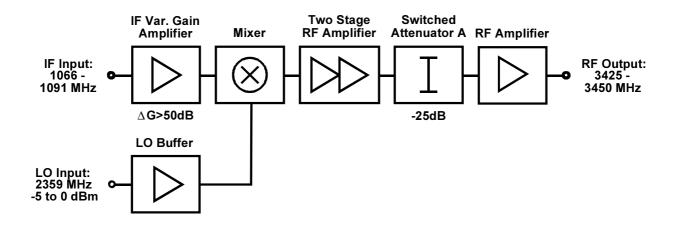


WLL Transmit Upconverter IC for 3.5GHz

- Fully Integrated IF Variable Gain Amplifier, Mixer, LO-Buffer, three RF Amplifier Stages and a switched Attenuator
- High Conversion Gain: typ. 29 dB
- Gain Control Range: >75 dB
- 1dB-Compression Point P_{1dB}: +17,0 dBm
- Output 3rd Order Intercept Point (OIP3) at G_{max}: +28 dBm
- Very low LO-Power demand of typ. -5 to 0 dBm
- · Minimum of external components and easy matching
- Total Current Consumption: typ. 270mA @ 5V
- Temperature Range: -40°C to +85°C

ESD: Electrostatic discharge sensitive device Observe handling Precautions!


Туре	Marking	Ordering code (tape and reel)	Package
CGY340	CGY340	Q62702G81	MW-16

Maximum Ratings	Port	Symbol	Value		Unit
			min	max	
Positive Supply Voltage	3, 5, 6, 11, 12	V _{DLO} , V _{DRF1} , V _{DRF3} , V _{DRF2} , V _{DVGA}	0	+8	V
Negative Supply Voltage	13	V _G	0	-6	V
IF VGA Control Voltage	14	VGA	-2.0	+8	V
Voltage at Step Attenuator	9, 10	A, A bar	-0.5	+8	V
Power into IF Input	16	IF		10	dBm
Power into LO Input	1	LO		10	dBm
Channel Temperature		T _{Ch}		150	°C
Storage Temperature		T _{stg}	-55	150	°C

Thermal Resistance			
Channel to Soldering Point (GND)	R _{thChS}	T.b.d.	K/W

RF Block Diagram

Electrical Characteristics

<u>Test conditions:</u> T_a = 25°C; V_{DD} = 5V, V_{GG} = -5V; f_{IF} = 1066-1091 MHz; P_{IF} = -20 dBm; f_{LO} = 2359 MHz; P_{LO} = 0 dBm; f_{RF} = 3425-3450 MHz, VGA adjusted to max. gain, attenuator A "OUT" or "IN" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).:

Parameter, Test Conditions	Symbol	min	typ	max	Unit
Operating Drain Current	I _{op}	-	270	-	mA
Operating Drain Current LO Buffer only	I _{LO}	-	10	-	mA
Operating Gate Current	l _g	_	1.3	-	mA

<u>Test conditions:</u> As above, but VGA adjusted to max. gain and attenuator A "OUT" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).

Parameter, Test Conditions	Symbol	min	typ	max	Unit
Conversion Gain	Gc	-	29,0	-	dB
Total Dynamic Range Output Power 1)	ΔG_{tot}	-	>75	-	dB
VGA Dynamic Range Output Power	ΔG_{VGA}	-	>50	-	dB
SSB Noise Figure	F _{ssb}	-	5,5	-	dB
1dB-Compression Point	P _{1dB}	-	17,0	-	dBm
Output 3 rd Order Intercept Point (OIP3) at G _{max}	OIP3	-	+28	-	dBm

Signal Breakthrough at P_{LO} = 0 dBm and P_{RF} = +8.5 dBm:					
LO Leakage at RF-Port	P _{LO}	-	-38	-	dBm
LO Leakage at IF-Port	P _{LO}	-	-31	-	dBm
Spectral Regrowth at G_{max} and $P_{out} = +8.5 \text{ dBm}$:					
Offset: ±256kHz		-	-46	-	dBc
Offset: ±512kHz		-	-66	-	dBc
Offset: ±768kHz		-	>-70	-	dBc
Return Loss:					
IF Port 3)	S ₁₁	-	14	-	dB
RF Port 3)	S ₂₂	-	10	-	dB
LO Port ³⁾	S ₁₁	-	20	-	dB

