60

5...34

200

1.8

 $V_{\rm bb(AZ)}$

 $V_{\rm bb(on)}$

 R_{ON}

 $I_{L(ISO)}$

٧

٧

Α

 $\mathsf{m}\Omega$

Product Summary

Operating voltage

On-state resistance

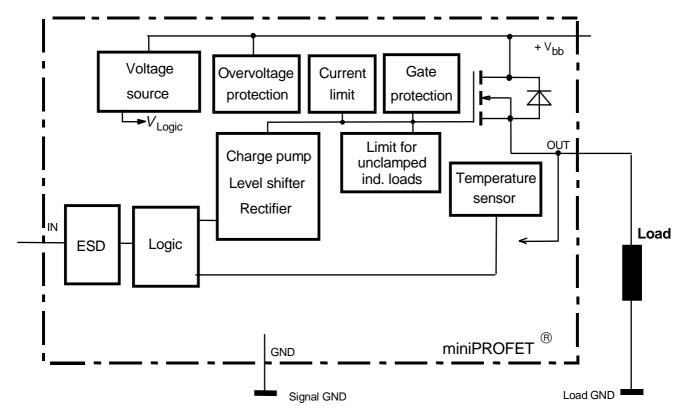
Nominal load current

Overvoltage protection

Smart Power High-Side-Switch

Features

- Overload protection
- Current limitation
- Short circuit protection
- Thermal shutdown with restart
- Overvoltage protection (including load dump)
- Fast demagnetization of inductive loads
- Reverse battery protection with external resistor
- CMOS compatible input
- Loss of GND and loss of V_{bb} protection
- ESD Protection
- Very low standby current


Application

- All types of resistive, inductive and capacitive loads
- μC compatible power switch for 12 V and 24 V DC applications
- Replaces electromechanical relays and discrete circuits

General Description

N channel vertical power FET with charge pump, ground referenced CMOS compatible input, monolithically integrated in Smart SIPMOS[®] technology. Fully protected by embedded protection functions.

Block Diagram

Pin	Symbol	Function
1	GND	Logic ground
2	IN	Input, activates the power switch in case of logic high signal
3	Vbb	Positive power supply voltage
4	NC	not connected
5	OUT	Output to the load
TAB	Vbb	Positive power supply voltage

Maximum Ratings at $T_j = 25$ °C, unless otherwise specified

Parameter	Symbol	Value	Unit
Supply voltage	V _{bb}	40	V
Supply voltage for full short circuit protection	V _{bb(SC)}	tbd	
Continuous input voltage	V _{IN}	-10 +16	
Load current (Short - circuit current, see page 5)	<i>I</i> L	self limited	А
Current through input pin (DC)	/ _{IN}	± 5	μΑ
Operating temperature	Tj	-40+150	°C
Storage temperature	$T_{\rm stg}$	-55 +150	
Power dissipation 1)	P _{tot}	41.6	W
Inductive load switch-off energy dissipation ¹⁾²⁾	E _{AS}	tbd	mJ
single pulse, (see page 8)			
Tj =150 °C			
Load dump protection ²⁾ $V_{\text{LoadDump}}^{3)} = V_{\text{A}} + V_{\text{S}}$	V _{Loaddump}	tbd	V
$R_{\rm I}$ =2 Ω , $t_{\rm d}$ =400ms, $V_{\rm IN}$ = low or high, $V_{\rm A}$ =13,5 V			
Electrostatic discharge voltage (Human Body Model)	V _{ESD}		kV
according to MIL STD 883D, method 3015.7 and			
EOS/ESD assn. standard S5.1 - 1993			
Input pin		± 1	
all other pins		± 5	

Thermal Characteristics

junction - case:	R _{thJC}	-	-	3	K/W
Thermal resistance @ min. footprint	R _{th(JA)}	-	80	-	
Thermal resistance @ 6 cm ² cooling area ¹⁾	R _{th(JA)}	-	45	60	

¹Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 11)

²not tested, specified by design

 $^{^3\}emph{V}_{\text{Loaddump}}$ is setup without the DUT connected to the generator per ISO 7637-1 and DIN 40839 .

Supply voltages higher than $V_{bb(AZ)}$ require an external current limit for the GND pin, e.g. with a

 $^{150\}Omega$ resistor in GND connection. A resistor for the protection of the input is integrated.

