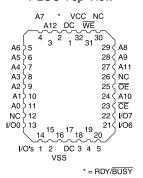
Features

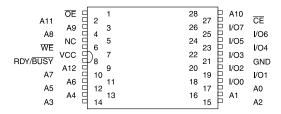
- 2.7V to 3.6V Supply
 Full Read and Write Operation
- Low Power Dissipation
 8 mA Active Current
 50 μA CMOS Standby Current
- Read Access Time 300 ns
- Byte Write 3 ms
- Direct Microprocessor Control
 DATA Polling
 READY/BUSY Open Drain Output
- High Reliability CMOS Technology Endurance: 100,000 Cycles Data Retention: 10 Years
- JEDEC Approved Byte-Wide Pinout
- Commercial and Industrial Temperature Ranges

Description

The AT28BV64 is a low-voltage, low-power Electrically Erasable and Programmable Read Only Memory specifically designed for battery powered applications. Its 64K of memory is organized 8,192 words by 8 bits. Manufactured with Atmel's advanced nonvolatile CMOS technology, the device offers access times to 200 ns with power dissipation less than 30 mW. When the device is deselected the standby current is less than 50 μA .


The AT28BV64 is accessed like a Static RAM for the read or write cycles without the need for external components. During a byte write, the address and data are latched internally, freeing the microprocessor address and data bus for other operations. Fol
(continued)

Pin Configurations


Pin Name	Function
A0 - A12	Addresses
CE	Chip Enable
ŌE	Output Enable
WE	Write Enable
I/O0 - I/O7	Data Inputs/Outputs
RDY/BUSY	Ready/Busy Output
NC	No Connect
DC	Don't Connect

PDIP, SOIC Top View

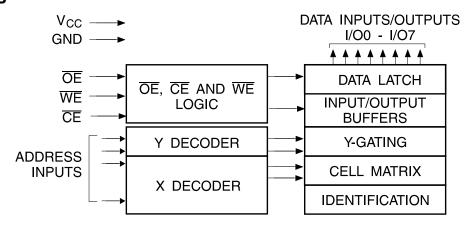
PLCC Top View

TSOP Top View

64K (8K x 8)

Battery-Voltage[™]
CMOS
E²PROM

0493A



Description (Continued)

lowing the initiation of a write cycle, the device will go to a busy state and automatically clear and write the latched data using an internal control timer. The device includes two methods for <u>detecting</u> the <u>end</u> of a write cycle, level detection of RDY/BUSY and DATA polling of I/O₇. Once the end of a write cycle has been detected, a new access for a read or write can begin.

Atmel's 28BV64 has additional features to ensure high quality and manufacturability. The device utilizes error correction internally for extended endurance and for improved data retention characteristics. An extra 32-bytes of E²PROM are available for device identification or tracking.

Block Diagram

Absolute Maximum Ratings*

Temperature Under Bias55°C to +125°C
Storage Temperature65°C to +150°C
All Input Voltages (including NC Pins) with Respect to Ground0.6V to +6.25V
All Output Voltages with Respect to Ground0.6V to V _{CC} + 0.6V
Voltage on \overline{OE} and A9 with Respect to Ground0.6V to +13.5V

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Device Operation

READ: The AT28BV64 is accessed like a Static RAM. When CE and OE are low and WE is high, the data stored at the memory location determined by the address pins is asserted on the outputs. The outputs are put in a high impedance state whenever CE or OE is high. This dual line control gives designers increased flexibility in preventing bus contention.

BYTE WRITE: Writing data into the AT28BV64 is similar to writing into a Static RAM. A low pulse on the WE or CE input with OE high and CE or WE low (respectively) initiates a byte write. The address location is latched on the falling edge of WE (or CE); the new data is latched on the rising edge. Internally, the device performs a self-clear before write. Once a byte write has been started, it will automatically time itself to completion. Once a programming operation has been initiated and for the duration of twc, a read operation will effectively be a polling operation.

