
Hitachi Microcomputer H8/300H Series

Application Notes for CPU

ADE-502-033

Notice

When using this document, keep the following in mind:

1. This document may, wholly or partially, be subject to change without notice.

2. All rights are reserved: No one is permitted to reproduce or duplicate, in any form, the whole
or part of this document without Hitachi’s permission.

3. Hitachi will not be held responsible for any damage to the user that may result from accidents
or any other reasons during operation of the user’s unit according to this document.

4. Circuitry and other examples described herein are meant merely to indicate the characteristics
and performance of Hitachi’s semiconductor products. Hitachi assumes no responsibility for
any intellectual property claims or other problems that may result from applications based on
the examples described herein.

5. No license is granted by implication or otherwise under any patents or other rights of any third
party or Hitachi, Ltd.

6. MEDICAL APPLICATIONS: Hitachi’s products are not authorized for use in MEDICAL
APPLICATIONS without the written consent of the appropriate officer of Hitachi’s sales
company. Such use includes, but is not limited to, use in life support systems. Buyers of
Hitachi’s products are requested to notify the relevant Hitachi sales offices when planning to
use the products in MEDICAL APPLICATIONS.

Contents

Section 1 CPU Architecture .. 1
1.1 Introduction ... 1

1.1.1 Features .. 1
1.1.2 Register Configuration ... 2
1.1.3 Data Configuration... 4
1.1.4 Address Space .. 6
1.1.5 Addressing Mode ... 7
1.1.6 Instructions... 16

Section 2 Instructions .. 17
2.1 Data Transfer Instructions ... 17

2.1.1 MOV .. 17
2.1.2 PUSH, POP .. 19

2.2 Arithmetic Operation Instructions .. 21
2.2.1 ADD, SUB ... 21
2.2.2 ADDX, SUBX ... 22
2.2.3 INC, DEC... 23
2.2.4 ADDS, SUBS... 24
2.2.5 DAA, DAS ... 25
2.2.6 MULXU, DIVXU, MULXS, DIVXS .. 25
2.2.7 CMP ... 27
2.2.8 NEG ... 28
2.2.9 EXTS, EXTU ... 28

2.3 Logic Operation Instructions .. 30
2.3.1 AND, OR, XOR, NOT... 30

2.4 Shift Instructions ... 32
2.4.1 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR 32

2.5 Bit Manipulation Instructions.. 34
2.5.1 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR ... 34

2.6 Branch Instructions ... 36
2.6.1 Bcc ... 36
2.6.2 JMP .. 38
2.6.3 BSR, JSR.. 38
2.6.4 RTS .. 40

2.7 System Control Instructions .. 41
2.7.1 RTE .. 41
2.7.2 SLEEP .. 41
2.7.3 LDC, STC .. 42
2.7.4 ANDC, ORC, XORC ... 43
2.7.5 NOP .. 44
2.7.6 TRAPA .. 44

2.8 Block Transfer Instructions ... 45
2.8.1 EEPMOV ... 45

Section 3 Load Module Conversion Procedures ... 47

Section 4 Examples of Software Applications .. 49
4.1 Software Applications Examples .. 49
4.2 Using Software Examples ... 50

4.2.1 Program Listing Page Format (Format 4) .. 51
4.3 Block Transfer... 52

4.3.1 Description of Functions .. 54
4.3.2 Cautions for Use .. 56
4.3.3 Description of Data Memory ... 56
4.3.4 Examples of Use .. 57
4.3.5 Principles of Operation .. 57
4.3.6 Program Listing.. 59

4.4 Block Transfer Using Block Transfer Instruction... 60
4.4.1 Description of Functions .. 63
4.4.2 Cautions for Use .. 64
4.4.3 Description of Data Memory ... 64
4.4.4 Examples of Use .. 65
4.4.5 Principles of Operation .. 65
4.4.6 Program Listing.. 66

4.5 Branching Using a Table... 67
4.5.1 Description of Functions .. 69
4.5.2 Cautions for Use .. 70
4.5.3 Description of Data Memory ... 70
4.5.4 Examples of Use .. 71
4.5.5 Principles of Operation .. 72
4.5.6 Program Listing.. 74

4.6 Counting the Number of Logical 1s in 8-Bit Data .. 75
4.6.1 Description of Functions .. 76
4.6.2 Cautions for Use .. 77
4.6.3 Description of Data Memory ... 77
4.6.4 Examples of Use .. 77
4.6.5 Principles of Operation .. 78
4.6.6 Program Listing.. 80

4.7 Find the First 1 in 32-Bit Data .. 81
4.7.1 Description of Functions .. 83
4.7.2 Cautions for Use .. 83
4.7.3 Description of Data Memory ... 83
4.7.4 Examples of Use .. 84
4.7.5 Principles of Operation .. 84
4.7.6 Program Listing.. 86

4.8 64-Bit Binary Addition.. 87
4.8.1 Description of Functions .. 90
4.8.2 Cautions for Use .. 90
4.8.3 Description of Data Memory ... 90
4.8.4 Examples of Use .. 91
4.8.5 Principles of Operation .. 92
4.8.6 Program Listing.. 93

4.9 64-Bit Binary Subtraction ... 94
4.9.1 Description of Functions .. 97
4.9.2 Cautions for Use .. 97

4.9.3 Description of Data Memory ... 97
4.9.4 Examples of Use .. 98
4.9.5 Principles of operation ... 99
4.9.6 Program Listing.. 100

4.10 Unsigned 32-Bit Binary Multiplication .. 101
4.10.1 Description of functions... 104
4.10.2 Cautions for Use .. 104
4.10.3 Description of Data Memory ... 104
4.10.4 Examples of Use .. 105
4.10.5 Principles of Operation .. 106
4.10.6 Program Listing.. 109

4.11 Unsigned 32-Bit Binary Division.. 110
4.11.1 Description of Functions .. 113
4.11.2 Cautions for Use .. 113
4.11.3 Description of Data Memory ... 113
4.11.4 Examples of Use .. 114
4.11.5 Principles of Operation .. 115
4.11.6 Program Listing.. 117

4.12 Signed 16-Bit Binary Multiplication... 118
4.12.1 Description of Functions .. 120
4.12.2 Cautions for Use .. 120
4.12.3 Description of Data Memory ... 120
4.12.4 Examples of Use .. 121
4.12.5 Principles of Operation .. 121
4.12.6 Program Listing.. 122

4.13 Signed 32-Bit Binary Multiplication... 123
4.13.1 Description of Functions .. 126
4.13.2 Cautions for Use .. 126
4.13.3 Description of Data Memory ... 126
4.13.4 Examples of Use .. 127
4.13.5 Principles of Operation ... 128
4.13.6 Program Listing.. 132

4.14 Signed 32-Bit Binary Division (16-Bit Divisor) ... 133
4.14.1 Description of Functions .. 136
4.14.2 Cautions for Use .. 136
4.14.3 Description of Data Memory ... 136
4.14.4 Examples of Use .. 137
4.14.5 Principles of Operation .. 137
4.14.6 Program Listing.. 140

4.15 Signed 32-Bit Binary Division (32-Bit Divisor) ... 141
4.15.1 Description of Functions .. 144
4.15.2 Cautions for Use .. 144
4.15.3 Description of Data Memory ... 144
4.15.4 Examples of Use .. 145
4.15.5 Principles of Operation .. 146
4.15.6 Program Listing.. 147

4.16 8-Digit Decimal Addition.. 148
4.16.1 Description of Functions .. 151
4.16.2 Cautions for Use .. 151

4.16.3 Description of Data Memory ... 151
4.16.4 Examples of Use .. 152
4.16.5 Principles of Operation .. 152
4.16.6 Program Listing.. 154

4.17 8-Digit Decimal Subtraction ... 155
4.17.1 Description of Functions .. 158
4.17.2 Cautions for Use .. 158
4.17.3 Description of Data Memory ... 158
4.17.4 Examples of Use .. 159
4.17.5 Principles of Operation .. 159
4.17.6 Program Listing.. 161

4.18 Sum of Products .. 162
4.18.1 Description of Functions .. 165
4.18.2 Cautions for Use .. 165
4.18.3 Description of Data Memory ... 166
4.18.4 Examples of Use .. 166
4.18.5 Principles of Operation .. 166
4.18.6 Program Listing.. 168

4.19 Sorting ... 169
4.19.1 Description of Functions .. 171
4.19.2 Description of Data Memory ... 171
4.19.3 Examples of Use .. 172
4.19.4 Principles of Operation .. 173
4.19.5 Processing Method in Program .. 173
4.19.6 Program Listing.. 175

Appendix A Instruction Set... 177
A.1 Number of Execution States.. 178

Appendix B Assembler ... 190
B.1 .CPU .. 190
B.2 .SECTION ... 191
B.3 .EQU.. 193
B.4 .ORG ... 194
B.5 .DATA... 195
B.6 .RES .. 196
B.7 .END.. 197

Section 1 CPU Architecture

1.1 Introduction

The H8/300H is a high-speed CPU with an internal 32-bit
configuration and architecture that is upward-compatible with the
H8/300. The H8/300H CPU has sixteen 16-bit general registers, can
handle 16 Mbyte of linear address space, and is ideal for realtime
control.

1.1.1 Features

The H8/300H has the following features:
• Upward compatibility with the H8/300: H8/300 object programs can be run without any changes

• Sixteen 16-bit general registers (can also be used as a sixteen 8-bit registers or eight 32-bit registers)

• Sixty two basic instructions: 8/16/32 bit operation instructions, multiplication/division instructions,
powerful bit-manipulation instructions

• Eight types of addressing modes:

— Register direct (Rn)

— Register indirect (@ERn)

— Register indirect with displacement (@(d:16, ERn)/@(d:24, ERn))

— Post-increment/pre-decrement register indirect (@ERn+/@-ERn),

— Absolute addressing (@aa:8/@aa:16/@aa:24)

— Immediate (#xx:8/#xx:16/#xx:32)

— Program counter relative (d:8, d:16)

— Memory indirect (@@aa:8)

• 16 Mbyte address space

• High-speed operation:

— Almost all common instructions executed in 2, 4, or 6 states

— Maximum operating frequency: 16 MHz

— Addition/subtraction between 8/16/32-bit registers: 0.17 µs

— Multiplication of two 8-bit registers: 1.2 µs

— Division of a 16-bit by an 8-bit register: 1.2 µs

— Multiplication of two 16-bit registers: 1.8 µs

— Division of a 32-bit by a 16-bit register: 1.8 µs

• Two CPU operating modes: Normal mode/advanced mode

• Power-down mode: SLEEP instruction activates power-down mode

1.1.2 Register Configuration

Figure 1.1 shows the register configuration for the H8/300H. The
H8/300H CPU is composed of sixteen 8-bit general register
(R0H/R0L–R7H/R7L), eight 16-bit extended registers (E0–E7), one 24-
bit program counter (PC) and one 8-bit condition code register (CCR),
which are used as control registers.

23 0
PC

015 0
E0 R0H R0L
E1 R1H R1L
E2 R2H R2L
E3 R3H R3L
E4 R4H R4L
E5 R5H R5L
E6 R6H R6L
E7 R7H R7L(SP)

Program counter

Condition code register

�Stack pointer

Extension registers

I
7 6 5 4 3 2 1 0

CCR

Carry flag

Overflow flag

Zero flag

Negative flag

User bit

Half-carry flag

User bit

Interrupt mask bit

Control
registers

General registers

7 0 7

U H U N Z V C

Figure 1.1 Composition of Registers

Extended Registers: There are two ways of using extended
registers:
• When working with 32-bit data and addresses (24 bits), 16-bit general registers (R0–R7) are combined as

shown in table 1.1 and used as the upper 16 bits of 32-bit registers (ERn).

• They can also be used as independent 16-bit registers (En).

Note: The function of E7 as the upper 16 bits of the stack pointer (SP) is already allocated and is used
implicitly in exception processing and subroutine calls.

General Registers:
• General registers can be used as independent 8-bit registers (R0H/R0L–R7H/R7L).

• 8-bit registers can be combined with each other as shown in figure 1.2 for use as 16-bit registers (Rn).

• When working with 32-bit data and addresses (24 bits) and combining extended registers (E0–E7) as
shown in figure 1.3, general registers can be used as the lower 16 bits of 32-bits registers (ERn).

Note: The function of R7 as the lower 16 bits of the stack pointer (SP) is already allocated and is used
implicitly in exception processing and subroutine calls.

R0 R0H R0L E0

R1 R1H R1L E1

R2 R2H R2L E2

R3 R3H R3L E3

R4 R4H R4L E4

R5 R5H R5L E5

R6 R6H R6L E6

R7 R7H R7L E7

Figure 1.2 16-Bit Registers (Rn)

ER0 E0 R0

ER1 E1 R1

ER2 E2 R2

ER3 E3 R3

ER4 E4 R4

ER5 E5 R5

ER6 E6 R6

ER7 E7 R7

Figure 1.3 32-Bit Registers (ERn)

Program counter (PC): The PC is a 24-bit counter that indicates
the address of the next instruction to be executed by the CPU.
Condition Code Register (CCR): The CCR is an 8-bit register that
indicates the internal status of the CPU (table 1.1).
Table 1.1 Condition Code Register

Bit Function Description

7 Interrupt mask bit (I) When this bit is 1, interrupts are masked. Note that a
nonmaskable interrupt is received regardless of the status of the I
bit. When exception processing begins, this bit is set to 1.

6 User bit (UI) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions). Can also be used as an interrupt mask bit. For more
information, see the hardware manual for the product in question.

5 Half carry flag (H) When executing the ADD.B, ADDX.B, SUB.B, SUBX.B, CMP.B,
or NEG.B instructions results in a borrow or carry at bit 3, or when
executing an ADD.W, SUB.W, CMP.W, or NEG.W instruction
results in a borrow or carry at bit 11, or when executing an
ADD.L, SUB.L, CMP.L, or NEG.L instruction results in a borrow
or carry at bit 27, the bit is set to 1; otherwise, it is set to 0.

4 User bit (U) Can read/write using software (LDC, STC, ANDC, ORC, XORC
instructions).

3 Negative flag (N) The MSB of the data is considered a sign bit and its value is
saved.

2 Zero flag (Z) When the data is zero this bit is set to 1; when the data is
nonzero, the bit is cleared to 0.

1 Overflow flag (V) When execution of an arithmetic operation instruction creates an
overflow, this bit is set to 1. In all other cases, it is set to 0.

0 Carry flag (C) When execution of an operation creates a carry, this bit is set to
1; otherwise, it is set to 0. There are three types of carries:

1. Carries caused by addition

2. Borrows caused by subtraction

3. Carries caused by shift/rotates

The carry flag has a bit accumulator function that can be used by
bit manipulation instructions.

1.1.3 Data Configuration

The H8/300H can work with 1-bit, 4-bit BCD, 8-bit (byte), 16-bit
(word), and 32-bit (longword) data. 1-bit data is handled with bit
manipulation instructions and accessed as the nth bit (n = 0, 1, 2, …,
7) of the operand data (byte). In the DAA and DAS decimal adjust
instructions, byte data is two columns of 4-bit BCD data.
Data Configuration of Registers: Table 1.2 shows the
configuration of data in the registers.

Table 1.2 Register Data Configuration

Data Type Register No. Data Image

1 bit RnH

7 6 5 4 3 2 1 0 Don't care
07

RnL

7 6 5 4 3 2 1 0 Don't care
07

4-bit BCD RnH

Don't care
07 4 3

Upper column

Lower column

RnL

Upper column

Don't care
07 4 3

Lower column

Byte RnH

Don't care
07

RnL

Don't care
07

Word Rn

015

En

015

Long word ERn

1631 015

RnEn

Legend
ERn: General register (long word size)
RnH: Top of general register
RnL: Bottom of general register
MSB: Most significant bit
LSB: Least significant bit

Data Configuration in Memory: Table 1.3 shows the configuration
of data in memory. The H8/300H CPU can access word and longword
data in memory. The MOV.W and MOV.L instructions are limited to
data that starts from even addresses. When accessing word or long
word data that starts from odd addressees, the LSB of the address is
considered 0 and data is accessed starting from the address one
before. In such cases, no address errors are produced. The same
applies to instruction code.

Table 1.3 Memory Data Configuration

Data Type Memory Image

1 bit

7 6 5 4 3 2 1 0
7 0

nth address

Byte

MSB LSBnth address

Word

MSB

LSB

Even address

Odd address

Long word

MSB

LSB

Even address

Odd address

Even address

Odd address

1.1.4 Address Space

There are two H8/300H operating modes: normal mode and
advanced mode. Table 1.4 describes the operating modes and figure
1.4 shows the memory maps for these two modes. The mode pin of
the LSI is used to select the mode. See the hardware manual of the
product in question for more information.
Table 1.4 Address Space for Normal and Advanced Operating Modes

CPU Operating Mode Description

Normal Supports up to a maximum of 64 kbytes of address space. In this mode,
the top 8 bits of the address are ignored and memory is accessed on 16-
bit addresses.

Advanced Supports up to a maximum of 16 Mbytes of address space. Can access
continuous space by using the 24-bit PC and extended registers in
combination.

H'0000

H'FFFF

On-chip ROM

On-chip RAM

I/O space

Normal mode
H'000000

H'FFFFFF

On-chip ROM

On-chip RAM

I/O space

Advanced mode

Figure 1.4 Memory Map

1.1.5 Addressing Mode

The H8/300H supports the eight addressing modes shown in table
1.5. The usable addressing modes vary for each instruction.
Addressing modes are explained below using the various MOV
commands as the primary example.
Table 1.5 Addressing Modes

Addressing Mode Use

Register direct Specify registers

Absolute addressing Specify address

Register indirect

Post-increment register indirect

Pre-decrement register indirect

Register indirect with displacement

Memory indirect

Program counter relative

Immediate Specify constants

Register Direct: The register name (ER0–ER7, R0–R7, E0–E7,
R0H/R0L–R7H/R7L) is written in the operand and the contents of
that register become the subject of the instruction (figure 1.5).

0 1 2 3 4 5 6 7ER0

0 1 2 3 4 5 6 7ER1

Transfer

Example: MOV.L ER0, ER1

Specify
register

Figure 1.5 Register Direct

Absolute Addressing: Specifies the address directly. Addresses
are usually specified as 24 bits in advanced mode and 16 bits in
normal mode, but can be accessed by specifying only the lowest 16
bits or 8 bits when the absolute address area is 16 bits (H'000000–
H'007FFF, H'FF8000–H'FFFFFF) or 8 bits (H'FFFF00–H'FFFFFF) (figure
1.6).

01
23
45
67

000000

007FFF

001000

01234567ER1

@H'1000:16, ER1MOV. L

Specify
address

16-bit
absolute
address

area
Transfer

01
23
45
67

FF8000

FFFFFF

FF9000

01234567ER1

@H'9000:16, ER1MOV. L

45

FFFF00

FFFFFF

FFFF30

45R1H

 @H'30:8, R1HMOV. B

Value sign-extended to
24 bits becomes the
address.

01
23
45
67

100000

01234567ER1

@H'100000:24, ER1MOV. L

100002
100003

001000
Sign extension

Specify
address

16-bit
absolute
address

area
Transfer

Value sign-extended to
24 bits becomes the
address.

FF9000
Sign extension

Specify
address

Specify
address

Transfer

Transfer

8-bit
absolute
address

area

The value with the upper
bits all 1 becomes the
address.

FFFF 30

100001

Figure 1.6 Absolute Addressing

Register Indirect: The address is specified by the lowest 24 bits of
the 32 bit register (figure 1.7).

0 1
2 3
4 5
6 7

100001
100000

@ER0, ER1Example: MOV. L

100002
100003

Specify
address

100000ER0 Don't care
31 24 23 0

Address
Address specified by the lowest 24 bits of ER0

Figure 1.7 Register Indirect

Post-Increment Register Indirect: The address is specified by
the lowest 24 bits of the 32 bit register ERn. After instruction
execution, the operand size value (B: 1, W: 2, L: 4) is added to the
contents of the 32-bit register ERn (figure 1.8).

