eZ80

FOURTH-GENERATION Z80
PROCESSOR CORE

PROCESSOR DESCRIPTION

PS002200-ZMP0999

ZiLOG WORLDWIDE HEADQUARTERS ¢ 910 E. HAMILTON AVENUE ¢ CAMPBELL, CA 95008
TELEPHONE: 408.558.8500 ® FAax: 408.558.8300 ® INTERNET: HTTP://WwwW.ZILOG.COM

©1999 by ZILOG, Inc. All rights reserved. Information in this publication concerning the devices, applica-
tions, or technology described is intended to suggest possible uses and may be superseded. ZiLOG, INC.
DOES NOT ASSUME LIABILITY FOR OR PROVIDE A REPRESENTATION OF ACCURACY OF

THE INFORMATION, DEVICES, OR TECHNOLOGY DESCRIBED IN THIS DOCUMENT. ZiLOG

ALSO DOES NOT ASSUME LIABILITY FOR INTELLECTUAL PROPERTY INFRINGEMENT

RELATED IN ANY MANNER TO USE OF INFORMATION, DEVICES, OR TECHNOLOGY

DESCRIBED HEREIN OR OTHERWISE. Except with the express written approval of ZiLOG, use of
information, devices, or technology as critical components of life support systems is not authorized. No
licenses are conveyed, implicitly or otherwise, by this document under any intellectual property rights.

ii eZ80 PS002200-ZMP0999

GENERAL DESCRIPTION

GENERAL DESCRIPTION

Theez80™ is ZiLOG’s next-generation Z80processor. The €280 provides 16

times the performance of atraditional Z80. The multiple operating modes of the
processor alows Z80 and Z180 code to be run without change in the same appli-

cation with new code, that takes advantage of the eZ80’s 16-MB linear addressing
space and enhanced instruction set. These features provide customers perfor-
mance comparable to 16-bit processors with the form factor and power savings of
an 8-bit processor. At the same time, the eZ80 remains 100% Z80 code-compat-
ible, reducing customer development time.

The eZ80 also features a Multiply and Accumulate engine, which enables
customers to attack signal-processing applications that require polynomial calcu-
lations, such as basic filters.

The eZ80 is internet-ready. ZiLOG can provide a complete TCP/IP stack,
allowing for rapid internet connectivity.

The eZ80 also features ZiLOG's Debug Interface (ZDI). This two-pin interface
allows advanced debugging features without the cost and difficulty and uncer-
tainty of an in-circuit emulator.

The eZ80 is a licensable soft core, allowing rapid integration into designs.

DETAILED DESCRIPTION

Z80 High-Performance Microprocessor Core. The eZ80s one of the fastest 8-

bit CPUs available today, executing code 4 times faster than a standard Z80 oper-
ating at the same clock speed. The increased processing efficiency can be used to
improve available bandwidth or to decrease power consumption.

Both the increased clock speed and processor efficiency features provides eZ80
customers 16 times the processing performance. This processing power rivals
performance customers would normally expect from 16-bit microprocessors.

16 MB Linear Address. The eZ80 is also the first 8-bit microprocessor to support
16 MB linear addressing—a feature that addresses large memories that support
complex software applications.

Each software module, or each task under a real-time executive or operating
system, can operate in Z80-compatible (64 KB) mode, Z80180-compatible mode
(1 MB MMU) mode, or full 24-bit (16 MB) address mode.

Internet-Ready. A complete TCP/IP stack is also offered so customers can design
products that connect to the Internet.

Multiply and Accumulate. A Multiply and Accumulate engine operates in

parallel with the eZ80 processor to calculate a sum of products that is the core of
digital signal processing. The MAC provides 16x16 multiply and 40-bit accumu-
lation.

ZDI. The ZiLOG Debug Interface is a 2-pin communication port. When used with
the ZiLOG Develop Suite (ZDS) software, ZDI provides on-chip emulation.

PS002200-ZMP0999

eZ80 1

=
£
009
Y
DA ARCHITECTURAL OVERVIEW BLock DIAGRAM

ARCHITECTURAL OVERVIEW

The eZ80 is ZiLOG's fourth-generation Z80 processor core. It is the basis of a
new family of integrated microprocessors, and includes the following features:

* Upward-code-compatible from Z80 & 2180

* Severa address-generation modesincluding 24-bit linear addressing
* 24-hit registersand ALU

* One-clock-minimum bus cycles

® Optional autonomous Multiply-Accumulate engine for DSP applications

BLock DIAGRAM
Figure 1 isablock diagram of the e280.

|
— | Address
- Selection
Registers ——m» A23-0
ALU |
MMU
— g -
MBASE
- PC —® Data
> pas e Out
D7-0
Data
Y * - In
On-Chip
RAM
YV Y
MAC Engine L ——p» CTRL OUT
Control Execution
Store Control CTRL IN
ZCL —p ZDI |
ZDA &P

FIGURE 1. EZ80 BLocK DIAGRAM

PIN DESCRIPTIONS

Figure 2 illustrates the logic diagram of the e280. Table 1 describes the processor
and device pins.

2 eZ80 PS002200-ZMP0999

BLock DIAGRAM

PiN DESCRIPTIONS

D7
D6
D5
D4
D3
D2
D1
DO

CLK

RESET

WAIT

NMI
INTO

A23
A22
A21
A20
A19
A18
Al7
Al16
Al5
Al4
Al13
Al12
All
A10
A9
A8
A7
A6
A5
A4
A3
A2
Al
AO

MREQ
IORQ
RD
WR
MRD
MWR
IORD
IOWR
INTAK

BUSREQ

BUSACK
INSTRD
RETI
HALT

FIGURE 2. EZ80 LoGic DIAGRAM

PS002200-ZMP0999

eZ80

PIN DESCRIPTIONS

BLock DIAGRAM

PROCESSOR AND DEVICE PIN DESCRIPTIONS

Function

Type

Description

Address Bus

Bidirectional, 3-
state

These lines select a location in memory or 1/O
space to be read or written. The eZ80 does not
drive these lines during Reset or external bus
acknowledge cycles.

Bus
Acknowledge

Output, active
Low

The eZ80 responds to a Low on BUSREQ, by 3-
stating the address, data, and control signals and
driving this line Low.

Bus request

Input, active
Low

External devices can force the eZ80 to release
the bus for their use, by driving this line Low.

Clock Input The master clock of the eZ80.
Data Bus Bidirectional, 3- These lines transfer information to and from
state I/0 and memory devices. The eZ80 drives these
lines only during write cycles.
Halt Output, active A low on this pin indicates that the eZ80 is
Low stopped because of a HALT or SLP instruction.

Instruction Output, active INSTRD Low (with MREQ and MRD Low)

Read Low, 3-state indicates that the eZ80 is fetching an instruction
from memory. The eZ80 does not drive this line
during Reset, nor during bus acknowledge cycles.

Interrupt Input, active External devices can drive this line Low to

Request O Low request an interrupt. The processor responds to
this request at the end of the current instruction
cycle if it is enabled, and the NMI and BUSREQ
signals are inactive.

Interrupt Output, active INTAK Low indicates that the eZ80 is

Acknowledge

Low, 3-state

acknowledging an interrupt request on INTO. The
eZ80 does not drive this line during Reset, nor
during bus acknowledge cycles.

I/0 Read

Output, active
Low, 3-state

IORD Low indicates that the eZ80 is reading data
from a location in I/O space. The addressed 1/0
device uses this signal to gate data onto the data
bus. The eZ80 does not drive this line during
Reset, nor during bus acknowledge cycles.

I/0 Request

Output, active
Low, 3-state

IORQ Low indicates that the eZ80 is accessing a
location in 1/0 space. The RD and WR pins
indicate the type of access. The eZ80 does not
drive this line during Reset, nor during bus
acknowledge cycles.

)

I/0 Write

Output, active
Low, 3-state

IOWR Low indicates that D7-0 hold data to be
stored at the addressed 1/O location. The eZ80
does not drive this line during Reset, nor during
bus acknowledge cycles.

eZ80

PS002200-ZMP0999

BLock DIAGRAM

OPERATIONAL DESCRIPTION

TABLE 1. PROCESSOR AND DEVICE PIN DESCRIPTIONS (CONTINUED)

Symbol Function Type Description

MRD Memory Read Output, active MRD Low indicates that the eZ80 is reading data

Low, 3-state from a location in memory space. The addressed
memory uses this signal to gate data onto the
data bus. The eZ80 does not drive this line during
Reset, nor during bus acknowledge cycles.

MREQ Memory Output, active MREQ Low indicates that the eZ80 is accessing a

Request Low, 3-state location in memory. The RD, WR, and INSTRD
pins indicate the type of access. The eZ80 does
not drive this line during Reset, nor during bus
acknowledge cycles.

MWR Memory Write Output, active MWR low indicates that D7—-0 hold data to be

Low, 3-state stored at the addressed memory location. The
eZ80 does not drive this line during Reset, nor
during bus acknowledge cycles.

NMI Nonmaskable Input, falling- NMI has a higher priority than INTO and is always

Interrupt edge active recognized at the end of an instruction,
regardless of the state of the interrupt enable flip-
flops. This signal forces processor execution to
location OO66H. This input includes a Schmitt
trigger to allow RC rise times.

RESET Master Reset Input/Output, This signal is used to initialize the eZ80 and other

active Low devices in the system. This input must be held
Low until the clock is stable. This input includes a
Schmitt trigger, allowing RC rise times.

RETI Return from Output, active A Low on this line indicates that the eZ80 is

Interrupt Low executing an RETI instruction.

VDD Power Supply These pins carry power to the device. They must
be tied to the same voltage externally.

Vss Ground These pins are the ground references for the
device. They must be tied to the same voltage
externally.

WAIT Wait Input, active External devices can extend bus cycles to more

Low

than one clock, by driving this line low.

OPERATIONAL DESCRIPTION

This section describes, using text, tables, and figures, how the various parts of the
€780 operate. This description is presented from the processor outward to the

peripherals. Refer to the corresponding section of “I/O Registers” on page 20,

which describes the eZ80's I/O registers.

PS002200-ZMP0999

eZ80

=
£
o("Ao
Y
DA OPERATIONAL DESCRIPTION PROCESSOR DESCRIPTION

PROCESSOR DESCRIPTION

The eZ80 is an 8-bit microprocessor that performs certain 16- or 24-bit opera-
tions. In both data sizes, the processor includes an accumul ator. Register Aisthe
accumulator for 8-bit operations, and the HL register pair is the accumulator for
16- and 24-hit operations.

Processor Program Registers

In addition to register A, there are six more 8-bit registersnamed B, C, D, E, H, and
L, which can also be operated as register pairs BC, DE, and HL. Flag register F
completes the basic register bank.

Two of these basic register banks are included in all Z80 and Z180 processors.
High-speed exchange between these banks can be used by a program internally, or
one bank can be allocated to the mainline program and the other to interrupt
service routines.

Two Index registers| X and | Y allow base and displacement addressing in
memory. | X and | Y are not included in the register banks on the e280. They are
independent of the register banks.

The €280 expands the width of the BC, DE, HL, IX, and IY registers from 16 to
24 bits. The Arithmetic/Logic Unit and internal data paths are similarly expanded
to 24 bits.

Processor Control Registers

In addition to the data-oriented registers described above, the eZ80 processor

includes several other control registers. Unlike the registersin 1/O space that are
described in “I/O Registers” on page 20, these control registers have no addresses,
but are used implicitly in certain processor operations.

Program Counter (PC). This 16- or 24-bit register tracks program execution by
the processor, which automatically incremeét@svhile fetching instructions. The
processor storeC on the stack when it execute€ALL or RST instruction, or an
interrupt or Trap occurs. It loads PC with a new value when it executdigPa
CALL, RST, or RET instruction, and when an interrupt, Trap, or Reset ocears.
resets ta@o000.

