

NPN Silicon-Germanium RF Transistor

Preliminary Data

- For high gain low noise amplifier
- Noise Figure F = 0.65 dB at 1.8 GHz
- G_{ms}=21dB at 1.8 GHz
- Gold metalization for high reliability
- 70GHz f_{τ} Line
- 10dBm Input IP₃ capability @ 1.95 GHz, V_{ce} =2V, I_{ce} =6mA

ESD: Electrostatic discharge sensitive device, observe handling precautions!

Туре	Marking	Ordering Code	Pin	Pin Configuration			Package
		(8-mm taped)	1	2	3	4	
BFP620			В	Е	С	Е	SOT-343

Maximum Ratings

Parameter	Symbol		Unit
Collector-emitter voltage	Vceo	2.5	V
Collector-base voltage	Vсво	tbd	V
Emitter-base voltage	V _{EBO}	1.5	V
Collector current	<i>I</i> c	80	mA
Base current	lΒ	tbd	mA
Total power dissipation, Ts \leq tbd. ¹⁾²⁾	Ptot	tbd	mW
Junction temperature	Tj	tbd	°C
Ambient temperature range	TA	-65+150°C	°C
Storage temperature range	T _{stg}	-65+150°C	°C

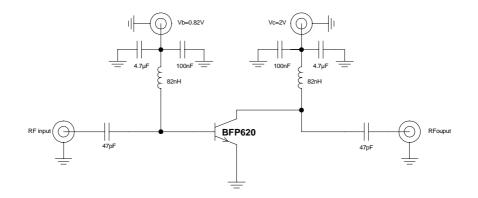
Thermal Resistance

Junction-soldering point	1)	R _{th JS}	tbd	K/W

1) ${\rm T}_S$ is measured on the emitter lead at the soldering point to the pcb.

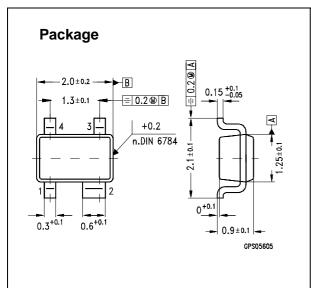
2) P_{tot} due to Maximum Ratings.

Electrical Characteristics


at T_A = 25 °C, unless otherwise specified.

Parameter	Symbol		Unit		
			typ.	max.	
DC Characteristics					
Collector-emitter breakdown voltage	V _{(BR)CEO}	2.5	2.8		V
$I_{\rm C} = 1 \text{ mA}$ Collector-cutoff current	Ісво			200	nA
$V_{\rm CB} = 5 \text{ V}, I_{\rm E} = 0 \text{ mA}$	ICBO	-	-	200	IIA
Emitter base cutoff current	I _{EBO}			10	μA
$V_{\text{EB}} = 1.5 \text{ V}, I_{\text{C}} = 0 \text{ mA}$	200				por t
DC current gain	h _{FE}	150	180	210	
$I_{\rm C} = 20$ mA, $V_{\rm CE} = 1.5$ V					
AC Characteristics					
Collector-base capacitance	C_{cb}	-	0.11	0.2	pF
$V_{\text{CB}} = 2$ V, $V_{\text{BE}} = v_{\text{be}} = 0$ V, $f = 1$ MHz					
Collector-emitter capacitance	Cce	-	0.18	-	pF
$V_{CE} = 2$ V, $V_{BE} = v_{be} = 0$ V, $f = 1$ MHz					
Emitter-base capacitance	\mathcal{C}_{eb}	-	0.45	-	pF
$V_{\text{EB}} = 0.5 \text{ V}, \text{ V}_{\text{CB}} = v_{\text{cb}} = 0 \text{ V}, f = 1 \text{ MHz}$					
Noise figure	F	-	0.65		dB
$I_{\rm C} = 3 \text{ mA}, V_{\rm CE} = 1.5 \text{ V}, f = 1.8 \text{ GHz}, Z_{\rm S} = Z_{\rm Sopt}$					
Power gain	$G_{ms}^{1)}$	-	21	-	dB
$I_{\rm C}$ = 20 mA, $V_{\rm CE}$ = 1.5 V, f = 1.8 GHz,					
$Z_{S} = Z_{Sopt}$, $Z_{L} = Z_{Lopt}$					
Insertion power gain	/S ₂₁ / ²		19	-	dB
$I_{\rm C} = 20$ mA, $V_{\rm CE} = 2$ V, $f = 1.8$ GHz, $Z_{\rm S} = Z_{\rm L} = 50\Omega$	2				
Third order intercept point at output	OIP ₃	-	22	-	dBm
$I_{\rm C} = 20 \text{ mA}, V_{\rm CE} = 2 \text{ V}, f = 1.8 \text{ GHz},$					
$Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt},$					
1dB Compression point	P _{-1dB}	-	12	-	dBm
$I_{\rm C} = 20 \text{ mA}, V_{\rm CE} = 2 \text{ V}, f = 1.8 \text{ GHz},$					
$Z_{S} = Z_{Sopt}, Z_{L} = Z_{Lopt}$					

1)
$$G_{ms} = \left| \frac{S21}{S12} \right|$$


Test Circuit For High IIP₃

SYMBOL	PARAMETER	MIN	TYP	MAX	UNIT
S21 ²	Insertion Power Gain	tbd	16.5	-	dB
NF	Noise figure (50 Ω)	-	1.1	tbd	dB
IIP3	Input Third Order Intercept	tbd	10	-	dBm
RLout	Output Return Loss	-	10	-	dB
RLin	Input Return Loss	-	6	-	dB

Conditions: f=1950MHz, I_{_{CE}}=6mA, Z_{_{L}}=Z_{_{S}}=50\Omega

Published by Infineon Technologies AG i Gr., Bereichs Kommunikation St.-Martin-Strasse 53, D-81541 München © Infineon Technologies AG 1999 All Rights Reserved.

Attention please!

The information herein is given to describe certain components and shall not be considered as warranted characteristics.

Terms of delivery and rights to technical change reserved. We hereby disclaim any and all warranties, including but not limited to warranties of non-infringement, regarding circuits, descriptions and charts stated herein. Infineon Technologies is an approved CECC manufacturer.

Information

For further information on technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies Office in Germany or our Infineon Technologies Representatives worldwide (see address list).

Warnings

Due to technical requirements components may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies Office.

Infineon Technologies Components may only be used in life-support devices or systems with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system, or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body, or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.