Note 1: Variable Gain Amplifier (VGA) and Switched Attenuator A

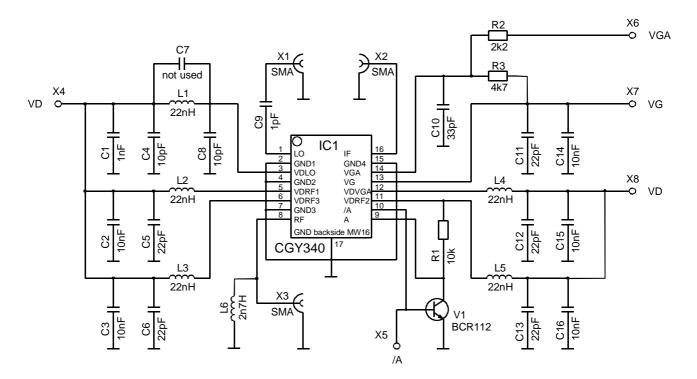
Note 2: Modulation: π/4 DQPSK (2b/sym). Symbol Rate: 256ksym/s. Mode: PHS. Filter: RNYQ. Filter Alpha: 0.40.

Note 3: Configuration as shown on application board

<u>Test conditions:</u> As above, but VGA adjusted to max. gain and attenuator A "IN" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).

Parameter, Test Conditions	Symbol	min	typ	max	Unit
Conversion Gain	Gc	-	3,0	-	dB

<u>Test conditions:</u> As above, but VGA adjusted to min. gain and attenuator A "OUT" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).


Parameter, Test Conditions	Symbol	min	typ	max	Unit
Conversion Gain	Gc	-	<-29,0	-	dB

<u>Test conditions:</u> As above, but VGA adjusted to min. gain and attenuator A "IN" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).

Parameter, Test Conditions	Symbol	min	typ	max	Unit
Conversion Gain	Gc	-	<-50,0	-	dB

Application Circuit

Notes: Package of all resistors and capacitors: 0603.

All inductors: TOKO LL-1608-FH.

The attenuator A is "OUT" without supplying port A, the gain of the variable gain amplifier is maximum when X6 (VGA) is supplied with +5.0V (for further information about the VGA and the attenuator see "Attenuator State" on page 5).

Pin Definitions and Functions

Pin No.	Symbol	Function	Bias Voltage
1	LO	LO Input	
2	GND1	GND	0V
3	VDLO	Mixer Drain Bias	+5V
4	GND2	GND	0V
5	VDRF1	1 st RF Amp Drain Bias	+5V
6	VDRF3	3 rd RF Amp Drain Bias	+5V
7	GND3	GND	0V
8	8 RF RF Output		
9	A Attenuator Control		+5V, 0V
10	A bar	Attenuator Control bar	0V, +5V
11	VDRF2	2 nd RF Amp Drain Bias	+5V
12	VDVGA	IF VGA Drain Bias	+5V
13	VG	Negative Supply	-5V
14	VGA	IF VGA Control Voltage	-1.6V to +1.8V 1)
15	GND4	GND	0V
16	IF	IF Input	
MW16 Heatsink Slug	GND	OWP Ground	0V

Note 1: A voltage of -1.6V to +1.8V on Pin 14 is equal to a voltage of 0V to +5V on pad X6 of the application circuit.

Attenuator State

Attenuator A "IN" Pin 9 = Low, Pin 10 = High

"OUT" Pin 9 = High, Pin 10 = Low

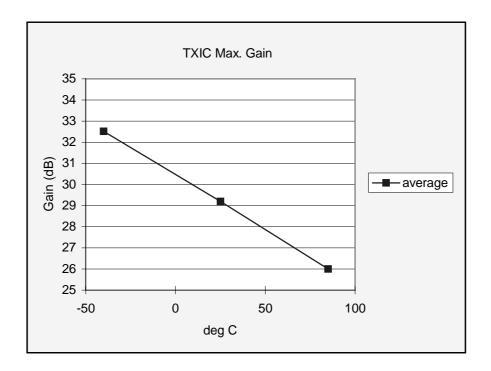
Logic level High: $V_{High} > V_D - 0.15V$ Logic level Low: $V_{Low} < +0.5V$