Stack Pointer (SPS or SPL). SPS is a 16-bit register that is used whenathe

bit is cleared, while SPL is a 24-bit register that is used wmnis set. The
processor decrements the current SP register by 2 or 3, and stores a 16- or 24-bit
value in memory at this updated address, when it execetéSHy CALL, OrRST
instruction, and when an interrupt or Trap occurs. The processor fetches a 16- or
24-bit value from memory at the addressimand then incremeng&P by 2 or 3,

when it executesROP, RET, RETI, orRETN instruction. Software can store tbie

value in memory, loa8P from memory or another register, or load it with a
constant/immediate value. Further, software can add or subtract the value in SP to
or from another register, and can increment or decregfefinally, software can
exchange the 16- or 24-bit value in memory, to wisercurrently points, with

the contents of a 16- or 24-bit regist&®.resets t@000.

6 eZ80 PS002200-ZMP0999

PROCESSOR DESCRIPTION OPERATIONAL DESCRIPTION

Flags (F). The processor includes two Flag registers each containing six bits,
named Zero (Z), Carry (CF), Sign (S), Parity or Overflow (P/V), Haf-Carry (HC)
and Add/Subtract (N). Certain flags are automatically updated as part of executing
certain instructions. Subsequent instructions can then use the flags, either as an
operand (ADC, SBC, DAA), or to determine whether to perform aJUMP, CALL, or
RET operation. The flags can be saved on the stack with a PUSH instruction, or
restored from the stack with a POP instruction. The two sets of flag registers are
paired with the two A accumulators; the current pair is toggled by the EX AF,AF’
instruction.

Operating Modes

The multiple operating modes of the processor allows Z80 and Z180 code to be

run without change in virtual Z80 or virtual Z180 partitions, in the same applica-

tion with new code that takes advantage of the eZ80's 16-Mbyte linear addressing
space and enhanced instruction set.

These operating modes are governed by four factors:

* A datehit caled Address and Data Long (ADL)

* Another state bit called mixed ADL

* An8-bit register called MBASE, and

* The state of the e280’s 80180-compatible Memory Management Unit (MMU)

Native Z80 Mode. ADL, mixed ADL, and MBASE reset to 0, and the MMU

resets to an inactive state. In this Native Z80 state, the programming model
includes 16-bit registers and addresses, and a 64 KB memory space at the start of
the eZ80's potential 16-Mbyte memory space.

Virtual Z80 Mode. If ADL is cleared, the MMU is not enabled, but MBASE
contains a non-zero value, the programming model still includes 16-bit registers
and a 64 KB memory space, but this space is relocated by MBASE. In this Virtual
Z80 mode, several tasks can each have their own Z80 patrtition.

Native Z180 Mode. If ADL is cleared, MBASE contains zero, and the MMU is
active, the programming model is fully Z80180-compatible. The model includes
16-bit registers and a 64 KlBgical memory addressing space, but the MMU
translates these logical addresses to 2pHydical addresses. The 64 KB logical
address space can be divided into one to tmeses, two of which can be relo-
cated anywhere within the first 1 MB of the eZ80’s potential 16-Mbyte memory
space.

Virtual Z180 Mode. If ADL is cleared, the MMU is active, and MBASE contains
a non-zero value, the MMU handles mapping within a 1M byte virtual physical
address space that is relocated by MBASE. In this Virtual Z180 mode, several
tasks can each have their own Z180 partition.

PS002200-ZMP0999 eZ80 7

OPERATIONAL DESCRIPTION PROCESSOR DESCRIPTION

I/O Space

ADL Mode. If ADL is set, neither the MMU nor MBASE has any effect on
memory addressing. In this mode, the PC, BC, DE, HL, IX and |Y registers are
expanded from 16 to 24 bits, and a 24-bit Stack Pointer Long (SPL) register
replaces the 16-bit Stack Pointer Short (SPS) register that is used in the other
modes. When the processor fetches an instruction that includes a 16-bit address or
immediate datum in the other modes, it automatically fetches a 24-bit address or
datum. Code that operates in ADL mode must be generated by an eZ80-compat-
ible compiler or assembler that generates such instructions.

Mode Switching. The eZ80 switches between ADL mode and any of the other
modes only as part of aspecially-prefixed CALL, JP, RET, or RST instruction, or an
interrupt or trap operation. The MBA SE register can be changed only in ADL
mode. The MMU can be programmed in any mode, but in anon-ADL mode soft-
ware must take care not to affect its Program Counter when programming the
MMU.

Interrupt and Traps. Applications that operate only in Native Z80 mode, ADL

mode, or Native Z180 mode with Common Bank 0 always enabled, are relatively

simple with respect to interrupts and traps. In these modes, memory always starts

at the start of the eZ80’s potential 16-Mbyte memory space, and the interrupt and
trap locations are never mapped.

However, applications that switch between modes, or operate in Virtual Z80,
Virtual Z180, or Native Z180 mode with Common Bank 0 disabled, simplify
interrupts and trap handling by executin§TavIX instruction to set thmixed

ADL bit.

If the mixed ADL bit is 1, interrupts and instruction traps stack the ADL state as
well as the PC, and enter ADL mode in the first 64K bytes of the eZ80’s potential
16M byte memory space.

A separate I/O space includes on-chip and off-chip peripheral devices. On the
Z80, 1/0 space included 8-bit addresses and 256 bytes. All Z180 processors, and
the eZ80, feature an expanded 1/O space with 16-bit addresses and 64K bytes. The
eZ80 includes a few on-chip peripherals in I/O space, which can be augmented by
external peripherals.

Other Processor Control Registers

Interrupt High Address (l). The contents of this register are used as the eight
high-order address bits, when the processor fetches the address of an interrupt
service routine from memory, for an interrupt fromfNgT or TNTZ pin, or from

an on-chip peripheral. Theregister points at a table of interrupt service routine
addresses, that starts at a 256-byte boundary in the 64K-byte logical address
space. The register resets to 0, and can be read or written by the dedicated
instructionsLD A,l andLD I,A.

eZ80 PS002200-ZMP0999

%

/ -
.5,°&

[

PROCESSOR DESCRIPTION OPERATIONAL DESCRIPTION

R Counter (R). Onthe Z8018x processors family, this register contains a count of
executed fetch cycles. Rresetsto 0, and can be read or written by the dedicated
instructionsLD A,R and LD R,A.

Illegal Instruction Traps

Like most processors, the defined instruction set for the Z8018x family does not
fully cover all possible sequences of binary values. The Op Code maps, which
begin on page 43, include numerous blank cells. These represent Op Code
sequences for which no operation is defined, and are commonly called illegal
instructions.

When an €280 or other Z8018x processor fetches one of these sequences, it
performs a Trap sequence as follows:

1. Theprocessor setsthe TRAP bit in the Interrupt/Trap Control register.

2. If the processor detected the condition while fetching the second byte of the
instruction, it clears the UFO bit in the Interrupt/Trap Control register. If the
processor detected the condition while fetching the third byte, the processor
sets UFO.

3. The processor decrements the Stack Pointer (SP) by two and stores the 16-bit
logical address from PC, in memory at the new SP address. This address points
to the last byte of the illegal Op Code sequence.

4. The processor then clears PC and resumes execution at logical address 0000.

Trap Handling. The code at logical address 0000 can optionally store the value of
SP in memory, and then set SP to an area of memory dedicated to its private stack.

In all cases, the trap-handling routine must store as many registers among AF, BC,
DE, HL, I X, and | Y asit may use (worst case), by pushing them onto the stack. A
general-purpose routine stores all of these registers, those in the alternate set, the
value of | and the state of the Interrupt Enable flag.

Next, the Trap-handling code must distinguish among the four events that can
bring execution to address 0000:

* A Reset

e ATrap

®* A RST 0 instruction

* A program error such asaJUMP to anull pointer.

The code can detect a Trap by reading the Interrupt/Trap Control register (I TC)
and checking bit 7 (TRAP). If thisbit is 1, a Trap has occurred, and ZiLOG recom-
mends that the Trap-Handling Routine proceed as follows:

® (Clear the TRAP bit by writing a0 to bit 7 of thel TC
® Fetch the PC value stored on the stack
* Examinebit 6 of thel TC (UFO).

PS002200-ZMP0999

eZ80 9

OPERATIONAL DESCRIPTION INTERRUPTS

INTERRUPTS

* |f the UFO hit is 0, decrements the PC value by one, else decrement it by two, so
that it pointsto the start of theillega instruction.

The next action of the trap-handling routine depends on the application and its
stage of development.

Extending the Instruction Set. Core software can useillegal instructions as
extensions to the eZ80 instruction set. To accomplish this, the trap handler must
fetch and examine each illegal instruction. If anillegal instruction isan extension,
the trap handler performs the extended operation that the instruction indicates. It
then advances the stacked PC value over the instruction, restores the saved register
values, and returns to the next instruction.

Error Message vs. Restart. Except for such extended instructions, the trap
handling software can either:

* Qutput an error message and wait for someoneto examinethe situation and restart
the application, or

* Attempt to restart the application immediately.

The former course is more common in the debugging/devel opment stages of an
application, while the latter may be more appropriate in the production/deploy-
ment stage. In the latter case, software may log the event for future readout, using
an external storage medium or just in memory.

ZiLOG Z80 and 280180 processors have arich legacy of sophisticated interrupt
capabilities. The eZ80 includes aspects of both families’ interrupt characteristics.

Interrupt Resources in the eZ80

IEF1 and IEF2. These bits are internal to the processor and can only be affected
and manipulated by certain specific events:

®* Resat clears|EF1 and IEF2

® Elingtructionsset IEF1 and IEF2

® Dl ingructionsclear IEF1 and IEF2

* An NMI sequence copies|EF1 to IEF2, then clears IEF1

* A maskableinterrupt clears IEF1 and IEF2

* AnLDA, or LD A Rinstruction copies IEF2 to the P/V flag
®* An RETN ingtruction copies|EF2 to IEF1

When | EF1 is1, RESET and BUSREQare both High, and falling edge has occurred
on NM', the eZ80 checks for maskabl e interrupt requests from external pins and
on-chip peripherals, as it completes each instruction, or each instruction iteration
for HALT, the block /O instructions, block move instructions, and block scan
instructions.

10

eZ80 PS002200-ZMP0999

%

/ |
. 5,°&
)

{

INTERRUPTS OPERATIONAL DESCRIPTION

The | Register. The eZ80 uses the contents of this register as A15-8 of the logical
address for fetching interrupt service routine addresses from memory, and in
response to interrupt requests from internal peripherals.

Nonmaskable Interrupt (NMI)

The eZ80 latches falling edges on M pin. Only a Low OrRESET or on
BUSREQtakes precedence oV . UnlessRESET or BUSREQ s Low, the eZ80
checks for a falling edge WM™ as it completes each instruction (each instruction
iteration ofHALT, the block I/O instructions, block move instructions, and block
scan instructions), and performs an NMI sequence if a falling edge has occurred.

An NMI sequence includes four steps. The processor:
1. Copies the state of thEF1 bit to IEF2.
2. Cleard EF1 to prevent maskable interrupts.

3. Decrements SP by 2, and stores the logical addresshg thanemory at the
new address in SP. For most interrupts, this address is the address of the
instruction the processor would have executed next, if no interrupt had
occurred. If the processor was stoppedibyT or SLP, the value is the address
of the next instruction. In the event of an incomplete block transfer, block scan,
or block 1/0O instruction, it is the address of the instruction.

4. Loads0066H into PC, and resumes execution from that logical address.

NMI Handling. NMI routines fall into two categories, based on whether the

external hardware that drivBBT is capable of producing another falling edge on

the pin, before the NMI service routine has completed its execution and returned
to the interrupted process. The case when another falling edge cannot be produced
is calledSingle Edge Guaranteed. The case when it is possible to produce another
falling edge is calletRepeated Edge Possible. Debug monitors, which display the

state of the interrupted process, fall into the Repeated Edge category.

Single Edge Guaranteed. An NMI routine in this category is similar to other
interrupt service routines. This routine has the option of storing the cont&fts of

in memory and loadingP with the address of a memory area that is dedicated for
its stack. In any case it must store as many of the registers as it may use during its
execution (worst case).

Repeated Edge Possible. An NMI routine in this category start withPSH AF
instruction, then load A from a dedicated location in memory that indicates
whether the interrupted process is the NMI routine. If this location indicates that
the location is the NMI process, the routine immediately must perf&ap aF

and then aiRETN instruction, to return to its former execution.