0 1
2 3
4 5
6 7

100001
100000

@ER0+, ER1Example: MOV. L

100002
100003

ER0 Don't care
31 24 23 0

Address

After address is specified by the lowest 24 bits of ER0,
ER0 is incremented by four.

ER0 Don't care
31 24 23 0

Specifiy
address

After instruction
execution

100000

100004

Figure 1.8 Post-Increment Register Indirect

Pre-Decrement Register Indirect: The address is specified by the
lowest 24 bits of the 32 bit register ERn. Before instruction execution,
the operand size value (B: 1, W: 2, L: 4) is subtracted from the
contents of the 32-bit register ERn (figure 1.9).

0 1
2 3
4 5
6 7

100005
100004

@–ER0, ER1Example: MOV. L

100006
100007

100008ER0 Don't care
31 24 23 0

Address

After ER0 is decremented by four, the address is specified
 by the lowest 24 bits of ER0.

100004ER0 Don't care
31 24 23 0

Specify
address

ER0 is decremented
by four.

Figure 1.9 Pre-Decrement Register Indirect

Register Indirect with Displacement: The address is specified
by the lowest 24 bits of the 32 bit register ERn plus a signed
displacement of 16 bits or 24 bits. The results of this addition are not
saved in the 32-bit register ERn (figure 1.10).

0 1
2 3
4 5
6 7

101001
101000

@(H'1000:16. ER0), ER1Example: MOV. L

101002
101003

100000ER0 Don't care
31 24 23 0

(+1000)

Specify
address

01234567ER1

Transfer

031

101000

+)

The address is the lowest 24 bits of ER0
plus the signed 16-bit displacement (+1000).

Displacement

Address

Mnemonic:
@(displacement:16, ERn): signed displacement is 16 bits
@(displacement:24, ERn): signed displacement is 24 bits

Figure 1.10 Register Indirect with Displacement

0 1
2 3
4 5
6 7

200001
200000

@(H'F00000:24, ER0), ER1Example: MOV. L

200002
200003

300000ER0 Don't care
31 24 23 0

(–10000)

Specify
address

01234567ER1

Transfer

031

200000

+)

The address is the lowest 24 bits of ER0
plus the signed 24-bit displacement (-100000).

Displacement

Address

Figure 1.10 Register Indirect with Displacement (cont)

Memory Indirect: Uses branch address specification with the JSR
and JMP instructions. The branch address is on the 8-bit memory
indirect address area (advanced mode: H'000000–H'0000FF, normal
mode: H'0000–H'00FF). To specify the branch address, specify the
lower 8 bits of the address that stores the branch address. The
address is stored in 2-byte units in normal mode and in 4-byte units
for advanced mode (the first byte is ignored). Note that the top
region of the 8-bit memory indirect address area is shared with the
exception processing vector area. For more information, see the
hardware manual for the LSI in question (figure 1.11).

H'000000

H'0000FF

(Advanced mode)

H'0000F3
H'0000F4

H'0000F8

8-bit
memory
indirect

address
area

00
00
10

Don't care

Branch address

Exception
processing

vector
region

Example: JSR @@H'F8

Figure 1.11 Memory Indirect

H'0000

H'00FF

(Normal mode)

H'0079
H'007A

H'00BA

8-bit
memory
indirect

address
area

00
10

Branch address

Exception
processing

vector
region

Example: JSR @@H'BA (subroutine branch to address 1000)

Figure 1.11 Memory Indirect (cont)

Program Counter Relative: Used to specify branch addresses
using the Bcc or BSR instructions. It specifies the displacement of the
branch address (signed 8-bit or signed 16-bit). Displacement is
added to the contents of the PC and the address at the branch
destination is generated. The PC contents become the start address of
the next instruction, so the branchable area for the Bcc and BSR
instructions are –126 to +128 bytes or –32766 to +32678 bytes.
Normally, the branch destination symbol is specified rather than the
displacement (figure 1.12).

BSR

ADD. W

ABC

R0, E1ABC:

Figure 1.12 Program Counter Relative

Immediate: Directly specifies the data on the instruction (figure
1.13).

0 1 2 3 4 5 6 7ER0

Transfer

Example: MOV.L #H'01234567, ER0

31 0

Figure 1.13 Immediate Addressing

1.1.6 Instructions
H8/300H CPU instructions have the following features:
• Instructions use a general register architecture

• A simplified and optimized 62-instruction basic set

• The common instruction length is 2 or 4 bytes

• High-speed executable multiplication and division instructions and powerful bit manipulation
instructions

• 8 types of addressing modes

Instruction Types: There are a total of 62 H8/300H CPU
instructions that are categorized according to function (table 1.6).
Table 1.6 Instruction Categories

Function Instruction Type

Data transfer instructions MOV, PUSH, POP 3

Arithmetic operations
instructions

ADD, SUB, ADDX, SUBX, INC, DEC, ADDS, SUBS,
DAA, DAS, MULXU, DIVXU, MULXS, DIVXS, CMP,
NEG, EXTS, EXTU

18

Logic operations instructions AND, OR, XOR, NOT 4

Shift instructions SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL,
ROTXR

8

Bit manipulation instructions BSET, BCLR, BNOT, BTST, BAND, BIAND, BOR,
BIOR, BXOR, BIXOR, BLD, BILD, BST, BIST

14

Branching instructions Bcc, JMP, BSR, JSR, RTS 5

System control instructions RTE, SLEEP, LDC, STC, ANDC, ORC, XORC, NOP,
TRAPA

9

Block transfer instructions EEPMOV 1

Section 2 Instructions

2.1 Data Transfer Instructions

2.1.1 MOV

MOV (Move): Transfers 8-bit, 16-bit or 32-bit data (figure 2.1).

B
W
L

MOV.

Destination operand
Source operand
Operand size
Mnemonic

,

Figure 2.1 MOV

Table 2.1 MOV

Mnem-
onic

Op.
Sz.

Source
Operand

Dest.
Op. Description

MOV B RnH or RnL RnH or
RnL

7 0 7 0

RnH or RnL RnH or RnL

W Rn or En Rn or
En

15 0 15 0

L ERn ERn

31 0 31 0

ERn ERn

B @ERn
@(d:16,ERn)
@(d:24,ERn)
@–ERn

RnH or
RnL

7 0

RnH or RnL

W @aa:8
@aa:16
@aa:24

Rn or
En

15 0Rn or En
Even address

L ERn

31 0ERn

Even
address

B RnH or RnL @ERn
@(d:16,
ERn)

7 0

RnH or RnL

W Rn or En
@(d:24,
ERn)
@ERn+
@aa:8
@aa:16

15 0Rn or En

Even address

L ERn

@aa:24

31 0ERn

Even
address

Table 2.1 MOV (cont)

Mnem-
onic

Op.
Size

Source
Operand

Dest.
Op. Description

MOV
(cont)

B #xx:8 RnH
or RnL

7 0
#xx:8

RnH or RnL

W #xx:16 Rn or
En

15 0
#xx:16

Rn or En

L #xx:32 ERn

31 0
#xx:32

ERn

2.1.2 PUSH, POP

PUSH (Push Data): Saves the contents of register to stack (figure 2.2).
POP (Pop Data): Recovers the contents of register from stack (figure
2.2).

PUSH.
W
L

POP.

Source operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

W
L

Figure 2.2 PUSH, POP

Table 2.2 PUSH, POP

Mnem-
onic

Source
Operand

Destination
Operand
(Source
Operand) Description

PUSH W (Rn, En) After 2 is subtracted from the stack pointer, the contents of
16-bit registers Rn and En are saved to the stack.

Stack

H'×× ××
En or Rn

SP

SP
–2

15 0

The instruction is the same as MOV.W Rn, @–SP or MOV.W
En, @–SP.

L (ERn) After 4 is subtracted from the stack pointer, the contents of
32-bit register ERn are saved to the stack.

H'×× ×× ×× ××

Stack

ERn

SP

SP

–4
31 0

The instruction is the same as MOV.L ERn, @SP–.

POP W Rn, En The contents of 16-bit registers Rn and En saved to the stack
are recovered. After recovery 2 is added to the stack pointer.

H'××
××15 0

Stack

En or Rn

SP

SP
+2

The instruction is the same as MOV.W @SP+,Rn or MOV.W
@SO+, En.

L ERn The contents of 32-bit register ERn saved to the stack are
recovered. After recovery 4 is added to the stack pointer.

Stack
H'××

××

31 0

ERn

SP

SP

××
××

+4

The instruction is the same as MOV.> @SP+, ERn.

2.2 Arithmetic Operation Instructions

2.2.1 ADD, SUB

ADD (ADD binary): Summand (8 bit) + addend (8 bit) = sum (8
bit), or

Summand (16 bit) + addend (16 bit) = sum (16 bit),
or
Summand (32 bit) + addend (32 bit) = sum (32 bit)

SUB (Subtract binary): Subtrahend (8 bit) – minuend (8 bit) =
difference (8 bit), or
Subtrahend (16 bit) – minuend (16 bit) = difference
(16 bit), or
Subtrahend (32 bit) – minuend (32 bit) = difference
(32 bit)

Figure 2.3 shows examples of ADD and SUB.

ADD
SUB

B
W

Destination operand
Source operand
Operand size
Mnemonic

. ,

Figure 2.3 ADD, SUB

Table 2.3 ADD, SUB

Mnem-
onic

Operand
Size

Destination
Operand

Source
Operand Description

ADD
SUB

B RmH or RmL #xx:8
or RnH
or RnL

7 0
7 0

RmH or RmL

RnH or RnL

=±H'××
H'××

H'××
#xx:8

W Rm or Em #xx:16
or Rn or
En

H'×××× ± =
H'××××
#xx:16

Rn or En
H'××××Rm or Em

L ERm #xx:32 or
ERn

H'××××××××
H'××××××××

H'××××××××
#xx:32± =

ERn
ERm

2.2.2 ADDX, SUBX

ADDX (ADD with Extend Carry): Adds with C flag (carry from bottom)
included (figure 2.4).

SUBX (Subtract with Extend Carry): Subtracts with C flag (borrow
from bottom) included (figure 2.4).

ADDX
SUBX . B

Destination operand
Source operand
Mnemonic

,

Figure 2.4 ADDX, SUBX

Table 2.4 ADDX, SUBX

Mnem-
onic

Operand
Size

Source
Operand

Destination
Operand Description

ADDX
SUBX

B #xx:8 or
RnH or RnL

RmH or
RmL

7 0
H'××
#xx:8

H'××
H'××

RmH or RmL
RnH or RnL

C flag
± =±

2.2.3 INC, DEC

INC (Increment): Adds 1 to contents of 8-bit, registers RnH or RnL
(figure 2.5). Adds 2 to the contents of 16-bit registers Rn or En and
32-bit register ERn.
DEC (DECrement): Subtracts 1 from contents of 8-bit, registers RnH or
RnL (figure 2.5). Subtracts 2 from the contents of 16-bit registers Rn
or En and 32-bit register ERn.

INC
DEC

INC
DEC

W
L

B

#1
#2

Destination operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

. ,

.

Figure 2.5 INC, DEC

Table 2.5 INC, DEC

Mnem-
onic

Operand
Size

Destination
Operand Description

INC
DEC

B RnH or RnL

7 0
H'××

RnH or RnL
±1 =

W Rn or En

H'××××
Rn or En

±
1
2 =

15 0

L ERn

H'××××××××
ERn

31 0
±

1
2 =

2.2.4 ADDS, SUBS

ADDS (Add with Sign Extension): Adds 1, 2 or, 4 to the contents of the
32-bit register ERn (figure 2.6).
SUBS (Subtract with Sign Extension): Subtracts 1, 2 or 4, from the
contents of the 32-bit register ERn (figure 2.6).

ADDS
SUBS

#1
#2
#4

ERn

Destination operand
Source operand
Mnemonic

,

Figure 2.6 ADDS, SUBS

Table 2.6 ADDS, SUBS

Mnem-
onic

Operand
Size

Source
Operand

Destination
Operand Description

ADDS
SUBS

— #1 or #2
or #4

ERn

31 0
H'××××××××

1
2
4

=±
ERn

2.2.5 DAA, DAS

DAA (Decimal Adjust Add): Adjusts the sum from binary addition of
2 columns of 4-bit BCD data to 4-bit BCD data (figure 2.7).
DAS (Decimal Adjust Subtract): Adjusts the difference from binary
subtraction of 2 columns of 4-bit BCD data to 4-bit BCD data (figure
2.7).

DAA
DAS

Destination operand
Mnemonic

Figure 2.7 DAA, DAS

Table 2.7 DAA, DAS

Mnem-
onic

Destination
Operand Description

DAA RnH or RnL The results of binary addition or subtraction of 2 columns of 4-bit BCD data
is adjusted to 2 columns of 4-bit BCD data.

DAS

Upper
column

7 04 3
H'××

RnH or RnL

Lower
column

2.2.6 MULXU, DIVXU, MULXS, DIVXS

MULXU (Multiply Extended Unsigned): Multiplicand (8 bit) +
multiplier (8 bit) = Product (16 bit), or Multiplicand (16 bit) +
multiplier (16 bit) = Product (32 bit)
DIVXU (Divide Extended Unsigned): Dividend (16 bit) + divisor (8
bit) = Quotient (8 bit), Remainder (8 bit), or Dividend (32 bit) +
divisor (16 bit) = Quotient (16 bit), Remainder (16 bit)
MULXS (Multiply Extended Signed): Multiplicand (8 bit) + multiplier
(8 bit) = Product (16 bit), or Multiplicand (16 bit) + multiplier (16
bit) = Product (32 bit)
DIVXS (Divide Extended Signed): Dividend (16 bit) + divisor (8 bit) =
Quotient (8 bit), Remainder (8 bit), or Dividend (32 bit) + divisor (16
bit) = Quotient (16 bit), Remainder (16 bit)
Figure 2.8 shows examples of MULXU, DIVXU, MULXS, and DIVXS.

MULXU
MULXS
DIVXU
DIVXS

. B
W ,

Destination operand
Source operand
Operand size
Mnemonic

Figure 2.8 MULXU, DIVXU, MULXS, DIVXS

Table 2.8 MULXU, DIVXU, MULXS, DIVXS

Mnem-
onic

Op.
Size

Source
Operand

Destination
Operand Description

MULXU
MULXS

B RnH or
RnL

Rm or Em

Product
H'××××

15 0

Rm or Em
=H'×× ×

87 7 0

RnH or RnL
H'××

W Rn or En ERm

ERm

31 16 15 0
 × =

15 0

Rn or En
H'×××× H'××××

Product
H'××××××××

DIVXU
DIVXS

B RnH or
RnL

Rm or Em

Remainder
H'××

Quotient
H'××

7 015 0
÷ =

Rm or Em RnH or RnL

8 7
H'×××× H'××

W Rn or En ERm

Quotient
H'××××

Remainder
H'××××

H'×××××××× H'××××
ERm Rn or En

÷ =
31 16 15 0 15 0

2.2.7 CMP

CMP (Compare): Compares pairs of 8-bit, 16-bit, or 32-bit data
(figure 2.9).

CMP .
B
W
L

Destination operand
Source operand
Operand size
Mnemonic

,

Figure 2.9 CMP

Table 2.9 CMP

Mnem-
onic

Op.
Size

Source
Op.

Dest.
Op. Description

CMP B #xx:8
RnH or
RnL

RnH
or
RnL

H' × ×
H'××

7 0
–

H'××
#xx:8
7 0

RnH or RnL
RnH or RnL

W #xx:16
or Rn or
En

Rn or
En

H'××××
H'××××

H'××××
#xx:16

–

Rn or En
Rn or En

15 0
15 0

L #xx:32
or ERn

ERn

H'××××××××
31 0

H'××××××××

H'××××××××
#xx:32

ERn

ERn

–
31 0

2.2.8 NEG

NEG (Negate): Takes the two complement of 8-bit registers RnH and
RnL, 16-bit registers Rn and En, and 32-bit register ERn. (figure 2.10)

NEG
B
W
L

.

Destination operand
Operand size
Mnemonic

Figure 2.10 NEG

Table 2.10 NEG

Mnem-
onic

Op.
Size

Destination
Operand Description

NEG B RnH or RnL

H'××
RnH or RnL

0 –
7 0

=

W Rn or En

H'××××0 –
015

Rn or En

=

L ERn

H'××××××××0 –
31

ERn

=
0

2.2.9 EXTS, EXTU

EXTS (Extend as Signed): Sign-extends from 8 bit to 16 bit or from 16
bit to 32 bit (figure 2.11).
EXTU (Extend as Unsigned): Zero-extends from 8 bit to 16 bit or from
16 bit to 32 bit (figure 2.11).

EXTS
EXTU W

L.

Destination operand
Operand size
Mnemonic

Figure 2.11 EXTS, EXTU

Table 2.11 EXTS, EXTU

Mnem-
onic

Op.
Size

Destination
Operand Description

EXTU W Rn or En

Rn or En

Zero extended

15 8 7
H' × ×H' 00

0

L ERn

0
H' × × × ×H' 0000

Zero extended

31 16 15

ERn

EXTS W Rn or En

H'××H' 00
Rn or En

Sign extended

15 8 7 0

H'××H' FF
Rn or En

15 8 7 0

Sign extension

When positive

When negative

L ERn

H'××××H' 0000

H' FFFF H'××××

Sign extended

031 16 15

031 16 15

Sign extension

When positive

When negative
ERn

ERn

2.3 Logic Operation Instructions

2.3.1 AND, OR, XOR, NOT

AND (And logical): Takes the logical product of pairs of 8-bit, 16-bit,
or 32-bit data (figure 2.12).
OR (Inclusive Or Logical): Takes the logical sum pairs of 8-bit, 16-bit,
or 32-bit data (figure 2.12).
XOR (Exclusive Or Logical): Takes the exclusive logical sum of pairs of
8-bit, 16-bit, or 32-bit data (figure 2.12).
NOT (NOT = Logical Complement): Logically inverts pairs of 8-bit, 16-
bit, or 32-bit data(figure 2.12).

AND
OR
XOR

NOT.

B
W
L

B
W
L

. ,

Destination operand
Source operand
Operand size
Mnemonic

Destination operand
Operand size
Mnemonic

Figure 2.12 AND, OR, XOR, NOT

Table 2.12 AND, OR, XOR, NOT

Mnem-
onic

Op.
Size

Dest.
Op.

Source
Op. Description

AND
OR
XOR

B RmH
or
RmL

#xx:8
or RnH
or RnL

7 0
=∧H'××

H'××

H'××
#xx:8

7 0
RmH or RmL

RnH or RnL

W Rm or
Em

#xx:16
or Rn or
En

H'××××
#xx:1615

15 0 =∧

Rm or Em
Rn or En

H'××××
H'××××

0

L ERm #xx:32
or ERn

31 0
H'××××××××

H'××××××××
31 0

H'××××××××
#xx:32 =∧

ERm
ERn

NOT B RmH
or
RmL

—

7 0
H'××

RmH or RmL
=

W Rm or
Em

—

H' × × × ×
15

Rm or Em

0
=

L ERm —

31
H'××××××××

ERm

0
=

2.4 Shift Instructions

2.4.1 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

The contents of 8-bit, 16-bit, and 32-bit registers can be shifted in
the eight ways shown below (figure 2.13).
SHAL (Shift Arithmetic Left): Does an arithmetic shift 1 bit left.

SHAR (Shift Arithmetic Right): Does an arithmetic shift 1 bit right.

SHLL (Shift Logical Left): Does a logical shift 1 bit left.

SHLR (Shift Logical Right): Does a logical shift 1 bit right.

ROTL (Rotate Left): Rotates 1 bit left.

ROTR (Rotate Right): Rotates 1 bit right.

ROTXL (Rotate with eXtend carry Left): Rotates 1 bit left including the C flag.

ROTXR (Rotate with eXtend carry Right): Rotates 1 bit right including the C flag.

B
W
L

SHAL
SHAR
SHLL
SHLR
ROTL
ROTR
ROTXL
ROTXR Destination operand

Operand size
Mnemonic

.

