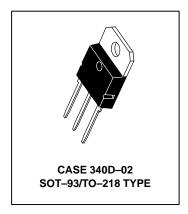

Advance Information

NPN Silicon Power DarlingtonHigh Voltage Autoprotected


The BU323Z is a planar, monolithic, high–voltage power Darlington with a built–in active zener clamping circuit. This device is specifically designed for unclamped, inductive applications such as Electronic Ignition, Switching Regulators and Motor Control, and exhibit the following main features:

- Integrated High–Voltage Active Clamp
- Tight Clamping Voltage Window (350 V to 450 V) Guaranteed
 Over the -40°C to +125°C Temperature Range
- Clamping Energy Capability 100% Tested in a Live Ignition Circuit
- High DC Current Gain/Low Saturation Voltages Specified Over Full Temperature Range
- Design Guarantees Operation in SOA at All Times
- Offered in Plastic SOT–93/TO–218 Type or TO–220 Packages

BU323Z

AUTOPROTECTED
DARLINGTON
10 AMPERES
360-450 VOLTS CLAMP
150 WATTS

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Sustaining Voltage	VCEO	350	Vdc
Collector–Emitter Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous — Peak	IC ICM	10 20	Adc
Base Current — Continuous — Peak	I _B	3.0 6.0	Adc
Total Power Dissipation (T _C = 25°C) Derate above 25°C	PD	150 1.0	Watts W/°C
Operating and Storage Junction Temperature Range	T _J , T _{Stg}	-65 to +175	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	$R_{ heta JC}$	1.0	°C/W
Maximum Lead Temperature for Soldering Purposes: 1/8" from Case for 5 Seconds	TL	260	°C

This document contains information on a new product. Specifications and information herein are subject to change without notice.

Preferred devices are Motorola recommended choices for future use and best overall value.

BU323Z

ELECTRICAL CHARACTERISTICS ($T_C = 25^{\circ}C$ unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS (1)					
Collector–Emitter Clamping Voltage ($I_C = 7.0 \text{ A}$) ($T_C = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}$)	VCLAMP	350	_	450	Vdc
Collector–Emitter Cutoff Current (V _{CE} = 200 V, I _B = 0)	ICEO	_	_	100	μAdc
Emitter–Base Leakage Current (VEB = 6.0 Vdc, IC = 0)	I _{EBO}	_	_	50	mAdc
ON CHARACTERISTICS (1)	•	•		•	•
Base–Emitter Saturation Voltage (I _C = 8.0 Adc, I _B = 100 mAdc) (I _C = 10 Adc, I _B = 0.25 Adc)	VBE(sat)			2.2 2.5	Vdc
Collector–Emitter Saturation Voltage $(I_C=7.0~\text{Adc},~I_B=70~\text{mAdc}) \\ (I_C=8.0~\text{Adc},~I_B=0.1~\text{Adc}) \\ (I_C=10~\text{Adc},~I_B=0.25~\text{Adc}) \\ (I_C=10~\text{Adc},~I_B=0.25~\text{Adc})$				1.6 1.8 1.8 2.1 1.7	Vdc
Base–Emitter On Voltage ($I_C = 5.0$ Adc, $V_{CE} = 2.0$ Vdc) ($I_C = 8.0$ Adc, $V_{CE} = 2.0$ Vdc) ($T_C = -40^{\circ}$ C to +125°	C) VBE(on)	1.1 1.3		2.1 2.3	Vdc
Diode Forward Voltage Drop (I _F = 10 Adc)	VF	_	_	2.5	Vdc
DC Current Gain $(I_C = 6.5 \text{ Adc}, V_{CE} = 1.5 \text{ Vdc})$ $(T_C = -40^{\circ}\text{C to } +125^{\circ}\text{C})$ $(I_C = 5.0 \text{ Adc}, V_{CE} = 4.6 \text{ Vdc})$	C) h _{FE}	150 500	_	 3400	_
DYNAMIC CHARACTERISTICS					
Current Gain Bandwidth (IC = 0.2 Adc, V_{CE} = 10 Vdc, f = 1.0 MHz)	f⊤	_	_	2.0	MHz
Output Capacitance (V _{CB} = 10 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	_	200	pF
Input Capacitance (VEB = 6.0 V)	C _{ib}	_	_	550	pF
CLAMPING ENERGY (see notes)					
Repetitive Non–Destructive Energy Dissipated at turn–off: (IC = 7.0 A, L = 8.0 mH, RBE = 100 Ω) (see Figures 2 and 4)	WCLAMP	200	_	_	mJ
SWITCHING CHARACTERISTICS: Inductive Load (L = 10 mH)					
Fall Time (I _C = 6.5 A, I _{B1} = 45 mA,	t _{fi}	_	625	_	ns
Storage Time $V_{BE(off)} = 0$, $R_{BE(off)} = 0$,	t _{si}	_	10	30	μs
Cross–over Time V _{CC} = 14 V, V _Z = 300 V)	t _C		1.7		μs