Electrical Characteristics					
Parameter	Symbol	Values			Unit
at T_i = 25 °C, V_{bb} =13.5V, unless otherwise specified		min.	typ.	max.	
Load Switching Capabilities and Characteris	tics				
On-state resistance	R _{ON}				mΩ
<i>T</i> _j = 25 °C		-	tbd	200	
<i>T</i> _j = 150 °C			tbd	400	
Nominal load current; Device on PCB 1)	I _{L(ISO)}	1.8	2.2	-	Α
$T_{\rm C} = 85 {\rm ^{\circ}C}, \ V_{\rm ON} = 0.5 {\rm V}$					
Turn-on time to 90% V _{OUT}	t _{on}	-	80	tbd	μs
Turn-off time to 10% V _{OUT}	t _{off}	-	80	tbd	μs
Slew rate on 10 to 30% V _{OUT} ,	dV/dt _{on}	-	1	tbd	V/µs
Slew rate off 70 to 40% V _{OUT} ,	-dV/dt _{off}	-	1	tbd	
Operating Parameters					
Operating voltage	V _{bb(on)}	5	_	34	V
$T_{\rm j} = -40+150 ^{\circ}{\rm C}$	55(611)				
Undervoltage shutdown of charge pump	V _{bb(under)}	-	-	tbd	
Undervoltage restart of charge pump	V _{bb(u cp)}	-	-	tbd	V
Standby current	/ _{bb(off)}				μΑ
$V_{\text{IN}} = 0 \text{ V}, T_{\text{j}} = -40 \dots +85 \text{ °C}$		-	-	10	
$V_{1N} = 0 \text{ V}, \ T_j = 150^{\circ}\text{C}^{2}$		-	-	15	
Leakage output current (included in Ibb(off))	/ _{L(off)}	-	-	tbd	
$V_{IN} = 0 \; V$					
Operating current	I _{GND}	-	1	tbd	mA
$V_{\text{IN}} = 5 \text{ V}$					

¹Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6 cm2 (one layer, 70µm thick) copper area for drain connection. PCB is vertical without blown air. (see page 11)

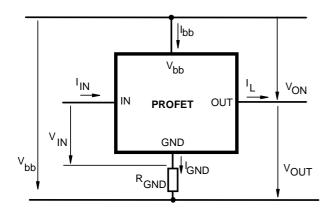
²higher current due temperature sensor

	-4-:	Chara	-4:-4:
Ele	ctricai	Cnara	cteristics

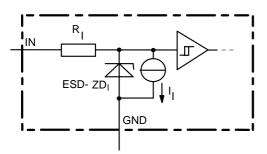
Parameter and Conditions	Symbol		Values		Unit
at T_j = 25 °C, V_{bb} =13.5V, unless otherwise specified		min.	typ.	max.	
Protection Functions					
Initial peak short circuit current limit (pin 3 to 5)	I _{L(SCp)}				Α
$T_{\rm j}$ = -40 °C, $V_{\rm bb}$ = tbd V, $t_{\rm m}$ = tbd μs		-	-	tbd	
$T_{\rm j}$ = 25 °C		-	7.5	-	
T _j = 150 °C		tbd	-	-	
Repetitive short circuit current limit	I _{L(SCr)}	-	tbd	-	
$T_j = T_{jt}$ (see timing diagrams)					
Output clamp (inductive load switch off)	V _{ON(CL)}	60	tbd	-	V
at $V_{\text{OUT}} = V_{\text{bb}} - V_{\text{ON(CL)}}$,					
Overvoltage protection 1)	V _{bb(AZ)}	60	-	-	
T _j = -40+150 °C					
Thermal overload trip temperature	T_{jt}	150	-	-	°C
Thermal hysteresis	$\Delta T_{\rm jt}$	-	10	-	K

Reverse Battery

Reverse battery ²⁾	-Vbb	-	-	tbd	V
Drain-source diode voltage ($V_{OUT} > V_{bb}$)	-V _{ON}	-	tbd	-	mV
<i>T</i> _j = 150 °C					

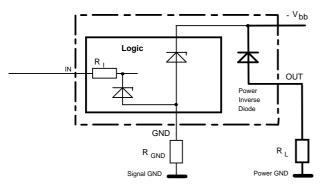

 $¹_{see \; also \; V_{\mbox{ON(CL)}} \; \mbox{in circuit diagram on page 7}$

 $^{^2}$ Requires a 150 Ω resistor in GND connection. The reverse load current through the intrinsic drain-source diode has to be limited by the connected load. Power dissipation is higher compared to normal operating conditions due to the voltage drop across the drain-source diode. The temperature protection is not active during reverse current operation! Input current has to be limited (see max. ratings page 3).