Figure 2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Table 2.13 SHAL, SHAR, SHLL, SHLR, ROTL, ROTR, ROTXL, ROTXR

Mnem-
onic

Destination
Operand Description

SHAL RnH or
RnL, Rn or
En, ERn

MSB LSBC flag
0

RnH or RnL, Rn or En, ERn

SHAR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

SHLL

MSB LSBC flag
0

RnH or RnL, Rn or En, ERn

SHLR

MSB LSB C flag

RnH or RnL, Rn or En, ERn
0

ROTL

MSB LSBC flag

RnH or RnL, Rn or En, ERn

ROTR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

ROTXL

MSB LSBC flag

RnH or RnL, Rn or En, ERn

ROTXR

MSB LSB C flag

RnH or RnL, Rn or En, ERn

2.5 Bit Manipulation Instructions

2.5.1 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR, BXOR,
BIXOR

Bit data can be accessed in the format of the nth bit (n = 0, 1, 2, …, 7)
of the 8-bit data in the 8-bit registers (R0H–R7H, R0L–R7L) or on
memory. The bit numbers for such accesses are specified as 3-bit
immediate data or 8-bit register contents (lower 3 bits) (figure 2.14).

BSET
BCLR
BNOT
BTST
BLD
BILD
BST
BIST
BAND
BIAND
BOR
BIOR
BXOR
BIXOR

#0
#1
#2
#3
#4
#5
#6
#7

. B

7 6 5 4 3 2 1 0

8-bit register
(R0H–R7H, R0L–R7L)

7 6 5 4 3 2 1 0

Memory
(register indirect,

8-bit absolute address)

or

8-bit data

8-bit register (lower 3 bits)
(R0H–R7H, R0L–R7L)

000–111

or Immediate data
#0–#7

Bit numbers (0–7)

,

Figure 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR

Table 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR

Cate-
gory

Mnem-
onic (Full
Name) Description

Bit set BSET (Bit
set)

Sets the specified bit to 1.

1

Specified bit

Bit clear BCLR (Bit
clear)

Clears the specified bit to 0.

0

Specified bit

Bit
inversion

BNOT (Bit
not)

Inverts the specified bit.

Specified bit

Bit test BTST (Bit
test)

Transfers the specified bit to the zero
flag.

Specified bit Z bit

Bit
transfer

BLD (Bit
load)

Transfers the specified bit to the carry
flag.

Specified bit C bit

BILD (Bit
invert load)

Transfers the inversion of the
specified bit to the carry flag.

Specified bit C bit

BST (Bit
store)

Transfers the carry flag to the
specified bit.

Specified bitC bit

BIST (Bit
Invert store)

Transfers the inversion of the carry
flag to the specified bit.

Specified bitC bit

Bit AND BAND (Bit
and)

Takes the AND of the specified bit
and the carry flag and transfers the
result to the carry flag.

Specified bit C bit C bit

BIAND (Bit
invert and)

Takes the AND of the inversion of the
specified bit ad the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

Table 2.14 BSET, BCLR, BNOT, BTST, BLD, BILD, BST, BIST, BAND, BIAND, BOR, BIOR,
BXOR, BIXOR (cont)

Cate-
gory

Mnem-
onic (Full
Name) Description

Bit OR BOR (Bit
inclusive or)

Takes the OR of the specified bit and
the carry flag and transfers the result
to the carry flag.

Specified bit C bit C bit

BIOR (Bit
invert
inclusive or)

Takes the OR of the inversion of the
specified bit and the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

Bit
exclusive
Or

BXOR (Bit
exclusive or)

Takes the exclusive OR of the
specified bit and the carry flag and
transfers the result to the carry flag.

Specified bit C bit C bit

BIXOR (Bit
invert
exclusive or)

Takes the exclusive OR of the
inversion of the specified bit and the
carry flag and transfers the result to
the carry flag.

Specified bit C bit C bit

2.6 Branch Instructions

2.6.1 Bcc

Bcc (Branch Conditionally): This instruction branches when a
condition is met (figure 2.15).

Bcc
Operand
Mnemonic

Figure 2.15 Bcc

Table 2.15 Bcc

Mnem-
onic Operand Description

Bcc d:8 or d:16 When the condition is met, the displacement (signed 8 bit or 16 bit) to
the branch

H'××××××

H'××××××

+ H'××
d:8

+ H'××××
d:16

PC

PC

=

=

23 0

23 0

Mnemonic Description Branch Condition

BRA (BT) Always (True) Always

BRN (BF) Never (False(never

BHI High CVZ = 0

BLS Low or same CVZ = 1

BCC(BHS) Carry clear (high or same) C = 0

BCS(BLO) Carry set (Low) C = 1

BNE Not equal Z = 0

BEQ Equal Z = 1

BVC Overflow clear V = 0

BVS Overflow set V = 1

BPL Plus N = 0

BMI Minus N = 1

BGE Greater or equal N ⊕ V = 0

BLT Less than N ⊕ V = 0

BGT Greater than ZV(N ⊕ V) =0

BLE Less or equal ZV(N ⊕ V) =0

2.6.2 JMP

JMP (Jump): Jumps unconditionally to branch destination (figure
2.16).

JMP
Operand
Mnemonic

Figure 2.16 JMP

Table 2.16 JMP

Mnem-
onic Operand Description

JMP @ERn or
@aa:24 or
@@aa:8

Branch destination address transferred to PC

H'××

@ERn

@aa:24

@@aa:8

H'××××××

H' ××××××

××
××

31 24 23

023

PC

ERn

0

2.6.3 BSR, JSR

JSR (Jump to Subroutine, BSR (Branch to Subroutine): Instructions
that jump to subroutines (figure 2.17).

BSR
JSR

Operand
Mnemonic

Figure 2.17 BSR, JSR

Table 2.17 BSR, JSR

Mnem-
onic Operand Description

BSR d:8 or d:16 The contents of the PC are saved to the stack and the displacement (signed
8 bit or signed 16 bit) tot he subroutine start destination is added to the PC
contents

H'××××××

(Advanced mode) (Normal mode)

H'×× ×× ××

SP

PC

23 0 SP

23 0

PC
H'××
d:8

=+

H'××××××
23 0

PC
H'××××

d16
+

H'××

SP

SP
–2

–4

=

××
15 0

JSR @ERn or
@aa:24 or
@@aa:8

The contents of the PC are saved to the stack

SP
–2

15 0 SP
H'××

(Advanced mode) (Normal mode)

×× ××
PC PC

SP

SP

Stack
Stack

23 0

–4

H'×× ××

31 24 23 0

ERn
@ERn H'××××××

@aa:24 H'××××××

@@aa:8
H'××

××
××

23 0

PC

2.6.4 RTS

RTS (Return from Subroutine): Returns from a subroutine (figure
2.18).

RTS
Mnemonic

Figure 2.18 RTS

Table 2.18 RTS

Mnem-
onic

Op.
Size

Source
Operand

Destination
Operand Description

RTS — — — When jumping to a subroutine using BSR or JSR,
the contents of the PC saved in the stack are
transferred back to the PC. After the transfer, the
stack pointer is incremented (+2 for normal mode
and +4 for advanced mode

(Normal mode)

Stack

SP

SP
+2

PC

PC

PC

SP

+4

SP

...

...
PC

(Advanced mode)
Stack

2.7 System Control Instructions

2.7.1 RTE

RTE (Return from Exception): Returns for exception processing
program. (figure 2.19)

RTE
Mnemonic

Figure 2.19 RTE

Table 2.19 RTE

Mnem-
onic

Op.
Size

Source
Op.

Dest.
Op. Description

RTE — — — When a hardware interrupt or software interrupt (TRAPA
instruction) occurs, the CCR and PC automatically saved to the
stack by the hardware are returned from the stack

Stack

SP

SP

+4

CCR PC

CCR

PC

7 0 23 0

2.7.2 SLEEP

SLEEP (Sleep): The SLEEP instruction places the CPU in power-down
status (figure 2.20). In power-down status, the internal state of the
CPU is maintained and instruction execution halted to wait for a
request for exception processing to occur. When a request for
exception processing does occur, the power-down state is cleared and
the CPU begins exception processing. Any interrupt requests other
than NMI will be masked on the CPU side at this time so the power-
down status will not be cleared.

SLEEP
Mnemonic

Figure 2.20 SLEEP

2.7.3 LDC, STC

LDC (LodD to Control Register): Transfers 8-bit data to the CCR (figure
2.21).
STC (Store from Control Register): Transfers the contents of the CCR to
register or memory (figure 2.21).

STC
LDC B

W
. ,

Destination operand
Source operand
Operand size
Mnemonic

Figure 2.21 LDC, STC

Table 2.20 LDC, STC

Mnem-
onic

Op.
Size

Destination
Operand

Source
Operand Description

LDC B #xx:8
or RnH or
RnL

CCR The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR

H'××

H'××
#xx:8

7 0
7 0

CCR
RnH or RnL

W @ERn
@(d:16,ERn)
@(d:24,ERn)
@–ERn
@aa:8
@aa:16
@aa:24

The contents of the even address are transferred
to the CCR

H'××Even address
CCR

7 0

STC B CCR RnH or RnL The 8-bit immediate data or the contents of the
RnH or RnL 8-bit registers are transferred to the
CCR

CCR
H' × ×

7 0 7 0

RnH or RnL

W @ERn
@(d:16,ERn)
@(d:24,ERn)
@ERn+
@aa:8
@aa:16
@aa:24

The contents of the even address are transferred
to the CCR

H'××
0 7

Even address

CCR

2.7.4 ANDC, ORC, XORC

These instructions do logical operations with the contents of the CCR
(figure 2.22).
ANDC (AND Control Register): Takes the logical product.

ORC (Inclusive OR Control Register): Takes the logical sum.

XORC (Exclusive OR Control Register): Takes the exclusive logical sum.

ANDC
ORC
XORC

#xx:8, CCR

Destination operand
Source operand
Mnemonic

Figure 2.22 ANDC, ORC, XORC

Table 2.21 ANDC, ORC, XORC

Mnem-
onic

Op.
Size

Destination
Operand

Source
Operand Description

ANDC
ORC
XORC

B CCR #xx:8

H'××
7 0

CCR

∧
∨
⊕

H'××
#xx:8

=

2.7.5 NOP

NOP (No Operation): Only increments the PC by 2. No effect on the
internal status of the CPU (figure 2.23).

NOP
Mnemonic

Figure 2.23 NOP

2.7.6 TRAPA

TRAPA (Trap Always): Generates a software interrupt (figure 2.24).

TRAPA

#0
#1
#2
#3

Figure 2.24 TRAPA

Table 2.22 TRAPA

Mnem-
onic Operand Description

ANDC
ORC
XORC

#0 or #1 or
#2 or #3

CCR and PC saved to stack

H'×× H'×× ×× ××
CCR PC

CCR
1
I

SP

SP

–4

Vector Address

#xx Normal Mode Advanced Mode

0 H’0008–H’0009 H’000010–H000013

1 H’000A–H’000B H’000014–H000017

2 H’000C–H’000D H’000018–H00001B

3 H’000E–H’000F H’00001C–H00001F

2.8 Block Transfer Instructions

2.8.1 EEPMOV

EEPMOV (Move data to EEPROM): Transfer block data to any address.
No interrupts will be detected during the data transfer (figure 2.25).

EEPMOV
B
W

Operand size

.

Figure 2.25 EEPMOV

Table 2.23 EEPMOV

Mnem-
onic

Op.
Size Description

EEP-
MOV

B Transfers the block data that starts at the address in ER5 to the address in ER6.
The maximum block data length is 255 bytes.

H'××××××

H'∆∆∆∆∆∆

H' H'××××××

Transfer source
address

Transfer destination
address

R4L

ER5

ER6

Number of bytes to transfer

......

......

H'∆∆∆∆∆∆

H' byte

H' byte

W Transfers the block data that starts at the address in ER5 to the address in ER6.
The maximum block data length is 65535 bytes.

Number of bytes to transfer

ER5

ER6

H'××××××

H'∆∆∆∆∆∆

R4L

H'∆∆∆∆∆∆

H'××××××

Transfer source
address

Transfer destination
address

........

..

..

........

..

..

H' byte

H' byte

H'

Section 3 Load Module Conversion Procedures

Figures 3.1 through 3.4 show the load module conversion procedures
for the H8/300H.

Editor
(e.g. MIFES)

Assembler source file
(xxx.SRC)

Create the assembler source program using any editor (such as MIFES).

Figure 3.1 Load Module Conversion Procedures (Step 1)

Input file

Assembler source file
(xxx.SRC)

Assembler
(ASM38.EXE)

Output file

Relocatable object file
(xxx.OBJ), List file (xxx.LIS)

Convert the assembler source program to an object module using the assembler (ASM38.EXE).

Figure 3.2 Load Module Conversion Procedures (Step 2)

Input file Output file

Linkage editor
(LNK.EXE)

Load module file
(xxx.ABS)

Relocatable object file
(xxx.OBJ)

Simulator
debugger

In-circuit
emulator

Convert the object module to a load module using the linkage editor (LNK.EXE).

Figure 3.3 Load Module Conversion Procedures (Step 3)

Load module converter
(CNVS.EXE)

Input file Output file

Load module file
(xxx.ABS)

S-type format load
module file (xxx.MOT)

PROM writer

Convert the load module to an S-type format load module using the load module compiler
(CNVS.EXE).

Figure 3.4 Load Module Conversion Procedures (Step 4)

Section 4 Examples of Software Applications

4.1 Software Applications Examples

Table 4.1 lists software application examples.
Table 4.1 List of Software Application Examples

Software title Label Use Section

Block transfer MOVE MOV.L instruction, post-increment
register indirect

4.3

Block transfer using block transfer
instruction

EEPMOV EEPMOV.W instruction 4.4

Branching using a table CCASE Register indirect with displacement 4.5

Count of number of logical 1 bits in
8-bit data

HCNT ROTL.B instruction, ADDX.B
instruction

4.6

Find first 1 in 32-bit data FIND1 SHLL.L instruction 4.7

64-bit binary addition ADD ADD.L instruction 4.8

64-bit binary subtraction SUB SUB.L instruction 4.9

Unsigned 32-bit binary multiplication MUL MULXU.W instruction 4.10

Unsigned 32-bit binary division DIV SHLL.L instruction, ROTL.L
instruction

4.11

Signed 16-bit binary multiplication MULXS MULXS.W instruction 4.12

Signed 32-bit binary multiplication MULS MULXU.W instruction 4.13

Signed 32-bit binary division (16-bit
divisor)

DIVXS DIVXS.W instruction 4.14

Signed 32-bit binary division (32-bit
divisor)

DIVS SHLL.L instruction, ROTL.L
instruction, NEG.L instruction

4.15

8-digit decimal addition ADDD DAA.B instruction 4.16

8-digit decimal subtraction SUBD DAS.B instruction 4.17

Product/sum operations SEKIWA MULXU.W instruction 4.18

Sorting SORT Post-increment register indirect, pre-
decrement register indirect

4.19

4.2 Using Software Examples

Sections 4.3 through 4.19 provide detailed information about the
software applications listed in table 4.1. The following information is
consistent throughout sections 4.3 through 4.19.
• Internal registers:

— ER0–ER7: 32-bit general registers that link En and Rn n = 0, 1, 2, … 7.

— E0–E7: 16-bit extended registers

— R0–R7: 16-bit general registers that link RnH and RnL n = 0, 1, 2, … 7.

— R0H–R7H and R0L–R7L: 8-bit general registers

• Condition code register (shown in figures labeled “Changes in Internal Registers and Flag Changes ...”):

— C: Carry flag

— V: Overflow flag

— Z: Zero flag

— N: Negative flag

— U: User bit

— H: Half carry bit

— U: User bit

— I: Interrupt mask bit

• Programming Specifications: Describes the specifications of the software.

— Program memory bytes.: Indicates the amount of ROM used by the software.

— Data memory bytes.: Indicates the amount of RAM used by the software.

— Stack bytes.: Indicates the amount of stack used by the software. This does not include the stack used
by subroutine calls in the user program. When executing software, the amount of stack in bytes
indicated for the stack area is required, so ensure that the stack requirements are available in the data
memory before execution.

— Number of states: Indicates the number of states in which the software is executed. The execution
time of the software is calculated as follows:

Execution time (s) = No. of states × Cycle time (s),

where
Cycle time (s) = 1/system clock frequency φ (Hz),

and
System clock frequency φ (Hz) = External pulse generator frequency 2 divider circuit version/2,

or
External pulse frequency 1:1 oscillation versions.

— Re-entrant: Indicates whether the structure can be used simultaneously from multiple programs.

— Relocation: Indicates whether the software will run normally no matter where in the memory space it
is placed.

— Interrupts during execution: Indicates whether the software will run normally even after an interrupt
routine is executed when the software is running. If it won't, inhibit interrupts prior to calling the
software.

4.2.1 Program Listing Page Format (Format 4)

The following list explains the format of the programming list
software.
1. List line numbers
2. Location counter values
3. Object code
4. Source line numbers

5. Source statements
6. Comments
7–10 Assembler control instructions
Table 4.2 lists the assembler control instructions used by this
software. These instructions are described further in Appendix B,
Assembler Control Instruction Functions. For control instructions not
listed in table 4.2, see the H8/300H Series Cross-Assembler Users
Manual.
Table 4.2 Assembler Control Instructions List

Control Instruction Function

.CPU Specifies CPU

.SECTION Specifies section

.EQU Sets symbol value

.ORG Sets location counter values

.DATA Reserves integer data

.RES Reserves integer data space

.END End of source program

4.3 Block Transfer

MCU: H8/300H Series
Label Name: MOVE
Functions Used: MOV.L Instruction, Post-Increment Register
Indirect
Function: Transfers block data (up to 65535 bytes) to any even
address.
Table 4.3 MOVE Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of transfer source ER0 4

Start address of transfer destination ER1 4

Number of bytes transferred ER2 2

Output — — —

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — 1 — 1 0 0 1

Start address of transfer source

Work

Number of
bytes transferred

: No change
: Changes
: Locked to 0
: Locked to 1

—

↔

0
1

Start address of transfer destination

Figure 4.1 Changes in Internal Registers and Flag Changes for MOVE

Program memory (bytes)

38

Data memory (bytes)

0

Stack (bytes)

0

Number of states

491580

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when H'FFFF bytes
are being transferred.

Figure 4.2 Programming Specifications

4.3.1 Description of Functions

Arguments are as follows:
• ER0: Sets the start address of the transfer source as the input argument

• ER1: Sets the start address of the transfer destination as the input argument

• R2: Sets the number of bytes to be transferred as the input argument

Figure 4.3 is an example of execution of the software MOVE. When
the input arguments are set as shown, the data at the transfer source
is transferred as a block to the transfer destination (results).

Address 100000

C6

47

FF

1FFF bytes

Address 200000

C6

47

FF

1FFF bytes

Results

Input arguments

Don't care

ER0
000002

Don't care

ER1
000001

R2
FFF1

Figure 4.3 Executing MOVE

4.3.2 Cautions for Use

• Since R2 is 2 bytes, set data in the region H'0001 ≤ R2 ≤ H'FFFF.

• Set the input arguments so that the block data of the transfer source (area (A) of figure 4.4) and the block
data of the transfer destination (area (B) of the figure) do not overlap.

• When the transfer source and transfer destination overlap as shown in figure 4.4, the data of the transfer
source that overlaps (area (C) in the figure) is destroyed.

B

C

AStart address of
transfer destination

Start address of
transfer source

Memory space

Figure 4.4 Block Transfer with Overlapping Data

4.3.3 Description of Data Memory

No data memory is used by MOVE.

4.3.4 Examples of Use

After setting the start address of the transfer source, the start
address of the transfer destination and the number of bytes to be
transferred, do a subroutine call to MOVE.
Table 4.4 Block Transfer Example (MOVE)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the start
address of the transfer source in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of the transfer destination in the user program.

WORK 3 .RES. W 1 Reserves the data memory area that sets the number
of bytes to be transferred in the user program.

MOV. L @WORK1,ER0 Sets the start address of the transfer source as set in
the user program as an input argument.

MOV. L @WORK2,ER1 Sets the start address of the transfer destination as set
in the user program as an input argument.

MOV. L @WORK3, R2 Sets the number of bytes to be transferred as set in the
user program as an input argument.