If thei n NM location is cleared, software must set it. Then, if the NMI routine
does either of the following:

* A DI instruction in a Save The Registersroutine that it shares with other means of
entry, or

PS002200-ZMP0999

eZ80 11

OPERATIONAL DESCRIPTION INTERRUPTS

INTO

* Displaysthel register or the interrupt-enable state of the interrupted process, and
alows a user/programmer to change these (in essence, a debug monitor)

the NMI must perform LD A, | and PUSH AF instructions. Theseinstructions store
the| register at the addressin SP plus 1, and the interrupt enabled state (I EF2) in
the

P/ Vv flag and in bit 2 of the memory location pointed to by SP.

If the NMI routine uses a common Save The Registers subroutine that it shares
with other entry points, the save subroutine can perform aDl instruction to
prevent interruption by maskable interrupts.

The NMI routine has the option to store the SP value in a dedicated location in
memory, and load SP with the address of a dedicated NM| stack area.

In any case, the NMI routine must PUSH as many other registers as it will use
(worst case). A debug monitor typically pushes all registersin both banks, so that
it can display them.

Exiting The NMI Routine. On completion of its processing, an NMI routine must
restore the saved registers. If the routine uses its own stack area, the routine then
restores the SP value of the interrupted process. If the routine set ani n NM
memory location on the way in, the routine clears this location.

NMI routines that did not savethe | register and | EF2 state at the start, can
conclude with POP AF and RETN instructions. RETN copies the state of | EF2 back
into | EF1, restoring the interrupt enabl e state of the interrupted process.

NMI routines that saved | and | EF2 at the start, must conclude with a POP AF for
thesaved | register and | EF2 bit, then,an LD |, A, followed by aJP Vto a POP
AF, El , RET sequence. TheJPinstructionisfollowed by LD1 , A, POP AF, and RET
instructions.

INTO Modes. The €280 can handle interrupts requested by a device on the INTO
pin, in any of three ways called modes 0, 1, or 2.

The special instructionsIM 0, IM 1, and IM 2 select among these three modes.
Reset selects mode 0.

INTO Processor Response. The eZ80 performs an TNTO interrupt sequence at
the end of an instruction?, if all of the following are true:

® TNTOisLow

* Bit 0 of theInterrupt/Trap Control register is 1 to enable TNTO

®* | EF1is1, enabling interruptsin general

® RESET and BUSREQare both High

* A negative edge on NM has not been detected

1. Each instruction iteration for HALT, the block 1/O, block move, and block scan instructions

12

eZ80 PS002200-ZMP0999

INTERRUPTS OPERATIONAL DESCRIPTION

When all of these conditions occur simultaneously, the e280 responds.

While all TNTO acknowledge cycles follow a general pattern, they differ asto
what (if anything) the processor does with the dataon D7-0, and what it does after
the acknowledge cycle. These actions depend on the most recently executed IM
instruction (if any), as described in the next three sections.

INTO Mode 0. If no IM instruction has been executed since Reset, or if the most
recently executed | Minstruction was | M 0, the €280 performs an TNTO sequence
asfollows:

1. ltclears| EF1 and | EF2, preventing further interrupts
2. It drivesTNSTRD Low

3. It waitsseveral clock cycles

4

It drivesTORQL ow. Simultaneouslowson TNSTRD and TORQindicate an TNTO
interrupt acknowledge cycle. In response to this condition, the highest-priority
peripheral that isrequesting an interrupt places an 8-bit value on the D7-0 data
bus.

5. It samplesWAI T, and waits until it is High.

6. It samples D7-0 and interprets the value as an instruction Op Code. In this
mode, the vector registers of all ZiLOG daisy-chainable peripherals must be
programmed to provide one of the RST Op Codes C7, CF, D7, DF, E7, EF, F7,
or FFH.

Notes:
1. Read RST as Restart.

2. The eZ80 does not automatically stack the contents of the program counter
during an INTO Maode O interrupt sequence. This means that the only other
Op Code that a peripheral can return (assuming the interrupted process is
to be restarted) isa CALL instruction DCH. Intel 808x-family interrupt con-
trollers can return athree-byte CALL instruction, but ZiLOG peripherals
cannot.

7. It terminates the cycle by driving TNSTRD High, then TORQ High.

8. If the Op Codeis CALL, the processor fetches two more bytes to complete the
instruction.

9. The processor decrements SP by 2 and stores the contents of PC in memory at
the new addressin SP. Typically, thisvalue isthe address of the instruction the
processor would have executed next, if no interrupt had occurred. If the
processor was stopped by HALT or SLP, this value is the address of the next
instruction. For an incomplete block transfer, block scan, or block 1/0
instruction, this value is the address of the instruction.

10. If the Op Code was RST, the processor resumes execution at logical address
0000, 0008, 0010, 0018, 0020, 0028, 0030, or 0038H. If the Op Code was
CALL, it resumes execution at the logical address fetched in step 8.

PS002200-ZMP0999

eZ80 13

OPERATIONAL DESCRIPTION INTERRUPTS

In mode O, each peripheral connected to INTO must feature aregister, the contents
of which it returns on D7-0 when it detects INSTRD and IORQ Low, and it is
requesting an interrupt, and the |El pin is High. Software programs each such
register with one of the RST Op Codes C7, CF, D7, DF, E7, EF, F7 or FFH.

If aperipheral can replace the low-order bits of this value with a code reflecting
the peripheral’s status, this feature must be disabled for mode 0 operation.

If the number of devices that can interrupt on INJ @estricted, each device can
have its owrRST instruction, improving interrupt response time by eliminating
the requirement for the interrupt service routine to poll multiple devices.

If multiple devices must shareR8T instruction, that interrupt service routine
must poll these devices in the same priority order that they are arranged on the
IEI-IEO daisy chain. Because a ZiLOG peripheral setsUgbit when:

® |t detectsTNSTRD and TORQLow

* |tisrequesting an interrupt, and

* |tsl El pinisHigh.

To insure correct operation of the daisy chain, the polling process must lead to:
® Servicing the highest priority requesting device that performed the pall

* Clearingits| US bit either explicitly, or for a Z80 periphera, by concluding the
ISR withaRET! instruction.

INTO Mode 1. If the most recently executed IM instruction was IM 1, the e280
performs an TNTO sequence as follows:

1. ltclears| EF1 and | EF2, preventing further interrupts
2. It drivesTNSTRD Low
3. It waitsseveral clock cycles

4, 1t drives TORQ Low. Simultaneous Lows on TNSTRD and TORQ indicate an
'NTO interrupt acknowledge cycle

It samples WAT T, and waits until it is High.
It terminates the cycle by driving TNSTRD High, then TORQ High.

It ignores the data on D7-0 and substitutes the value FFH, which is RST 38.

©® N o o

It decrements SP by 2, and stores the contents of PC in memory at the new
logical addressin SP. Typicaly, this address is the address of the instruction
the processor would have executed next, if no interrupt had occurred. If the
processor was stopped by HALT or SLP, this value is the address of the next
instruction. For an incomplete block transfer, block scan, or block 1/0
instruction, this value is the address of the instruction.

9. It loads 0038H into PC, and resumes instruction execution from that logical
address.

eZ80 PS002200-ZMP0999

INTERRUPTS OPERATIONAL DESCRIPTION

In mode 1, the interrupt service routine must poll all of the devices connected to
T'NTO, to determine which device generated the interrupt. If any ZiLOG periph-
erals can request an interrupt, this polling must be performed in the same priority
order that the devices are arranged on the |EI-IEO daisy chain. Thisorder is
required because a ZiLOG peripheral setsits| US bit when:

® |t detectsTNSTRD and TORQLow

* |tisrequesting an interrupt, and

* |tsl El pinisHigh.

To ensure correct operation of the daisy chain the polling process must lead to:

® Servicing the device that requested the interrupt

* Clearing the device’s IUS bit either explicitly, or for a Z80 peripheral, by conclud-
ing the ISR with &ET! instruction.

The best way to ensure this requirement is by actually pollingudits, for
devices that allow thelrus bits to be read.

INTO Mode 2. If the most recently executed IM instruction was IM 2, the eZ80
performs aif NTO sequence as follows:

1. Itcleard EF1 andl EF2, preventing further interrupts
It drivesI NSTRD Low

2
3. It waits several clock cycles
4

It drivesT ORQ Low. Simultaneous lows diNSTRD andl ORQindicate an NTO

interrupt acknowledge cycle. In response to this condition, the highest-priority
peripheral that is requesting an interrupt places an 8-bit value on the D7-0 data
bus.

5. It sampleSVI T, and waits until it is High.

6. It captures the data from D7-0. This byte must have DO Low/0 for proper
operation.

7. It terminates the cycle by drivingNSTRD High, thenl ORQ High.

8. It decrements SP by 2, and stores the contents of PC in memory at the new
logical address in SP. Typically, this value is the address of the instruction the
processor would have executed next, if no interrupt had occurred. If the
processor was stopped BYMLT or SLP, this value is the address of the next
instruction. For an incomplete block transfer, block scan, or block I/O
instruction, this value is the address of the instruction.

9. It places the contents of the | register on A15-8, the value captured in step 7 on
A7-0, and fetches the Less Significant (LS) byte of an interrupt service routine
address from memory at that address.

10. It drives AO to go High/1, and fetches the More Significant (MS) byte of the
interrupt service routine address from memory at that address.

11. It esumes execution at the logical address fetched in steps 9-10.

PS002200-ZMP0999

eZ80 15

OPERATIONAL DESCRIPTION INTERRUPTS

In mode 2, each peripheral connected to TNTO must have an Interrupt Vector
Register, the contents of which it returns when:

® The peripheral detectsTNSTRD and TORQLow
* The peripheral isrequesting an interrupt, and
* |tsl El pinisHigh.

User software can program each Interrupt Vector register with any even binary
value.

If aperipheral can replace thelow-order bits of this value with acodereflecting its
status, this feature can be enabled in mode 2 (in which case the peripheral occu-
pies more than one slot in the interrupt vector table). These Vector includes status
features improve interrupt response time, reducing the amount of status-polling
that the interrupt service routine must do, to identify the exact cause of the inter-
rupt.

Interrupt Handling. Any Interrupt Service Routine (ISR) may save the contents
of SPin memory, and loads SP with the address of amemory areathat is dedi-
cated to its stack. Most interrupt service routines do not include these steps.

ANTNTO ISR must save the contents of the registersit uses (worst case), using
PUSH and/or EX AF,AF’ and EXXinstructions.

If the application includes a mechanism for allowing nested interrupts, the ISR
can begin as specified by that mechanism, leading to an IE instruction that allows
the ISR to be interrupted by other interrupts. Most applications do not include
these steps.

Next, the ISR must read status registers from each device that can request an inter-
rupt on INTO, to identify the cause of the interrupt. The ISR must handle each
interrupting device according to this status, and the device and application
requirements.

Many |SRs read data from interrupting device(s), or write datato interrupting
device(s). In addition, the I SRs can write registersin interrupting device, to
modify the device(s) mode, status, or operation.

When interrupt processing is complete, the ISR may end either of two ways. If
nested interrupts were allowed, the ISR ends as specified by the nesting mecha-
nism. If nested interrupts were not allowed, the ISR must restore the saved regis-
ters and conclude with EI and RETinstructions.

NoTEe: the Z80 and 280180 instruction setsinclude an RETI instruction, that is used for
servicing Z80 peripherals. Because the €280 does not include Z80 peripherals, nor doesiit
allow them to be connected externally, there is no reason to ever conclude aeZ80 ISR
with an RETI. RETis both shorter and faster than RETI, and has the same function.

eZ80 PS002200-ZMP0999

—y
. 5,°&
a4

MEMORY OPERATIONAL DESCRIPTION

MEMORY

Addressing Modes

The eZ80 provides severa address-generation modes:

Native Z80 mode. Thetotal memory address space is the first 64K bytes of the
overall e280 memory space. Neither the Z80180-compatible Memory Manage-
ment Unit (MMU) nor the Memory Base (MBASE) register has any effect on
addressing.

