
High Voltage Transistors NPN Silicon

BSS71

CASE 22-03, STYLE 1 TO-18 (TO-206AA)

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector-Emitter Voltage	VCEO	200	Vdc
Collector-Base Voltage	V _{CBO}	200	Vdc
Emitter-Base Voltage	V _{EBO}	6.0	Vdc
Collector Current — Continuous	IC	0.5	Adc
Total Device Dissipation @ T _A = 25°C Derate above 25°C	PD	0.5 2.86	Watts mW/°C
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	2.5 14.3	Watts mW/°C
Operating and Storage Junction Temperature Range	T _J , T _{stg}	-65 to +200	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R ₀ JC	70	°C/W

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit		
OFF CHARACTERISTICS							
Collector-Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0) ⁽¹⁾	V(BR)CEO	200	_	_	Vdc		
Collector-Base Breakdown Voltage (I _C = 100 μAdc, I _E = 0)	V(BR)CBO	200	_	_	Vdc		
Emitter-Base Breakdown Voltage (I _E = 100 μAdc, I _C = 0)	V(BR)EBO	6.0	_		Vdc		
Collector Cutoff Current (V _{CB} = 150 Vdc, I _E = 0)	ICBO		_	50	nAdc		
Collector–Emitter Cutoff Current (V _{CE} = 150 Vdc, I _B = 0)	ICEO		_	500	nAdc		
Emitter Cutoff Current (V _{EB} = 5.0 Vdc, I _C = 0)	IEBO	_	_	50	nAdc		

ON CHARACTERISTICS

DC Current Gain ($I_{C} = 0.1 \text{ mAdc}$, $V_{CE} = 1.0 \text{ Vdc}$) ($I_{C} = 1.0 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$) ($I_{C} = 10 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)(1) ($I_{C} = 30 \text{ mAdc}$, $V_{CE} = 10 \text{ Vdc}$)(1)	hFE	20 30 50 40	40 45 120 140	 250	-
Collector–Emitter Saturation Voltage(1) (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VCE(sat)	_ _ _	0.15 0.25 0.35	0.3 0.4 0.5	Vdc
Base-Emitter Saturation Voltage ⁽¹⁾ (I _C = 10 mAdc, I _B = 1.0 mAdc) (I _C = 30 mAdc, I _B = 3.0 mAdc) (I _C = 50 mAdc, I _B = 5.0 mAdc)	VBE(sat)	_ _ _	0.7 0.8 0.85	0.8 0.9 1.0	Vdc

^{1.} Pulse Test: Pulse Width \leq 300 μ s, Duty Cycle \leq 2.0%.

REV 1

ELECTRICAL CHARACTERISTICS ($T_A = 25^{\circ}C$ unless otherwise noted) (Continued)

Characteristic	Symbol	Min	Тур	Max	Unit	
DYNAMIC CHARACTERISTICS						
Current-Gain — Bandwidth Product (IC = 20 mAdc, VCE = 20 Vdc, f = 20 MHz)	f _t	50	70	200	MHz	
Output Capacitance (I _E = 0, V _{CB} = 20 Vdc, f = 1.0 MHz)	C _{ob}	_	3.5	_	pF	
Input Capacitance (I _C = 0, V _{EB} = 0.5 Vdc, f = 1.0 MHz)	C _{ib}	_	45	_	pF	
Turn–On Time ($I_{B1} = 10 \text{ mAdc}$, $I_{C} = 50 \text{ mAdc}$, $V_{CC} = 100 \text{ Vdc}$)	ton	_	100	_	ns	
Turn–Off Time ($I_{B2} = 10 \text{ mAdc}$, $I_{C} = 50 \text{ mAdc}$, $V_{CC} = 100 \text{ Vdc}$)	^t off	_	400	_	ns	