@MOVEJSR

Subroutine call to MOVE.

4.3.5 Principles of Operation

• When the data to be transferred is 4 bytes or more, the MOV.L instruction is used to do repeated
transfers in 4-byte units.

• When the data to be transferred is less than 4 bytes, the software switches to the MOV.B instruction to do
transfers in byte units.

2

2

1

1

Yes

Yes

No

No

RTS

Is the
number of transfer

bytes 0?

Number of transfer bytes – 1

Number of transfer bytes + 4

Is number
of transfer bytes 4

or more?

Number of transfer bytes – 4

MOVE

4-byte transfers

1-byte transfer

Figure 4.5 MOVE Flowchart

4.3.6 Program Listing

4.4 Block Transfer Using Block Transfer Instruction

MCU: H8/300H Series
Label Name: EEPMOV
Functions Used: EEPMOV.W Instruction
Function: Transfers block data (up to 65535 bytes) to any even
address using the block transfer instruction (EEPMOV.W).
Table 4.5 EEPMOV Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of transfer source ER5 4

Start address of transfer destination ER6 4

Number of bytes transferred R4 2

Output — — —

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — — — — — —

Start address of transfer source

Start address of transfer destination

: No change
: Changes
: Locked to 0
: Locked to 1

—

↔

0
1

Number of bytes
transferred

Figure 4.6 Changes in Internal Registers and Flag Changes for EEPMOV

4

0

0

262148

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when H'FFFF bytes
are being transferred.

Figure 4.7 Programming Specifications

4.4.1 Description of Functions

Arguments are as follows:
• ER5: Sets the start address (even address) of the transfer source.

• ER6: Sets the start address (even address) of the transfer destination.

• R4: Sets the number of bytes to be transferred.

Figure 4.8 is an example of execution of the software EEPMOVE.
When input arguments are set as shown, the data at the transfer
source is transferred as a block to the transfer destination (result).

Address 200000

C6

47

FF

1FFF bytes

Address 100000

C6

47

FF

1FFF bytes

Result

Input arguments

Don't care

ER5
000001

Don't care

ER6
000002

R4
FFF1

Figure 4.8 Executing EEPMOVE

4.4.2 Cautions for Use

• Since R2 is 2 bytes, set data in the region H'0001 ≤ R2 ≤ H'FFFF.

• Interrupts cannot be detected while EEPMOVE is executing.

• Set the input arguments so that the block data of the transfer source (area (A) of figure 4.9) and the block
data of the transfer destination (area (B) of the figure) do not overlap. When the transfer source and
transfer destination overlap as shown in figure 4.9, the data of the transfer source that overlaps (area (C)
in the figure) is destroyed.

B

C

AStart address of
transfer destination

Start address of
transfer source

Memory space

Figure 4.9 Block Transfer with Overlapping Data

4.4.3 Description of Data Memory

No data memory is used by EEPMOVE.

4.4.4 Examples of Use

After setting the start address of the transfer source, the start
address of the transfer destination and the number of bytes to be
transferred, do a subroutine call to EEPMOVE.
Table 4.6 Block Transfer Example (EEPMOVE).

Label Instruction Action

WORK
1

RES. L 1 Reserves the data memory area that sets the start
address of the transfer source in the user program.

WORK
2

RES. L 1 Reserves the data memory area that sets the start
address of the transfer destination in the user program.

WORK
3

RES. W 1 Reserves the data memory area that sets the number
of bytes to be transferred in the user program.

MOV. L @WORK1,ER5 Sets the start address of the transfer source as set in
the user program as an input argument.

MOV. L @WORK2,ER6 Sets the start address of the transfer destination as set
in the user program as an input argument.

MOV. L @WORK3, R4 Sets the number of bytes to be transferred as set in
the user program as an input argument.

@EEPMOVJSR

Subroutine call to EEPMOVE.

4.4.5 Principles of Operation

Use the block transfer instruction (EEPMOV.W).

RTS

Blocks are transferred
using the block transfer

instruction (EEPMOV.W)

EEPMOV

Figure 4.10 EEPMOV Flowchart

4.4.6 Program Listing

4.5 Branching Using a Table

MCU: H8/300H Series
Label Name: CCASE
Functions Used: Register Indirect with Displacement
Description: Searches for the start address of the processing routine
for the input command. This function is useful and convenient for
decoding commands input from the keyboard and for processing the
input command.
Table 4.7 CCASE Arguments

Contents Storage Location Data Length (Bytes)

Input Input command R0 2

Start address of data table ER1 4

Output Start address of processing routine ER1 4

Existence of a processing routine for the
input command (yes = 0, no = 1)

Z flag (CCR) 1

WorkER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Input command

—

↔

0
1

↔↔↔

Start address of data table,
start address of processing routine

: No change
: Changes
: Locked to 0
: Locked to 1

↔

Figure 4.11 Changes in Internal Registers and Flag Changes for CCASE

26

0

0

156

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the last of 6
groups of data is detected.

Figure 4.12 Programming Specifications

4.5.1 Description of Functions

Arguments are as follows:
• R0: Sets the 16-bit command as an input argument.

• ER1: Sets the start address of the data table as an input argument. Also set the start address of the
processing routine for the command as the output argument.

• Z flag (CCR): Indicates whether there are any errors after execution of CCASE.

— When Z flag = 0: Indicates that there is a command on the data table that corresponds to the one set
in R0.

— When Z flag = 1: Indicates that there is no command on the data table that corresponds to the one set
in R0.

Figure 4.13 is an example of execution of the software CCASE. When
the input arguments are set as shown, the data table is checked and
the start address of the processing routine is set in ER1.

00

41
0A command

Input arguments

Don't care

ER1
00000F

R0
2400

Don't care

10

00

00

00

42

Don't care

20

00

00

00

43

Don't care

30

00

00

00

00

Start address
of data table

Data group 1

Data group 2

Data group 3

Division data

Start address of
processing routine

0B command

0C command

Start address of
processing routine

Start address of
processing routine

Don't care

ER1

000002

�Z flag

Output arguments 0

F00000

Figure 4.13 Executing CCASE

4.5.2 Cautions for Use

Since H'0000 is used as the division data, do not use H'0000 as a
command in the data table.

4.5.3 Description of Data Memory

No data memory is used by CCASE.

4.5.4 Examples of Use

After setting the command and the start address of the data table, do
a subroutine call to CCASE.

Table 4.8 Block Transfer Example (CCASE)

Label Instruction Action

WORK 1 .RES. W 1 Reserves the data memory area that sets the
command in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of the data table in the user program.

MOV. L @WORK2,ER1 Sets the start address of the data table as set in the
user program as an input argument.

MOV. W @WORK1,R0 Sets the command set in the user program as an
input argument.

@CCASEJSR

Subroutine call of CCASE

BEQ ERROR When there is no command in the data table that
corresponds to the command input, the routine
branches to an error program.

ERROR

Program that branches to
the processing routine*

Error program

Table 4.8 Block Transfer Example (CCASE) (cont)

Label Instruction Action

DTABLE .ORG H’F000 Start address of data table

.DATA.W H’0041 0A command

.DATA.W H’F100 Start address of processing routine for 0A command

.DATA.W H’0042 0B command

.DATA.W H’F200 Start address of processing routine for 0B command

.DATA.W H’0000 Division data

@CCASEJSR

Subroutine call of CCASE

BEQ ERROR Branches to ERROR when the Z flag is set

↑
Bran-
ches to
pro-
cessing
routine
↓

JMP @ER1 Jumps to processing routine

ERROR

Error program

Note: Example of program that branches to a processing routine: CCASE only sets the start address of the
processing routine in ER. When actually branching to a processing routine, create a program like that
shown below.

4.5.5 Principles of Operation

• ER1 is used as a pointer to the address storing the command on the data table.

• The command at the address indicated in ER1 of the data table is set in E0 and compared to the input
command.

• When the input command and the data table command match, the start address of the processing routine
located after the command is set, the Z flag is cleared and CCASE ends.

• When H'0000 is detected (indicating the end of the data table), the Z flag is set and CCASE ends.

1

Yes

No

RTS

Clear the Z flag

End of data
table?

The first command in the
data table is set in E0

CCASE

Set the start address of the
processing routine in ER1

No

Yes

1

The next command is
set in ER1

ER1 is incremented to the
address where the next

command is stored

Same command?

Figure 4.14 CCASE Flowchart

4.5.6 Program Listing

4.6 Counting the Number of Logical 1s in 8-Bit Data

MCU: H8/300H Series
Label Name: HCNT
Functions Used: ROTL.B Instruction, ADDX.B Instruction
Function: Counts the number of logical 1s in 8-bit data.
Table 4.9 HCNT Arguments

Contents Storage Location Data Length (Bytes)

Input 8-bit data R0L 1

Output Number of logical 1 bits R0H 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — ↔↔↔

Work

— ↔

Number of
logical 1 bits

8-bit data

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.15 Changes in Internal Registers and Flag Changes for HCNT

16

0

0

126

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 8-bit data
is H'FF.

Figure 4.16 Programming Specifications

4.6.1 Description of Functions

Arguments are as follows:
• R0L: Sets the 8-bit data.

• R0H: Sets the number of bits of logical 1s in the 8-bit data.

Figure 4.17 is an example of execution of the software HNCT. When
the input arguments are set as shown, the number of bits of logical
1s are set in R0H.

R0L

01101110

Five 1s

R0H

50Output arguments

Input arguments

Figure 4.17 Executing HCNT

4.6.2 Cautions for Use

When counting the number of logical 0 bits, first take the 1
complement of R0L and then execute HCNT.

4.6.3 Description of Data Memory

No data memory is used by HNCT.

4.6.4 Examples of Use

After setting the 8-bit data, do a subroutine call to HCNT.
Table 4.10 Block Transfer Example (HCNT)

Label Instruction Action

WORK 1 .RES. B 1 Reserves the data memory area that sets the 8-bit
data in the user program.

WORK 2 .RES. B 1 Reserves the data memory area that sets the
number of bits of logical 1s in the 8-bit data in the
user program.

MOV. L @WORK1,R0L Sets the 8-bit data as set in the user program as an
input argument.

@HCNTJSR

Subroutine call to HCNT.

MOV. B R0H,@WORK2 Stores the number of bits of logical 1s set in the
output argument in the data memory area of the
user program.

4.6.5 Principles of Operation

• The rotate instruction (ROTL.B) is used and the 8-bit data (R0L) is set 1 bit at a time in the C bit.

• When the logical 1 counter (R0H) is added to 0 using the add instruction with carry (ADDX.B), 1 is
added to the logical 1 counter if the C bit is 1 and 0 is added to the logical 1 counter if the C bit is 0.

• The two steps above are repeated until the rotate counter (R1L) becomes 0, which reveals the number of
logical 1s in the 8-bit data.

Yes

No

RTS

Rotate counter = 0?

The rotate counter
is set to 8 (R1L)

HCNT

To return the 8-bit data to its input
state, it is shifted 1 bit to the left

The rotate counter (R1L)
is decremented

The MSB of the 8-bit data
(R0L) is set to the C bit

The logical 1 counter (R0H)
is added to the C bit

The logical 1 counter
(R0H) is cleared

Figure 4.18 HCNT Flowchart

4.6.6 Program Listing

4.7 Find the First 1 in 32-Bit Data

MCU: H8/300H Series
Label Name: FIND1
Functions Used: SHLL.L Instruction
Function: Identifies the bits of 32-bit data in order from bit 31 and
finds the number of the first bit that is a 1.
Table 4.11 FIND1 Arguments

Contents Storage Location Data Length (Bytes)

Input 32-bit data ER0 4

Output Bit number (bit 31–bit 0) R1L 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0 ↔↔

Bit number

— 0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

32-bit data

Figure 4.19 Changes in Internal Registers and Flag Changes for FIND1

14

0

0

398

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states given in the programming specifications is the value when the 32-bit data
is H'00000000.

Figure 4.20 Programming Specifications

4.7.1 Description of Functions

Arguments are as follows:
• ER0: Sets the 32-bit data.

• R1L: Sets the number of the first bit found to have a 1 (bit 31 to bit 0).

Figure 4.21 s an example of execution of the software FIND1. When
the input arguments are set as shown, the number of the first bit
with a 1 is set in R1L.

Bit 31
00010000

Bit number

B1
Output

arguments

Input
arguments 10100010 00110111 0110111

Bit 27 Bit 0
1ER0

R1L

Figure 4.21 Executing FIND1

4.7.2 Cautions for Use

When the 32-bit data is H'00000000, H'FF is set as the bit number
(R1L).

4.7.3 Description of Data Memory

No data memory is used by FIND1.

4.7.4 Examples of Use

After setting the 32-bit data, do a subroutine call of FIND1.
Table 4.12 Block Transfer Example (FIND1)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the 32-bit
data in the user program.

WORK 2 .RES. B 1 Reserves the data memory area that sets the
number of the bit that has the first 1.

MOV. L @WORK1,ER0 Sets the 32-bit data set in the user program as an
input argument.

@FIND1JSR Subroutine call of FIND1

MOV. B R0H,@WORK2 Stores the number of the first bit set in the output
argument that has a 1 in the data memory area of
the user program.

4.7.5 Principles of Operation

• The SHLL.L instruction stores the bits of 32-bit data in the C bit in order from bit 31 in order to identify
the bits.

• When the C bit becomes 1, the counter for finding the bit number (R1L) is decremented and FIND1
ends.

Yes

No

The counter (R1L)
is set to H'20

FIND1

The MSB of the 32-bit data
(ER0) is set to the C bit by

the SHLL.L instruction

The counter (R1L)
is decremented

Counter (R1L)
is decremented

RTS

C bit = 0?

Yes

No

Counter (R1L) = 0?

Figure 4.22 FIND1 Flowchart

4.7.6 Program Listing

4.8 64-Bit Binary Addition

MCU: H8/300H Series
Label Name: ADD
Functions Used: ADD.L Instruction
Function: Does binary addition in the format: Summand (signed 64
bits) + addend (signed 64 bits) = sum (signed 64 bits).
Table 4.13 ADD Arguments

Contents Storage Location Data Length (Bytes)

Input Bottom 32 bits of summand (signed 64
bits)

ER1 4

Top 32 bits of addend (signed 64 bits) ER2 4

Bottom 32 bits of addend (signed 64
bits)

ER3 4

Output Top 32 bits of sum (signed 64 bits) ER0 4

Bottom 32 bits of sum (signed 64 bits) ER1 4

Existence of carrying (yes = 0, no = 1) C flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Top 32 bits of summand, top 32 bits of sum

Bottom 32 bits of summand, bottom 32 bits of sum

Bottom 32 bits of addend

Top 32 bits of addend

↔ ↔ ↔ ↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.23 Changes in Internal Registers and Flag Changes for ADD

18

0

0

26

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.24 Programming Specifications

4.8.1 Description of Functions

Arguments are as follows:
• ER0: Sets the top 32-bits of the summand (signed 64 bits) as an input argument. Sets the top 32 bits of

the sum (signed 64 bits) as an output argument.

• ER1: Sets the bottom 32-bits of the summand (signed 64 bits) as an input argument. Sets the bottom 32
bits of the sum (signed 64 bits) as an output argument.

• ER2: Sets the top 32-bits of the addend (signed 64 bits) as an input argument.

• ER3: Sets the bottom 32-bits of the addend (signed 64 bits) as an input argument.

• C flag (CCR): Indicates whether a carry has occurred after execution of ADD.

— When C flag = 0: Indicates a carry has occurred.

— When C flag = 1: Indicates no carry has occurred.

Figure 4.25 is an example of execution of the software ADD. When
the input arguments are set as shown, the results of addition are set
in ER0 and ER1.

4.8.2 Cautions for Use

Since the results of addition are set in the register used to set the
summand, the summand is destroyed when ADD is executed. When
you will still require the summand after executing ADD, save the
summand elsewhere in memory beforehand.

4.8.3 Description of Data Memory

No data memory is used by ADD.

Bit 63
C5763A

ER1
C3F1BB

Bit 0
BA00

ER0

Bit 63
5CED02

ER3
260A89

Bit 0
4051

ER2

Bit 63
22644C

ER1
E9FB35

Bit 0
FA51

ER0
0

C bit

+)

Output
arguments

Input
arguments

Figure 4.25 Executing ADD

4.8.4 Examples of Use

After setting the summand and addend, does a subroutine call to
ADD.
Table 4.14 Block Transfer Example (ADD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
top 32-bits of the summand (signed 64 bits) in
the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the summand (signed 64 bits)
in the user program.

WORK 3 .RES. L 1 Reserves the data memory area that sets the
top 32-bits of the addend (signed 64 bits) in the
user program.

WORK 4 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the addend (signed 64 bits) in
the user program.

MOV. L @WORK1,ER0 Set as the input argument the top 32-bits of the
summand set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of
the summand set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
addend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of
the addend set in the user program.

@ADDJSR

OVERBCS

Processing routine for carrying overOVER

Subroutine call to ADD.

When carrying occurs, the routine branches to
the processing routine for carrying.

4.8.5 Principles of Operation

• Bits 0–31 are added using the ADD.L instruction.

• Bits 32–63 are added in 1-byte units from the bottom using the addition instruction with carrying
(ADDX.B), which can handle carrying. Since bits 48–55 are on the extended register, the addition
instruction with carry is transferred into a usable general register and addition is then performed.

RTS

Bits 0–31 added using
the ADD.L instruction

ADD

Bits 32–39 added using
the ADDX.B instruction

Bits 40–47 added using
the ADDX.B instruction

Top 16 bits of the summand
transferred to general register (R2)

Top 16 bits of the addend
transferred to general register (R3)

Bits 48–55 added using
the ADDX.B instruction

Bits 56–63 added using
the ADDX.B instruction

Figure 4.26 ADD Flowchart

4.8.6 Program Listing

4.9 64-Bit Binary Subtraction

MCU: H8/300H Series
Label Name: SUB
Functions Used: SUB.L Instruction
Function: Does binary subtraction in the format: minuend (signed
64 bits) – subtrahend (signed 64 bits) = difference (signed 64 bits).
Table 4.15 SUB Arguments

Contents Storage Location Data Length (Bytes)

Input Top 32 bits of minuend (signed 64 bits) ER0 4

Bottom 32 bits of minuend (signed 64
bits)

ER1 4

Top 32 bits of subtrahend (signed 64
bits)

ER2 4

Bottom 32 bits of subtrahend (signed 64
bits)

ER3 4

Output Top 32 bits of difference (signed 64 bits) ER0 4

Bottom 32 bits of difference (signed 64
bits)

ER1 4

Existence of carrying C flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Top 32 bits of minuend, top 32 bits of difference

Bottom 32 bits of minuend,
bottom 32 bits of difference

Bottom 32 bits of subtrahend

Top 32 bits of subtrahend

↔ ↔ ↔ ↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.27 Changes in Internal Registers and Flag Changes for SUB

18

0

0

26

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.28 Programming Specifications

4.9.1 Description of Functions

Arguments are as follows:
• ER0: Sets the top 32-bits of minuend (signed 64 bits) as an input argument. Sets the top 32 bits of the

difference (signed 64 bits) as an output argument.

• ER1: Sets the bottom 32-bits of the minuend (signed 64 bits) as an input argument. Sets the bottom 32
bits of the difference (signed 64 bits) as an output argument.

• ER2: Sets the top 32-bits of the subtrahend (signed 64 bits) as an input argument.

• ER3: Sets the bottom 32-bits of the subtrahend (signed 64 bits) as an input argument.

• C flag (CCR): Indicates whether a borrow has occurred after execution of SUB.

— When C flag = 1: Indicates a borrow has occurred.

— When C flag = 0: Indicates no borrow has occurred.

• Figure 4.29 is an example of execution of the software SUB. When the input arguments are set as shown,
the results of subtraction are set in ER0 and ER1.

Bit 63
ABCDEF

ER1
FFFF89

Bit 0
FFFF

ER0

Bit 63
9ABCDE

ER3
FFFF78

Bit 0
FFFF

ER2

Bit 63
111111

ER1
000011

Bit 0
0000

ER0
0

C bit

+)

Output
arguments

Input
arguments

Figure 4.29 Executing SUB

4.9.2 Cautions for Use

Since the results of subtraction are set in the register used to set the
minuend, the minuend is destroyed after SUB is executed. When you
will still require the minuend after executing SUB, save the minuend
elsewhere in memory beforehand.