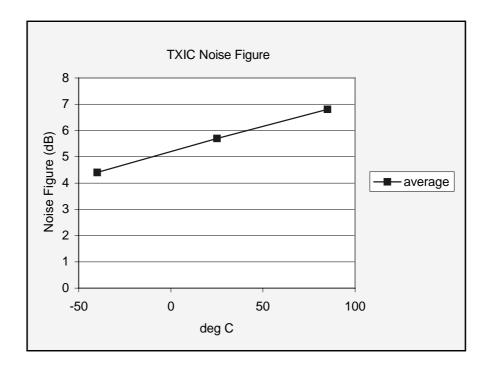
Note: Attenuator "OUT" is defined as maximum gain state.

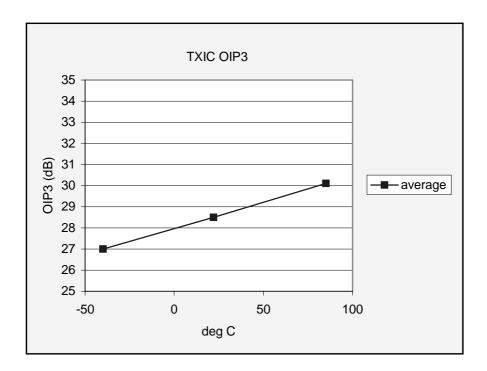
Attenuator "IN" is defined as minimum gain state.

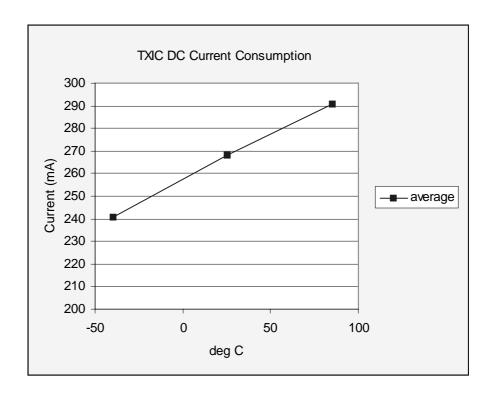
VGA Min. Gain Pin 14 = -1.5V (equal to a voltage of 0V on pad X6 of the

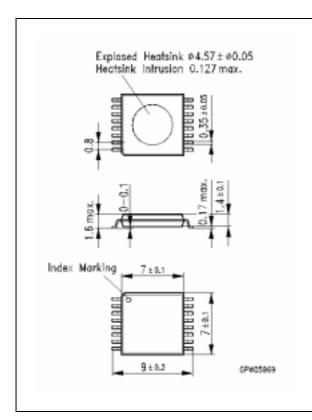
application circuit)


Max. Gain Pin 14 = +1.8V (equal to a voltage of 5V on pad X6 of the


application circuit)


Electrical Characteristics versus Temperature


Test conditions: $V_{\rm DD} = 5$ V, $V_{\rm GG} = -5$ V; $f_{\rm IF} = 1066-1091$ MHz; $P_{\rm IF} = -20$ dBm; $f_{\rm LO} = 2359$ MHz; $P_{\rm LO} = 0$ dBm; $f_{\rm RF} = 3425-3450$ MHz, VGA adjusted to max. gain and attenuator A "OUT" (for further information about the VGA and the attenuator see "Attenuator State" on page 5).



Semiconductor Device Layout MW16

Published by Infineon Technologies AG, Wireless Products Division, GaAs & Sensor Subdivision, WS GS PM P, Balanstraße 73, 81541 Munich, Germany; Postal Address: P.O. Box 800949, 81609 Munich, Germany.

copyright Infineon Technologies 1999. All Rights Reserved.

As fas as patents or other rights of third parties are concerned, liability is only assumed for components per se, not for applications, processes and cirucits implemented within components or assemblies.

The information describes the type of component and shall not be considered as assured characteristics.

Terms of delivery and rights to change design reserved.

For questions on technology, delivery, and prices please contact the Offices of Infineon in Germany or the Infineon Companies and Representatives worldwide.

Due to technical requirements components may contain dangerous substances. For information on the type in question please contact your nearest Infineon Office.

Infineon Technologies AG is an approved QS9000 and ISO9001 manufacturer.