Virtual Z80 mode. The memory address space can be any 64 KB in the overall
16M byte eZ280 memory space, under control of the MBASE register. The MMU
has no effect on memory addressing.

Native Z180 mode. The memory address space isthefirst 1M bytes of the overall
€Z80 memory space, under control of the Z180-compatible MMU. MBASE has
no effect on memory addressing.

Virtual Z180 mode. This mode alows the memory address space to be any 1 MB
of the overall 16 MB eZ80 memory space, under control of the MBASE register.
The MMU operates within the selected 1 MB space.

Address and Data Long (ADL) mode. This mode allows programs compiled or
assembled for the €280 to operate in a 16M byte linear address space. In this
mode, the 16-bit registers PC, BC, DE, HL, IX, and I'Y expand to 24 bits, as does
the width of the ALU. The processor automatically fetches an additional byte of
address or immediate data in those instructions that contain a 16-bit address or
datum in other modes.

Prefix-override bytes allow any instruction to operate asin ADL mode in one of
the first four modes, or to use 16 bits MMU or MBASE addressing in ADL mode.

Instructions may specify amemory address in several ways. €280 addressing
modes include:

Relative Addressing. JR and DINZ instructions include a signed 8-bit displace-
ment that specifies a range of addresses —126 to +129 from the Op Code, to which
program control can be transferred.

Direct Addressing. Instructions include a 16-bit or 24-bit logical address,
depending on the ADL mode bit.

Register Indirect Addressing. The address is taken from one of the register pairs
BC, DE or HL.

Indexed Addressing. In this mode, instructions include an 8-bit signed displace-
ment from the address in an index register, IX or IY.

Other contexts in which memory is accessed include instruction fetching, inter-
rupts, DMA operations, and cycles generated by external masterBuBHeEK is
Low.

PS002200-ZMP0999

eZ80 17

OPERATIONAL DESCRIPTION MEMORY

Memory Management Unit (MMU)

The €Z80 includes an 80180-compatible Memory Management Unit to enable
programs written for an 8018x family processor to be run without change. For
new code, the 24-bit linear address mode is far more straightforward and easier to
use.

The 16-hit address used by software are called logical addresses. When the MMU
is enabled it translates these 16-hit logical addresses into 20-bit physical
addresses, as part of all memory accesses performed by the processor. The MMU
has no effect on accesses performed by the DMA channel's, which include 20-bit
address registers. The MMU also has no effect on addressesin 1/O space, which
always have A23-16 all 0.

The MMU resets to a state in which it has no effect on addresses in processor
cycles, passing A15-0 through without change and keeping A23-16 all 0. If an
application needs 64 KB of memory or less, the MMU need not be used.

Even when the MMU has been programmed to perform active address translation,
it passes A11-0 from the logical to the physical address. In other words, it
manages memory in 4 KB blocks.

The section “MMU Registers” on page 20, details the registers associated with the
MMU.

MMU Operation. The MMU compares bits 15-12 of each logical address to two
4-bit fields in its Common/Base Address Regis@8AR). These comparisons are
unsigned.

If bits 1512 of a logical address are less than the value in bits 3—0GHEARe
the MMU maps the address to Common Area 0. For these addresses, the MMU
passes bits 15-12 to th@5- 12 pins unchanged, and sets A23-16 to 0.

If bits 15—-12 of a logical address are greater than or equal to the value in bits 3—0
of theCBAR, but are less than the value in bits 7—4 ofdhaR, the MMU maps

the address to the Bank Area. For these addresses, the MMU adds the value in its
8-bit Bank Base RegisteBER) to bits 15-12 of the logical address, and outputs

the 8-bit sum on A19-12, and sets A23-20 to O.

If bits 1512 of a logical address are greater than or equal to the value in bits 7-4
of theCBAR, the MMU maps the address to Common Area 1. For these addresses,
the MMU adds the value in its 8-bit Common Base RegiSER)(to bits 15-12

of the logical address, outputs the 8-bit sum on A19-12, and sets A23-20 to O.

NoTe: The value in bits 7—4 of theBAR must never be less than the value in bits 3-0 of
the CBAR.

MMU Configurations. In the general case, the MMU dividesthe 64 KB logical
memory space into three parts. Common Area O islocated at the start of the 1 MB
physical address space. The Bank Area and Common Area 1 are relocatable to
other parts of the physical address space under control of the Bank Base Register
and Common Base Register, respectively.

18

eZ80 PS002200-ZMP0999

INPUT/OUTPUT OPERATIONAL DESCRIPTION

INPUT/OUTPUT

I/0O Instructions

Certain combinations of valuesin the CBAR result in the logical address space
being divided into fewer active areas.

* |fthe CBAR contains 0, al logical addresses fall into Common Area 1, and are
relocated to a contiguous 65K B area starting at the address in the CBR times
4096.

* |f CBAR3-0 are 0 but CBAR7—4 are non-zero, the Bank Area and Common Area
1 are active. Logical addresses less tiGBAR7—4)* 4096 are relocated by the
Bank Base Register while other addresses are relocated by the Common Base
Register.

* |f CBAR7—4 and CBAR3-0 are equal and non-zero, Common Area 0 and Com-
mon Area 1 are active. Logical addresses less GB&RE—0)* 4096 are not re-
located and map to the start of physical memory. Other addresses are relocated by
the Common Base Register.

The MMU After Reset. Because the CBAR resetsitb110000, logical addresses
0000-EFFFH are in the Bank Area a00—FFFH are in Common Area 1 after
Reset. But since thgBR andCBR both reset to zero, the MMU passes all logical
addresses through without change, with A23-16 all 0.

The eZ80 includes an 1/O space that is distinct from memory space. 1/O space is
accessed by meanslidfl andOUT instructions rather tharD, PUSH, POP, and

other instructions that access memory space. The MMU passes addresses in I/O
space through without change; these addresses always have A23-16 all 0.

The original Z80 featured a 256-byte 1/O space. The following instructions are
specific to the Z80’s 256-byte I/O space, and must only be used on the eZ80 to
address external 1/O devices that do not decode A15-8:

Ut (port), A
| ND

| NDR

I'NI

I NI R

OTDR

OTl R

QUTD

QUTI

The following instructions ensure that A15-8 are all 0 and can be used to access
the eZ80’s on-chip I/O registers, as well as external devices that decode A15-8 as
all Os:

PS002200-ZMP0999

eZ80 19

I/0 REGISTERS CLock CIRCUITS

CLock CIRCUITS

RESET CONDITIONS

I/0 REGISTERS

The following instructions drive A15-0 from tIBE register pair and can be used
to access the full 64 KB I/O space:

IN r, (O

QUT (O,
The following instruction can access the entire 64 KB I/O space, by pre-loading

bits 15-8 of the address into A. (This step is unnecessary for external devices that
do not decodal5- 8.)

IN A (port)

The eZ80 requires a logic-level clock on its CLK pin. This signal must be free of
overshoot or ringing and must make continuous, monotonic, and rapid transitions
in both directions.

The effects of Reset on each of the registers in I/O space is described in Tables 2—
4 in “1/O Registers”. Among processor registers, the following registers and state
bits are cleared to 0: ADL, Mixed ADL, MBASIEC, SP, |, | EF1, | EF2, R,

andF. The following are not changed by RegetB, C, D, E, H, L, |1 X, and

Y.

Preceding sections describe the processor registers and the eZ80’s programming
model. This section describes the registers in I/O space that control the operation
of the overall device and its on-chip peripherals. Register addresses that do not
appear in this table are not used.

REGISTERS SUMMARY

Register Name Addr (hex) |Register Name Addr (hex)
Common Base Register 38 Bank Base Register 39
Common/Bank Area Register 3A

MMU REGISTERS

See theMemory Management Ungtection, starting on page 18, for additional
register information.

20

eZ80 PS002200-ZMP0999

MMU REGISTERS

1/0 REGISTERS

TABLE 2. ComnmonN BASE REGISTER (0038H) CBR

Bit 7 | 6 | 4 | 3 | 2 | 1 | o

Bit/Field Base of Common Area 1

R/W R/W

Reset o | o | o | o 0 o | o | o

Note: R = Read W = Write X = Indeterminate

Bit

Position Bit/Field R/W Value Description

7-0 Common 1 R/W If the comparison of bits 15-12 of a
Area Base logical address indicates that the

address is in Common Area 1, this
value (shifted left 12 bits, times
4096) is added to the logical address
to form the physical address.

TABLE 3. BANK BASE REGISTER (0039H) BBR

Bit 7 | e | 5 [4 | 3] 2 | 1] o

Bit/Field Base of Bank Area

R/W R/W

Reset o | o] o[o] o] o] o] o

Note: R = Read W = Write X = Indeterminate

Bit

Position Bit/Field R/W Value Description

7-0 Bank Area R/W If the comparison of bits 15-12 of a

Base logical address indicates that the
address is in the Bank Area, this value
(shifted left 12 bits, times 4096) is
added to the logical address to form
the physical address.
PS002200-ZMP0999 eZ80 21

INSTRUCTION SET

CLASSES OF INSTRUCTIONS

TABLE 4. Common/BANK AREA REGISTER (003AH) CBAR

Bit 7 | 6 | 5 | 4 3 | 2 | 1 [o

Bit/Field Bank/Common 1 Boundary Common 0/Bank Boundary

R/W R/W R/W

Reset 1 | 1 | 1] 1] o | o] o | o

Note: R = Read W = Write X = Indeterminate

Bit

Position Bit/Field R/W Value Description

7-4 Bank/ R/W If bits 15-12 of a logical address are
Common 1 greater than or equal to this value,
Boundary the address is in Common Area 1.

3-0 Common 0/ R/W If bits 15-12 of a logical address are
Bank less than this value, the address is in
Boundary Common Area 0.

Note: If bits 3-0 of this reg < bits 15-12 of a logical address < bits 7-4 of this reg,
the address is in the Bank Area. Do not program this register so that bits 3-O > bits 7-
4. All comparisons are unsigned.

INSTRUCTION SET

The eZ80 is descended from the ZiLOG Z80. Its 8-bit data bus and 24-bit address
space fit well into awide variety of mid-range embedded processing applications.
This processor provides significantly more computing power than a microcon-
troller, at afraction of the system cost of alarger microprocessor.

Instructions and features that are new to the eZ80 are denoted by a dagger (1).
Instructions that exist in the Z80 but are undocumented, do not exist in the
Z8018x family, and are implemented and acknowledged in the eZ80, are denoted
by a double dagger (1).

CLASSES OF INSTRUCTIONS

TABLE 5. LOAD INSTRUCTIONS

Mnemonic Operands Instruction

LD dst,src Load

LEA qq,IX/Y +d Load Effective Address T
PEA IX/Y £d Push Effective Addresst
POP dst Pop

PUSH src Push

t Instructions and features that are new to the eZ80.

