does addition in the format: Summand (8-digit 4-bit BCD)
x addend (8-digit 4-bit BCD) = sum (8-digit 4-bit BCD).

Table4.31 ADDD Arguments

Contents Storage Location Data Length (Bytes)
Input Summand (8-digit 4-bit BCD) ERO 4
Summand (8-digit 4-bit BCD) ER1 4
Output Sum (8-digit 4-bit BCD) ERO 4
Presence of carry (Yes, C = 1; C flag 1
No, C=0)
31 16 15 87 0
ERO Summand (8-digit 4-bit BCD
Sum (8-digit 4-bit BCD)
I
ER1 Addend (8-digit 4-bit BCD)
ER2
ER3
ER4
ER5
ER6
ER7(SP)
U|HJUJ[N]Z]V |cC |—:Nochange
— R p— 1 1 0 1 ¢ : Changes

0 :Lockedto O
1 :Lockedto1l

Figure4.59 Changesin Internal Registersand Flag Changesfor DIVS

Program memory (bytes)

28

Data memory (bytes)

0

Stack (bytes)

0

Number of states

36

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.60 Programming Specifications

4.16.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe summand (8-digit 4-bit BCD) as an input argument. Sets the sum (8-digit 4-bit BCD) as
an output argument.

» ER1: Setsthe addend (8-digit 4-bit BCD) as an input argument.

» Cflag (CCR): Indicates whether thereis carrying after ADDD is executed.
— Cflag = 1: Indicatesthereis acarry.
— Cflag = 0: Indicates thereis no carry.

Figure 4.61 is an example of execution of the software ADDD. When
the input arguments are set as shown, the sumis set in ERO.

. ERO
[1.8[0, 00 0f0 o]
Input
arguments ER1
[1,2]0,0]0,0]0 0]
+)
-
Output C flag . .ERO. .
argur:e?l?s EI |3.0|0.0|0.0|0.0|

Figure4.61 Executing ADDD

416.2 Cautionsfor Use

Since the results of addition are set in the register used to set the
summand, the summand is destroyed after ADDD is executed. When
you will still require the summand after executing ADDD, save it
elsewhere in memory beforehand.

4.16.3 Description of Data Memory
No data memory isused by ADDD
4.16.4 Examplesof Use

After setting the summand and addend, do a subroutine call to ADDD.
Table4.32 Block Transfer Example (ADDD)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
summand (8-digit 4-bit BCD) in the user
program.
WORK?2 .RES.L1 Reserves the data memory area that sets the
addend (8-digit 4-hit BCD) in the user program.
MOV. L @WORK1,ERO Sets as the input argument the summand set in
the user program.
MOV. L @WORK2,ER1 Sets as the input argument the addend set in

the user program.
Subroutine call to ADDD.

| | JsR @ADDD | |

BCS OVER When the results of addition produce carrying,
: the program branches to the processing routine
for carrying.

OVER |Pr0cessing routine for carrying over|

4.16.5 Principlesof Operation

 Binary addition occursin 2-digit increments from the bottom and the results of addition are corrected
into 2 digits of 4-bit BCD by the DAA.B instruction. This processis repeated four times.

 Addition of everything after the initial bottom 2 digitsis performed by ADDX.B (addition with carrying
instruction), since carrying occurs.

* Inthe extended register in which the upper four digits of the summand and addend are stored, the
DAA.B and ADDX.B instructions cannot be used, so the upper 4 digits of the summand and addend are
added after transfer to the general registers.

ADDD

Binary addition of first
and second digits
I
Decimal correction of
results of addition
I
Binary addition with carry
of the third and fourth digits
I
Decimal correction of
results of addition
[

Transfer the top 4 digits
of the addend (E1) to R1
[

Transfer the lower 4 digits
of results of addition
(RO)to E1
[

Transfer the top 4 digits
of the summand (EO) to RO
[

Binary addition with carry
of the fifth and sixth digits
[

Decimal correction of
results of addition
I
Binary addition with carry
of the seventh and
eighth digits
[

Decimal correction of
results of addition

RTS

Figure4.62 ADDD Flowchart

4.16.6 Program Listing

4.17 8-Digit Decimal Subtraction

MCU: H8/300H Series

L abel Name: SUBD

Functions Used: DAS.B Instruction

Function: Does subtraction in the format: Minuend (8-digit 4-bit

BCD) — subtrahend (8-digit 4-bit BCD) = difference (8-digit 4-bit BCD).
Table4.33 SUBD Arguments

Contents Storage Location Data Length (Bytes)
Input Minuend (8-digit 4-bit BCD) ERO 4

Subtrahend (8-digit 4-bit BCD) ER1 4
Output Difference (8-digit 4-bit BCD) ERO 4

Presence of borrow (Yes, C=1; No, C=0) C flag (CCR) 1

31 16 15 87 0
ERO Minuend (8-dilgit 4-bit BCDI
Difference (8-digit 4-bit BCD
I I
ER1 Subtrahend (8-digit 4-bit BCD
ER2
ERS3
ER4
ERS5
ER6
ER7(SP)
| Ju|lHJU][N]Zz Vv [c |—:Nochange
_ | — 1 _ 1 1 0 b ¢ : Changes

0 :Lockedto O
1 :Lockedto1l

Figure4.63 Changesin Internal Registersand Flag Changesfor SUBD

Program memory (bytes)

28

Data memory (bytes)

0

Stack (bytes)

0

Number of states

36

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure4.64 Programming Specifications

4.17.1 Description of Functions

Arguments are as follows:

* ERO: Setsthe minuend (8-digit 4-bit BCD) as an input argument. Sets the difference (8-digit,
4-bit BCD) as an output argument.

» ER1: Setsthe subtrahend (8-digit 4-bit BCD) as an input argument.

» Cflag (CCR): Indicates whether there is borrowing after SUBD is executed.
— Cflag = 1: Indicates there is a borrow.
— Cflag = 0: Indicates there is no borrow.

Figure 4.65 is an example of execution of the software SUBD. When
the input arguments are set as shown, the differenceis set in ERO.

- ERO
[1,8]0 0]0 00 0]
Input
arguments . _ER1 .
|1 2|0 0]o o]0 o]
\—)
Output C flag . .ERO. .
arguments |0|6|0|0|0|0|0|0|

Figure4.65 Executing SUBD

4.17.2 Cautionsfor Use

Since the results of subtraction are set in the register used to set the
minuend, the minuend is destroyed after SUBD is executed. When
you will still require the minuend after executing SUBD, save it
elsewhere in memory beforehand.

4.17.3 Description of Data Memory
No data memory is used by SUBD.
4.17.4 Examplesof Use

After setting the minuend and subtrahend, do a subroutine call to
SUBD.
Table4.34 Block Transfer Example (SUBD)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the
minuend (8-digit 4-bit BCD) in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the
subtrahend (8-digit 4-bit BCD) in the user
program.
MOV. L @WORK1,ERO Sets as the input argument the minuend set in
the user program.
MOV. L @WORK2,ER1 Sets as the input argument the subtrahend set in

the user program.
Subroutine call to SUBD.

|| R @suep | |

BCS OVER When the results of subtraction produce
: borrowing, the program branches to the
processing routine for borrowing.