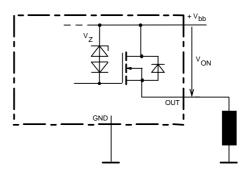
Parameter and Conditions	Symbol	Values			Unit
at T_i = 25 °C, V_{bb} =13.5V, unless otherwise specified		min.	typ.	max.	-
Input	·			•	•
Input turn-on threshold voltage	V _{IN(T+)}	-	-	2.2	V
$T_{j} = -40 \dots +150^{\circ}C$					
Input turn-off threshold voltage	V _{IN(T-)}	0.8	-	-	1
<i>T</i> _j = -40 +150°C					
Input threshold hysteresis	$\Delta V_{\text{IN(T)}}$	-	0.3	-	V
Off state input current	/ _{IN(off)}	1	-	25	μΑ
$V_{\text{IN}} = 0.7 \text{ V}, \ T_{\text{j}} = -40+150 \text{ °C}$					
On state input current	I _{IN(on)}	3	-	25	1
$V_{IN} = 5 \text{ V}, \ T_j = -40+150 \text{ °C}$					
Input resistance (see page 7)	R_{I}	-	3.5	-	kΩ

Terms

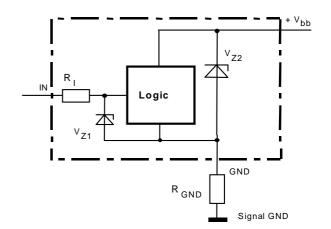


Input circuit (ESD protection)

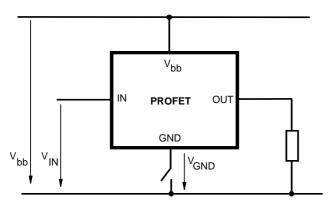
The use of ESD zener diodes as voltage clamp at DC conditions is not recommended


Reverse battery protection

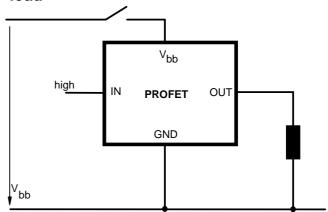
 R_{GND} =150 Ω , R_{I} =3.5 $k\Omega$ typ.,


Temperature protection is not active during inverse current

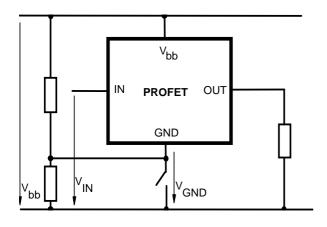
Inductive and overvoltage output clamp

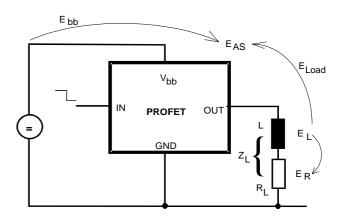

V_{ON} clamped to tbd V typ.

Overvoltage protection of logic part



 V_{Z1} =6.1V typ., V_{Z2} = $V_{bb(AZ)}$ =tbd V typ., R_I=3.5 k Ω typ., R_{GND} =150 Ω


GND disconnect


V_{bb} disconnect with charged inductive load

GND disconnect with GND pull up

Inductive Load switch-off energy dissipation

Energy stored in load inductance: $E_L = \frac{1}{2} * L * I_L^2$ While demagnetizing load inductance, the energy dissipated in PROFET is $E_{AS} = E_{bb} + E_L - E_R = \int V_{ON(CL)} * i_L(t) dt$, with an approximate solution for $R_L > 0\Omega$:

$$E_{AS} = \frac{I_L * L}{2 * R_L} * (V_{bb} + |V_{OUT(CL)|}) * \ln(1 + \frac{I_L * R_L}{|V_{OUT(CL)}|})$$

Timing diagrams

Figure 1a: Vbb turn on:

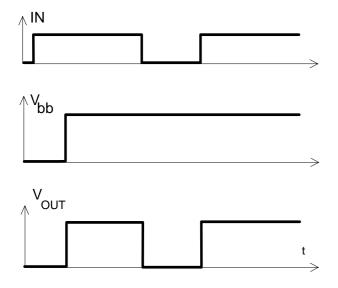
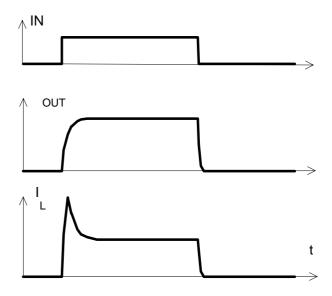