4.9.3 Description of Data Memory

No data memory is used by SUB.

4.9.4 Examples of Use

After setting the subtrahend and minuend, does a subroutine call to
SUB.
Table 4.16 Block Transfer Example (SUB)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the top
32-bits of the minuend (signed 64 bits) in the user
program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the minuend (signed 64 bits) in
the user program.

WORK 3 .RES. L 1 Reserves the data memory area that sets the top
32-bits of the subtrahend (signed 64 bits) in the
user program.

WORK 4 .RES. L 1 Reserves the data memory area that sets the
bottom 32-bits of the subtrahend (signed 64 bits) in
the user program.

MOV. L @WORK1,ER0 Set as the input argument the top 32-bits of the
minuend set in the user program.

MOV. L @WORK2,ER1 Set as the input argument the bottom 32-bits of the
minuend set in the user program.

MOV. L @WORK3,ER2 Set as the input argument the top 32-bits of the
subtrahend set in the user program.

MOV. L @WORK4,ER3 Set as the input argument the bottom 32-bits of the
subtrahend set in the user program.

@SUBJSR

OVERBCS

Processing routine for borrowingOVER

Subroutine call to SUB.

When borrowing occurs, the routine branches to
the processing routine for borrowing.

4.9.5 Principles of operation

• Bits 0–31 are subtracted using the SUB.L instruction.

• Bits 32–63 are subtracted in 1-byte units from the bottom using the subtraction instruction with carrying
(SUBX.B), which can handle borrowing. Since bits 48–55 are in the extended register, the subtraction
instruction with borrow is transferred into the usable general register and subtraction is then performed.

RTS

Bits 0–31 subtracted using
the SUB.L instruction

SUB

Bits 32–39 subtracted using
the SUBX.B instruction

Bits 40–47 subtracted using
the SUBX.B instruction

Top 16 bits of the minuend
transferred to the general register (R2)

Top 16 bits of the subtrahend
transferred to the general register (R3)

Bits 48–55 subtracted using
the SUBX.B instruction

Bits 56–63 subtracted using
the SUBX.B instruction

Figure 4.30 SUB Flowchart

4.9.6 Program Listing

4.10 Unsigned 32-Bit Binary Multiplication

MCU: H8/300H Series
Label Name: MUL
Functions Used: MULXU.W Instruction
Function: Does multiplication in the format: Multiplicand (unsigned
32 bits) × multiplier (unsigned 32 bits) = product (unsigned 64 bits).
Table 4.17 MUL Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (unsigned 32 bits) ER0 4

Multiplier (unsigned 32 bits) ER1 4

Output Top 32 bits of product (unsigned 64 bits) ER0 4

Bottom 32 bits of product (unsigned 64
bits)

ER1 4

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Work

Work

—

↔

0
1

↔ ↔ ↔ ↔↔

: No change
: Changes
: Locked to 0
: Locked to 1

Multiplicand
Top 32 bits of product

Multiplier
Bottom 32 bits of product

Figure 4.31 Changes in Internal Registers and Flag Changes for MUL

34

0

0

126

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating as
H'FFFFFFFF x H'FFFFFFFF.

Figure 4.32 Programming Specifications

4.10.1 Description of functions

Arguments are as follows:
• ER0: Sets the multiplicand (unsigned 32 bits) as an input argument. Sets the top 32 bits of the product

(unsigned 64 bits) as an output argument.

• ER1: Sets the multiplier (unsigned 32 bits) as an input argument. Sets the bottom 32 bits of the product
(unsigned 64 bits) as an output argument.

• Figure 4.33 is an example of execution of the software MUL. When the input arguments are set as
shown, the product is set in ER0 and ER1.

ER0
FFFF FFFF

ER1
FFFF FFFF

FFFFFF
ER1
0000EF 1000

ER0

×)

Output
arguments

Input
arguments

Figure 4.33 Executing MUL

4.10.2 Cautions for Use

Since the product is set in the register used to set the multiplicand
and multiplier, the multiplicand and multiplier are destroyed after
MUL is executed. When you will still require the multiplicand and
multiplier after executing MUL, save them elsewhere in memory
beforehand.

4.10.3 Description of Data Memory

No data memory is used by MUL.

4.10.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to
MUL.
Table 4.18 Block Transfer Example (MUL)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
multiplicand (unsigned 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
multiplier (unsigned 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the 32-bit binary
multiplicand set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the 32-bit binary
multiplier set in the user program.

@MULJSR Subroutine call to MUL.

4.10.5 Principles of Operation

• The partial products of two 16-bit binary numbers are found using the multiplication instruction
(MULXU.W) and the results of multiplication are then integrated to perform 32-bit binary multiplication,
as shown in figure 4.34.

Bottom 16 bits
of multiplicand

R0E0

ER1

×)

...Partial
 product (1)

ER1ER0

Top 16 bits
of multiplicand

Bottom 16 bits
of multiplier

R1E1
Top 16 bits
of multiplier

Bottom 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER3
...Partial
 product (2)

Top 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER2
...Partial
 product (3)

Bottom 16 bits of multiplicand ×
top 16 bits of multiplier

ER0
...Partial
 product (4)

Top 16 bits of multiplicand ×
top 16 bits of multiplier

...Results of
 multiplication

Figure 4.34 Multiplication

1

Yes

No

Is there a carry?

Bottom 16 bits of multiplicand
× bottom 16 bits of multiplier:

Partial product 1

MUL

Top 16 bits of multiplicand
× bottom 16 bits of multiplier:

Partial product 2

Bottom 16 bits of multiplicand
× top 16 bits of multiplier:

Partial product 3

Top 16 bits of multiplicand
× top 16 bits of multiplier:

Partial product 4

Partial product 2 +
partial product 3

Increment top 16 bits of
results of multiplication (E0)

Figure 4.35 MUL Flowchart

1

Yes

No

Is there a carry?

Top 16 bits of partial product 1
+ bottom 16 bits of (partial

product 2 + partial product 3)

RTS

Bottom 16 bits of partial
product 4 + top 16 bits of (partial

product 2 + partial product 3)

Increment top 16 bits of
results of multiplication

Yes

No Increment top 32 bits of
results of multiplication

Is there a carry?

Figure 4.35 MUL Flowchart (cont)

4.10.6 Program Listing

4.11 Unsigned 32-Bit Binary Division

MCU: H8/300H Series
Label Name: DIV
Functions Used: SHLL.L Instruction, ROTXL.L Instruction
Function: Does division in the format: Dividend (unsigned 32 bits) /
divisor (unsigned 32 bits) = quotient (unsigned 32 bits) … remainder
(unsigned 32 bits). Dividing by 0 sets the Z flag.
Table 4.19 DIV Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (unsigned 32 bits) ER0 4

Divisor (unsigned 32 bits) ER1 4

Output Quotient (unsigned 32 bits) ER0 4

Remainder (unsigned 32 bits) ER2 4

Presence of error (division by 0)
(Yes, Z = 0; No, Z = 1)

Z flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Divisor

Work

Remainder

↔ ↔ ↔ ↔↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Dividend
Quotient

Figure 4.36 Changes in Internal Registers and Flag Changes for DIV

30

0

0

762

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculating as
H'FFFFFFFF / H'1.

Figure 4.37 Programming Specifications

4.11.1 Description of Functions

Arguments are as follows:
• ER0: Sets the dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32 bits) as

an output argument.

• ER1: Sets the divisor (unsigned 32 bits) as an input argument.

• ER2: Sets the remainder (unsigned 32 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIV.

— When Z flag = 1: Indicates that there is an error in the division executed.

— When Z flag = 0: Indicates that there is no error in the division executed.

Figure 4.38 is an example of execution of the software DIV. When the
input arguments are set as shown, the quotient is set in ER0 and the
remainder is set in ER1.
With the software DIV, the first thing done is to determine if the
divisor is 0 or nonzero; if it is 0, DIV ends.

ER2
0000 0000

ER0
FFFF FFFF

FFFF FFFF

ER1

BCDE 789A

Input arguments

Output arguments

0
Z flag

ER0

Figure 4.38 Executing DIV

4.11.2 Cautions for Use

Since the quotient is set in ER0, the dividend is destroyed after DIV
is executed. When you will still require the dividend after executing
DIV, save it elsewhere in memory beforehand.

4.11.3 Description of Data Memory

No data memory is used by DIV.

4.11.4 Examples of Use

After setting the dividend and divisor, do a subroutine call to DIV.
Table 4.20 Block Transfer Example (DIV)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (unsigned 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the divisor
(unsigned 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the dividend (unsigned
32 bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the divisor (unsigned 32
bits) set in the user program.

@DIVJSR Subroutine call to DIV.

4.11.5 Principles of Operation

• Binary division finds the quotient and remainder by repeatedly subtracting. In figure 4.39, H'0D is
divided by H'03 as an example of the division operation.

100
1101

–) 11
Divisor → 11

00
–) 11

–01
+) 11

3 6

← Quotient
← Dividend

1
2
4
5

← Remainder

001
–) 11

–10
+) 11

001

Figure 4.39 Division

• Detailed description of the program:

i. Sets the number of shifts in the counter R3L (which indicates the number of shifts).

ii. The dividend is shifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of ER2
(which stores the remainder).

iii. The divisor is subtracted from ER2. When the result of subtraction is positive, the LSB of ER0 is set
(1 to 2 to 3 in figure 4.39). When the results of subtraction is negative, the LSB of ER0 is cleared
and the divisor is added to the results of subtraction, returning it to the state prior to subtraction. ((4)
to (5) to (6) in figure 4.39).

iv. The shift counter set in step (i) is decremented.

v. Steps (ii) through (iv) are repeated until the shift counter reaches –1.

No

Yes

Is the shift counter = 0?

RTS

Add the divisor to the
results of subtraction

Yes

No

Divisor = 0?

DIV

Set the number of shifts (32)
in the shift counter (R3L)

Clear the work area

Set the MSB of the dividend to
the LSB of the work area

Subtract the divisor from
the work area

Set the LSB of the dividend

Are the results
of subtraction ≥ 0?

Decrement the shift counter

Clear the Z flag

No

Yes

Figure 4.40 DIV Flowchart

4.11.6 Program Listing

4.12 Signed 16-Bit Binary Multiplication

MCU: H8/300H Series
Label Name: MULXS
Functions Used: MULXS.W Instruction
Function: Does multiplication in the format: Multiplicand (signed 16
bits) × multiplier (signed 16 bits) = product (signed 32 bits).
Table 4.21 MULXS Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (signed 16 bits) R0 2

Multiplier (signed 16 bits) E0 2

Output Product (signed 32 bits) ER0 4

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Product

↔ ↔— — —

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Multiplier Multiplicand

Figure 4.41 Changes in Internal Registers and Flag Changes for MULXS

4

0

0

24

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.42 Programming Specifications

4.12.1 Description of Functions

Arguments are as follows:
• E0: Sets the multiplicand (signed 16 bits) as an input argument.

• R0: Sets the multiplier (signed 16 bits) as an input argument.

• ER0: Sets the product (signed 32 bits) as an output argument.

Figure 4.43 is an example of execution of the software MULXS.B
When the input arguments are set as shown, the results of
multiplication are set in ER0.

E0
FFFF

R0
FFFF

ER0
0000 1000

×)

Output
arguments

Input
arguments

Figure 4.43 Executing MULXS

4.12.2 Cautions for Use

Since the results of multiplication are set in the register used to set
the multiplicand and multiplier, the multiplicand and multiplier are
destroyed after MULXS is executed. When you will still require the
multiplicand and multiplier after executing MULXS, save them
elsewhere in memory beforehand.

4.12.3 Description of Data Memory

No data memory is used by MULXS.

4.12.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to
MULXS.
Table 4.22 Block Transfer Example (MULXS)

Label Instruction Action

WORK 1 RES. W 1 Reserves the data memory area that sets the
multiplicand (signed 16 bits) in the user program.

WORK 2 RES. W 1 Reserves the data memory area that sets the
multiplier (signed 16 bits) in the user program.

MOV. L @WORK1,R0 Sets as the input argument the 16-bit binary
multiplicand set in the user program.

MOV. L @WORK2,E0 Sets as the input argument the 16-bit binary
multiplier set in the user program.

@MULXSJSR Subroutine call to MULXS.

4.12.5 Principles of Operation

Use the signed 16-bit multiplication instruction MULXS.W.

MULXS

Multiplication by the signed 16-bit
multiplication instruction MULXS.W

RTS

Figure 4.44 MULXS Flowchart

4.12.6 Program Listing

4.13 Signed 32-Bit Binary Multiplication

MCU: H8/300H Series
Label Name: MULS
Functions Used: MULXU.W Instruction
Function: Does binary multiplication in the format: Multiplicand
(signed 32 bits) x multiplier (signed 32 bits) = product (signed 64
bits).
Table 4.23 MULS Arguments

Contents Storage Location Data Length (Bytes)

Input Multiplicand (signed 32 bits) ER0 4

Multiplier (signed 32 bits) ER1 4

Output Top 32 bits of product (signed 64 bits) ER3 4

Bottom 32 bits of product (signed 64
bits)

ER0 4

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Top 32 bits of product

Work

↔ ↔ ↔ ↔

Work

↔

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Multiplier

Multiplicand
Bottom 32 bits of product

Figure 4.45 Changes in Internal Registers and Flag Changes for MULS

66

0

0

156

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 x H'7FFFFFFF.

Figure 4.46 Programming Specifications

4.13.1 Description of Functions

Arguments are as follows:
• ER0: Sets the multiplicand (signed 32 bits) as an input argument. Sets the bottom 32 bits of the product

(signed 64 bits) as an output argument.

• ER1: Sets the multiplier (signed 32 bits) as an input argument. Sets the bottom 32 bits of the product
(signed 64 bits) as an output argument.

• Sets the top 32 bits of the product (signed 64 bits) as an output argument.

Figure 4.47 is an example of execution of the software MULS. When
the input arguments are set as shown, the product is set in ER3 and
ER0.

ER0
FFF7 FFFF

ER1
0008 0000

00000C
ER0
000800 0000

ER3

×)

Output
arguments

Input
arguments

Figure 4.47 Executing MULS

4.13.2 Cautions for Use

Since the results of multiplication are set in the register used to set
the multiplicand and multiplier, the multiplicand and multiplier are
destroyed after MULS is executed. When you will still require the
multiplicand and multiplier after executing MULS, save them
elsewhere in memory beforehand.

4.13.3 Description of Data Memory

No data memory is used by MULS.

4.13.4 Examples of Use

After setting the multiplicand and multiplier, do a subroutine call to
MULS.
Table 4.24 Block Transfer Example (MULS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
multiplicand (signed 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
multiplier (signed 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the multiplicand
(signed 32 bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the multiplier (signed
32 bits) set in the user program.

@MULSJSR Subroutine call to MULS.

4.13.5 Principles of Operation

• Negative multiplicands and multipliers are converted to positive.

• The product is found by taking the partial products ((1), (2), (3) and (4) in figure 4.48) and then
accumulating the results of multiplication (figure 4.48 (5)). The partial products are found by using the
signed multiplication instruction (MULXU.W) on two 16-bit binary numbers.

• The product is then converted to negative if the sign flag is 1, as shown in table 4.25.

Bottom 16 bits
of multiplicand

R0E0

ER0

×)

...Partial
 product (1)

ER0ER3

Top 16 bits
of multiplicand

Bottom 16 bits
of multiplier

R1E1
Top 16 bits
of multiplier

Bottom 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER1
...Partial
 product (2)

Top 16 bits of multiplicand ×
bottom 16 bits of multiplier

ER2
...Partial
 product (3)

Bottom 16 bits of multiplicand ×
top 16 bits of multiplier

ER3
...Partial
 product (4)

Top 16 bits of multiplicand ×
top 16 bits of multiplier

...Results of
 multiplication (5)

Figure 4.48 Multiplication

Table 4.25 Sign of Results of Multiplication and Sign Flag

Multiplicand Multiplier Product Sign Flag

Positive Positive Positive 0

Negative Negative 1

Negative Positive Negative 1

Negative Positive 0

1

No

Yes

Is multiplicand ≥ 0?

MULS

Bottom 16 bits of mutiplicand
× bottom 16 bits of multiplier:

Partial product 1

Multiplicand converted
to positive

Clear sign flag

Sign flag inverted

No

Yes

Is multiplier ≥ 0?

Multiplier converted
to positive

Sign flag inverted

Top 16 bits of mutiplicand
× bottom 16 bits of multiplier:

Partial product 2

Bottom 16 bits of mutiplicand
× top 16 bits of multiplier:

Partial product 3

Top 16 bits of mutiplicand
× top 16 bits of multiplier:

Partial product 4

Figure 4.49 MULS Flowchart

1

Yes

No

Is C flag = 1?

Partial product 2 +
partial product 3

Increment register E3

Top 16 bits of partial product 1
+ bottom 16 bits of (partial

product 2 + partial product 3)

Yes

No

Is C flag = 1?

Increment register ER3

Bottom 16 bits of partial
product 4 + top 16 bits of (partial

product 2 + partial product 3)

Yes

No

Is C flag = 1?

Increment register E3

2

Figure 4.49 MULS Flowchart (cont)

Yes

No

Is the sign flag = 0?

Invert bottom 32 bits of the
results of multiplication

Yes

No

Is Z flag = 1?

Increment register ER3

RTS

Invert top 32 bits of the
results of multiplication

Increment bottom 32 bits of
the results of multiplication

2

Figure 4.49 MULS Flowchart (cont)

4.13.6 Program Listing

4.14 Signed 32-Bit Binary Division (16-Bit Divisor)

MCU: H8/300H Series
Label Name: DIVXS
Functions Used: DIVXS.W Instruction
Function: Does division in the format: Dividend (signed 32 bits) /
divisor (signed 16 bits) = quotient (signed 32 bits) … remainder
(signed 16 bits).
Table 4.26 DIVXS Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (signed 32 bits) ER1 4

Divisor (signed 16 bits) R0 2

Output Quotient (signed 32 bits) ER2 4

Remainder (signed 16 bits) E1 2

Presence of error Z flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Divisor

Dividend

Quotient

↔ ↔— 0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Remainder

—

Figure 4.50 Changes in Internal Registers and Flag Changes for DIVXS

26

0

0

76

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 / H7FFF'.

Figure 4.51 Programming Specifications

4.14.1 Description of Functions

Arguments are as follows
• R0: Sets the divisor (signed 16 bits) as an input argument.

• ER1: Sets the dividend (signed 32 bits) as an input argument.

• ER2: Sets the quotient (signed 32 bits) as an output argument.

• E1: Sets the remainder (signed 16 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVXS.

— When Z flag = 1: Indicates that there is an error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

Figure 4.52 is an example of execution of the software DIVXS. When
the input arguments are set as shown, the quotient is set in ER2 and
the remainder is set in ER1.

E1
0000

ER2
FFFF FFFF

FFFF FFFF

R0

789A

Input arguments

Output arguments

0
Z flag

ER1

Figure 4.52 Executing DIVXS

• With the software DIVXS, the first thing done is to determine if the divisor is 0 or nonzero; if it is 0,
DIVXS ends.

4.14.2 Cautions for Use

Since the remainder is set in E1 and the bottom 16 bits of the
quotient are set in R1, the dividend is destroyed after DIVXS is
executed. When you will still require the dividend after executing
DIVXS, save it elsewhere in memory beforehand.

4.14.3 Description of Data Memory

No data memory is used by DIVXS.

4.14.4 Examples of Use

After setting the dividend and divisor as input arguments, do a
subroutine call to DIVXS.
Table 4.27 Block Transfer Example (DIVXS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.

WORK 2 .RES. W 1 Reserves the data memory area that sets the
divisor (signed 16 bits) in the user program.

MOV. L @WORK1,ER1 Sets as the input argument the dividend set in the
user program.

MOV. L @WORK2,R0 Sets as the input argument the divisor set in the
user program.