OVER | Processing routine for borrowing |

4.17.5 Principlesof Operation

 Binary subtraction occursin 2-digit increments from the bottom and the results of subtraction are
corrected into 2 digits of 4-bit BCD by the DAS.B instruction. This processis repeated four times.

» Subtraction of everything after the initial bottom 2 digitsis performed by SUBX.B (subtraction with
borrowing instruction), since borrowing occurs.

* Inthe extended register in which the upper four digits of the minuend and subtrahend are stored, the
DAS.B and SUBX.B instructions cannot be used, so the upper 4 digits of the minuend and subtrahend
are subtracted after transfer to the general registers.

SUBD

Binary subtraction of first
and second digits
I
Decimal correction of
results of subtraction
I
Binary subtraction with borrow
of the third and fourth digits
I
Decimal correction of
results of subtraction
[

Transfer the top 4 digits
of the subtrahend (E1) to R1
[

Transfer the lower 4 digits
of results of subtraction
(RO)to E1
[

Transfer the top 4 digits
of the minuend (EO) to RO
[

Binary subtraction with borrow
of the fifth and sixth digits
[

Decimal correction of
results of subtraction
I
Binary subtraction with
borrow of the seventh and
eighth digits
[

Decimal correction of
results of subtraction

RTS

Figure4.66 SUBD Flowchart

4.17.6 Program Listing

418 Sum of Products

M CU: H8/300H Series
L abel Name: SEKIWA

Functions Used: MULXU.W Instruction
Function: Does the following sum of products on unsigned 16-bit
dataan, bn(n=1, 2, ..., n) from datatablesaand b. The maximum

number of datanis 255.
n

Zanbn = albl + a2b2 + ...

n=1

Table4.35 SEKIWA Arguments

+ anbn

Contents Storage Location Data Length (Bytes)
Input Start address of data table a ERO 4

Start address of data table b ER1 4

Number of data n R3H 1
Output Results of sum of products (top R3L 1

8 bits)

Results of sum of products ER2 4

(bottom 32 bhits)

ERO

ER1

ER2

ER3

ER4

ERS5

ER6

ER7(SP)

31

16

15 87

Start address

of data table a

Start address

of data table b

Results of sum of pro

ducts (bottom 32 bits)

Results of sum

Number of of products
data n (top 8 bits)
Work
HIUI[NTz T v [c |—:Nochange
— R p— B 1 ? 1 ¢ : Changes
0 :Lockedto O
1 :Lockedto1l

Figure4.67 Changesin Internal Registersand Flag Changesfor SUBD

Program memory (bytes)

20

Data memory (bytes)

0

Stack (bytes)

0

Number of states

11234

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when the number of data n
is H'FF.

Figure4.68 Programming Specifications

4.18.1 Description of Functions

Arguments are as follows:

» ERO: Setsthe start address of data table a (multiplicands) as an input argument.

» ER1: Setsthe start address of datatable b (multipliers) as an input argument.

* R3H: Setsthe number as an input argument.

» R3L: Setsthe top 8 bits of the result of the sum of products operation as an output argument.

» ER2: Setsthe bottom 32 bits of the result of the sum of products operation as an output argument.

Figure 4.69 is an example of execution of the software. When the
start address of data table a, start address of datatable b, and
number are set as shown, the top 8 bits of the result of the sum of
products operation are set in R3L and bottom 32 bits of the result of
the sum of products operation are set in ER2.

Data table a

800000 FF
FF Data al ~ ERO

10 }Dataaz pontcare] 8 0|0 0]0 0]

00
Input ER1

22 Data a3 argurments |Don'tcare| F : 0 | 0 : 0 | 0 : 0 |

Data table b

FO00000 FF
FF } Data bl

CD
FE } Data b2

9B
) } Data b3

Output arguments

‘ R3L ER2 K

anbn = alb1 + a2b2 + a3b3 = lo 1|8 5|7 D|[c 8|6 1|

S5
nMw

Figure4.69 Executing SEKIWA

4.18.2 Cautionsfor Use

Since ROH is 1 byte, set datain the range H'01 < R3H < H'FF.
4.18.3 Description of Data Memory

No data memory is used by SEKIWA.

4184 Examplesof Use

After setting the start address of datatable a, start address of data
table b and number, do a subroutine call to SEKIWA.

Table4.36 Block Transfer Example (SEKIWA)

Label Instruction Action
WORK1 .RES.L1 Reserves the data memory area that sets the start
address of data table a in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the start
address of data table b in the user program.
WORK3 .RES.B1 Reserves the data memory area that sets the
number in the user program.
MOV. L @WORK1,ERO Sets as the input argument the start address of data
table a set in the user program.
MOV. L @WORK2,ER1 Sets as the input argument the start address of data
table b set in the user program.
MOV. B @WORK3,R3H Sets as the input argument the number set in the

user program
Subroutine call to SEKIWA.

| | 3sR @sekwa | |

4.18.5 Principlesof Operation

1 EROand ER1 are used as pointers to the addresses of the multiplicand (data table a) and multiplier
(datatable b) data. After the multiplicands and multipliers are set in E4 and R4 respectively, the
program increments to the next data address by post-increment register indirect.

2. E4and R4 are de-signed and multiplied.

3. Theresults of multiplication stored in ER4 are added to ER2, where the bottom 32 bits of the results of
the sum of products are stored.

4. Because of carrying, addition of R3L, where the top 8 bits of the result of the sum of productsiis stored,
uses addition with carrying.

5. R3H isdecremented and the processes of steps 1 through 4 repesat until R3H = —1.

(SEKIWA)

»

Data a,, (@ERO) of data table a
is set in the multiplier register (E4)
[

Increment to the address of the
next data a, + of data table a
I
Data b, (@ER1) of data table b
is set in the multiplier register (R4)
I
Increment to the address of the
next data by, + ; of data table b
I
Multiply
[

Add the results of multiplication
(ERA4) to the lower 32 bits of the
result of the sum of products (ER2)
[

Add the C bit to the top 8 bhits
of the results of the sum of
products (R3L)

[

Decrement the item number (R3H)

Is the item
number (R3H) = -1?

No

Figure4.70 SEKIWA Flowchart

4.18.6 Program Listing

419 Sorting

MCU: H8/300H Series

L abel Name: SORT

Functions Used: Post-Increment Register Indirect, Pre-Decrement
Register Indirect

Function: Sorts data (unsigned 16 bits) of the data table from
largest to smallest. The maximum number of datais 65535.
Table4.37 SORT Arguments

Contents Storage Location Data Length (Bytes)
Input Number of sort data RO 2
Start address of data table ER2 4
Output — — —
31 16 15 87 0
I
ERO Work Number of sort data
ER1 Work Work
ER2 Start address of data table
ER3 Work
ER4
ER5
ER6
ER7(SP)
U H U N 7 Y, Cc |— :Nochange
— | =10 | — 0 1 0 0 ¢ : Changes

0 :Lockedto O
1 :Lockedto 1

Figure4.71 Changesin Internal Registersand Flag Changesfor SORT

Program memory (bytes)

32

Data memory (bytes)

0

Stack (bytes)

0

Number of states

404

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when 5 words of data arranged
smallest to largest is sorted into largest to smallest.