READY/BUSY: Pin 1 is an open drain READY/BUSY output that can be used to detect the end of a write cycle. RDY/BUSY is actively pulled low during the write cycle and is released at the completion of the write. The open drain connection allows for OR-tying of several devices to the same RDY/BUSY line.

DATA POLLING: The AT28BV64 provides DATA POLLING to signal the completion of a write cycle. During a write cycle, an attempted read of the data being written results in the complement of that data for I/O₇ (the other outputs are indeterminate). When the write cycle is finished, true data appears on all outputs.

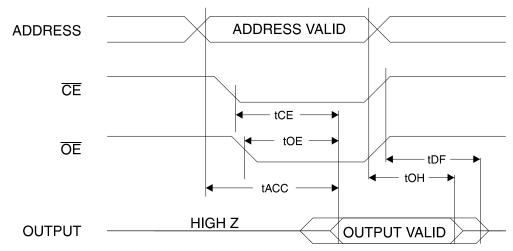
WRITE PROTECTION: Inadvertent writes to the device are protected against in the following ways. (a) V_{CC} sense— if V_{CC} is below 1.8V (typical) the write function is inhibited. (b) V_{CC} power on delay— once V_{CC} has reached 2.0V the device will automatically time out 10 ms (typical) before allowing a byte write. (c) Write Inhibit—holding any one of OE low, CE high or WE high inhibits byte write cycles.

DC and AC Operating Range

		AT28BV64-30
Operating Temperature (Case)	Com.	0°C - 70°C
	Ind.	-40°C - 85°C
Vcc Power Supply		2.7V to 3.6V

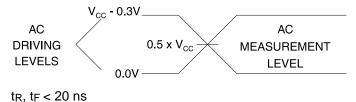
Operating Modes

Mode	CE	ŌE	WE	I/O	
Read	V _{IL}	VIL	VIH	D _{OUT}	
Write (2)	V _{IL}	VIH	VIL	D _{IN}	
Standby/Write Inhibit	ViH	X ⁽¹⁾	X	High Z	
Write Inhibit	X	X	VIH		
Write Inhibit	Χ	VIL	X		
Output Disable	Х	VIH	Х	High Z	


DC Characteristics

Symbol	Parameter	Condition	Min	Max	Units
ILI	Input Load Current	$V_{IN} = 0V$ to $V_{CC} + 1.0V$		5	μΑ
ILO	Output Leakage Current	$V_{I/O} = 0V$ to V_{CC}		5	μΑ
ISB	Vcc Standby Current CMOS	$\overline{\text{CE}}$ = V _{CC} - 0.3V to V _{CC} + 1.0V		50	μΑ
Icc	V _{CC} Active Current AC	f = 5 MHz; I _{OUT} = 0 mA; CE = V _{IL}		8	mA
VIL	Input Low Voltage			0.6	V
VIH	Input High Voltage		2.0		V
Vo	Output Low Voltage	I _{OL} = 1 mA		0.3	V
VoL	Output Low Voltage	$I_{OL} = 2 \text{ mA for RDY/BUSY}$		0.3	V
Vон	Output High Voltage	Іон = -100 μΑ	2.0		V

AC Read Characteristics


		AT28BV64-30		
Symbol	Parameter	Min	Max	Units
tACC	Address to Output Delay		300	ns
tce (1)	CE to Output Delay		300	ns
toE (2)	OE to Output Delay	0	150	ns
t _{DF} (3, 4)	CE or OE High to Output Float	0	60	ns
tон	Output Hold from OE, CE or Address, whichever occurred first	0		ns

AC Read Waveforms (1, 2, 3, 4)

- Notes: 1. $\overline{\text{CE}}$ may be delayed up to t_{ACC} t_{CE} after the address transition without impact on t_{ACC} .
 - 2. OE may be delayed up to t_{CE} t_{OE} after the falling edge of CE without impact on t_{CE} or by t_{ACC} t_{OE} after an address change without impact on t_{ACC}.
- 3. t_{DF} is specified from \overline{OE} or \overline{CE} whichever occurs first $(C_L = 5 \text{ pF})$.
- 4. This parameter is characterized and is not 100% tested.