@DIVXSJSR

ERRORBEQ

Processing routine for errorsERROR

Subroutine call to DIVXS.

When division by 0 is attempted, the program
branches to the processing routine for errors.

4.14.5 Principles of Operation

• First, the program searches for zero-division errors. If there is such an error, the divisor is transferred to
the register in which it is itself stored so that the resulting Z bit can be used to determine if the divisor is
0. If the Z bit is 1 (divisor = 0), DIVXS ends.

• When 32 bits is being divided by 16 bits using the signed division instruction (DIVXS.W), a quotient of
16 bits is found. The quotient will thus overflow when division such as H'FFFFF/H'1 is performed. For
that reason, a quotient of 32 bits is found using the following procedure.

— The top 16 bits of the dividend are sent to R2 and sign-extended into 32 bits (figure 4.53 (1)).

— The top 16 bits of the dividend are divided to obtain the top 16 bits of the quotient (ii) (figure 4.53
(2)).

— The remainder of (ii) (remainder 1) is sent to R1 (figure 4.53 (3)).

— Division is performed on the bottom 16 bits of the dividend to find the bottom 16 bits of the quotient
and the remainder (remainder 2) (figure 4.53 (4)).

Dividend
(top 16 bits)

ER1

1

/ =

3

2

ER2

Dividend
(bottom 16 bits)

Sign
extension

Dividend
(top 16 bits)

R0

Divisor

ER2

Remainder 1
Quotient

(top 16 bits)

/ = 4

ER1

Remainder 1 Dividend
(bottom 16 bits)

R0

Divisor

ER1
Quotient

(bottom 16 bits)Remainder 2

Figure 4.53 Overflow Processing

Yes

No

Is divisor = 0?
(Z bit = 1)

Sign-extend the top 16 bits of
the dividend to 32 bits

RTS

Divide the top 16 bits of the
dividend that was extended to

32 bits (ER2) by the divisor (R0)

DIVXS

Divide the bottom 16 bits (ER1)
of the dividend, whose top 16

bits are the remainder (E2)
from the division of the top 16

bits of the dividend(ER2),
by the divisor (R0)

Set the top 16 bits of the
quotient (R2) as an output

argument (E2)

Set the bottom 16 bits of the
quotient (R1) as an output

argument (R2)

Clear the Z flag

Figure 4.54 DIVXS Flowchart

4.14.6 Program Listing

4.15 Signed 32-Bit Binary Division (32-Bit Divisor)

MCU: H8/300H Series
Label Name: DIVS
Functions Used: SHLL.L Instruction, ROTL.L Instruction, NEG.L
Instruction
Function: Does division in the format: Dividend (signed 32 bits) /
divisor (signed 32 bits) = quotient (signed 32 bits) … remainder
(signed 32 bits).
Table 4.28 DIVS Arguments

Contents Storage Location Data Length (Bytes)

Input Dividend (signed 32 bits) ER0 4

Divisor (signed 32 bits) ER1 4

Output Quotient (signed 32 bits) ER0 4

Remainder (signed 32 bits) ER2 4

Presence of error Z flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Dividend

Divisor

Remainder

↔ ↔ ↔ ↔

Work

↔

Work

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Quotient

Figure 4.55 Changes in Internal Registers and Flag Changes for DIVS

66

0

0

770

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when calculated as
H'80000000 / H7FFFFFFF.

Figure 4.56 Programming Specifications

4.15.1 Description of Functions

Arguments are as follows:
• ER0: Sets the dividend (unsigned 32 bits) as an input argument. Sets the quotient (unsigned 32 bits) as

an output argument.

• ER1: Sets the divisor (unsigned 32 bits) as an input argument.

• ER2: Sets the remainder (unsigned 32 bits) as an output argument.

• Z Flag (CCR): Indicates whether there are any errors (division by 0) after execution of DIVS.

— When Z flag = 1: Indicates that there is an error in the division.

— When Z flag = 0: Indicates that there is no error in the division.

• Figure 4.57 is an example of execution of the software DIVS. When the input arguments are set as
shown, the quotient is set in ER0 and the remainder is set in ER2.

• When the divisor is 0, DIVS ends immediately.

ER2
0000 0000

ER0
FFFF FFFF

FFFF FFFF

ER1

0000 1000

Input arguments

Output arguments

0
Z flag

ER0

Figure 4.57 Executing DIVS

4.15.2 Cautions for Use

Since the quotient is set in ER0, the dividend is destroyed after DIVS
is executed. When you will still require the dividend after executing
DIVS, save it elsewhere in memory beforehand.

4.15.3 Description of Data Memory

No data memory is used by DIVS.

4.15.4 Examples of Use

After setting the dividend and divisor, do a subroutine call to DIVS.
Table 4.29 Block Transfer Example (DIVS)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
dividend (signed 32 bits) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the divisor
(signed 32 bits) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the dividend (signed 32
bits) set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the divisor (signed 32
bits) set in the user program.

@DIVSJSR Subroutine call to DIVS.

4.15.5 Principles of Operation

• Negative dividends and divisors are converted to positive.

• Division finds the quotient and remainder by repeatedly subtracting. In figure 4.58, H'0D is divided by
H'03 as an example of the division operation.

i. Sets the number of shifts in the counter R3L (which indicates the number of shifts).

ii. The dividend is shifted 1 bit to the left and the MSB loaded in the C bit is set in the LSB of ER2
(which stores the remainder).

iii. The divisor is subtracted from ER2. When the result of subtraction is positive, the LSB of ER0 is
set. ((1) to (2) to (3) in figure 4.58). When the results of subtraction is negative, the LSB of ER0 is
cleared and the divisor is added to the results of subtraction, returning it to the state prior to
subtraction. ((4) to (5) to (6) in figure 4.58).

iv. The shift counter set in step (i) is decremented.

v. Steps (ii) through (iv) are repeated until the shift counter reaches -1.

• The quotient and/or remainder is then converted to negative if the sign flag is 1, as shown in table 4.30.

100
1101

–) 11
Divisor → 11

00
–) 11

–01
+) 11

3 6

← Quotient
← Dividend

1
2
4
5

← Remainder

001
–) 11

–10
+) 11

001

Figure 4.58 Division Example

Table 4.30 Sign of Results of Division and the Sign Flag

Dividend Divisor Quotient Remainder Quotient Sign Flag Remainder Sign Flag

Positive Positive Positive Positive 0 0

Negative Negative Positive 1 0

Negative Positive Negative Negative 1 1

Negative Positive Positive 0 0

4.15.6 Program Listing

4.16 8-Digit Decimal Addition

MCU: H8/300H Series
Label Name: ADDD
Functions Used: DAA.B Instruction
Function: Does addition in the format: Summand (8-digit 4-bit BCD)
× addend (8-digit 4-bit BCD) = sum (8-digit 4-bit BCD).
Table 4.31 ADDD Arguments

Contents Storage Location Data Length (Bytes)

Input Summand (8-digit 4-bit BCD) ER0 4

Summand (8-digit 4-bit BCD) ER1 4

Output Sum (8-digit 4-bit BCD) ER0 4

Presence of carry (Yes, C = 1;
No, C = 0)

C flag 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Summand (8-digit 4-bit BCD)

Addend (8-digit 4-bit BCD)

↔ ↔ ↔ ↔0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Sum (8-digit 4-bit BCD)

Figure 4.59 Changes in Internal Registers and Flag Changes for DIVS

28

0

0

36

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.60 Programming Specifications

4.16.1 Description of Functions

Arguments are as follows:
• ER0: Sets the summand (8-digit 4-bit BCD) as an input argument. Sets the sum (8-digit 4-bit BCD) as

an output argument.

• ER1: Sets the addend (8-digit 4-bit BCD) as an input argument.

• C flag (CCR): Indicates whether there is carrying after ADDD is executed.

— C flag = 1: Indicates there is a carry.

— C flag = 0: Indicates there is no carry.

Figure 4.61 is an example of execution of the software ADDD. When
the input arguments are set as shown, the sum is set in ER0.

ER0
0081 0000

ER1
0021 0000

C flag

+)

Output
arguments

Input
arguments

ER0
0000 00003

Figure 4.61 Executing ADDD

4.16.2 Cautions for Use

Since the results of addition are set in the register used to set the
summand, the summand is destroyed after ADDD is executed. When
you will still require the summand after executing ADDD, save it
elsewhere in memory beforehand.

4.16.3 Description of Data Memory

No data memory is used by ADDD

4.16.4 Examples of Use

After setting the summand and addend, do a subroutine call to ADDD.
Table 4.32 Block Transfer Example (ADDD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
summand (8-digit 4-bit BCD) in the user
program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
addend (8-digit 4-bit BCD) in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the summand set in
the user program.

MOV. L @WORK2,ER1 Sets as the input argument the addend set in
the user program.

@ADDDJSR

OVERBCS

Processing routine for carrying overOVER

Subroutine call to ADDD.

When the results of addition produce carrying,
the program branches to the processing routine
for carrying.

4.16.5 Principles of Operation

• Binary addition occurs in 2-digit increments from the bottom and the results of addition are corrected
into 2 digits of 4-bit BCD by the DAA.B instruction. This process is repeated four times.

• Addition of everything after the initial bottom 2 digits is performed by ADDX.B (addition with carrying
instruction), since carrying occurs.

• In the extended register in which the upper four digits of the summand and addend are stored, the
DAA.B and ADDX.B instructions cannot be used, so the upper 4 digits of the summand and addend are
added after transfer to the general registers.

RTS

Binary addition of first
and second digits

ADDD

Decimal correction of
results of addition

Binary addition with carry
of the third and fourth digits

Decimal correction of
results of addition

Transfer the top 4 digits
of the addend (E1) to R1

Transfer the lower 4 digits
of results of addition

 (R0) to E1

Transfer the top 4 digits
of the summand (E0) to R0

Binary addition with carry
of the fifth and sixth digits

Decimal correction of
results of addition

Binary addition with carry
of the seventh and

eighth digits

Decimal correction of
results of addition

Figure 4.62 ADDD Flowchart

4.16.6 Program Listing

4.17 8-Digit Decimal Subtraction

MCU: H8/300H Series
Label Name: SUBD
Functions Used: DAS.B Instruction
Function: Does subtraction in the format: Minuend (8-digit 4-bit
BCD) – subtrahend (8-digit 4-bit BCD) = difference (8-digit 4-bit BCD).
Table 4.33 SUBD Arguments

Contents Storage Location Data Length (Bytes)

Input Minuend (8-digit 4-bit BCD) ER0 4

Subtrahend (8-digit 4-bit BCD) ER1 4

Output Difference (8-digit 4-bit BCD) ER0 4

Presence of borrow (Yes, C = 1; No, C = 0) C flag (CCR) 1

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Minuend (8-digit 4-bit BCD

Subtrahend (8-digit 4-bit BCD

↔ ↔ ↔ ↔0

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Difference (8-digit 4-bit BCD

Figure 4.63 Changes in Internal Registers and Flag Changes for SUBD

28

0

0

36

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Figure 4.64 Programming Specifications

4.17.1 Description of Functions

Arguments are as follows:
• ER0: Sets the minuend (8-digit 4-bit BCD) as an input argument. Sets the difference (8-digit,

4-bit BCD) as an output argument.

• ER1: Sets the subtrahend (8-digit 4-bit BCD) as an input argument.

• C flag (CCR): Indicates whether there is borrowing after SUBD is executed.

— C flag = 1: Indicates there is a borrow.

— C flag = 0: Indicates there is no borrow.

Figure 4.65 is an example of execution of the software SUBD. When
the input arguments are set as shown, the difference is set in ER0.

ER0
0081 0000

ER1
0021 0000

C flag

–)

Output
arguments

Input
arguments

ER0
0060 00000

Figure 4.65 Executing SUBD

4.17.2 Cautions for Use

Since the results of subtraction are set in the register used to set the
minuend, the minuend is destroyed after SUBD is executed. When
you will still require the minuend after executing SUBD, save it
elsewhere in memory beforehand.

4.17.3 Description of Data Memory

No data memory is used by SUBD.

4.17.4 Examples of Use

After setting the minuend and subtrahend, do a subroutine call to
SUBD.
Table 4.34 Block Transfer Example (SUBD)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the
minuend (8-digit 4-bit BCD) in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the
subtrahend (8-digit 4-bit BCD) in the user
program.

MOV. L @WORK1,ER0 Sets as the input argument the minuend set in
the user program.

MOV. L @WORK2,ER1 Sets as the input argument the subtrahend set in
the user program.

@SUBDJSR

OVERBCS

Processing routine for borrowingOVER

Subroutine call to SUBD.

When the results of subtraction produce
borrowing, the program branches to the
processing routine for borrowing.

4.17.5 Principles of Operation

• Binary subtraction occurs in 2-digit increments from the bottom and the results of subtraction are
corrected into 2 digits of 4-bit BCD by the DAS.B instruction. This process is repeated four times.

• Subtraction of everything after the initial bottom 2 digits is performed by SUBX.B (subtraction with
borrowing instruction), since borrowing occurs.

• In the extended register in which the upper four digits of the minuend and subtrahend are stored, the
DAS.B and SUBX.B instructions cannot be used, so the upper 4 digits of the minuend and subtrahend
are subtracted after transfer to the general registers.

RTS

Binary subtraction of first
and second digits

SUBD

Decimal correction of
results of subtraction

Binary subtraction with borrow
of the third and fourth digits

Decimal correction of
results of subtraction

Transfer the top 4 digits
of the subtrahend (E1) to R1

Transfer the lower 4 digits
of results of subtraction

 (R0) to E1

Transfer the top 4 digits
of the minuend (E0) to R0

Binary subtraction with borrow
of the fifth and sixth digits

Decimal correction of
results of subtraction

Binary subtraction with
borrow of the seventh and

eighth digits

Decimal correction of
results of subtraction

Figure 4.66 SUBD Flowchart

4.17.6 Program Listing

4.18 Sum of Products

MCU: H8/300H Series
Label Name: SEKIWA
Functions Used: MULXU.W Instruction
Function: Does the following sum of products on unsigned 16-bit
data an, bn (n = 1, 2, …, n) from data tables a and b. The maximum
number of data n is 255.

a n bn = a1b1 + a2b2 + ... + anbn

n = 1

n
∑

Table 4.35 SEKIWA Arguments

Contents Storage Location Data Length (Bytes)

Input Start address of data table a ER0 4

Start address of data table b ER1 4

Number of data n R3H 1

Output Results of sum of products (top
8 bits)

R3L 1

Results of sum of products
(bottom 32 bits)

ER2 4

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — —

Start address of data table a

Start address of data table b

↔ ↔ ↔ ↔1

Results of sum of products (bottom 32 bits)

Work

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Results of sum
of products
(top 8 bits)

Number of
data n

Figure 4.67 Changes in Internal Registers and Flag Changes for SUBD

20

0

0

11234

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when the number of data n
is H'FF.

Figure 4.68 Programming Specifications

4.18.1 Description of Functions

Arguments are as follows:
• ER0: Sets the start address of data table a (multiplicands) as an input argument.

• ER1: Sets the start address of data table b (multipliers) as an input argument.

• R3H: Sets the number as an input argument.

• R3L: Sets the top 8 bits of the result of the sum of products operation as an output argument.

• ER2: Sets the bottom 32 bits of the result of the sum of products operation as an output argument.

Figure 4.69 is an example of execution of the software. When the
start address of data table a, start address of data table b, and
number are set as shown, the top 8 bits of the result of the sum of
products operation are set in R3L and bottom 32 bits of the result of
the sum of products operation are set in ER2.

FF
FF
10
00

800000

Input
argurments

Don't care

ER0
000008

Don't care

ER1
00000F

R3H
30

C6
AA

Data table a

FF
FF
CD
FF
9B
70

F00000

Data a1

Data a2

Data a3

Data b1

Data b2

Data b3

Data table b

Output arguments

5810 8CD7 16 Σ anbn = a1b1 + a2b2 + a3b3 =

R3L ER23

n = 1

Figure 4.69 Executing SEKIWA

4.18.2 Cautions for Use

Since R0H is 1 byte, set data in the range H'01 ≤ R3H ≤ H'FF.

4.18.3 Description of Data Memory

No data memory is used by SEKIWA.

4.18.4 Examples of Use

After setting the start address of data table a, start address of data
table b and number, do a subroutine call to SEKIWA.

Table 4.36 Block Transfer Example (SEKIWA)

Label Instruction Action

WORK 1 .RES. L 1 Reserves the data memory area that sets the start
address of data table a in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of data table b in the user program.

WORK 3 .RES. B 1 Reserves the data memory area that sets the
number in the user program.

MOV. L @WORK1,ER0 Sets as the input argument the start address of data
table a set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the start address of data
table b set in the user program.

MOV. B @WORK3,R3H Sets as the input argument the number set in the
user program

@SEKIWAJSR

Subroutine call to SEKIWA.

4.18.5 Principles of Operation

1. ER0 and ER1 are used as pointers to the addresses of the multiplicand (data table a) and multiplier
(data table b) data. After the multiplicands and multipliers are set in E4 and R4 respectively, the
program increments to the next data address by post-increment register indirect.

2. E4 and R4 are de-signed and multiplied.

3. The results of multiplication stored in ER4 are added to ER2, where the bottom 32 bits of the results of
the sum of products are stored.

4. Because of carrying, addition of R3L, where the top 8 bits of the result of the sum of products is stored,
uses addition with carrying.

5. R3H is decremented and the processes of steps 1 through 4 repeat until R3H = –1.

Yes

No

RTS

Is the item
number (R3H) = –1?

Data an (@ER0) of data table a
is set in the multiplier register (E4)

SEKIWA

Data bn (@ER1) of data table b
is set in the multiplier register (R4)

Increment to the address of the
next data an + 1 of data table a

Increment to the address of the
next data bn + 1 of data table b

Multiply

Add the results of multiplication
(ER4) to the lower 32 bits of the

result of the sum of products (ER2)

Add the C bit to the top 8 bits
of the results of the sum of

products (R3L)

Decrement the item number (R3H)

Figure 4.70 SEKIWA Flowchart

4.18.6 Program Listing

4.19 Sorting

MCU: H8/300H Series
Label Name: SORT
Functions Used: Post-Increment Register Indirect, Pre-Decrement
Register Indirect
Function: Sorts data (unsigned 16 bits) of the data table from
largest to smallest. The maximum number of data is 65535.
Table 4.37 SORT Arguments

Contents Storage Location Data Length (Bytes)

Input Number of sort data R0 2

Start address of data table ER2 4

Output — — —

ER0

ER1

ER2

ER3

ER4

ER5

ER6

ER7(SP)

31 1516 78 0

I U H U N Z V C
— — — 0

Work

Start address of data table

Work Number of sort data

Work Work

0100

—

↔

0
1

: No change
: Changes
: Locked to 0
: Locked to 1

Figure 4.71 Changes in Internal Registers and Flag Changes for SORT

32

0

0

404

Program memory (bytes)

Data memory (bytes)

Stack (bytes)

Number of states

Re-entrant

Yes

Relocation

Yes

Interrupts during execution

Yes

Caution: The number of states in the programming specifications is the value when 5 words of data arranged
smallest to largest is sorted into largest to smallest.

Figure 4.72 Programming Specifications

4.19.1 Description of Functions

Arguments are as follows:
• R0: Sets the number of sort data.

• ER1: Sets the start address of the data table.

Figure 4.73 is an example of execution of the SORT software. When
the input arguments are set as shown, the data table data is sorted
largest to smallest.

16FD
08A9
A06C
FF01

100000

8657

R0
5000

Input
arguments

FF01
A06C
8657
16FD

100000

08A9

Results

Sorted largest
to smallest

Don't care

ER1
000001

Figure 4.73 Executing SORT

4.19.2 Description of Data Memory

No data memory is used by SORT.

4.19.3 Examples of Use

After setting the start address of the data table and the number of
sort data, do a subroutine call to SORT.
Table 4.38 Block Transfer Example (SORT)

Label Instruction Action

WORK 1 .RES. W 1 Reserves the data memory area that sets the
number of sort data in the user program.

WORK 2 .RES. L 1 Reserves the data memory area that sets the start
address of the data table in the user program.