Figure4.72 Programming Specifications

4.19.1 Description of Functions

Arguments are as follows:
* RO: Setsthe number of sort data.

* ERI1: Setsthe start address of the data table.

Figure 4.73 is an example of execution of the SORT software. When
the input arguments are set as shown, the data table datais sorted
largest to smallest.

RO
[0,0[0, 5]
Input
arguments ER1
|Don'tcare|1:0|0:0|0:0|
P
100000 16FD 100000 FFO1
08A9 A06C
Results A06C _ 8657
FFO1 . 16FD
8657 Sorted largest 08A9
to smallest

Figure4.73 Executing SORT

4.19.2 Description of Data Memory
No data memory is used by SORT.

4.19.3 Examplesof Use

After setting the start address of the data table and the number of
sort data, do a subroutine call to SORT.
Table4.38 Block Transfer Example (SORT)

Label Instruction Action
WORK1 .RES. W1 Reserves the data memory area that sets the
number of sort data in the user program.
WORK?2 .RES.L1 Reserves the data memory area that sets the start
address of the data table in the user program.
MOV. W @WORK1,R0O Sets as the input argument the number of sort data

set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the start address of the
data table set in the user program.

Subroutine call of SORT.

| | 3sR @sorT | |

4.19.4 Principlesof Operation

Figure 4.74 shows an example of sorting 3 items of data from largest
to smallest.

Input data | 5 10 8 | Number of datan =3
A TA
Firsttime [° 0 8 @
(number of comparison | 19 5 g)
n-1=2) “«- - -a
~-10 5 8 o ®
. A TA
Second time 10 5 8 @
(number of comparison ><
n-2=1) -10 8 5 e ®
Note: 4~~~ ~a |ndicates a comparison

>< Indicates a switch

Figure4.74 Sorting Example

1. Selectsthelargest of the 3 input data and placesit at the far left ((2), (2) and (3) in figure 4.74).

2. Selectsthelargest data from second to left to the end and places it at the second place from left ((4)
and (5) infigure 4.74).

4195 Processing Method in Program

1. Thenumber being compared (reference data) is set to E1 and the comparison number is set to R1; the
comparison isthen done. Since the data being compared is supposed to be the larger of the two
numbers, the data are switched whenever the comparison number islarger.

ER3 is used as a pointer to the address of the comparison number. Using the post-increment register
indirect method, the pointer is incremented to the address where the next comparison number is stored.
EO isused as the counter that counts the number of comparisons done between data to find the largest
item in the group of data. Each time a comparison is completed, EO is decremented and the process
repeats until EO becomes 0.

ER2 isused as the pointer that indicates the address of the memory that stores the next largest value.
Using the post-increment register indirect method, ER2 is incremented to the address that storesthe
next maximum value.

RO is used as the counter that counts the number of determinations of the maximum value. Eachtimea
maximum value is determined, RO is decremented and the process repeats until RO becomes 0.

SORT

The number of sorts
(data no. — 1) is set in counter 1

‘l

_1

Number of comparisons
is set in counter 2

Number being
compared is set in E1

Comparison number is set in R1

Is number being
compared < comparison
number?

Number being compared and
comparison number are exchanged

Decrement counter 2

|A
<

Counter 2 =07?

Decrement counter 1

No Counter 1 =07?

Figure4.75 SORT Flowchart

4.19.6 Program Listing

Appendix A Instruction Set

TableA.1 Operation Symbols

Symbol Description
PC Program counter
SP Stack pointer (ER7)
CCR Condition code register
Z Zero flag of condition code register
C Carry flag of condition code register
Rs, Rd, Rn General registers <data> (8 bits: ROH/ROL-R7H/R7L and 16 bits: RO—R7, EO—
E7)
ERs, ERd General registers <address> (24 bits: ERO-ER7), <data> (32 bits: ERO—ER?7)
d:8, d:16, d:24 Displacement: 8 bits/16 bits/24 bits
#xx:2/3/8/16/32 Immediate data: 2 bits/3 bits/8 bits/16 bits/32 bits
- Left end operand transferred to right end operand
+ Add operands of both sides
- Subtract right end operand from left end operand
X Multiply both operands
+ Divide left end operand by right end operand
O AND of both operands
O OR of both operands
O Exclusive OR of both end operands
Logical complement (complement of 1)
()<> Description of execution address of operand

TableA.2 Condition Code Symbols

Symbol Description

0 Changes with the results of operation
* Undetermined. Value not guaranteed.
0 Always cleared to 0.

No effect on operation.

Notes: 1. (The number of execution states is the value when the operation code and operand data is in the
2-cycle area that is word accessible, such as on-chip RAM.)

2. For a word-size operation: When there is a carry or borrow to or from bit 11, this bit is set to 1;
otherwise, it is cleared to 0.

3. For a longword size operation: When there is a carry or borrow to or from bit 27, this bit is set to
1; otherwise, it is cleared to O.

4. When the operation result is 0, the value prior to the operation is held; otherwise, it is cleared to
0.

5. Setto 1 when the results of correction causes a carry; otherwise, the value prior to the operation
is held.

6. The number of execution states is 4n+8 when the value set for R4L (for EEPMOV.B) or R4 (for
EEPMOV.W) is n.

7. Do not use the E clock synchronous transfer instruction with the H8/3003.

Al Number of Execution States

The number of execution states for the instruction set is the value
when the operation code and operand data is in the 2-cycle area that
Isword accessible, such as on-chip RAM. Operation code residesin
external memory, but its attributes (byte/word access, 2/3 state
access, wait/not wait, number of waits) can be set with the bus
controller and wait state controller. The attributes of the on-chip
peripheral modules are fixed and come in two types: 3-state word
access modules and 3-state byte access modules. These combinations
increase the number of execution states by the number of states
indicated in the following table.