22

eZ80

PS002200-ZMP0999

CLASSES OF INSTRUCTIONS

INSTRUCTION SET

TABLE 6. ARITHMETIC INSTRUCTIONS

Mnemonic Operands Instruction

ADC dst,src Add with Carry

ADD dst,src Add

CP A,src Compare

CPD(R) Block Scan, decrementing (and Repeat)
CPIR) Block Scan, incrementing (and Repeat)
DAA Decimal Adjust Accumulator

DEC dst Decrement

INC dst Increment

MLT rr Multiply

NEG Negate Accumulator

SBC dst,src Subtract with Carry

SUB A,src Subtract

TABLE 7. LOGICAL INSTRUCTIONS

Mnemonic Operands Instruction

AND A,src Logical AND

CPL Complement accumulator

OR A,src Logical OR

TST A,src Test accumulator

XOR A,src Logical Exclusive OR

TABLE 8. EXCHANGE INSTRUCTIONS

Mnemonic Operands Instruction

EX AF,AF’ Exchange Accumulator and Flags

EX DE,HL Exchange DE and HL

EX (SP),rr Exchange register and top of stack

EXX Exchange register banks
PS002200-ZMP0999 eZ80 23

INSTRUCTION SET

CLASSES OF INSTRUCTIONS

TABLE 9. PROGRAM CONTROL INSTRUCTIONS

Mnemonic Operands Instruction

CALL cc,dst Conditional Call

CALL dst Call

DJNZ dst Decrement and Jump if Non-Zero
JP cc,dst Conditional Jump

JP dst Jump

JR cc’,dst Conditional Jump Relative

JR dst Jump Relative

RET cc Conditional Return

RET Return

RETI Return from Interrupt

RETN Return from Nonmaskable interrupt
RST dst Restart

TABLE 10. BIT MANIPULATION INSTRUCTIONS

Mnemonic Operands Instruction
BIT n,src Bit test
RES n,dst Reset bit
SET n,dst Set bit

TABLE 11. BLOCK TRANSFER INSTRUCTIONS

Mnemonic Operands Instruction
LDD(R) Block Move, decrementing (and Repeat)
LDI(R) Block Move, incrementing (and Repeat)

24 eZ80 PS002200-ZMP0999

CLASSES OF INSTRUCTIONS

INSTRUCTION SET

TABLE 12. ROTATE AND SHIFT INSTRUCTIONS

Mnemonic Operands Instruction

RL dst Rotate Left

RLA Rotate Left Accumulator

RLC dst Rotate Left Circular

RLCA Rotate Left Circular Accumulator
RLD Rotate Left Decimal

RR dst Rotate Right

RRA Rotate Right Accumulator

RRC dst Rotate Right Circular

RRCA Rotate Right Circular Accumulator
RRD Rotate Right Decimal

SLA dst Shift Left

SRA dst Shift Right Arithmetic

SRL dst Shift Right Logical

TABLE 13. INPUT/OUTPUT INSTRUCTIONS

Mnemonic Operands Instruction

IN A, (n) Input to A from port n

IN r, (C) Input to register from port in BC

INO r, (n) Input to r from port n in page O

IND(R) Block Input, decrement HL (and Repeat)

IND2(R) Block Input, decrement both (and Repeat) T

INDM(R) Block Input, page O, decrement both (and
Repeat)t

INI(R) Block Input, increment HL (and Repeat)

INI2(R) Block Input, decrement both (and Repeat) T

INIM(R) Block Input, page O, increment both (and
Repeat)t

OTDM(R) Block Output, page O, decrement both (and
Repeat)

OTIM(R) Block Output, page O, increment both (and
Repeat)

ouT (n), A Output from A to port n

ouT (C), r Output from register to port in BC

ouTOo (n), r Output from register to port n in page O

OUTD (OTDR) Block Output, decrement HL (and Repeat)

OUTD2 Block Output, decrement both (and Repeat)t

(OTDZ2R)

OUTI (OTIR) Block Output, increment HL (and Repeat)

OUTI2 (OTIZ2R) Block Output. decrement both (and Repeat)t

TSTIO n Test port (0,C) under mask

t Instructions and features that are new to the eZ80.

PS002200-ZMP0999

eZ80

INSTRUCTION SET

PROCESSOR FLAGS

PROCESSOR FLAGS

TABLE 14. PROCESSOR CONTROL INSTRUCTIONS

Mnemonic Operands Instruction

CCF Complement Carry Flag
]| Disable Interrupts
El Enable Interrupts
HALT Halt

IM 0/1/2 Interrupt Mode
NOP No Operation
RSMIX Reset Mix Flagt
SCF Set Carry Flag
SLP Sleep

STMIX Set Mix Flagt

t Instructions and features that are new to the eZ80.

Table 15 shows the Flag register. Bitsin thisregister are set and cleared by certain
instructions as described in the 280 User Manual. Some of the Flags are tested
by conditional JR, JP, CALL, and RET instructions, and some are used by subse-
guent instructions such as ADC, SBC, and DAA. The Flags can also be pushed and

popped with accumulator A.

TABLE 15. FLAG REGISTER

Bit 7 6 4 1 0
Name S Z HC X P/V N CF
Reset 0 0 X 0] 0 0
Note: X = Indeterminate

Bit/ Bit
Field Position Description
S 7 Sign Flag
Z 6 Zero Flag
5 reserved
HC 4 Half-carry Flag
3 reserved
PV 2 Parity or Overflow Flag
N 1 Add/Subtract Flag
CF 0 Carry Flag
26 eZ80 PS002200-ZMP0999

CONDITION CODES INSTRUCTION SET

CoNDITION CODES

Table 16 shows the codes used in the Flags Affected columns of the Instruction
Summary Table, Table 19, to indicate how each flag is affected by each type of
instruction.

TABLE 16. FLAG SETTINGS DEFINITIONS

Symbol Definition

0 Cleared to O

1 Set to 1

* Set or cleared according to the result of the operation
- Unaffected

X Undefined

\% Set if Overflow or Underflow

P Set if Parity or result is Even

NZ Set if the count in B or BC is non-zero

Table 17 shows the condition codes that can be used in conditional JP, CALL, and
RET instructionsin assembly language. A subset of these codes can al'so beusedin
JRinstructions, which are shorter and faster than JPs.

TABLE 17. CONDITION CODES

Mnemonic Definition Flag Settings Valid in JR?
C Carry CF =1 Y
NC No Carry CF=0 Y
Z Zero Z =1 Y
NZ Non-Zero Z=0 Y
M Minus S =1 N
P Positive or zero S=0 N
PE Parity Even PV =1 N
PO Parity Odd PV =0 N
\ Overflow PV =1 N
NV No Overflow PV =0 N

ASSEMBLY LANGUAGE SYNTAX

For two-operand instructions, Z80 assembly language syntax puts the destination
operand before the source operand.

ExAMPLE: LD A, (1234) is a Load instruction, while LD (1234), A is a Store
instruction.

PS002200-ZMP0999 eZ80 27

INSTRUCTION SET NOTATION

Past Z80 assemblers allowed the destination operand to be omitted (implicit) if the
Op Code mnemonic only allowed one destination operand, for example, AND L
instead of AND A, L. Use of these short formsis discouraged because it is a cause
of possible error (the programmer mistakes the implicit destination). But for
legacy code, all known Z80 assemblers still accept the short form.

NoTe: The assembly language uses C ambiguoudly, to designate one of the 8-bit registers
aswell as a condition code to test the Carry flag. This processor description uses CF to
designate the Carry flag, and HC to designate the Half-Carry flag (as opposed to the 8-hit
register H)

NOTATION

Table 18 describes other notation used in the Instruction Summary table.

TABLE 18. SYMBOLS

Symbol Definition

(aa) (mn), (IX%d), (IY £d), (BC), (DE), or (HL).

(BC), (DE), The 8-bit contents of memory, at the address pointed to by a

(HL) register pair. (HL) can also indicate a 16-bit value in
memory.t

(IX+d), The 8- or 161-bit content of memory at the address formed

(Y =d) by adding the contents of the index register and the signed
displacement d in the instruction.

(mn) The 8-bit content of memory at the direct address mn

(SP) The 16-bit contents of memory at the address pointed to by
SP, and the next higher address.

+d Since d is signed, it would be more correct to just write +
instead. But we write = to emphasize that d is signed.

AF A concatenated with F, with A as the more significant byte

b A bit number 0-7

cc A condition code C, NC, Z, NZ, S, M, PE, PV, V, or NV

cc’ A condition code C, NC, Z, or NZ

d An 8-bit signed displacement -128 to +127

ee A 16-bit register BC, DE, HL, SP, IX, or IY

IEF1,2 The processor’s two Interrupt Enable Flags.

ih IXH or IYH%

il IYH or IYL*

ir IXH, IXL, IYH, or IYL%

m An 8-bit variable A, B, C, D, E, H, L, (HL), (IXxd), or (IY =d)

mn A 16-bit immediate data value or direct address

n A 8-bit immediate value or port number, 0-255 or O-FFH

op1-op2 A range of Op Code values, that includes some of the values
between the low and high values. See the Note.

PC Program Counter

pp A 16-bit register BC, DE, HL, SP, IX, IY, or AF

t Instructions and features that are new to the €Z80.

t Instructions that exist in the Z80 but are undocumented.

28 eZ80 PS002200-ZMP0999

=
e&
c><§"o
N7
v L] INSTRUCTION SUMMARY INSTRUCTION SET

TABLE 18. SYMBOLS

Symbol

Definition

q

A,B,C,D, E, H,L, IXH%, IXL%, IYH%, IYL%E, (HL), (IX+d), or
(Y =d)

aq

A 16-bit register BC, DE, HL, IX, or IY T

7

r,r

An 8-bit register A, B, C, D, E, H, or L.

rae

An 8-bit register A, B, C, D, or E

rr

A 16-bit register HL, IX, or IY.

A,B,C,D,E, H, L, IXH%, IXH%, IYH$, IYLE, n, (HL), (IX+d),
or (IY =d)

SP

Stack Pointer

SS

A 16-bit register BC, DE, HL, or SP

SSy, SS|

The more- and less-significant eight bits of a register pair

tt

A 16-bit register like ss, except that the value that
designates HL in the ss encoding, here means same as the
destination register HL, IX, or IY.

t Instructions and features that are new to the eZ80.
T Instructions that exist in the Z80 but are undocumented.

NoTe: The symbol — between Op Codes (opl-0p2), in the Op Codes column of the
Instruction Summary table, indicates all the binary values between the indicated lower and
upper limits inclusive, that can be formed by incrementing the set of bits that differ
between the lower and upper value.

ExampLE: 00-CO represents 00, 40, 80, and CO, while 40-BF represents all the
values in that range.

INSTRUCTION SUMMARY

The following table describes each type or class of instruction, using the notation
described in the preceding sections. In cases where the same location acts as both
Destination (Dest) and Source code, is centered between the Dest and Source
columns (for example, the DEC instruction).The table is sorted by the assembly
language mnemonics.

TABLE 19. INSTRUCTION SUMMARY

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source S Z HC PV N CF
ADC A,s r 88-8F * * * \ 0 *
A< A+s+CF ir DD/FD 8C-8D
n CE
(HL) 8E
(IX/Y £d) DD/FD 8E
PS002200-ZMP0999 eZ80 29

—a
&
o(;’o
N
LA INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source S Z HC PV N CF
ADC HL,ss ED 4A-7A * * *® \ 0 *
HL « HL+ ss + CF
ADD A,s r 80-87 * * * \% 0 *
A-A+s ir DD/FD 84-85
n Cé6
(HL) 86
(IX/Y =d) DD/FD 86
ADD rr,tt HL 09-39 - - * - 0 *
merr+tt IX/Y DD/FD 09-39
AND A,s r AO-A7 * * 1 P 0 0
A ~ Aands ir DD/FD A4-A5
n E6
(HL) A6
(IX/Y =d) DD/FD A6
BIT b,m r CB 40-7F X * 1 X 0 -
Z < not (bit b of m) (HL) CB 46-7E
(IX/Y +d) DD/FD CB d 46-7E
CALL cc,Mmn C4-FC - - - - - -
IF cc {SP - SP -2
(SP) « PC15-0
if ADL {SPL — SPL -1
(SPL) —~ PC23-0}
if .i16 OR .i24 {
SPL — SPL-1
(SPL) — ADL
ADL « .i16?20:1}
PC15-0 « mn
if ADL {PC23-16 ~ M}}
CALL Mmn CD - - - - - -
SP - SP-2
(SP) - PC15-0
if ADL {SPL ~ SPL -1
(SPL) ~ PC23-0}
if .i16 OR .i24 {
SPL ~ SPL-1
(SPL) —~ ADL
ADL «~ .i16?20: 1}
PC15-0 « mn
if ADL {PC23-16 ~ M}
CCF 3F - - * - 0 *
CF < not CF