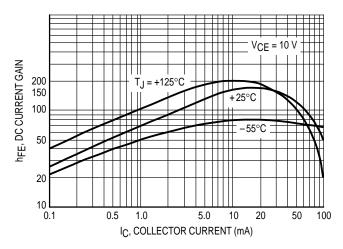


Figure 1. DC Current Gain

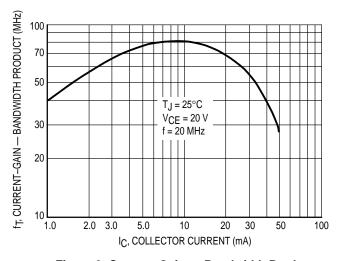


Figure 3. Current-Gain — Bandwidth Product

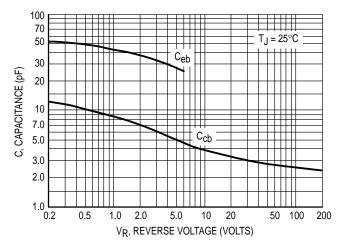


Figure 2. Capacitances

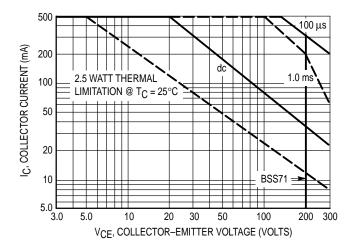


Figure 4. Active-Region Safe Operating Area

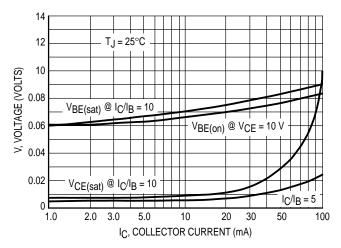
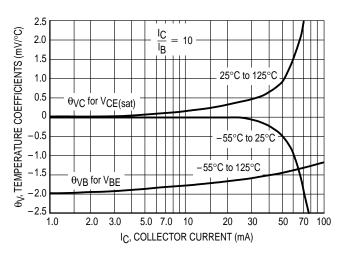



Figure 5. "On" Voltages

Figure 6. Temperature Coefficients

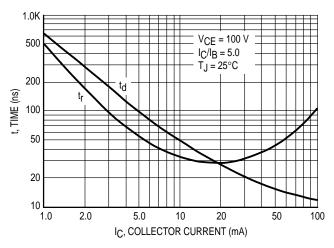


Figure 7. Turn-On Time

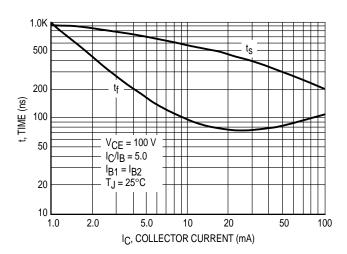


Figure 8. Turn-Off Time

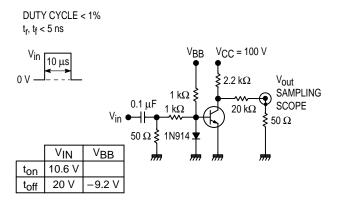
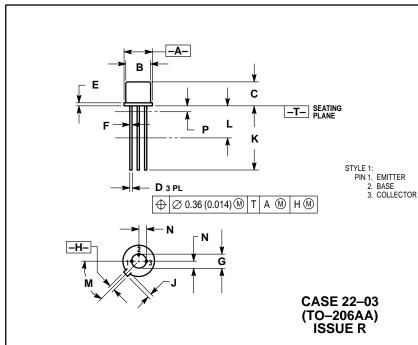



Figure 9. Switching Time Test Circuit

PACKAGE DIMENSIONS

NOTES:

- DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
- CONTROLLING DIMENSION: INCH.
 DIMENSION J MEASURED FROM DIMENSION A MAXIMUM.
- DIMENSION F APPLIES BETWEEN DIMENSION P AND L. DIMENSION D APPLIES BETWEEN DIMENSION L AND K MINIMUM, LEAD DIAMETER IS UNCONTROLLED IN DIMENSION P AND BEYOND DIMENSION K MINIMUM.
- DIMENSION E INCLUDES THE TAB THICKNESS. (TAB THICKNESS IS 0.51(0.002) MAXIMUM).

	INC	HES	MILLIN	IETERS	
DIM	MIN	MAX	MIN	MAX	
Α	0.209	0.230	5.31	5.84	
В	0.178	0.195	4.52	4.95	
С	0.170	0.210	4.32	5.33	
D	0.016	0.021	0.406	0.533	
E		0.030		0.762	
F	0.016	0.019	0.406	0.483	
G	0.100 BSC		2.54 BSC		
Н	0.036	0.046	0.914	1.17	
J	0.028	0.048	0.711	1.22	
K	0.500		12.70		
L	0.250		6.35		
М	45°	45 °BSC		BSC	
N	0.050	BSC	1.27 BSC		
Р		0.050		1.27	

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typical parameters, including or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (M) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 303-675-2140 or 1-800-441-2447

Mfax™: RMFAX0@email.sps.mot.com - TOUCHTONE 602-244-6609 INTERNET: http://Design-NET.com

Mfax is a trademark of Motorola, Inc.

JAPAN: Nippon Motorola Ltd.; Tatsumi-SPD-JLDC, 6F Seibu-Butsuryu-Center, 3-14-2 Tatsumi Koto-Ku, Tokyo 135, Japan. 81-3-3521-8315

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852-26629298

BSS71/D