TableA.3 Increasein Number of Execution States by Operand Data

Increase in Number of

Access Conditions Data Type Execution States
External address (2-state byte access) Byte 0

Word 2
External address/on-chip RAM (2-state word access) Byte 0

Word 0
On-chip peripheral module (3-state byte access) Byte 1

Word 4
On-chip peripheral module (3-state word access) Byte 1

Word 1
External address (3-state byte access m cycle wait) Byte 1+m

Word 4+2m
External address (3-state word access m cycle wait) Byte 1+m

Word 1+m

TableA.4 Increasein Number of Execution States by Operand Code

Access Conditions Increase in Number of Execution States
Instruction
Length
(Byte) 2 4 6 8 10
External address (2-state byte access) Nonbranch 2 4 6 8 10
Branch 4 6 - - -
External address/on-chip RAM (2- Nonbranch 0 0 0 0 0
state word access)
Branch 0 0 - - -
External address (3-state byte access Nonbranch 4+2m 8+4m 12+ 16 + 20 +
m cycle wait) 6m 8m 10m
Branch 8+4m 12 + - - -
6m

External address (3-state word access Nonbranch 1+m 2+2m 3+3m 4+4m 5+5m
m cycle wait)

Branch 2+2m 3+3m - - -

TableA.5 Instruction List
Addressing Mode/
Instruction Length Condition Code
. [
z £
—_ ﬁ 2
€ ® O e
[T a n}
c - é - ®© 8 — 0
.. ¥ 5 W3 5 & = °g
Mnem- Op. X w2 18 =0 2 s 8
onic Sz. Operation f©®0©® 0006 9 E U H N Z V z0
Data MOV.B #xx:8, B #xx:8 -Rd8 2 — — ¢t 1 0 2
transfer Rd
st MOv.BRs,Rd B Rs8—Rd8 — — 2
MOV.B @ERs -»Rd8 2 — -t 3 4
@ERs,Rd
MOV.B B @(d:16,ERs) -~Rd8 4 —_ — ¢ 1 0 6
@(d:16,ERs)Rd
MOV.B B @(d:24,ERs) - 8 — — 1t 1+ 0 10
@(d:24,ERs),Rd Rd8
MOV.B B @ERs -Rd8, 2 — — 1 10 6
@ERs+,Rd ERs+1-ERs
MOV.B B @aa:8 -Rd8 2 —_ — 1 0 4
@aa:8,Rd
MOV.B B @aa:16 -Rd8 4 — — 1t 10 6
@aa:16,Rd
MOV.B B @aa:24 -Rd8 6 — — 1 1 0 8
@aa:24,Rd
MOV.B B Rs8 - @ERd 2 —_ — 1 0 4
Rs,@ERd
MOV.B B Rs8 - 4 — — 1 1 0 6
Rs,@(d:16,ERd) @(d:16,ERd)
MOV.B B Rs8 - 8 — — ¢ 10 10
Rs,@(d:24,ERd) @(d:24,ERd)
MOV.B Rs, B ERd-1 -ERd, 2 —_ — 10 6
@-ERd Rs8 - @ERd
MOV.B Rs, B Rs8-@aa:8 2 — — t 0 4
@aa:8
MOV.B Rs, B Rs8 - @aa:16 4 —_ — 1 0 6
@aa:16
MOV.B Rs, B Rs8 - @aa:24 6 — — 1t t 0 8
@aa:24
MOV.W#xx:16, W #xx:16 -Rd16 4 —_ — t 0 4
Rd
MOV.WRs,Rd W Rs16-Rd16 — — 1 1t 0
MOV.W W @ERs-Rd16 2 —_ — t 0
@ERs,Rd
MOV.W W @(d:16,ERs) - 4 — — 1 1 0 6
@(d:16,ERs),Rd Rd16
MOV.W W @(d:24,ERs) - 8 — — 1t 1 0 10
@(d:24,ERs),Rd Rd16
MOV.W W @ERs-Rd16, 2 —_ — t 0 6
@ERs+,Rd ERs+2-ERs
MOV.W W @aa:16 -Rd16 4 — — t 0 6

@aa:16,Rd

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

c
z 2
— 5 2
€ o O e
[T]
c - é - © 8 “— 0
.. r 5 w © - S = O_ <
Mnem- Op. X c w2 1 s = ® g— s 8
onic Sz. Operation £ 20®0©®® 08006 9 E U H N Z N
Data MOV.W W @aa:24 -Rd16 6 — — ¢t 0 8
transfer @aa:24,Rd
instr. — vov.w W Rs16-@ERd 2 — — 1t 10 4
(cont) Rs,@ERd
MOV.W W Rs16- 4 —_ — 1 0 6
Rs,@(d:16,ERd) @(d:16,ERd)
MOV.W W Rsl6- 8 — — t 0 10
Rs,@(d:24,ERd) @(d:24,ERd)
MOV.W W ERd-2-ERd, 2 — — t 0 6
Rs,@-ERd Rs16 -@ERd
MOV.W W Rsl6-@aa:l6 4 — — ¢t 0 6
Rs,@aa:16
MOV.W W Rsl6-@aa:24 6 — — t 0 8
Rs,@aa:24
MOV.L#xx:32, L #xx:32 -ERd32 6 —_ — 1 0 6
ERd
MOV.L L ERs32 -ERd32 2 — — 10 2
ERs,ERd
MOV.L L @ERs -Erd32 4 —_ — 10 8
@ERs,ERd
MOV.L @ L @(d:16,ERs) - 6 — — ¢t 0 10
(d:16,ERs),ERd ERd32
MOV.L @ L @(d:24,ERs) - 10 — — 1t 1 0 14
(d:24,ERs),ERd ERd32
MOV.L L @ERs -ERd32, 4 —_ — 1 0 10
@ERs+,ERd ERs+4-ERs
MOV.L L @aa:16 -ERd32 6 — — ¢t 0 10
@aa:16,ERd
MOV.L L @aa:24 -ERd32 8 — — ¢ t 0 12
@aa:24,ERd
MOV.L L ERs32 - @ERd 4 —_ — t 0 8
ERs,@ERd
MOV.L ERs, L ERs32 - 6 — — 10 10
@(d:16,ERd) @(d:16,ERd)
MOV.L ERs, L ERs32 - 10 —_ — ¢ 10 14
@(d:24,ERd) @(d:24,ERd)
MOV.L ERs, L ERd-4 -ERd, 4 — — 10 10
@-ERd ERs32 -@ERd
MOV.L L ERs32 - @aa:16 6 — — ¢ 1t 0 10
ERs,@aa:16
MOV.L L ERs32 - @aa:24 8 —_ — 1 0 12
ERs,@aa:24
grith- ADD.B #xx:8,RdB Rd8+#xx:8 -Rd8 2 — 1 1 1 2
p
instr ADD.BRs,Rd B Rd8+Rs8-Rd8 2 — 1ttt 2