Figure 2b: Switching a lamp,

Figure 2a: Switching a resistive load, turn-on/off time and slew rate definition

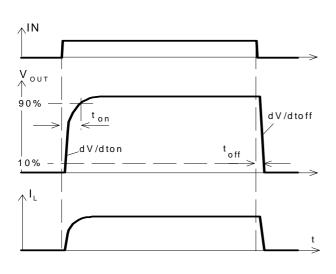
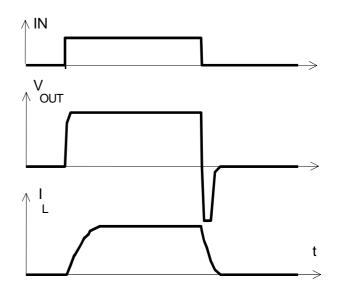
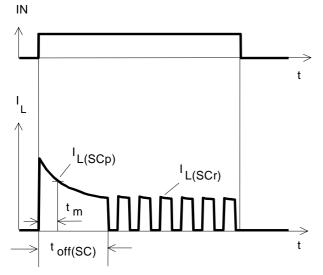




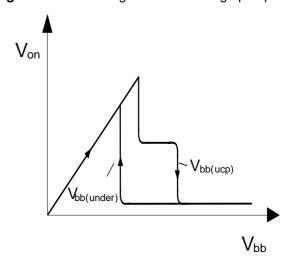
Figure 2c: Switching an inductive load

Figure 3a: Turn on into short circuit, shut down by overtemperature, restart by cooling

Heating up of the chip may require several milliseconds, depending on external conditions.

Figure 4: Overtemperature:

Reset if T_i < T_{it}

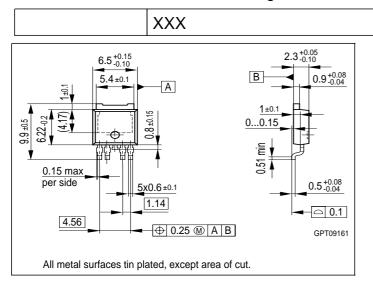

IN

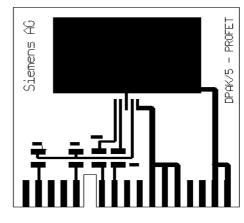
OUT

T

J

Figure 5: Undervoltage restart of charge pump





Package and ordering code

all dimensions in mm

Ordering code:

Printed circuit board (FR4, 1.5mm thick, one layer 70 μ m, 6cm² active heatsink area) as a reference for max. power dissipation P_{tot} nominal load current I_{L(nom)} and thermal resistance R_{thia}

Edition 01 / 1999 Published by Siemens AG, Bereich Halbleiter Vetrieb, Werbung, Balanstraße 73, 81541 München

© Siemens AG 1997

All Rights Reserved.

Attention please!

As far as patents or other rights of third parties are concerned, liability is only assumed for components, not for applications, processes and circuits implemented within components or assemblies.

The information describes a type of component and shall not be considered as warranted characteristics. Terms of delivery and rights to change design reserved.

For questions on technology, delivery and prices please contact the Semiconductor Group Offices in Germany or the Siemens Companies and Representatives worldwide (see address list).

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Siemens Office, Semiconductor Group.

Siemens AG is an approved CECC manufacturer.

Packing

Please use the recycling operators known to you. We can also help you - get in touch with your nearest sales office. By agreement we will take packing material back, if it is sorted. You must bear the costs of transport. For packing material that is returned to us unsorted or which we are not obliged to accept, we shall have to invoice you for any costs incurred.

Components used in life-support devices or systems must be expressly authorized for such purpose!

Critical components¹ of the Semiconductor Group of Siemens AG, may only be used in life-support devices or systems² with the express written approval of the Semiconductor Group of Siemens AG.

- 1)A critical component is a component used in a life-support device or system whose failure can reasonably be expected to cause the failure of that life-support device or system, or to affect its safety or effectiveness of that device or system.
- 2)Life support devices or systems are intended (a) to be implanted in the human body, or (b) to support and/or maintain and sustain and/or protecf human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.