30 eZ80 PS002200-ZMP0999

INSTRUCTION SUMMARY

INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source HC P/V N CF
CP A,s r B8-BF * Y, 1 *
A-s ir DD/FD BC-BD
n FE
(HL) BE
(IX/Y +d) DD/FD BE
CPD ED A9 * NZ 1 -
A - (HL)
HL « HL -1
BC - BC -1
CPDR ED B9 * NZ 1 -
repeat {A — (HL)
HL « HL -1
BC - BC -1
} while (not Z and BC!=0)
CPI ED A1 * NZ 1 -
A - (HL)
HL « HL + 1
BC - BC -1
CPIR ED B1 * NZ 1 -
repeat {A — (HL)
HL « HL + 1
BC - BC -1
} while (not Z and BC!=0)
CPL 2F 1 - 1 -
A < notA
DAA 27 * P - *
A < decimal adjust (A,F)
DEC ee sS 0B-3B - - - -
ee — ee — 1 IX/Y DD/FD 2B
DEC g r 05-3D * Y, 1 -
q-qg-1 ir DD/FD 25/2D
(HL) 35
(IX/Y +d) DD/FD 35
DI F3 - - - -
IEF1,2 -« O
DJNZ d 10 - - - -
B- B-1
if B!=0 {PC —~ PC=xd}
El FB - - - -
IEF1,2 « 1
PS002200-ZMP0999 eZ80 31

—a
&
o(;’Ao
N
LA INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source S Z HC PV N CF
EX AF,AF’ 08 * * * * * *
AF o AF’
EX (SP),rr HL E3 - - - — — _
(SP) rr IX/Y DD/FD E3
EXX D9 - - - - - -
BC -~ BC’
DE - DE’
HL - HL’
HALT 76 - - - - - -
IM n ED 40-58 - - - - - -
IN A,(n) DB - - - - - -
A < (n)
IN r,(C) ED 40-78 * * 0 P 0 -
r « (BC)
INO r,(n) ED 00-38 * * 0 P 0 -
r — (0,n)
INC ee Ss 03-33 - - - - - -
ee — ee + 1 IX/Y DD/FD 23
INC g r 04-3C * * * \% 0 -
qe<q+1 ir DD/FD 24/2C
(HL) 34

(IX/Y +=d) DD/FD 34
IND ED AA X * X X 1 -
(HL) « (BC
B-B-1
HL « HL -1
IND2 T ED 8C X * X X 1 -
(HL) < (BC)
B-B-1
C-C-1
HL « HL -1
IND2R * ED 9C X 1 X X 1 -
do {(HL) ~ (BC)
B-B-1
C-C-1
HL « HL -1
} whileB!=0
INDM T ED 8A * * *® P *® *
(HL) < (0,C)
B-B-1
C-C-1
HL « HL -1

32 eZ80 PS002200-ZMP0999

=
e&
c><§"o
N7
v L] INSTRUCTION SUMMARY INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected

Instruction and Operation Dest Source S Z HC PV N CF

INDMR T ED 9A 0 0] 1 * 0
do {(HL) ~ (0,C)

B-B-1

C-C-1

HL « HL -1

} whileB!= 0

—_

INDR ED BA X 1 X X 1 -
do {(HL) ~ (BC)

B-B-1

HL « HL -1

} whileB!= 0

INI ED A2 X * X X 1 -
(HL) ~ (BC)

B-B-1

HL « HL + 1

INI2 t ED 84 X * X X 1 -
(HL) ~ (BC)

B-B-1

C-C+1

HL « HL + 1

INI2R T ED 94 X 1 X X 1 -
do {(HL) — (BC)

B B-1

CeC+1

HL < HL + 1

} while B1= 0

INIM ED 82 * * * P * ¥
(HL) < (0,C)

B-B-1

C-C+1

HL « HL + 1

INIMR T ED 92 0O 1 0 1 * 0
do {(HL) « (0,C)

B—B-1

Ce—C+1

HL — HL + 1

} while B1= 0

INIR ED B2 X 1 X X 1 -
do {(HL) ~ (BC)

B-B-1

HL « HL + 1

} whileB!=0

PS002200-ZMP0999 eZ80 33

—a
&
o(;’Ao
N
LA INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source S HC P/V N CF
JP (rr) (HL) E9 - - - - -
PC — (IX7Y) DD/FD E9
IF .i16 {ADL ~ 0}
ELIF .i32 {ADL ~ 1}
JP cc,Mmn C2-FA - - - - -
if cc {
IF .i16 {ADL ~ 0}
ELIF .i32 {ADL ~ 1}
PC « mn
IF ADL {PC23-16 ~ M}}
JP Mmn C3 - _ _ _ _
IF .i16 {ADL ~ 0}
ELIF .i32 {ADL ~ 1}
PC15-0 « mn
IF ADL {PC23-16 ~ M}
JRcc',d 10-38 - - - — _
if cc’ {PC « PC = d}
JRd 18 - _ _ _ _
PC -« PC +d
LD (aa) A (BC) 02 - - - - -
(aa) — A (DE) 12
(HL) 77
(mn) 32
(IX/Y +=d) DD/FD 77
LD (mn),ee HL 22 - - - _ _
(mn) - ee ss ED 43-73
IX/Y DD/FD 22
LD (HL),qq t BC,DE,H ED OF-2F - - - - -
(HL) < qq L
IX ED 3F
Y ED 3E
LD (IX/Y +d),qq T BC,DE,H DD/FD OF-2F - - - - -
(IX/Y £d) <« qq L
same | DD/FD 3F
other | DD/FD 3E
LD A, (aa) (BC) 0A - - - - =
A - (aa) (DE) 1A
(HL) 7E
(mn) 3A
(IX/Y +=d) DD/FD 7E
34 eZ80 PS002200-ZMP0999

INSTRUCTION SUMMARY

INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source HC P/V N CF
LD Al ED 57 O IEF2 O -
A~
LD A MB 1 ED 6E - - - -
if ADL, A -« MB
LD AR ED 5F O IEF2 O -
A <R
LD ee,mn SS 01-31 - - - -
ee — mn IX/Y DD/FD 21
LD ee,(mn) HL 2A - - — —
ee — (mn) ss ED 4B-7B
IX/Y DD/FD 2A
LD ILA ED 47 - - - -
| « A
LD MB,A 1 ED 6D - - - -
if ADL, MB - A
LD g,n r 06-3E - - - -
qg<n ir DD/FD 26/2E
(HL) 36
(IX/Y £d) DD/FD 36
LD q,r r’ 40-7F - - - -
QT ir DD/FD 60-6F
(HL) 70-77
(IX/Y £d) DD/FD 70-77
LD qgq,(HL) t BC,DE,H ED 07-27 - - - -
aq < (HL) L
IX ED 37
Y ED 31
LD qq,(IX/Y £d) T BC,DE,H DD/FD 07-27 - - - -
qq < (IX/Y =d) L
same | DD/FD 37
other | DD/FD 31
LD R A ED 4F - - - -
R~ A
PS002200-ZMP0999 eZ80 35

INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source HC P/V N CF
LD r,s r’ 40-7F - - - =
r<s rae ih DD/FD 44-7C
(note 1)
rae il DD/FD 45-7D
(note 1)
n 06-3E
(HL) 46-7E
(IX/Y £d) DD/FD 46-7E
LD SP,rr HL F9 - - - -
SP IX/Y DD/FD F9
LDD ED A8 0O Nz O -
(DE) ~ (HL)
DE —~ DE -1
HL « HL -1
BC -« BC -1
LDDR ED B8 0 0 0 -
do {(DE) ~ (HL)
DE — DE -1
HL « HL -1
BC - BC - 1
} while BC =0
LDI ED AO 0O Nz O -
(DE) ~ (HL)
DE — DE + 1
HL « HL + 1
BC -« BC -1
LDIR ED BO 0 0 0 -
do {(DE) ~ (HL)
DE - DE + 1
HL « HL + 1
BC - BC - 1
} while BC =0
LEA qq,IX+d t BC,DE,H ED 02-22 - - - -
qq « IX+xd L
IX ED 32
Y ED b5
LEA qq,lYxd T BC,DE,H ED 03-23 - - - -
aqq < Iy =d L
IX ED 54
Y ED 33
MLT ss ED 4C-7C - - - -
S8S «~ Ss|_ * ssy
36 eZ80 PS002200-ZMP0999

INSTRUCTION SUMMARY

INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex)

Flags Affected

Instruction and Operation

Dest Source

HC P/V N

CF

NEG
A-0-A

ED 44

*

\Y,

1

*

NOP

00

OR A,s
A - AORs

r BO-B7

ir DD/FD B4-Bb

n F6

(HL) B6

(IX/Y =d) DD/FD B6

OTD2R t

do {(BC) « (HL)
B-B-1
C-C-1

HL « HL -1

} whileB!= 0

ED BC

OTDM
(0,C) « (HL)
B-B-1
C-C-1
HL -« HL -1

ED 8B

OTDMR

do {(0,C) « (HL)
B-B-1
C-C-1
HL « HL -1

} whileB!=0

ED 9B

OTDR

do {(BC) « (HL)
B—B-1
HL — HL - 1

} while B1= 0

ED BB

OTI2R t

do {(BC) ~ (HL)
B-B-1
C~-C+1

HL « HL + 1
} whileB!= 0

ED B4

OoTIM
(0,C) « (HL)
B-B-1
C-C+1
HL « HL + 1

ED 83

PS002200-ZMP0999

eZ80

37

—a
&
o(;’o
N
LA INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Address Mode

Op Code(s)
(Hex)

Flags Affected

Instruction and Operation Dest Source

S Z HC PNV N CF

OTIMR

do {(0,C) < (HL)
B—B-1
CeC+1

HL — HL + 1

} while B1= 0

ED 93

0 1 0 1 * 0

OTIR

do {(BC) « (HL)
B-B-1

HL « HL + 1

} whileB!= 0

ED B3

OUT (C),r
(BC) < r

ED 41-79

OUT (n), A
(n) « A

D3

OUTO (n),r
O,n) «r

ED 01-39

OuTD

(BC) « (HL)
B-B-1
HL « HL -1

ED AB

ouTD2 t
(BC) « (HL)
B B-1
CeC-1
HL < HL - 1

ED AC

OuTI

(BC) « (HL)
B-B-1
HL « HL + 1

ED A3

OuUTI2 T
(BC) ~ (HL)
B-B-1
C~-C+1
HL « HL + 1

ED A4

PEA IX/Y =d T
SP ~ SP-2
(SP) « IX/Y =d

ED 65/66

POP pp qq

C1-F1

pp — (SP) IX/Y
SP — SP + 2

DD/FD E1

(no change unless operand is
AF)

PUSH pp qq

Cb-Fb

SP ~ SP-2 IX/Y
(SP) ~ pp

DD/FD Eb

38

eZ80

PS002200-ZMP0999

INSTRUCTION SUMMARY

INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Address Mode

Op Code(s)
(Hex)

Flags Affected

Instruction and Operation

Dest Source

Z HC P/V N

CF

RES b,m
m — m and not (2*b)

r CB 80-BF

(HL) CB 86-BE

(IX/Y =d)

DD/FD CB d 86-BE

RET t
if .16 OR .24 {
newADL ~ (SPL)
SPL — SPL+1
if IADL {
if newADL {
PC23-16 ~ (SPL)
SPL — SPL+1}
PC15-0 ~ (SPS)
SPS — SPS+2}
else [ADL is 1] {
if newADL {
PC23-0 ~ (SPL)
SPL — SPL+3
} else {
PC15-0 ~ (SPL)
SPL — SPL+2}}
ADL ~ newADL}
else [no prefix] {
if ADL {
PC23-0 ~ (SPL)
SPL —~ SPL+3
} else {
PC15-0 ~ (SPS)
SPS — SPS+2}}

C9

RET cc
if cc {as RET above Tt}

CO-F8

RETI

as RET above t
recognition by Z80
peripherals

ED 4D

RETN
as RET above t
IEF1 —~ IEF2

ED 45

RL m
l.-
(CF,m) « rotL(CF,m)

r CB 10-17

(HL) CB 16

(IX/Y =d) DD/FD CBd 16

RLA
Cle{7 o}
(CF,A) < rotL(CF,A)

17

PS002200-ZMP0999

eZ80

39

INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected

Instruction and Operation Dest Source S Z HC PV N CF
RLC m r CB 00-07 * * 0 P 0 *