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

. c
z £
= & =
€ ® O e
W < a I}
c N é - ®© 8 — 0
. ¥ 5 w8 5 S = °2
Mnem- Op. X w2 38 =0 g— c 8
onic Sz. Operation f 2 ©®0©® 0006 9 E Ul H z c 29
Arith. ADD.W W Rd16+#xx:16 - 4 — *1 1 1 4
op. #xx:16,Rd Rd16
Instr. © ADDWRs,Rd W Rd16+Rs16 - 2 ! B T2
(cont) Rd16
ADD.L#xx:32, L ERd32+#xx:32- 6 — *1 3 1t 6
ERd ERd32
ADD.L ERs,ERd L ERd32+ERs32 - 2 — *1 ? T2
ERd32
ADDX.B B Rd8+#xx:8+C - 2 — ¢ *2 2
#xx:8,Rd Rd8
ADDX.B Rs,Rd B Rd8+Rs8+C -Rd8 2 — 1 *2 2
ADDS #1,ERd L ERd32+1 -ERd32 2 —_ — — — 2
ADDS #2,ERd L ERd32+2 -ERd32 2 —_ — — — 2
ADDS #4,ERd L ERd32+4 -ERd32 2 —_ — —_ — 2
INC.B Rd B Rd8+1 -Rd8 2 —_ — t — 2
INC.W #1,Rd W Rd16+1-Rd16 2 —_ — t — 2
INC.W #2,Rd W Rd16+2-Rd16 2 —_ — t — 2
INC.L#1,ERd L ERd32+1 -ERd32 2 —_ — t — 2
INC.L#2,ERd L ERd32+2 -ERd32 2 —_ — t — 2
DAA Rd B Rd8 decimal 2 —_ % 1 *3 2
correction -Rd8
NEG.B Rd B 0-Rd8 -Rd8 2 — ¢ ? T2
NEG.W Rd W 0-Rd16 -Rd16 2 — *1 t H
NEG.L ERd L 0—ERd32 — *1 t t
-ERd32
SUB.BRs,Rd B Rd8-Rs8 -Rd8 2 — 1 t H
SUB.W Rd16—#xx:16 - 4 — *1 ? t
#xx:16,Rd Rd16
SUBWRs,Rd W Rd16-Rsl16 2 — *1 t 12
-Rd16
SUB.L#xx:32, L ERd32-#xx:32- 6 — %1 1 1 6
ERd ERd32
SUB.L ERs,ERd L ERd32-ERs32 2 — *1 t 2
-ERd32
SUBX.B B Rd8—#xx:8 2 — 1 *2 2
#xx:8,Rd —C -~Rd8
SUBX.BRs,Rd B Rd8-Rs8-C —~Rd8 2 — *2 2
SUBS#1,ERd L ERd32-1 -ERd32 2 —_ — — — 2
SUBS#2,ERd L ERd32-2 .ERd32 2 —_ — — — 2
SUBS #4,ERd L ERd32—4 ERd32 2 —_ — — — 2
DEC.B Rd B Rd8-1 -Rd8 2 —_ — H — 2
DECW#1,Rd W Rd16-1-Rd16 2 —_ — t — 2
DECW#2,Rd W Rd16-2-Rd16 2 —_ — 1 — 2

TableA.5 Instruction List (cont)

Addressing Mode/

Instruction Length Condition Code
. c
= s
- 3
g ® c e
w = a]
- - DC: - © B “— 0
= T 5 08 5 S = °g
Mnem- Op. ¥ cwZ 18 =0 g s 8
onic Sz. Operation f2©® 0 0©@0®0®0®E, yyynwnzyv ER7
Arith. DEC.L#1,ERd L ERd32-1-ERd32 2 — — — 1 1
op- DEC.L#2ERd L ERd32-2 -ERd32 2 — — — 1 1 1 2
instr.
(cont) DAS Rd B Rd8 decimal 2 —_ - * ¢ ¢ % 2
correction -Rd8
CMP.B #xx:8, B Rd8—#xx:8 2 —_ — 1 1 1 t
Rd
CMP.BRs,Rd B Rd8-Rs8 2 — — ? ! t
CMP.W #xx:16, W Rd16-#xx:16 4 — — *1 3 ! 1
Rd
CMP.WRs,Rd W Rd16-Rsl16 2 — — *1 1 1 ?
CMP.L#xx:32, L ERd32—#xx:32 6 — — 1t 1t 1
ERd
CMP.L ERs, L ERd32-ERs32 2 — — *1 1 1 ?
ERd
MULXU.BRs, B Rd8xRs8 ~Rd16 2 —_ — = = = —
Rd
MULXU.W W Rd16xRsl16 - 2 _ - = = - —
Rs,ERd ERd32

DIVXU.BRs,Rd B Rd16+Rs8 - Rd16 2 - - - - -
(H: remainder

L: quotient)
DIVXU.W W ERd32+Rs16 - 2 - - — 1t 1 —
Rs,ERd ERd16
(E: remainder,
R: quotient)
MULXS.BRs, B Rd8xRs8-Rd16 2 - - — 1 1 —
Rd
MULXS.W W Rd16xRsl16 - 2 - - — 1t 1 —
Rs,ERd ERd32
DIVXS.B Rs, B Rd16+Rs8 - Rd16 2 —_ - -t t —
Rd (H: remainder,
L: quotient)
DIVXS.W W ERd32+Rsl6-ERd 4 —_ = — 1 1 —
Rs,ERd 16(E: remainder,
R: quotient)
EXTU.W Rd W RdL8 zero 2 — — — 1t 1t 0
extension - Rd16
EXTU.L ERd L RdL16 zero 2 — — — 1t 1t 0
extension - Rd32
EXTS.W Rd W RdL8 sign 2 — — — t t 0
extension - Rd16
EXTS.L ERd L Rd16 sign 2 — — — 1t 1t 0

extension - ERd32

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

c
Z 2
~ 3
g © o g
w = a i
- - OC: - © 8 “— 0
.. r - w d - C = O 9
Mnem- Op. ¥ c w3 s 20 2 S8
onic Sz. Operation 0 0®0 06 9 E U H N Z V 20
Logical AND.B #xx:8,Rd B Rd8[#xx:8 - Rd8 2 — — 1t t 0 2
op- AND.BRs,Rd B Rd8CRs8-Rd8 2 — — 1 1 0 2
instr.
AND.W W Rd16[#xx:16 4 — — t 0 4
#xx:16,Rd -RD16
ANDWRs,Rd W Rd160Rs16 - 2 — — 1 0 2
Rd16
AND.L L ERd320#xx:32 - 6 — — t ¢t 0 6
#xx:32,ERd ERd32
AND.L ERs,ERd L ERd32[ERs32 - 4 — — 1t 1 0 4
ERd32
OR.B #xx:8,Rd B Rd8[#xx:8 ~Rd8 2 — — 1 t 2
OR.B Rs,Rd B Rd8Rs8 - Rd8 2 — — 1 2
OR.W W Rd160H#xx:16 - 4 — — t 1 4
#xx:16,Rd Rd16
ORWRs,Rd W Rd16[Rs16- 2 — — 1t 1t 0 2
Rd16
OR.L #xx:32, L ERd32#xx:32-» 6 —_ — 1 0 6
ERd ERd32
OR.L ERS,ERd L ERd32[ERs32 - 4 —_ — 1 0 4
ERd32
XOR.B #xx:8, B Rd8[#xx:8 - Rd8 2 — — 1t ¢t 0 2
Rd
XOR.BRs,Rd B Rd8[Rs8 - Rd8 2 —_ — t 2
XOR.W W Rd160#xx:16 - 4 — — ¢ ? 4
#xx:16,Rd Rd16
XORWRs,Rd W Rd160Rs16-Rd16 2 —_ — t 2
XOR.L L ERd32#xx:32 -~ 6 — — t 6
#xx:32,ERd ERd32
XOR.L ERs, L ERd32CERsS32 - 4 —_ — 10 4
ERd ERd32
NOT.B Rd B Rd8 - Rd8 2 —_ — 10 2
NOT.W Rd W Rd16-Rd16 2 — — ¢ 10 2
NOT.L ERd L ERd32 - ERd32 2 — — 1 10 2
Shift SHAL.B Rd B Rd8 left arithmetic 2 — — t t 1 2
instr. shift - Rd8
SHAL.W Rd W Rd16 left 2 — — 1t 1 1 2
arithmetic
shift» Rd16
SHAL.L ERd L ERd32 left 2 — — 1 : H 2
arithmetic
shift » ERd32
SHAR.B Rd B Rd8 right 2 — — ¢ 10 2
arithmetic