MOV. W @WORK1,R0 Sets as the input argument the number of sort data
set in the user program.

MOV. L @WORK2,ER1 Sets as the input argument the start address of the
data table set in the user program.

@SORTJSR

Subroutine call of SORT.

4.19.4 Principles of Operation

Figure 4.74 shows an example of sorting 3 items of data from largest
to smallest.

5 10 8Input data

First time
(number of comparison

n – 1 = 2)

Second time
(number of comparison

n – 2 = 1)

5 10

10 5

10 5 8

10 5

10 8

8

5

8

8 1

2

3

4

5

Number of data n = 3

Indicates a comparison

Indicates a switch

Note:

Figure 4.74 Sorting Example

1. Selects the largest of the 3 input data and places it at the far left ((1), (2) and (3) in figure 4.74).

2. Selects the largest data from second to left to the end and places it at the second place from left ((4)
and (5) in figure 4.74).

4.19.5 Processing Method in Program

1. The number being compared (reference data) is set to E1 and the comparison number is set to R1; the
comparison is then done. Since the data being compared is supposed to be the larger of the two
numbers, the data are switched whenever the comparison number is larger.

2. ER3 is used as a pointer to the address of the comparison number. Using the post-increment register
indirect method, the pointer is incremented to the address where the next comparison number is stored.

3. E0 is used as the counter that counts the number of comparisons done between data to find the largest
item in the group of data. Each time a comparison is completed, E0 is decremented and the process
repeats until E0 becomes 0.

4. ER2 is used as the pointer that indicates the address of the memory that stores the next largest value.
Using the post-increment register indirect method, ER2 is incremented to the address that stores the
next maximum value.

5. R0 is used as the counter that counts the number of determinations of the maximum value. Each time a
maximum value is determined, R0 is decremented and the process repeats until R0 becomes 0.

Yes

No

RTS

Counter 1 = 0?

The number of sorts
(data no. – 1) is set in counter 1

SORT

Number being
compared is set in E1

Number of comparisons
is set in counter 2

Comparison number is set in R1

Is number being
compared < comparison

number?

No

Yes

Number being compared and
comparison number are exchanged

Decrement counter 2

Decrement counter 1

Yes

No Counter 2 = 0?

Figure 4.75 SORT Flowchart

4.19.6 Program Listing

Appendix A Instruction Set

Table A.1 Operation Symbols

Symbol Description

PC Program counter

SP Stack pointer (ER7)

CCR Condition code register

Z Zero flag of condition code register

C Carry flag of condition code register

Rs, Rd, Rn General registers <data> (8 bits: R0H/R0L–R7H/R7L and 16 bits: R0–R7, E0–
E7)

ERs, ERd General registers <address> (24 bits: ER0–ER7), <data> (32 bits: ER0–ER7)

d:8, d:16, d:24 Displacement: 8 bits/16 bits/24 bits

#xx:2/3/8/16/32 Immediate data: 2 bits/3 bits/8 bits/16 bits/32 bits

→ Left end operand transferred to right end operand

+ Add operands of both sides

- Subtract right end operand from left end operand

× Multiply both operands

÷ Divide left end operand by right end operand

∧ AND of both operands

∨ OR of both operands

⊕ Exclusive OR of both end operands

Logical complement (complement of 1)

() < > Description of execution address of operand

Table A.2 Condition Code Symbols

Symbol Description

↕ Changes with the results of operation

* Undetermined. Value not guaranteed.

0 Always cleared to 0.

- No effect on operation.

Notes: 1. (The number of execution states is the value when the operation code and operand data is in the
2-cycle area that is word accessible, such as on-chip RAM.)

2. For a word-size operation: When there is a carry or borrow to or from bit 11, this bit is set to 1;
otherwise, it is cleared to 0.

3. For a longword size operation: When there is a carry or borrow to or from bit 27, this bit is set to
1; otherwise, it is cleared to 0.

4. When the operation result is 0, the value prior to the operation is held; otherwise, it is cleared to
0.

5. Set to 1 when the results of correction causes a carry; otherwise, the value prior to the operation
is held.

6. The number of execution states is 4n+8 when the value set for R4L (for EEPMOV.B) or R4 (for
EEPMOV.W) is n.

7. Do not use the E clock synchronous transfer instruction with the H8/3003.

A1 Number of Execution States

The number of execution states for the instruction set is the value
when the operation code and operand data is in the 2-cycle area that
is word accessible, such as on-chip RAM. Operation code resides in
external memory, but its attributes (byte/word access, 2/3 state
access, wait/not wait, number of waits) can be set with the bus
controller and wait state controller. The attributes of the on-chip
peripheral modules are fixed and come in two types: 3-state word
access modules and 3-state byte access modules. These combinations
increase the number of execution states by the number of states
indicated in the following table.
Table A.3 Increase in Number of Execution States by Operand Data

Access Conditions Data Type
Increase in Number of
Execution States

External address (2-state byte access) Byte

Word

0

2

External address/on-chip RAM (2-state word access) Byte

Word

0

0

On-chip peripheral module (3-state byte access) Byte

Word

1

4

On-chip peripheral module (3-state word access) Byte

Word

1

1

External address (3-state byte access m cycle wait) Byte

Word

1 + m

4 + 2m

External address (3-state word access m cycle wait) Byte

Word

1 + m

1 + m

Table A.4 Increase in Number of Execution States by Operand Code

Access Conditions Increase in Number of Execution States

Instruction
Length
(Byte) 2 4 6 8 10

External address (2-state byte access) Nonbranch 2 4 6 8 10

Branch 4 6 - - -

External address/on-chip RAM (2-
state word access)

Nonbranch 0 0 0 0 0

Branch 0 0 - - -

External address (3-state byte access
m cycle wait)

Nonbranch 4 + 2m 8 + 4m 12 +
6m

16 +
8m

20 +
10m

Branch 8 + 4m 12 +
6m

- - -

External address (3-state word access
m cycle wait)

Nonbranch 1 + m 2 + 2m 3 + 3m 4 + 4m 5 + 5m

Branch 2 + 2m 3 + 3m - - -

 Table A.5					Instruction List

Addressing Mode/
Instruction Length Condition Code

Mnem-
-onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Data
transfer

MOV.B #xx:8,
Rd

B #xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

instr. MOV.B Rs,Rd B Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

MOV.B
@ERs,Rd

B @ERs→Rd8 2 — — – ↕ ↕ 0 — 4

MOV.B
@(d:16,ERs)Rd

B @(d:16,ERs)→Rd8 4 — — — ↕ ↕ 0 — 6

MOV.B
@(d:24,ERs),Rd

B @(d:24,ERs)→
Rd8

8 — — — ↕ ↕ 0 — 10

MOV.B
@ERs+,Rd

B @ERs→Rd8,
ERs+1→ERs

2 — — — ↕ ↕ 0 — 6

MOV.B
@aa:8,Rd

B @aa:8→Rd8 2 — — — ↕ ↕ 0 — 4

MOV.B
@aa:16,Rd

B @aa:16→Rd8 4 — — — ↕ ↕ 0 — 6

MOV.B
@aa:24,Rd

B @aa:24→Rd8 6 — — — ↕ ↕ 0 — 8

MOV.B
Rs,@ERd

B Rs8→@ERd 2 — — — ↕ ↕ 0 — 4

MOV.B
Rs,@(d:16,ERd)

B Rs8→

@(d:16,ERd)
4 — — — ↕ ↕ 0 — 6

MOV.B
Rs,@(d:24,ERd)

B Rs8→

@(d:24,ERd)
8 — — — ↕ ↕ 0 — 10

MOV.B Rs,
@–ERd

B ERd–1→ERd,
Rs8→@ERd

2 — — — ↕ ↕ 0 — 6

MOV.B Rs,
@aa:8

B Rs8→@aa:8 2 — — — ↕ ↕ 0 — 4

MOV.B Rs,
@aa:16

B Rs8→@aa:16 4 — — — ↕ ↕ 0 — 6

MOV.B Rs,
@aa:24

B Rs8→@aa:24 6 — — — ↕ ↕ 0 — 8

MOV.W#xx:16,
Rd

W #xx:16→Rd16 4 — — — ↕ ↕ 0 — 4

MOV.W Rs,Rd W Rs16→Rd16 2 — — — ↕ ↕ 0 — 2

MOV.W
@ERs,Rd

W @ERs→Rd16 2 — — — ↕ ↕ 0 — 4

MOV.W
@(d:16,ERs),Rd

W @(d:16,ERs)→
Rd16

4 — — — ↕ ↕ 0 — 6

MOV.W
@(d:24,ERs),Rd

W @(d:24,ERs)→
Rd16

8 — — — ↕ ↕ 0 — 10

MOV.W
@ERs+,Rd

W @ERs→Rd16,
ERs+2→ERs

2 — — — ↕ ↕ 0 — 6

MOV.W
@aa:16,Rd

W @aa:16→Rd16 4 — — — ↕ ↕ 0 — 6

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Data
transfer

MOV.W
@aa:24,Rd

W @aa:24→Rd16 6 — — — ↕ ↕ 0 — 8

instr.
(cont)

MOV.W
Rs,@ERd

W Rs16→@ERd 2 — — — ↕ ↕ 0 — 4

MOV.W
Rs,@(d:16,ERd)

W Rs16→

@(d:16,ERd)
4 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@(d:24,ERd)

W Rs16→

@(d:24,ERd)
8 — — — ↕ ↕ 0 — 10

MOV.W
Rs,@– ERd

W ERd–2→ERd,
Rs16→@ERd

2 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@aa:16

W Rs16→@aa:16 4 — — — ↕ ↕ 0 — 6

MOV.W
Rs,@aa:24

W Rs16→@aa:24 6 — — — ↕ ↕ 0 — 8

MOV.L#xx:32,
ERd

L #xx:32→ERd32 6 — — — ↕ ↕ 0 — 6

MOV.L
ERs,ERd

L ERs32→ERd32 2 — — — ↕ ↕ 0 — 2

MOV.L
@ERs,ERd

L @ERs→Erd32 4 — — — ↕ ↕ 0 — 8

MOV.L @
(d:16,ERs),ERd

L @(d:16,ERs)→
ERd32

6 — — — ↕ ↕ 0 — 10

MOV.L @
(d:24,ERs),ERd

L @(d:24,ERs)→
ERd32

10 — — — ↕ ↕ 0 — 14

MOV.L
@ERs+,ERd

L @ERs→ERd32,
ERs+4→ERs

4 — — — ↕ ↕ 0 — 10

MOV.L
@aa:16,ERd

L @aa:16→ERd32 6 — — — ↕ ↕ 0 — 10

MOV.L
@aa:24,ERd

L @aa:24→ERd32 8 — — — ↕ ↕ 0 — 12

MOV.L
ERs,@ERd

L ERs32→@ERd 4 — — — ↕ ↕ 0 — 8

MOV.L ERs,
@(d:16,ERd)

L ERs32→

@(d:16,ERd)
6 — — — ↕ ↕ 0 — 10

MOV.L ERs,
@(d:24,ERd)

L ERs32→

@(d:24,ERd)
10 — — — ↕ ↕ 0 — 14

MOV.L ERs,
@–ERd

L ERd–4→ERd,
ERs32→@ERd

4 — — — ↕ ↕ 0 — 10

MOV.L
ERs,@aa:16

L ERs32→@aa:16 6 — — — ↕ ↕ 0 — 10

MOV.L
ERs,@aa:24

L ERs32→@aa:24 8 — — — ↕ ↕ 0 — 12

ADD.B #xx:8,Rd B Rd8+#xx:8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

ADD.B Rs,Rd B Rd8+Rs8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

Arith.
Op
instr

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Arith.
op.

ADD.W
#xx:16,Rd

W Rd16+#xx:16→

Rd16
4 — — *1 ↕ ↕ ↕ ↕ 4

instr.
(cont)

ADD.W Rs,Rd W Rd16+Rs16→

Rd16
2 — — *1 ↕ ↕ ↕ ↕ 2

ADD.L#xx:32,
ERd

L ERd32+#xx:32→

ERd32
6 — — *1 ↕ ↕ ↕ ↕ 6

ADD.L ERs,ERd L ERd32+ERs32→

ERd32
2 — — *1 ↕ ↕ ↕ ↕ 2

ADDX.B
#xx:8,Rd

B Rd8+#xx:8+C→

Rd8
2 — — ↕ ↕ *2 ↕ ↕ 2

ADDX.B Rs,Rd B Rd8+Rs8+C→Rd8 2 — — ↕ ↕ *2 ↕ ↕ 2

ADDS #1,ERd L ERd32+1→ERd32 2 — — — — — — — 2

ADDS #2,ERd L ERd32+2→ERd32 2 — — — — — — — 2

ADDS #4,ERd L ERd32+4→ERd32 2 — — — — — — — 2

INC.B Rd B Rd8+1→Rd8 2 — — — ↕ ↕ ↕ — 2

INC.W #1,Rd W Rd16+1→Rd16 2 — — — ↕ ↕ ↕ — 2

INC.W #2,Rd W Rd16+2→Rd16 2 — — — ↕ ↕ ↕ — 2

INC.L #1,ERd L ERd32+1→ERd32 2 — — — ↕ ↕ ↕ — 2

INC.L #2,ERd L ERd32+2→ERd32 2 — — — ↕ ↕ ↕ — 2

DAA Rd B Rd8 decimal
correction→Rd8

2 — — * ↕ ↕ * *3 2

NEG.B Rd B 0–Rd8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

NEG.W Rd W 0–Rd16→Rd16 2 — — *1 ↕ ↕ ↕ ↕ 2

NEG.L ERd L 0–ERd32
→ERd32

2 — — *1 ↕ ↕ ↕ ↕ 2

SUB.B Rs,Rd B Rd8–Rs8→Rd8 2 — — ↕ ↕ ↕ ↕ ↕ 2

SUB.W
#xx:16,Rd

W Rd16–#xx:16→

Rd16
4 — — *1 ↕ ↕ ↕ ↕ 4

SUB.W Rs,Rd W Rd16–Rs16
→Rd16

2 — — *1 ↕ ↕ ↕ ↕ 2

SUB.L#xx:32,
ERd

L ERd32–#xx:32→

ERd32
6 — — *1 ↕ ↕ ↕ ↕ 6

SUB.L ERs,ERd L ERd32–ERs32
→ERd32

2 — — *1 ↕ ↕ ↕ ↕ 2

SUBX.B
#xx:8,Rd

B Rd8–#xx:8
– C→Rd8

2 — — ↕ ↕ *2 ↕ ↕ 2

SUBX.B Rs,Rd B Rd8–Rs8–C→Rd8 2 — — ↕ ↕ *2 ↕ ↕ 2

SUBS #1,ERd L ERd32–1→ERd32 2 — — — — — — — 2

SUBS #2,ERd L ERd32–2→ERd32 2 — — — — — — — 2

SUBS #4, ERd L ERd32–4→ERd32 2 — — — — — — — 2

DEC.B Rd B Rd8–1→Rd8 2 — — — ↕ ↕ ↕ — 2

DEC.W #1,Rd W Rd16–1→Rd16 2 — — — ↕ ↕ ↕ — 2

DEC.W #2,Rd W Rd16–2→Rd16 2 — — — ↕ ↕ ↕ — 2

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Arith. DEC.L #1,ERd L ERd32–1→ERd32 2 — — — ↕ ↕ ↕ — 2
op. DEC.L #2,ERd L ERd32–2→ERd32 2 — — — ↕ ↕ ↕ — 2
instr.
(cont) DAS Rd B Rd8 decimal

correction→Rd8
2 — — * ↕ ↕ * — 2

CMP.B #xx:8,
Rd

B Rd8–#xx:8 2 — — ↕ ↕ ↕ ↕ ↕ 2

CMP.B Rs,Rd B Rd8–Rs8 2 — — ↕ ↕ ↕ ↕ ↕ 2

CMP.W #xx:16,
Rd

W Rd16–#xx:16 4 — — *1 ↕ ↕ ↕ ↕ 4

CMP.W Rs,Rd W Rd16–Rs16 2 — — *1 ↕ ↕ ↕ ↕ 2

CMP.L#xx:32,
ERd

L ERd32–#xx:32 6 — — *1 ↕ ↕ ↕ ↕ 6

CMP.L ERs,
ERd

L ERd32–ERs32 2 — — *1 ↕ ↕ ↕ ↕ 2

MULXU.B Rs,
Rd

B Rd8×Rs8→Rd16 2 — — — — — — — 14

MULXU.W
Rs,ERd

W Rd16×Rs16→
ERd32

2 — — — — — — — 22

DIVXU.B Rs,Rd B Rd16÷Rs8→Rd16
(H: remainder
L: quotient)

2 — — — — — — — 14

DIVXU.W
Rs,ERd

W ERd32÷Rs16→
ERd16
(E: remainder,
R: quotient)

2 — — — ↕ ↕ — — 22

MULXS.B Rs,
Rd

B Rd8×Rs8→Rd16 2 — — — ↕ ↕ — — 16

MULXS.W
Rs,ERd

W Rd16×Rs16→
ERd32

2 — — — ↕ ↕ — — 24

DIVXS.B Rs,
Rd

B Rd16÷Rs8→Rd16
(H: remainder,
L: quotient)

2 — — — ↕ ↕ — — 16

DIVXS.W
Rs,ERd

W ERd32÷Rs16→ERd
16(E: remainder,
R: quotient)

4 — — — ↕ ↕ — — 24

EXTU.W Rd W RdL8 zero
extension→Rd16

2 — — — ↕ ↕ 0 — 2

EXTU.L ERd L RdL16 zero
extension→Rd32

2 — — — ↕ ↕ 0 — 2

EXTS.W Rd W RdL8 sign
extension→Rd16

2 — — — ↕ ↕ 0 — 2

EXTS.L ERd L Rd16 sign
extension→ERd32

2 — — — ↕ ↕ 0 — 2

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Logical AND.B #xx:8,Rd B Rd8∧#xx:8→Rd8 2 — — — ↕ ↕ 0 — 2
op. AND.B Rs,Rd B Rd8∧Rs8→Rd8 2 — — — ↕ ↕ 0 — 2
instr.

AND.W
#xx:16,Rd

W Rd16∧#xx:16
→RD16

Rd16

4 — — — ↕ ↕ 0 — 4

AND.W Rs,Rd W Rd16∧Rs16→ 2 — — — ↕ ↕ 0 — 2

AND.L
#xx:32,ERd

L ERd32∧#xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

AND.L ERs,ERd L ERd32∧ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

OR.B #xx:8,Rd B Rd8∨#xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

OR.B Rs,Rd B Rd8∨Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

OR.W
#xx:16,Rd

W Rd16∨#xx:16→
Rd16

4 — — — ↕ ↕ 0 — 4

OR.W Rs,Rd W Rd16∨Rs16→
Rd16

2 — — — ↕ ↕ 0 — 2

OR.L #xx:32,
ERd

L ERd32∨#xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

OR.L ERs,ERd L ERd32∨ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

XOR.B #xx:8,
Rd

B Rd8⊕#xx:8→Rd8 2 — — — ↕ ↕ 0 — 2

XOR.B Rs,Rd B Rd8⊕Rs8→Rd8 2 — — — ↕ ↕ 0 — 2

XOR.W
#xx:16,Rd

W Rd16⊕#xx:16→
Rd16

4 — — — ↕ ↕ 0 — 4

XOR.W Rs,Rd W Rd16⊕Rs16→Rd16 2 — — — ↕ ↕ 0 — 2

XOR.L
#xx:32,ERd

L ERd32⊕#xx:32→
ERd32

6 — — — ↕ ↕ 0 — 6

XOR.L ERs,
ERd

L ERd32⊕ERs32→
ERd32

4 — — — ↕ ↕ 0 — 4

NOT.B Rd B Rd8→Rd8 2 — — — ↕ ↕ 0 — 2

NOT.W Rd W Rd16→Rd16 2 — — — ↕ ↕ 0 — 2

NOT.L ERd L ERd32→ERd32 2 — — — ↕ ↕ 0 — 2

Shift
instr.