(HL) CB 06
(CF,m) < rotL(m) (IX/Y +d) DD/FD CB d 06
RLCA 07 - - 0 - 0 *
(CF,A) « rotL(A)
RLD ED 6F * * 0 P 0 -
tmp ~ A[3:0]
A[3:0] ~ (HL)[7:4]
(HL)[7:4] — (HL)[3:0]
(HL)[3:0] « tmp
RR m r CB 18-1F * * 0 P 0 *

(HL) CB 1E

(CF,m) < rotR(CF,m) (IX/Y =d) DD/FD CB d 1E
RRA r 1F - - 0 - 0 *
(CF,A) ~ rotR(CF,A)
RRC m r CB 08-0F * * 0 P 0 *

(HL) CB OE
(CF,m) « rotR(m) (IX/Y £d) DD/FD CB d OE
RRCA OF -* - 0 - 0 *
(CF,A) < rotR(A)
RRD ED 67 * * 0 P 0 -

tmp « (HL)[3:0]
(HL)[3:0] « (HL)[7:4]
(HL)[7:4] <« AI[S3:0]
A[3:0] « tmp

RSMIX 1
mix_flag ~ O

ED 7E -

40

eZ80

PS002200-ZMP0999

—
&
K7
N7
"'g INSTRUCTION SUMMARY

INSTRUCTION SET

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source S Z HC PV N CF
RST p C7-FF * * 0 P 0 -
SP - SP-2
(SP) « PC
IF ADL {SPL — SPL - 1
(SPL) ~ PC23-0}
IF .i16 OR .i24 {
SPL — SPL-1
(SPL) —« ADL
ADL — .i16?20: 1}
PC « 0,p
note p=0,8,10,18,...38H
SBC A,s r 98-9F * * * Vv 1 *
A~ A-s-CF ir DD/FD 9C-9D
n DE
(HL) 9E
(IX/Y £d) DD/FD 9E
SBC HL,ss r ED 42-72 *oxox v 1 ¥
HL « HL - ss - CF
SCF 37 - - 0 - 0 1
CF < 1
SET b,m r CB CO-FF - - - - - -
m — mor (2°b) (HL) CB C6-FE
(IX/Y £d) DD/FD CB d C6-FE
SLA m r CB 20-27 * * 0 P 0 *
[Cle{7 oo (HL) CB 26
(CFbm) « m + m (IX/Y £d) DD/FD CB d 26
SLP ED 76 - - - - - -
SRA m r CB 28-2F * * 0 P 0 *
I” (HL) CB 2E
(m,CF) « arith_shR(m) (IX/Y £d) DD/FD CB d 2E
SRL m r CB 38-3F 0 * 0 P 0 *
o7 opc] (HL) CB 3E
(m,CF) « logic_shR(m) (IX/Y +d) DD/FD CB d 3E
STMIX t ED 7D - - - - - -
mix_flag « 1
PS002200-ZMP0999 eZ80 41

INSTRUCTION SET

INSTRUCTION SUMMARY

TABLE 19. INSTRUCTION SUMMARY (CONTINUED)

Op Code(s)
Address Mode (Hex) Flags Affected
Instruction and Operation Dest Source HC P/V N CF
SUB A,s r 90-97 * V 1 *
A-A-s ir DD/FD 94-95
n D6
(HL) 96
(IX/Y £d) DD/FD 96

TST As r ED 04-3C 1 P 0 0
A AND s n ED 64

(HL) ED 34
TSTIO n ED 34 1 P 0 0
(0,C) AND n
XOR As r A8-AF 0 P 0 0
A <~ A XOR s ir DD/FD AC-AD

n EE
(HL) AE
(IX/Y £d) DD/FD AE
NoTe: Some of the valuesin this range are used by other instructions, which override this
range.
42 eZ80

PS002200-ZMP0999

Op CoDE MAP

INSTRUCTION SET

Op CoDE MAP
TABLE 20. Op CobpE MAP (FIRST OP CODE)

LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F
O NOP LD LD INC INC DEC LD RLCA EX ADD LD DEC INC DEC LD RRCA
BC.nn | (BC),A BC B B B.n AF,AF" | HL,BC | A,(BC) BC C C C.n
1| DINZ LD LD INC INC DEC LD RLA JR ADD LD DEC INC DEC LD RRA
d DE,nn | (DE),A DE D D D,n d HL,DE | A,(DE) DE E E E,n
2 JR LD LD INC INC DEC LD DAA JR ADD LD DEC INC DEC LD CPL
NZ,d | HL,nn |(nn),HL| HL H H H,n Z,d HL,HL |(HL),nn| HL L L L.n
3 JR LD LD INC INC DEC LD SCF JR ADD LD DEC INC DEC LD CCF
NC.d | SP,nn | (nn),A SP (HL) (HL) (HL),n cd HL,SP | A,(nn) SP A A A.,n
4|.16.i16 LD LD LD LD LD LD LD LD .24.i116 LD LD LD LD LD LD
prefix B,C B,D B,E B,H B,L B, (HL) C,A C,B prefix C,D C,E C,H C,L C,(HL) | C,A
5 LD LD .16.i124 LD LD LD LD LD LD LD LD 24.i24 LD LD LD LD
D,B D,C prefix D.E D.H D,.L D.(HL) D.A E.B E.C E.D prefix E.H E,L E,(HL) E,A
. 6 LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD LD
P4 H,B H,C H,D H,E H,H H,L H,(HL) H,A LB L,C LD L,E LH L,L L,(HL) LA
% 7 LD LD LD LD LD LD HALT LD LD LD LD LD LD LD LD LD
-~ (HL),B | (HL),C | (HL),D | (HL),E | (HL),H | (HL),L (HL),A A,B A,C A,D AE AH AL A,(HL) | AA
E 8 ADD ADD ADD ADD ADD ADD ADD ADC ADC ADC ADC ADC ADC ADC ADC ADC
g A.B A,C A.D AE AH AL A,(HL) AA A,B A.C A,D AE AH AL A,(HL) | AA
E 9| suB SUB SUB SUB SUB SUB SUB SUB SBC SBC SBC SBC SBC SBC SBC SBC
o A,B A,C A,D AE AH AL A, (HL) AA A,B A,C AD AE AH AL A,(HL) | AA
E A| AND AND AND AND AND AND AND AND XOR XOR XOR XOR XOR XOR XOR XOR
a A,B A,C A,D AE AH AL A, (HL) AA A,B A,C AD AE AH AL A,(HL) | AA
=] B OR OR OR OR OR OR OR OR CP CP CP CP CP CP CP CP
A.B A,C A.D AE AH AL A,(HL) AA A,B A.C A,D AE AH AL A,(HL) | AA
C| RET POP JP JP CALL | PUSH ADD RST RET RET JP (Table | CALL | CALL ADC RST
Nz BC NZ,nn nn NZ,nn BC A,n 0 V4 Z,nn 21) Z,nn nn A,n 8
D| RET POP JP ouT CALL | PUSH SUB RST RET EXX JP IN CALL | (Table SBC RST
Nz DE NC,nn | (n),A | NC,nn DE A,n 10H C C,nn A,(n) C,nn 22) A,n 18H
E| RET POP JP EX CALL | PUSH AND RST RET JP JP EX CALL | (Table | XOR RST
PO HL PO,nn |(SP),HL| PO,nn HL An 20 PE (HL) PE,nn | DE,HL | PE,nn 23) An 28H
F| RET POP JP DI CALL | PUSH OR RST RET LD JP El CALL | (Table CP RST
P AF P,nn P,nn AF A,n 30H M SP,HL | M,nn M,nn 24) A,n 38H
0 1 2 3 4 5 6 7 8 9 A B C D E F
Notes:
n = 8-bit data Lower Op Code Nibble
nn = 16-bit addr or data ¢
d = signed 8-bit Upper
. Op Code 4
displacement Nibble
\A AND <—— Mnemonic
AH
A

First Operand e N Second Operand

PS002200-ZMP0999

eZ80

43

N
DA INSTRUCTION SET Op CODE MAP

TABLE 21. Op CoDE MAP (SEcOND Op CODE AFTER OCBH)