shift» Rd8

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ c
z 2
-~ 3
E§ O 8
o = a n}
c - é T 9B 5 3
.. ' R TTR: 5 [o o
Mnem- Op. ¥ cw I 1 s = ® g s 8
onic Sz. Operation £ 20000606 9 E U H N Z V z0
Shift SHAR.W Rd W Rd16 right —_ — 10 2
instr. arithmetic
(cont) shift - Rd16
SHAR.L ERd L ERd32 right —_ — 10 2
arithmetic
shift » ERd32
SHLL.B Rd B Rd8 left logical — — t ¢t 0 2
shift » Rd8
SHLL.W Rd W Rd16 left logical — — 1t 0 2
shift . Rd16
SHLL.L ERd L ERd32 left logical — — t ¢ 0 2
shift - ERd32
SHLR.B Rd B RdS8 right logical — — 0 1 O 2
shift . Rd8
SHLR.W Rd W Rd16 right logical — — 0 ¢ O 2
shift - RD16
SHLR.L ERd L ERd32 right logical — — 0 ¢ 0 2
shift » ERd32
ROTXLBRd B Rd8C left — — 1t 1 0 2
rotation - Rd8C
ROTXLWRd W Rd16C left —_ — 10 2
rotation » Rd16C
ROTXL.LERd L ERd32C left — — t 1t 0 2
rotation -~ ERd32C
ROTXR.BRd B Rd8C right — — 1 1 0 2
rotation -~ Rd8C
ROTXRWRd W Rd16C right —_ — 10 2
rotation - Rd16C
ROTXR.LERd L ERd32C right — — 1t 1 0 2
rotation -~ ERd32C
ROTL.B Rd B Rd8 left rotation — — 1t t 0 2
-Rd8
ROTL.W Rd W Rd16 left rotation — — t ¢t 0 2
- Rd16
ROTL.L ERd L ERd32 left rotation — — t ¢t 0 2
- ERd32
ROTR.B Rd B Rd8 right rotation — — t ¢ 0 2
-Rd8
ROTR.W Rd W Rd16 right rotation — — 1t t 0 2
- Rd16
ROTR.L ERd L ERd32 right — — 1 0 2

rotation - ERd32

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ =
z 2
= & :
E ® 9]
w = a &5
c - é Toa 8 — 0
L. ¥ 5 W3 5 & = °g
Mnem- Op. X w2 18 =0 g— c 8
onic Sz. Operation f 2 ©®0©® 0006 ¢ E UHN Z V Cc 29
Bit BSET #xx:3,Rd B (#xx:3 of Rd8) ~ 1 - - - - - — 2
man. BSET B (#xx:3of 4 - - - - —
instr. 4yx:3@ERd @ERd) 1
BSET B (#xx3of 4 - - — — — — 8
#xx:3@aa:8 @aa:8) ~1
BSETRn,Rd B (Rn8ofRd8) 1 - — — — — 2
BSET Rn,@ERdB (Rn8 of @ERd) 1 4 _ - — — — — 8
BSET Rn,@aa:8B (Rn8 of @aa:8) ~ 1 4 —_ — — — — — 38
BCLR #xx:3, Rd B (#xx:3 of Rd8) 0 _ - - - — — 2
BCLR B (#xx:3 of @ERd) 4 _ - — — — — 8
#xx:3,@ERd -0
BCLR B (#xx:3 of @aa:8) 4 —_— = — — — 8
#xx:3,@aa:8 <0
BCLR Rn,Rd B (Rn8 of Rd8) ~0 _ - - - - = 2
BCLR Rn,@ERdB (Rn8 of @ERd) - 0 4 — - - —_ _— _'s8
BCLR Rn,@aa:8B (Rn8 of @aa:8) -0 4 — - — — — — 8
BNOT #xx:3,Rd B (#xx:3 of Rd8) - — — — — — 2
~ (#xx:3 of Rd8)
BNOT #xx:3, B (#xx:3 of @ERd) 4 —_— = — — — 8
@ERD ~ (#xx:3 of @ERM)
BNOT #xx:3, B (#xx:3 of @aa:8) 4 - — — — — — 8
@aa:8 ~ (#xx:3 of @aa:8)
BNOTRn,Rd B (Rn8 of Rd8) - - - — — — 2
~(Rn8 of Rd8)
BNOT Rn, B (Rn8 of @ERd) 4 _ — - — — — 8
@ERd ~(Rn8 of @ER)
BNOT Rn, B (Rn8 of @aa:8) 4 —_ - — — — — 8
@aa:8 ~(Rn8 of @ aa:8)
BTST #xx:3,Rd B (#xx:3 of Rd8) -Z _ - — 7 - — 2
BTST #xx:3, B (#xx:3 of @ERd) 4 — — — 1 — — 6
@ERd -Z
BTST #xx:3, B (#xx:3of 4 — — — 1 — — 6
@aa:8 @aa:8) ~Z
BTSTRn,Rd B (Rn8of Rd8) -z — — — 1 = — 2
BTSTRn,@ERdB (Rn8 of @ERd) -Z 4 — — 1 — _ s
BTST Rn,@aa:8 B (Rn8 of @aa:8) -Z 4 _ = -t — — 6
BLD #xx:3,Rd B (#xx:3 of Rd8) -C _ — — — — 1 2
BLD #xx:3, B (#xx:3of 4 — — — — — 1 6
@ERd @ERd) -C
BLD #xx:3, B (#xx:3of 4 - — — — — 1 6
@aa:8 @aa:8) -C
BILD #xx:3,Rd B (#xx:3 of Rd8) -C —_ = — — — 1 2
BILD #xx:3, B (#xx:3of0 4 —_ - — — —
@ERd @ERd) ~C