SHAL.B Rd B Rd8 left arithmetic
shift→Rd8

2 — — — ↕ ↕ ↕ ↕ 2

SHAL.W Rd W Rd16 left
arithmetic
shift→Rd16

2 — — — ↕ ↕ ↕ ↕ 2

SHAL.L ERd L ERd32 left
arithmetic
shift→ERd32

2 — — — ↕ ↕ ↕ ↕ 2

SHAR.B Rd B Rd8 right
arithmetic
shift→Rd8

2 — — — ↕ ↕ 0 ↕ 2

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Shift
instr.
(cont)

SHAR.W Rd W Rd16 right
arithmetic
shift→Rd16

2 — — — ↕ ↕ 0 ↕ 2

SHAR.L ERd L ERd32 right
arithmetic
shift→ERd32

2 — — — ↕ ↕ 0 ↕ 2

SHLL.B Rd B Rd8 left logical
shift→Rd8

2 — — — ↕ ↕ 0 ↕ 2

SHLL.W Rd W Rd16 left logical
shift→Rd16

2 — — — ↕ ↕ 0 ↕ 2

SHLL.L ERd L ERd32 left logical
shift→ERd32

2 — — — ↕ ↕ 0 ↕ 2

SHLR.B Rd B Rd8 right logical
shift→Rd8

2 — — — 0 ↕ 0 ↕ 2

SHLR.W Rd W Rd16 right logical
shift→RD16

2 — — — 0 ↕ 0 ↕ 2

SHLR.L ERd L ERd32 right logical
shift→ERd32

2 — — — 0 ↕ 0 ↕ 2

ROTXL.B Rd B Rd8C left
rotation→Rd8C

2 — — — ↕ ↕ 0 ↕ 2

ROTXL.W Rd W Rd16C left
rotation→Rd16C

2 — — — ↕ ↕ 0 ↕ 2

ROTXL.L ERd L ERd32C left
rotation→ERd32C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.B Rd B Rd8C right
rotation→Rd8C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.W Rd W Rd16C right
rotation→Rd16C

2 — — — ↕ ↕ 0 ↕ 2

ROTXR.L ERd L ERd32C right
rotation→ERd32C

2 — — — ↕ ↕ 0 ↕ 2

ROTL.B Rd B Rd8 left rotation
→Rd8

2 — — — ↕ ↕ 0 ↕ 2

ROTL.W Rd W Rd16 left rotation
→Rd16

2 — — — ↕ ↕ 0 ↕ 2

ROTL.L ERd L ERd32 left rotation
→ERd32

2 — — — ↕ ↕ 0 ↕ 2

ROTR.B Rd B Rd8 right rotation
→Rd8

2 — — — ↕ ↕ 0 ↕ 2

ROTR.W Rd W Rd16 right rotation
→Rd16

2 — — — ↕ ↕ 0 ↕ 2

ROTR.L ERd L ERd32 right
rotation→ERd32

2 — — — ↕ ↕ 0 ↕ 2

Table A.5 Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

BSET Rn,Rd B (Rn8 of Rd8)←1 2 — — — — — — — 2

BSET Rn,@ERd B (Rn8 of @ERd)←1 4 — — — — — — — 8

BSET Rn,@aa:8 B (Rn8 of @aa:8)←1 4 — — — — — — — 8

BCLR #xx:3, Rd B (#xx:3 of Rd8)←0 2 — — — — — — — 2

BCLR
#xx:3,@ERd

B (#xx:3 of @ERd)
←0

4 — — — — — — — 8

BCLR
#xx:3,@aa:8

B (#xx:3 of @aa:8)
←0

4 — — — — — — — 8

BCLR Rn,Rd B (Rn8 of Rd8)←0 2 — — — — — — — 2

BCLR Rn,@ERdB (Rn8 of @ERd)←0 4 — — — — — — — 8

BCLR Rn,@aa:8B (Rn8 of @aa:8)←0 4 — — — — — — — 8

BNOT #xx:3,Rd B (#xx:3 of Rd8)
←(#xx:3 of Rd8)

2 — — — — — — — 2

BNOT #xx:3,
@ERD

B (#xx:3 of @ERd)
←(#xx:3 of @ERd)

4 — — — — — — — 8

BNOT #xx:3,
@aa:8

B (#xx:3 of @aa:8)
←(#xx:3 of @aa:8)

4 — — — — — — — 8

BNOT Rn,Rd B (Rn8 of Rd8)
←(Rn8 of Rd8)

2 — — — — — — — 2

BNOT Rn,
@ERd

B (Rn8 of @ERd)
←(Rn8 of @ERd)

4 — — — — — — — 8

BNOT Rn,
@aa:8

B (Rn8 of @aa:8)
←(Rn8 of @ aa:8)

4 — — — — — — — 8

BTST #xx:3,Rd B (#xx:3 of Rd8)→Z 2 — — — — ↕ — — 2

BTST #xx:3,
@ERd

B (#xx:3 of @ERd)
→Z

4 — — — — ↕ — — 6

BTST #xx:3,
@aa:8

B (#xx:3 of
@aa:8) →Z

4 — — — — ↕ — — 6

BTST Rn,Rd B (Rn8 of Rd8)→Z 2 — — — — ↕ — — 2

BTST Rn,@ERd B (Rn8 of @ERd)→Z 4 — — — — ↕ — — 6

BTST Rn,@aa:8 B (Rn8 of @aa:8)→Z 4 — — — — ↕ — — 6

BLD #xx:3,Rd B (#xx:3 of Rd8)→C 2 — — — — — — ↕ 2

BLD #xx:3,
@ERd

B (#xx:3 of
@ERd) →C

4 — — — — — — ↕ 6

BLD #xx:3,
@aa:8

B (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BILD #xx:3,Rd B (#xx:3 of Rd8)→C 2 — — — — — — ↕ 2

BILD #xx:3,
@ERd

B (#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

Bit BSET #xx:3,Rd B (#xx:3 of Rd8)←1 2 — — — — — — — 2
man.
instr.

BSET
#xx:3@ERd

B (#xx:3 of
@ERd) ←1

4 — — — — — — — 8

BSET
#xx:3@aa:8

B (#xx:3 of
@aa:8) ←1

4 — — — — — — — 8

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Bit man.
instr.

BILD #xx:3,
@aa:8

B (#xx:3 of @aa:8)
→C

4 — — — — — — 6

(cont) BST #xx:3,Rd B C→(#xx:3 of Rd8) 2 — — — — — — — 2

BST #xx:3,
@ERd

B C→(#xx:3 of
@ERd)

4 — — — — — — — 8

BST #xx:3,
@aa:8

B C→(#xx:3 of
@aa:8)

4 — — — — — — — 8

BIST #xx:3,Rd B C→(#xx:3 of Rd8) 2 — — — — — — — 2

BIST #xx:3,
@ERd

B C→(#xx:3 of
@ERd)

4 — — — — — — — 8

BIST #xx:3,
@aa:8

B C→(#xx:3 of
@aa:8)

4 — — — — — — — 8

BAND #xx:3,
Rd

B C∧(#xx:3 of Rd8)
→C

2 — — — — — — 2

BAND #xx:3,
@ERd

B C∧(#xx:3 of
@ERd)→C

4 — — — — — — 6

BAND #xx:3,
@aa:8

B C∧(#xx:3 of
@aa:8)→C

4 — — — — — — 6

BIAND #xx:3,
Rd

B C∧(#xx:3 of
Rd8)→C

2 — — — — — — 2

BIAND #xx:3,
@ERd

B C∧(#xx:3 of
@ERd)→C

4 — — — — — — 6

BIAND #xx:3,
@aa:8

B C∧(#xx:3 of
@aa:8)→C

4 — — — — — — 6

BOR #xx:3,Rd B C∨(#xx:3 of
Rd8)→C

2 — — — — — — 2

BOR #xx:3,
@ERd

B C∨(#xx:3 of
@ERd)→C

4 — — — — — — 6

BOR #xx:3,
@aa:8

B C∨(#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BIOR #xx:3,Rd B C∨(#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

BIOR #xx:3,
@ERd

B C∨(#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

BIOR #xx:3,
@aa:8

B C∨(#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BXOR #xx:3,
Rd

B C⊕ (#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

BXOR #xx:3,
@ERd

B C⊕ (#xx:3 of
@ERd)→C

4 — — — — — — ↕ 6

BXOR #xx:3,
@aa:8

B C⊕ (#xx:3 of
@aa:8)→C

4 — — — — — — ↕ 6

BIXOR #xx:3,
Rd

B C⊕ (#xx:3 of
Rd8)→C

2 — — — — — — ↕ 2

Table A.5					Instruction List (cont)

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

Bit man.
instr.

BIXOR
#xx:3,@ERd

B C
@ERd)

⊕ (#xx:3 of
→C

4 — — — — — — ↕ 6

(cont) BIXOR
#xx:3,@aa:8

B C
@aa:8)

⊕ (#xx:3 of
→C

4 — — — — — — ↕ 6

Branch
instr.

Bcc d:8 — if condition is true,
then PC←PC+d:8
else next

2 — — — — — — — 4

Bcc d:16 — If condition is true,
then
PC←PC+d:16 else
next

4 — — — — — — — 6

JMP @ERn — PC←ERn 2 — — — — — — — 4

JMP @aa:24 — PC←aa:24 4 — — — — — — — 6

JMP @@aa:
8(normal)

— PC←(@aa:8)16 2 — — — — — — — 8

BSR d:8
(normal)

— SP–2 →SP,
PC16→@SP
PC←PC+d:8

2 — — — — — — — 6

BSR d:8
(advanced)

— SP–4 →SP,
PC24→@SP
PC←PC+d:8

2 — — — — — — — 8

BSR d:16
(normal)

— SP–2 →SP,
PC16→@SP
PC←PC+d:16

4 — — — — — — — 6

BSR d:16
(advanced)

— SP–4 →SP,
PC24→@SP
PC←PC+d:16

4 — — — — — — — 8

JSR @ERn
(normal)

— SP–2 →SP, PC16
→@SP PC←ERn

2 — — — — — — – 6

JSR @ERn
(advanced)

— SP–4 →SP,
PC24→@SP
PC←ERn

2 — — — — — — — 8

JSR @aa:24
(normal)

— SP – 2→SP,
PC16→@SP
PC←aa:24

4 — — — — — — — 8

JSR @aa:24
(advanced)

— SP – 4→SP,
PC24→@SP
PC←aa:24

4 — — — — — — — 10

JSR @@aa:8
(normal)

— SP – 2→SP,
PC16→@SP
PC←(@aa:8)16

2 — — — — — — — 8

JSR @@aa:8
(advanced)

— SP – 4→SP,
PC24→@SP
PC←(@aa:8)24

2 — — — — — — — 12

RTS (normal) — PC←(@SP)16 SP
+ 2→SP

2 — — — — — — — 8

JMP @@aa:
8(advanced)

— PC←(@aa:8)24 2 — — — — — — — 10

Table A.5					Instruction List

Addressing Mode/
Instruction Length Condition Code

Mnem-
onic

Op.
Sz. Operation #x

x:

R
n

@
E

R
n

@
(d

:
 ,

E
R

n
)

@
–E

R
n

/@
E

R
N

+

@
aa

:

@
(d

:
 ,

P
C

)

@
@

aa

Im
p

lie
d

I UI H N Z V C N
o

. o
f

E
xe

cu
ti

o
n

S

ta
te

s

System
control
instr.

RTE — CCR←(@SP)8,
PC24←(@SP)24
SP + 4→SP

2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 10

TRAPA #xx:2 — SP–4→SP,
CCR←(@SP)8,
PC24←(@SP)24,
vector →PC

2 1 — — — — — — 14

SLEEP — Enters sleep mode — — — — — — — 2

NOP — No operation 2 — — — — — — — 2

LDC #xx:8,CCR B #xx:8→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

LDC Rs,CCR B Rs8→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

LDC @ERs,
CCR

W @ERs(even)→
CCR

4 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 6

LDC @
(d:16,ERs),CCR

W @(d:16,ERs)
(even)→CCR

6 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @
(d:24,ERs),CCR

W @(d:24,ERs)
(even)→CCR

10 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 12

LDC @ERs+,
CCR

W @ERs(even)→
CCR,ERs+2→ERs

4 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @aa:16,
CCR

W @aa:16(even)→
CCR

6 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 8

LDC @aa:24,
CCR

W @aa:24(even)→
CCR

8 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 10

STC CCR,Rd B CCR→Rd8 2 — — — — — — — 2

STC CCR,
@ERd

W CCR→@ERd
(even)

4 — — — — — — — 6

STC CCR,
@(d:16,ERd)

W CCR→@(d:16,
ERd)(even)

6 — — — — — — — 8

STC CCR,
@(d:24,ERd)

W CCR→@(d:24,
ERd)(even)

10 — — — — — — — 12

STC CCR,@
– ERd

W ERd–2→ERd,
CCR →@ERd
(even)

4 — — — — — – — 8

STC CCR,
@aa:16

W CCR→@aa:16
(even)

6 — — — — — — — 8

STC CCR,
@aa:24

W CCR→@aa:24
(even)

8 — — — — — — — 10

ANDC #xx:8,
CCR

B #xx:8∧CCR→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

ORC #xx:8,CCR B #xx:8∨CCR→CCR 2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

XORC #xx:8,
CCR

B #xx:8⊕CCR→CCR2 ↕ ↕ ↕ ↕ ↕ ↕ ↕ 2

RTS (advanced) — PC24←(@SP)24
SP + 4→SP

2 — — — — — — — 10

Appendix B Assembler
Control Instruction Functions

B.1 .CPU

Specifies the CPU.
Format:
Label Operation Operand

x .CPU CPU type

Note: CPU type: {300HA | 300HN | 300 | 300L}

Description: Specifies the CPU that the source program to be
assembled is for. The assembler assembles it for the specified CPU.
CPU types are as follows:
• 300HA H8/300H advanced mode

• 300HN H8/300H normal mode

• 300 H8/300

• 300L H8/300L

When this control instruction is omitted, 300HA is set.
This control instruction should be stated at the start of the source
program. If there is nothing at the start of the source program except
the control instruction for the assembler list, an error will result.
This control instruction is valid only once. It is valid when there is no
/CPU command line option specified.
Example:
.CPU: 300HA

.SECTION A, CODE, ALIGN = 2
MOV.W R0, R1
MOV.W R0, R2

Assembles for H8/300H, advanced mode.

B.2 .SECTION

Declares the section.
Format:
Label Operation Operand

x .SECTION Section name [, section
attributes [, format type]] type

Note: Section attributes: {CODE | DATA | STACK | COMMON | DUMMY}

Format type: {LOCATE = start address|ALIGN = boundary adjust
number}

Description: Declares the start and restart of the section.
• Section start: Starts the section and sets the section name, section attributes and type of format.

— Section name: Specifies the section name. Section names are written the same as symbol names.
Case is not distinguished.

— Section attributes: Sets the section attributes. Section attributes are as follows:

CODE: Code section

DATA: Data section

STACK: Stack section

COMMON: Common section

DUMMY: Dummy section

When no attribute is specified, CODE is set.
— Format type: Sets the format type:

LOCATE = start address Absolute addressing
ALIGN = boundary adjust number Relative addressing
When no format is specified, ALIGN = 2 is set.
With absolute addressing, the start address of the section is set. The
start address is specified as a rear-referenced absolute value. The
maximum start address values are as follows:
• H8/300H advanced mode: H'00FFFFFF

• H8/300H normal mode: H'0000FFFF

• H8/300: H'0000FFFF

• H8/300L: H'0000FFFF

Relative addressing sets the boundary adjust number of the section.
With the linkage editor, the start address of the relative address
section when linked to an object module is corrected to a multiple of
the boundary adjust number. The boundary adjust number is
specified as a rear-referenced absolute value. The boundary adjust
number can be specified as a 2n value.
If no section is declared with this control instruction, the following is
set as the default section.
.SECTION P, CODE, ALIGN=2

• Section restart: Restarts the section already existing in the source program. At section restart, the section
name of the existing section is specified. The previously declared section attributes and formats are used.

Example:
.SECTION A, CODE, ALIGN=2 (1)
MOV.W R0, R1
.SECTION B, DATA, LOCATE=H'001000 (2)
DATA1
.DATA.W H'0001
.SECTION A (3)

MOV.W R0, R3

• Starts section A. The section name is A, the section attribute is code section, the format type is relative
address format, and the boundary adjust number is 2.

• Starts section B. The section name is B, the section attribute is data section, the format type is absolute
address format, and the start address is H'001000.

• Restarts section A.

B.3 .EQU

Sets the symbol value.
Format:
Label Operation Operand

Symbol name .EQU Number

Description: Sets a value for the symbol. The value is set as a rear-
referenced absolute value or a rear-referenced address value. The
symbol value defined by this control instruction cannot be changed.
Example:
SYM1 .EQU 1
SYM2 .EQU 2
.SECTION A, CODE, ALIGN = 2
MOV.B #SYM1:8, R0L… Same as MOV.B #1:8, R0L
MOV.B #SYM2:8, R1L… Same as MOV.B #2:8, R1L

Sets 1 for SYM1 and 2 for SYM2.

B.4 .ORG

Sets the location counter value.
Format:
Label Operation Operand

x .ORG Location counter value

Description: Changes the location counter value in the section to the
specified value.
The location counter value is specified as a rear-referenced absolute
value or as a rear-referenced address value of the section itself. The
maximum location counter values are as follows.
H8/300H advanced mode: H'00FFFFFF
H8/300H normal mode: H'0000FFFF
H8/300: H'0000FFFF
H8/300L: H'0000FFFF
When specified in the absolute address section, the location counter
value specified must be a value after the start address of the section.
When this control instruction is specified in the absolute address
section, the set location counter value becomes an absolute address;
when specified in the relative address section, it becomes a relative
address.
Example:
.SECTION A, DATA, ALIGN = 2
DATA1
.DATA.W H'0001
.DATA.W H'0002
.ORG H'000100 (1)
DATA2
.DATA.W H'0003
.DATA.W H'0004

(1) The location counter value is changed to the relative H'000100
address for A.

B.5 .DATA

Reserves integer data.
Format:
Label Operation Operand

x .DATA [. s] Integer data [, integer data …]

Note: s (size): {B|W|L}

Description: Reserves integer data according to the size specified.
The sizes are as follows.
• B: Byte (1 byte)

• W: Word (2 byte)

• L: Longword (4 bytes)

When not specified, B is set.
The following integer data values can be specified according to size.
• B: –128 to 255

• W: –32,768 to 65,535

• L: –2,147,483,648 to 4,294,967,295

Example:
.SECTION A, DATA, ALIGN = 2
.DATA.W H'0102, H'0304
.DATA.B H'05, H'06, H'07, H'08

Data is reserved as follows:
01 02 03 04 05 06 07 08

B.6 .RES

Reserves the integer data region.
Format:
Label Operation Operand

[Symbol name] .RES [. s] Number of regions

Note: s (size): {B|W|L}

Description: Reserves integer data regions. A region of exactly the
size specified for the integer data region is ensured.
The sizes are as follows:
• B: Byte (1 byte)

• W: Word (2 byte)

• L: Longword (4 bytes)

When not specified, B is set.
The number of regions is specified as a rear-referenced absolute
value. Any number higher than 1 can be specified.
Example:
.SECTION A, DATA, ALIGN = 2
.RES.W 10
.RES.B 255

A 20 byte region and a 255 byte region are kept.

B.7 .END

End of source program.
Format:
Label Operation Operand

x .END [Execution start address]

Description: Indicates the end of the source program. When this
control instruction appears, the assembler quits assembling. The
execution start address allows you to specify the address used when
the simulation is started on a simulation debugger. The code section
address is set for the execution start address. The execution start
address is specified as an absolute value or address value.
Example:
.CPU 300HA
.OUTPUT DBG
:
.SECTION A, CODE, ALIGN = 2
START
MOV.L #0:32, ER0
MOV.L #1:32, ER1
MOV.L #2:32, ER2
BRA START:8
;
.END START

In the simulation debugger, the simulation starts from the START
address.

	Contents
	Section 1 CPU Architecture
	Section 2 Instructions
	Section 3 Load Module Conversion Procedures
	Section 4 Examples of Software Applications
	Appendix A Instruction Set
	Appendix B Assembler