LOWER NIBBLE (HEX)
0 1 2 3 4 5 6 7 8 9 A B C D E F

Ol Ric [RC [RLC [RLC [RLC [RIC [RIC | RLC [RRC | RRC | RRC | RRC | RRC | RRC | RRC | RRC

B c D E H L | (H |RRCA| B c D E H L | H | A

1 Rt | RC | RC [RO [RL [RL [RL | RL | RR | RR | RR | RR | RR | RR | RR | FRR

B c D E H L | HO | A B c D E H L | H | A

2| SLA | SLA | SLA | SLA | SLA | SLA | SLA | SLA | SRA | SRA | SRA | SRA | SRA [SRA | SRA | SRA

B c D E H L | HO | A B c D E H L | D | A

3 SRL | SRL | SRL | SRL | SRL | SRL | SRL | SRL

B c D E H L | H | A

4 87 [BT [BT [BT [BT [BT [BT | BT [BT [BT [BT [BT [BT | BT | BIT [BIT

0B | 0oCc | 0D | OE | OH | OL |OHL| OA | 1B | 1, | 1D | TE | TH | 1L |1(HU| 1A

5| BT [BT [BT [BT | BT | BT [BT [BT [BT [BT | BT | BT | BT | BIT [BIT | BIT

28 | 2C | 2D | 2E | 2H | 2L [2HL| 2A | 3B | 3C | 3D | 3E | 3H | 3L |3,(HL| 3.A

6| BT [BT [BT [BT [BT [BT [BT | BT | BT [BT [BT [BT [BT | BT | BIT [BIT

< 48 | 4C | 4D | 4E | 4H | 4L |4(HL| 4A | 5B | 5C | 5D | BE | 5H | 5L [5(HL | 5A

T 7 8T [T | BT | BT | BT | BT | BT | BT | BT | BT | BT | BT | BT | BT | BT | BT

= 6B | 6C | 6D | 6E | 6H | 6L |6(HL| 6A | 7B | 7. | 7D | 7E | 7ZH | 7L |7.HU| 7.A
w

— 8| RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES

@ 0B | 0C | 0D | OE | OH | OL |OHL| OA | 1B | 1,€ | 1D | 1E | TH | 1L |1(HL| 1A

S 9| RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES

o 28 | 2C | 2D | 2E | 2H | 2L [24H0)| 2A | 3B | 3C | 3D | 3E | 3H | 3L |3HL| 3A

W A RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES

o 4B | 4C | 4D | 4E | 4H | 4L |40HL| 4A | 5B | 5C | 5D | 5E | 5H | 5L [5/(HD | 5A

= B| RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES | RES

6B | 6C | 6D | 6E | 6H | 6L |6(HL| 6A | 7B | 7. | 7D | 7ZE | 7ZH | 7L |7.HU| 7.A

C| SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET

0B | 0C | OD | OE | OH | OL |OHL | OA | 1B | 1,c | 1,D | TE | 1,H | 1L [1HD| 1,A

D| SET | SET | SET | SET | SET [SET [SET | SET | SET | SET | SET | SET | SET | SET | SET | SET

28 | 2¢ | 2D | 2E | 2H | 2L [2HL| 2A | 3B | 3C | 3D | 3E | 3H | 3L |3,(HL| 3.A

E| SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET

4B | 4C | 4D | 4E | 4H | 4L |4HL| 4A | 5B | 5C | 5D | 5E | 5H | 5L [5/(HD | 5A

F| SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET | SET

68 | 6C | 6D | 6E | 6H | 6L |6,(HL| 6A | 7B | 7. | 7D | 7E | 7H | 7L [7(HD | 7.A

0 1 2 3 4 5 6 7 8 9 A B Cc D E F

Lower Nibble of 2nd Op Code

Upper i
I\#i%blg 4
of 2n
Op Code \A RES <«—— Mnemonic
4,H
VA A

First Operand 7 N Second Operand

44 eZ80 PS002200-ZMP0999

Op CoDE MAP

INSTRUCTION SET

TABLE 22. Op CoDE MaAP (SEcOND Op CoDE AFTER ODDH)
LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 LD BC, ADD LD (IX
(IX +d) IX,BC +d),BC
1 LD DE, ADD LD (IX
(IX£d) IX,DE +d),DE
2 LD LD INC INC | DEC LD [LDHL, ADD LD DEC | INC | DEC LD |LD (X
IX,nn | (AnpIX | IX IXH IXH | IXH,n | (IX£d) IXIX [IX,(nn) | IX IXL IXL | IXL,n | £d),HL
3 LD IY, INC | DEC |LD(IX |LDIX, ADD LD (IX | LD (IX
(IX +d) (IX£d) | IX£d) | =d),n | (IX=d) IX,SP +d),IY | £d),IX
4 LD LD | LDB, LD LD |LDC,
B,IXH | BJIXL |{IX*d) CIXH | CIXL |{IX%d)
5 LD LD | LDD, LD LD | LDE,
D,IXH | D,IXL |{IX+d) EIXH | EJIXL |{(IX+d)
6| LD LD LD LD LD LD |LDH, | LD LD LD LD LD LD LD | LDL, | LD
IXH,B | IXH,C | IXH,D | IXH,E | IXHH | IXH,L | (IX+d)| IXH,A | IXL,B | IXL,C | IXL,D | IXLE | IXLH | IXLL |{IX+d) | IXL,A
S 7| LD (X | LD (IX | LD {IX [LD (IX | LD (IX | LD (IX LD (IX LD LD | LDA,
w +d),B | £d),C | =£d),D | +d),E | d),H | =d),L +d),A AJIXH | AJIXL | (IX£d)
=5 8 ADD | ADD |ADD A, ADC | ADC |ADC A,
w AJIXH | AJIXL | (IX+d) AJIXH | AJIXL | (IX+d)
m 9 SUB | SUB [SUBA, SBC | SBC |[SBCA,
m AJIXH | AJIXL | (IX+d) AJIXH | AJIXL | (IX+d)
= A AND | AND |AND A, XOR | XOR |XOR A,
E AJIXH | AJIXL | (IX £d) AJIXH | AJIXL | (IX £d)
2B OR OR | ORA, cP cP | CPA,
S AJIXH | AJIXL | (IX+d) AJIXH | AJIXL | (IX+d)
C (Table
25)
D
E POP EX PUSH JP
IX (SP),1 IX (IX)
X
F LD
SP,IX
0 1 2 3 4 5 6 7 8 9 A B C D E F
Notes:
n = 8-bit data Lower Nibble of 2nd Op Code
nn = 16-bit addr or data
d- = signed 8-bit Upper °
displacement Nibble
ngc(z)gg \F LD <—— Mnemonic
SP,IX\

First Operand /

"ol

"\ second Operand

PS002200-ZMP0999

eZ80

45

(‘,A
O,
N
L INSTRUCTION SET OP CODE MAP
TABLE 23. Op CoDE MAP SECOND Op CODE AFTER OEDH)
LOWER NIBBLE (HEX)
0 1 2 3 4 5 6 7 8 9 A B C D E F
0| INO | OUTO |LEA BC|LEA BC| TST LD BC,| INO | OUTO TST LD (HL)
Bn) | (M,B | IX+d| IY+d| AB (HL) | C,n) | (n),C A,C ,BC
1| INO | OUTO |LEA DE|LEA DE| TST LD DE,| INO | OUTO TST LD (HL)
D,n) | (N),D | .IX=d | IY+d| AD (HL} | E.(n} | (n)E AE ,DE
2| INO | OUTO |LEA HL|LEA HL| TST LD HL,| INO | OUTO TST LD (HL)
Hn) | (N H | IX=d | IY+d]| AH (HL) | Ln) | (n)L AL JHL
3| INO |[LDIY, |LEAIX|LEAIY| TST LDIX, | INO | OUTO TST LD (HL)|LD (HL)
F.n) | (HL) | ,IX=d| IY=+d |A,HL) (HL) | An) | (n),A AA Y X
4| IN OUT | SBC LD NEG | RETN | IMO LD IN OUT | ADC LD MLT | RETI LD
B.(C) | (C),B | HL,BC |(nn),BC LA | C,C) | (C),C |HL,BC |BC,(nn)| BC R.A
5| IN OUT | SBC LD |[LEAIX|[LEAIY| IM 1 LD IN OuUT | ADC LD MLT IM 2 LD
D,(C) | (C),D | HL,DE |(nn),DE| IV +d | ,IX=d Al E.(C) | (C),E | HL,DE |DE,(nn)| DE AR
6| N OUT | SBC LD TST | PEA | PEA | RRD IN OuUT | ADC LD MLT LD LD RLD
% H,{C) | (C),H | HLHL [(nn),HL| A,n | IXxd | IY +d L(C) | ()L | HLHL [HL(hn)| HL | MB,A | AMB
% 71 N SBC LD |[TSTIO SLP IN OuUT | ADC LD MLT | STMIX | RSMIX
= F.(C) HL,SP | (nn),SP| n A.(C) | (C),A | HL,SP |SP,(nn)| SP
- 8 INIM | OTIM | INI2 INDM | OTDM | IND2
0
59 INIMR | OTIMR | INI2R INDMR |OTDMR| IND2R
2
E Al LDI CPI INI | OUTI | OUTI2 LDD | CPD | IND | OUTD |OUTD2
o
O gl bR [cPr | INR | OTIR |OTI2R LDDR | CPDR | INDR | OTDR |OTD2R
C
D
E
F
0 1 2 3 4 5 6 7 8 9 A B C D E F
n = 8-bit data Lower Nibble of 2nd Op Code
nn = 16-bit addr or data
d_ = signed 8-bit Upper >
displacement Nibble
Op?fcggg 4| SBC +—— Mnemonic
HL,BC\

First Operand v

Second Operand

46

eZ80

PS002200-ZMP0999

Op CoDE MAP

INSTRUCTION SET

TABLE 24. Op CopE MAP SECOND Op CoDE AFTER OFDH)
LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 LD BC, ADD LD (IY
(1Y +d) IY,BC +d),BC
1 LD DE, ADD LD (IY
(IY =d) 1Y,DE +d),DE
2 LD LD INC INC | DEC LD |LD HL, ADD LD DEC | INC | DEC LD |LD{lY
IY,nn | (nn)lY | 1Y IYH IYH | IYH,n |(IY =d) IYIY |IY,(nn) | 1Y 1YL IYL | IYL,n | =d)HL
3 LD IX, INC | DEC |[LD(IY [LDIY, ADD LD (IY | LD (IY
(IY +d) (Y =d) [(1Y +d) | =d),n | (Y =d) IY,SP +d),IX | £d),IY
4 LD LD | LDB, LD LD |[LDC,
B,IYH | BJIYL [{IY+d) CJIYH | CIYL [(IY £d)
5 LD LD |LDD, LD LD | LDE,
D,IYH | D,IYL |(IY £d) EIYH | EIYL | (Y +d)
__ 6| LD LD LD LD LD |LDH, | LD LD LD LD LD LD LD | LDL, | LD
< IYH,B | IYH,C | IYH,D | IYH,E | IYH,H | IYH,L |{(IY+d) | IYH,A | IYL,B | IYL,C | IYL,D | IYLE | IYL,H | IYLL [(IY+d)| IYLA
% 7| Day [LDay | LD gy [LD (Y | LD (IY | LD (1Y LD (1Y LD LD | LDA,
- +d),B| £d),C | +d),D | £d),E | £d),H | =d),L +d),A AlYH | AJIYL | (Y +d)
- 8 ADD | ADD |ADD A, ADC | ADC |ADC A,
g AJIYH | AJIYL | (IY +d) AJIYH | AJIYL | (1Y +d)
59 SUB | SUB [SUBA, SBC | SBC |[SBC A,
o AJYH | AIYL | (1Y +d) AJIYH | AJIYL | (1Y +d)
oA AND | AND [AND A, XOR | XOR [XOR A,
o AJYH | AJIYL [{IY d) AJYH | AJIYL [{IY £d)
°B OR | OR |ORA, cP | cp [cpa,
AJIYH | AJIYL | (IY +d) AJIYH | AJIYL | (1Y +d)
C (Table
26)
D
E POP EX PUSH JP
Iy (SP),IY Iy 0%}
F LD
SP,IY
0 1 2 3 4 5 6 7 8 9 A B C D E F
Notes:
n = 8-bit data Lower Nibble of 2nd Op Code
nn = 16-bit addr or data
d_ = signed 8-bit Upper o
displacement Nibble
o;;ﬁctz)gg \F LD <—— Mnemonic
SP,IY\

First Operand e

Second Operand

PS002200-ZMP0999

eZ80

47

INSTRUCTION SET Opr CODE MAP

TABLE 25. Op CoDE MAP (4TH BYTE, AFTER ODDH, OCBH, AND d)

LOWER NIBBLE (HEX)

3 4 5 6 7 8 9 A B C D E F
0 RLC RRC
(IX+d) (IX +d)
1 RL RR
(IX £d) (IX £d)
2 SLA SRA
(IX £d) (IX £d)
3 SRL
(IX +d)
4 BIT O, BIT 1,
(IX £d) (IX £d)
5 BIT 2, BIT 3,
(IX £d) (IX £d)
6 BIT 4, BIT 5,
$%4 (IX+d) (IX +d)
T 7 BIT 6, BIT 7,
= (IX £d) (IX £d)
- 8 RES 0, RES 1,
g (IX £d) (IX £d)
59 RES 2, RES 3,
- (IX+d) (IX +d)
oA RES 4, RES 5,
o (IX £d) (IX £d)
=N RES 6, RES 7,
(IX £d) (IX £d)
C SET 0, SET 1,
(IX+d) (IX +d)
D SET 2, SET 3,
(IX £d) (IX £d)
E SET 4, SET 5,
(IX £d) (IX £d)
F SET 6, SET 7,
(IX+d) (IX +d)
3 4 5 6 7 8 9 A B C D E F
Notes: .
d = signed 8-bit Lower Nibble of 4th Byte
displacement l
Upper
Nibble 6
of 4th .
Byte \4 BIT <]— Mnemonic
0,(IX+d)
A
First Operand Second Operand
48 eZ80 PS002200-ZMP0999

Op CoDE MAP

INSTRUCTION SET

TABLE 26. Op CoDE MAP (4TH BYTE, AFTER OFDH, OCBH, AND d)
LOWER NIBBLE (HEX)

0 1 2 3 4 5 6 7 8 9 A B C D E F
0 RLC RRC
(1Y +d) (1Y +=d)
1 RL RR
(1Y +d) (1Y +=d)
2 SLA SRA
(IY £d) (IY =d)
3 SRL
(IY =d)
4 BIT O, BIT 1,
(IY £d) (IY =d)
5 BIT 2, BIT 3,
(IY £d) (IY =d)
6 BIT 4, BIT 5,
x (1Y £d) (1Y +d)
% 7 BIT 6, BIT 7,
= (IY £d) (Y =d)
w
-4 8 RES 0, RES 1,
() (IY £d) (IY =d)
m
> 9 RES 2, RES 3,
o (1Y £d) (1Y +d)
oA RES 4, RES 5,
o (IY £d) (IY =d)
=N RES 6, RES 7,
(IY £d) (IY =d)
c SET 0, SET 1,
(1Y +d) (1Y +=d)
D SET 2, SET 3,
(IY £d) (IY =d)
E SET 4, SET 5,
(IY £d) (IY =d)
F SET 6, SET 7,
(1Y +d) (1Y +=d)
0 1 2 3 4 5 6 7 8 9 A B C D E F
Notes: .
d = signed 8-bit Lower Nibble of 4th Byte
displacement l
Upper
Nibble 6
of 4th
Byte \4 BIT <1—— Mnemonic
o,(IY +\d)

First Operand

"\ second Operand

PS002200-ZMP0999 eZ80

49

	General Description
	Detailed description
	Architectural Overview
	Block Diagram

	Pin Descriptions
	Operational Description
	Processor Description
	Interrupts
	Memory
	Input/Output
	Clock Circuits
	Reset Conditions

	I/O Registers
	Registers Summary
	MMU Registers

	Instruction Set
	Classes of Instructions
	Processor Flags
	Condition Codes
	Assembly Language Syntax
	Notation
	Instruction Summary
	Op Code Map