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ c
z S
-~ 2
g ©) o
[T i
c - é T © 8 w— 0
. r o5 oW 35 S = °cg
Mnem- Op. ¥ c W 2 7 @g s ® g s 8
onic Sz. Operation # x® 00 ® £ UHN Z V Cc 29
Bit man. BILD #xx:3, B (#xx:3 of @aa:8) 4 —_ - - — — 6
instr. @aa:8 -C
(cont) BST #xx:3,Rd C_(#xx30fRd8) 2 —_ _ _ _ _ _
BST #xx:3, C - (#xx:3 of 4 _ - — — — — 8
@ERd @ERd)
BST #xx:3, B C - (#xx:3 of 4 —_ — — — — — 8
@aa:8 @aa:8)
BIST #xx:3,Rd C - (#xx:3 of Rd8) 2 - — - - — — 2
BIST #xx:3, C - (#xx:3 of 0 4 _ - — — — — 8
@ERd @ERd)
BIST #xx:3, B C - (#xx:3 of 0 4 — — — — — — 8
@aa:8 @aa:8)
BAND #xx:3, B CO#xx:3 of Rd8) 2 _ = = = — 2
Rd -C
BAND #xx:3, B CO#xx:3 of 4 _ = = = = 6
@ERd @ERd)-C
BAND #xx:3, B CO#xx:3 of 4 - - - - — 6
@aa:8 @aa:8)-C
BIAND #xx:3, B CO#xx:3 of 0 2 _ —_ = = — 2
Rd Rd8)-C
BIAND #xx:3, B CO#xx:3 of 4 _—_- — = = 6
@ERd @ERd)-C
BIAND #xx:3, B CO#xx:3 of0d 4 _ - - - — 6
@aa:8 @aa:8)-C
BOR #xx:3,Rd B CO#xx:3 of 0 2 _ —_ = = — 2
Rd8)-C
BOR #xx:3, B CO#xx:3 of 0 4 _—_- - = = 6
@ERd @ERd)-C
BOR #xx:3, B CO#xx:3 of 4 — — — — — {6
@aa:8 @aa:8)-C
BIOR #xx:3,Rd B CO#xx:3 ofJ 2 _ - - — — 't 2
Rd8)-C
BIOR #xx:3, B CO#xx:3 of0d 4 - — — — — 1t 6
@ERd @ERd)-C
BIOR #xx:3, B CO#xx:3 of 0 4 —_ — — — — t 6
@aa:8 @aa:8)-C
BXOR #xx:3, B CO (#xx:3 of 2 —_ - - — — t 2
Rd Rd8) - C
BXOR #xx:3, B CO (#xx:3 of 4 - — — — — 1t 6
@ERd @ERd)-C
BXOR #xx:3, B CO (#xx:3 of 4 —_ = — — — t b6
@aa:8 @aa:8)-C
BIXOR #xx:3, B CO (#xx:3 of 2 _ - — — — 1t 2
Rd Rd8) - C

TableA.5

Instruction List (cont)

Addressing Mode/
Instruction Length

Condition Code

+ c
z 2
-~ 3
g § o o
b < a 3
c - é] 8 = 0
.. ¥ 5 W 8 o S = °©g9
Mnem- Op. XC"”V'(%@'@E' s 8
onic Sz. Operation 200909 ® E UHN Z V Cc 29
Bit man. BIXOR B CO (#xx:3 of 4 _ — — — — t 6
instr. #xx:3,@ERd @ERd) -C
(cont) gxoR B CO (#xx3of 4 — i s
#xx:3,@aa:8 @aa:8)-C
Branch Bcc d:8 — if condition is true, 2 - - — — — — 4
instr. then PC —PC+d:8
else next
Bcc d:16 — If condition is true, 4 _ — — — — — &6
then
PC —PC+d:16 else
next
JMP @ERN — PC<ERn 2 _ - - — — — 4
JMP @aa:24 — PC-—aa24 4 —_ — — — — — 6
IJMP @@aa: — PC-(@aa:8)16 2 _ - — — — — 8
8(normal)
JMP @@aa: — PC-(@aa:8)24 2 - — — — — — 10
8(advanced)
BSR d:8 — SP-2 -SP, 2 - - - — — — 6
(normal) PC16 -@SP
PC ~PC+d:8
BSR d:8 — SP-4 -SP, 2 - - - — — — 8
(advanced) PC24 ~@SP
PC ~PC+d:8
BSR d:16 — SP-2 -SP, 4 - - — — — — 6
(normal) PC16 -@SP
PC ~PC+d:16
BSR d:16 — SP-4 -SP, 4 - - — — — — 8
(advanced) PC24 -@SP
PC —~PC+d:16
JSR @ERnN — SP-2 -SP, PC16 2 —_ - — — — - 6
(normal) ~@SP PC~ERn
JSR @ERnN — SP-4 -SP, 2 - - - — — — 8
(advanced) PC24 ~@SP
PC —ERn
JSR @aa:24 — SP-2-SP, 4 - - — — — — 8
(normal) PC16 -@SP
PC —aa:24
JSR @aa:24 — SP-4-SP, 4 - — — — — — 10
(advanced) PC24 ~@SP
PC ~aa:24
JSR @@aa:8 — SP-2-SP, 2 _ - — — — — 8
(normal) PC16 -@SP
PC - (@aa:8)16
JSR @@aa:8 — SP-4.SP, 2 _— — - — — — 12
(advanced) PC24 ~@SP
PC - (@aa:8)24
RTS (normal) — PC —(@SP)16 SP 2 _— = — — — 8

+2.SP

Table A5 Instruction List
Addressing Mode/
Instruction Length Condition Code
+ c
z £
- 5 2
£ © o 0
[T a nt
- S % 58
. C 5 W8 5 S = °2
Mnem- Op. $ c w2 i s 20 g— s 8
onic Sz. Operation ¥ 20®0© 0006 9 k& U H N Z V z0n
System RTS (advanced) — PC24 —(@SP)24 2 —_ - = = = 10
control SP + 4_.,SP
instr.
RTE — CCR~(@SP)8, 2 H 1 T 1 H 10
PC24 —(@SP)24
SP+4.SP
TRAPA #xx:2 — SP-4-SP, 2 —_ = = - — 14
CCR- (@SP)8,
PC24 —(@SP)24,
vector - PC
SLEEP — Enters sleep mode _ = = = — 2
NOP — No operation 2 —_ - = = — 2
LDC #xx:8,CCR B #xx:8 ~CCR 2 [2
LDCRs,CCR B Rs8-CCR 2 T 2
LDC @ERs, W @ERs(even) - 4 T 6
CCR CCR
LDC @ W @(d:16,ERs) 6 I 8
(d:16,ERs),CCR (even)-CCR
LDC @ W @(d:24,ERs) 10 T 1 1 1 ? 12
(d:24,ERs),CCR (even) - CCR
LDC @ERs+, W @ERs(even)— 4 I S T 8
CCR CCR,ERs+2 - ERs
LDC @aa:16, W @aa:16(even) - 6 I T 8
CCR CCR
LDC @aa:24, W @aa:24(even) - 8 T 1 1 3 1 10
CCR CCR
STCCCR,Rd B CCR-Rd8 2 —_ - - — — 2
STC CCR, CCR- @ERd 4 _ - = - — 6
@ERd (even)
STC CCR, W CCR-@(d:16, 6 - - - — — 8
@(d:16,ERd) ERd)(even)
STC CCR, W CCR- @(d:24, 10 —_ = = — — 12
@(d:24,ERd) ERd)(even)
STCCCR,@ W ERd-2-ERd, 4 _ — = - - 8
—ERd CCR - @ERd
(even)
STC CCR, W CCR- @aa:l6 6 —_ - - — — 8
@aa:16 (even)
STC CCR, W CCR- @aa:24 8 —_ - = — — 10
@aa:24 (even)
ANDC #xx:8, B #xx:80CCR- CCR2 T T 2
CCR
ORC #xx:8,CCRB #xx:8[CCR- CCR 2 T R
XORC #xx:8, B #xx:80CCR-CCR2 T T

CCR

Appendix B Assembler
Control Instruction Functions

B.1 .CPU

Specifies the CPU.