⁽¹⁾ Pulse Test: Pulse Width ≤ 300 μs, Duty Cycle = 2.0%.

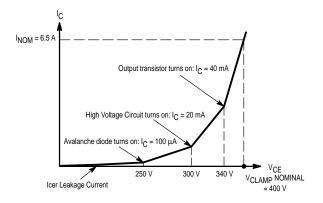


Figure 1. IC = f(VCE) Curve Shape

By design, the BU323Z has a built—in avalanche diode and a special high voltage driving circuit. During an auto—protect cycle, the transistor is turned on again as soon as a voltage, determined by the zener threshold and the network, is reached. This prevents the transistor from going into a Reverse Bias Operating limit condition. Therefore, the device will have an extended safe operating area and will always appear to be in "FBSOA." Because of the built—in zener and associated network, the $I_{\rm C} = f(V_{\rm CE})$ curve exhibits an unfamiliar shape compared to standard products as shown in Figure 1.

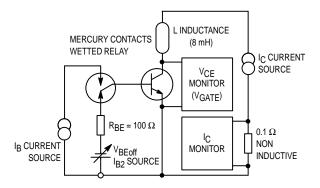


Figure 2. Basic Energy Test Circuit

The bias parameters, VCLAMP, IB1, VBE(off), IB2, IC, and the inductance, are applied according to the Device Under Test (DUT) specifications. VCE and IC are monitored by the test system while making sure the load line remains within the limits as described in Figure 4.

Note: All BU323Z ignition devices are 100% energy tested, per the test circuit and criteria described in Figures 2 and 4, to the minimum guaranteed repetitive energy, as specified in the device parameter section. The device can sustain this energy on a repetitive basis without degrading any of the specified electrical characteristics of the devices. The units under test are kept functional during the complete test sequence for the test conditions described:

IC(peak) = 7.0 A, ICH = 5.0 A, ICL = 100 mA, IB = 100 mA, RBE = 100 Ω , V_{Qate} = 280 V, L = 8.0 mH

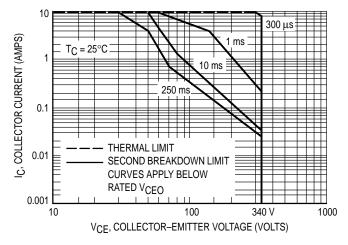
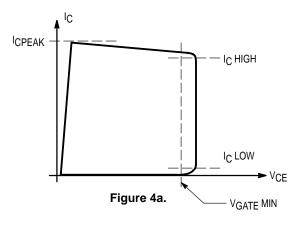
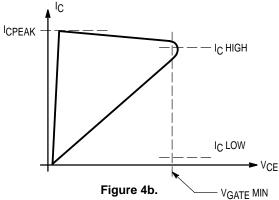
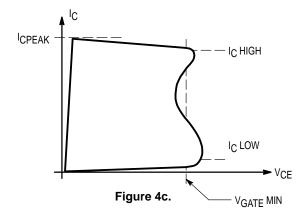
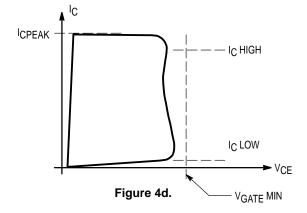






Figure 3. Forward Bias Safe Operating Area

The shaded area represents the amount of energy the device can sustain, under given DC biases ($I_C/I_B/V_BE(off)/R_BE$), without an external clamp; see the test schematic diagram, Figure 2.