Input Test Waveforms and Measurement Level

Pin Capacitance (f = 1 MHz, T = 25°C) (1)

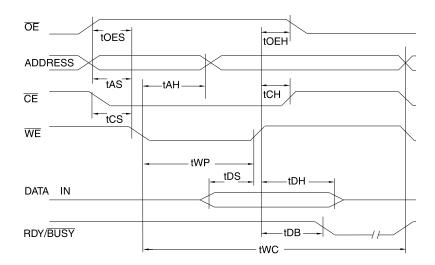
1.8K	
OUTPUT	
1.3K 100 pF	

Output Test Load

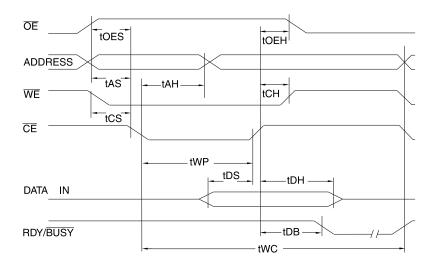
 V_{CC}

	Тур	Max	Units	Conditions
CIN	4	6	pF	VIN = 0V
Cout	8	12	pF	$V_{OUT} = 0V$

Note: 1. This parameter is characterized and is not 100% tested.



AC Write Characteristics

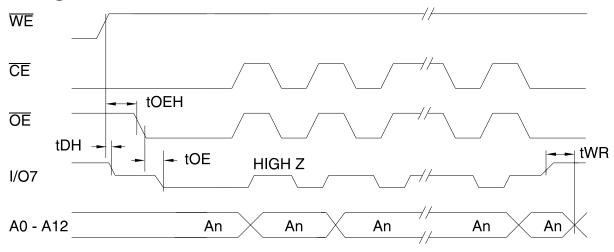

Symbol	Parameter	Min	Max	Units
tas, toes	Address, OE Set-up Time	10		ns
tah	Address Hold Time	100		ns
twp	Write Pulse Width (WE or CE)	150	1000	ns
t _{DS}	Data Set-up Time	100		ns
tDH, tOEH	Data, OE Hold Time	10		ns
t _{DB}	Time to Device Busy		50	ns
twc	Write Cycle Time		3	ms

AC Write Waveforms

WE Controlled

CE Controlled

AT28BV64


Data Polling Characteristics (1)

Symbol	Parameter	Min	Тур	Max	Units
tDH	Data Hold Time	10			ns
toeh	OE Hold Time	10			ns
toE	OE to Output Delay (2)				ns
t _{WR}	Write Recovery Time	0			ns

Notes: 1. These parameters are characterized and not 100% tested.

2. See AC Read Characteristics.

Data Polling Waveforms

Ordering Information (1)

tACC	Icc (mA)		Icc (mA) Operating Ordering Code				
(ns)	Active	Standby	N/ - 14	Ordering Code	Package	Operation Range	
300	8	0.05	2.7V to 3.6V	AT28BV64-30JC AT28BV64-30PC AT28BV64-30SC AT28BV64-30TC	32J 28P6 28S 28T	Commercial (0°C to 70°C)	
	8	0.05	2.7V to 3.6V	AT28BV64-30JI AT28BV64-30PI AT28BV64-30SI AT28BV64-30TI	32J 28P6 28S 28T	Industrial (-40°C to 85°C)	

Note: 1. See Valid Part Number table below.

Valid Part Numbers

The following table lists standard Atmel products that can be ordered.

Device Numbers	Speed	Package and Temperature Combinations
AT28BV64	30	JC, JI, PC, PI, SC, SI, TC, TI

Package Type			
32J	32 Lead, Plastic J-Leaded Chip Carrier (PLCC)		
28P6	28 Lead, 0.600" Wide, Plastic Dual Inline Package (PDIP)		
28S	28 Lead, 0.300" Wide, Plastic Gull Wing, Small Outline (SOIC)		
28T	28 Lead, Plastic Thin Small Outline Package (TSOP)		

AT28BV64