Format:

Label Operation Operand
X .CPU CPU type

Note: CPU type: {300HA | 300HN | 300 | 300L}

Description: Specifies the CPU that the source program to be
assembled isfor. The assembler assemblesit for the specified CPU.
CPU types are as follows:

» 300HA HB8/300H advanced mode

e 300HN H8/300H normal mode
» 300 H8/300
 300L H8/300L

When this control instruction is omitted, 300HA is set.
This control instruction should be stated at the start of the source
program. If there is nothing at the start of the source program except
the control instruction for the assembler list, an error will result.
This control instruction isvalid only once. It is valid when thereis no
/CPU command line option specified.
Example:

. CPU. 300HA

.SECTION A, CODE, ALIGN = 2
MOV. W RO, R1
MOV. WRO, R2

Assembles for H8/300H, advanced mode.

B.2 SECTION
Declares the section.

Format:

Label Operation Operand

X .SECTION Section name [, section
attributes [, format type]] type

Note: Section attributes: {CODE | DATA | STACK | COMMON | DUMMY}

Format type: { LOCATE = start address|ALIGN = boundary adjust
number}

Description: Declaresthe start and restart of the section.
» Section start: Starts the section and sets the section name, section attributes and type of format.

— Section name: Specifies the section name. Section names are written the same as symbol names.
Caseis not distinguished.

— Section attributes; Sets the section attributes. Section attributes are as follows:

CODE: Code section

DATA: Datasection

STACK: Stack section
COMMON: Common section
DUMMY : Dummy section

When no attribute is specified, CODE is set.
— Format type: Setsthe format type:

LOCATE = start address Absolute addressing
ALIGN = boundary adjust number Relative addressing

When no format is specified, ALIGN = 2 is set.

With absolute addressing, the start address of the section is set. The
start address is specified as a rear-referenced absolute value. The
maximum start address values are as follows:

» HB8/300H advanced mode: H'00FFFFFF

» H8/300H normal mode: H'0000FFFF

« H8/300: H'0000FFFF

« H8/300L: H'0000FFFF

Relative addressing sets the boundary adjust number of the section.
With the linkage editor, the start address of the relative address
section when linked to an object module is corrected to a multiple of
the boundary adjust number. The boundary adjust number is
specified as arear-referenced absolute value. The boundary adjust
number can be specified as a 2" value.
If no section is declared with this control instruction, the following is
et as the default section.

. SECTION P, CODE, ALl G\=2

 Section restart: Restarts the section already existing in the source program. At section restart, the section
name of the existing section is specified. The previously declared section attributes and formats are used.

Example:

.SECTION A, CODE, ALIG\=2 (1)
NOV. W RO, RL

.SECTION B, DATA, LOCATE=H 001000 (2)
DATAL

.DATA.W H 0001
.SECTION A (3)

MOV. W RO, R3

» Starts section A. The section nameis A, the section attribute is code section, the format type isrelative
address format, and the boundary adjust number is 2.

» Starts section B. The section name is B, the section attribute is data section, the format type is absolute
address format, and the start address is H'001000.

» Restarts section A.

B.3 .EQU

Sets the symbol value.

Format:

Label Operation Operand
Symbol name .EQU Number

Description: Setsavalue for the symbol. The valueis set as arear-
referenced absolute value or arear-referenced address value. The
symbol value defined by this control instruction cannot be changed.

Example:

SYML .EQU 1

SYM .EQU 2

.SECTION A, CODE, ALIGN = 2

MOV. B #SYML: 8, ROL...Sane as MOV.B #1:8, ROL
MOV. B #SYM2: 8, RIL...Sane as MOV. B #2: 8, RIL

Sets1for SYM1 and 2 for SYM2.

B.4 .ORG
Sets the location counter value.

Format:
Label Operation Operand
X .ORG Location counter value

Description: Changes the location counter value in the section to the
specified value.
The location counter value is specified as a rear-referenced absolute
value or as arear-referenced address value of the section itself. The
maximum location counter values are as follows.
H8/300H advanced mode: H'O0FFFFFF
H8/300H normal mode: H'0000FFFF
H8/300: H'0000FFFF
H8/300L : H'0000FFFF
When specified in the absolute address section, the location counter
value specified must be a value after the start address of the section.
When this control instruction is specified in the absolute address
section, the set location counter value becomes an absol ute address;
when specified in the relative address section, it becomes arelative
address.
Example:

. SECTION A, DATA, ALIGN = 2

DATA1L

.DATA.W H 0001

.DATA.W H 0002

. ORG H 000100 (1)

DATA2

.DATA.W H 0003

.DATA.W H 0004

(1) The location counter value is changed to the relative H'000100
addressfor A.

B.5 .DATA
Reserves integer data.

Format:
Label Operation Operand
X .DATA . s] Integer data [, integer data ...]

Note: s (size): {B|W|L}

Description: Reservesinteger data according to the size specified.
The sizes are asfollows.

* B: Byte (1 byte)

* W: Word (2 byte)

* L: Longword (4 bytes)

When not specified, B is set.

The following integer data values can be specified according to size.
« B:-12810255

« W: 32,768 to 65,535

« L:-2,147,483,648 to 4,294,967,295

Example:
. SECTION A, DATA, ALIGN = 2
.DATA. W H 0102, H 0304
.DATA. B H 05, H 06, HO07, HO08

Dataisreserved as follows:
]01 \02 \03 \04 \05 \06 \07 \08 \

B.6 .RES
Reserves the integer data region.

Format:
Label Operation Operand
[Symbol name] .RES[. 5] Number of regions

Note: s (size): {B|W|L}

Description: Reservesinteger dataregions. A region of exactly the
size specified for the integer dataregion is ensured.

The sizesare asfollows:

* B: Byte (1 byte)

* W: Word (2 byte)

» L: Longword (4 bytes)

When not specified, B is set.

The number of regionsis specified as a rear-referenced absolute
value. Any number higher than 1 can be specified.

Example:
. SECTION A, DATA, ALIGN = 2
.RES.W 10

. RES. B 255

A 20 byte region and a 255 byte region are kept.

B.7 .END
End of source program.

Format:
Label Operation Operand
X .END [Execution start address]

Description: Indicates the end of the source program. When this
control instruction appears, the assembler quits assembling. The
execution start address allows you to specify the address used when
the simulation is started on a simulation debugger. The code section
address is set for the execution start address. The execution start
addressis specified as an absolute value or address value.

Example:
. CPU 300HA
.QUTPUT DBG

.SECTION A, CODE, ALIGN = 2

START

MOV. L #0: 32, ERO
MOV. L #1:32, ER1
MOV. L #2:32, ER2
BRA START: 8

. END START

In the ssmulation debugger, the simulation starts from the START

address.

	Contents
	Section 1 CPU Architecture
	Section 2 Instructions
	Section 3 Load Module Conversion Procedures
	Section 4 Examples of Software Applications
	Appendix A Instruction Set
	Appendix B Assembler