The transistor PASSES the Energy test if, for the inductive loadandICPEAK/IB/VBE(off) biases, the VCE remains outside the shaded area and greater than the VGATE minimum limit, Figure 4a.

The transistor FAILS if the V_{CE} is less than the V_{GATE} (minimum limit) at any point along the V_{CE}/I_C curve as shown on Figures 4b, and 4c. This assures that hot spots and uncontrolled avalanche are not being generated in the die, and the transistor is not damaged, thus enabling the sustained energy level required.

The transistor FAILS if its Collector/Emitter breakdown voltage is less than the VGATE value, Figure 4d.

Figure 4. Energy Test Criteria for BU323Z

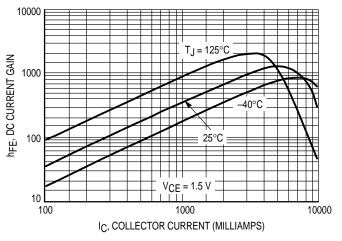


Figure 5. DC Current Gain

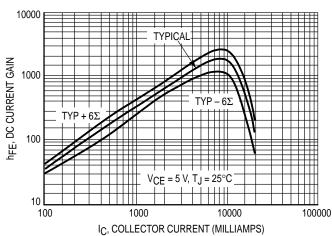


Figure 6. DC Current Gain

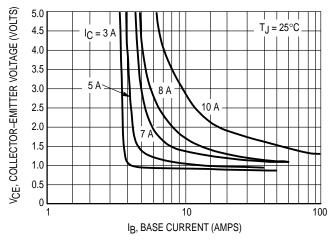


Figure 7. Collector Saturation Region

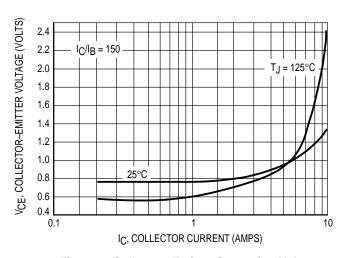


Figure 8. Collector–Emitter Saturation Voltage

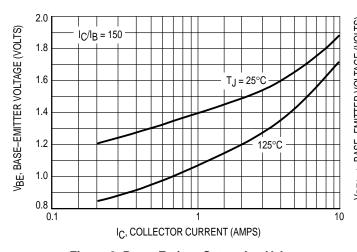


Figure 9. Base–Emitter Saturation Voltage

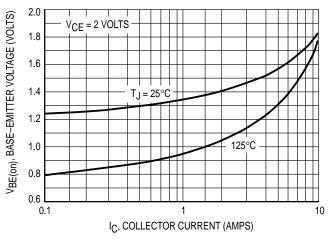
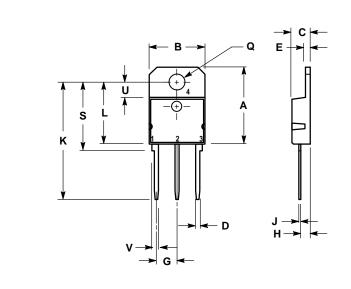



Figure 10. Base-Emitter "ON" Voltages

PACKAGE DIMENSIONS

CASE 340D-02 SOT-93/TO-218 TYPE ISSUE B

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI
 Y14 5M 1982
- 2. CONTROLLING DIMENSION: MILLIMETER.

	MILLIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α		20.35		0.801	
В	14.70	15.20	0.579	0.598	
С	4.70	4.90	0.185	0.193	
D	1.10	1.30	0.043	0.051	
Е	1.17	1.37	0.046	0.054	
G	5.40	5.55	0.213	0.219	
Н	2.00	3.00	0.079	0.118	
J	0.50	0.78	0.020	0.031	
K	31.00	REF	1.220 REF		
L		16.20		0.638	
Q	4.00	4.10	0.158	0.161	
S	17.80	18.20	0.701	0.717	
U	4.00 REF		0.157 REF		
V	1 75 RFF		0.069		

STYLE 1:

PIN 1. BASE

- 2. COLLECTOR
- COLLECTOR
 EMITTER
- 4. COLLECTOR

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454

MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE 602–244–6609 INTERNET: http://Design_NET.com

JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

