AN8122FAP

High Speed Low Power Consumption 8-Bit A/D Converter

Overview

The AN8122FAP is a 8-bit A/D convertor for image processing which uses the high speed bipolar process, realizing the low power consumption and analogue input band of 60MHz. It can operate with single power supply of 5V and maximum conversion rate of 50MSPS.

Features

- 8-bit resolution
- Maximum conversion rate : 50MSPS(min.)
- Wide input band : 60MHz, typ.(-3dB)
- Low power consumption : 150mW(typ.)
- Operation on single power supply of 5V
- Low input capacitance : 15pF
- Input/Output form : TTL level compatible
- Application Field
- Image processing
- Measuring equipment such as digital oscilloscope

■ Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit
Supply voltage	V _{CC}	- 0.3 to +6.0	V
Analogue input voltage	V _{IN}	0 to V_{CC} + 0.3	V
Digital input voltage	V _{CLK} /MINV/ENB	-0.3 to V _{CC} $+0.3$	V
Digital output current	$I_{\rm D7}$ to $I_{\rm D0/OVF}$	-15	mA
Reference resistive current	I _{RT} /I _{RB}	+50/-50	mA
Reference voltage	V _{RT} /V _{RB}	0 to V_{CC} + 0.3	V
Power dissipation	PD	334*	mW
Operating ambient temperature	T _{opr}	-20 to 75	°C
Storage temperature	T _{stg}	-55 to 150	°C

* Ta=75°C

■ Recommended Operating Conditions (Ta=25°C)

Parameter	Symbol	min	typ	max	Unit
Supply voltage	V _{CC}	4.75	5.0	5.25	V
Reference voltage	Vrt		5.0		V
	V _{RB}		3.0		V
Analogue input voltage	V _{IN}	V _{RB}		Vrt	V
Digital input voltage	V _{IH}	2.0			V
	V _{IL}			0.8	V
Clock input pulse width *	t _H		14		ns

* f_{CLK}=35MHz

Electrical Characteristics ($V_{CC}=5V$, Ta=25°C)

Parameter	Symbol	Condition	min	typ	max	Unit
Supply current	I _{CC}			30	50	mA
Reference power supply output voltage	V _{RO}	I _{RO} =10mA, V _{RVCC} =5.0V	2.8	3.0	3.2	v
Reference supply current	I _{RVCC}	Reference power supply output under no Load		2.0		mA
Defense meisting annut	I _{RT}	V _{RT} =5.0V		9	20	mA
Reference resistive current	I _{RB}	V _{RB} =3.0V	-20	-9		mA
Input bias current	I _{IN}	V _{IN} =4.0V		40	120	μΑ
Digital input ourrant	I _{IH}	V _{IH} =2.7V		100	145	μΑ
Digital input current	I _{IL}	V _{IL} =0.4V	-145	-100		μΑ
	V _{OH}	$I_{OH} = -400 \mu A$	2.7	3.4		V
Digital output voltage	V _{OL}	I _{OL} =1.6mA		0.2	0.4	V
Linearity error	EL	$V_{RT}-V_{RB}=2.0V$		±0.25	±0.65	LSB
Differential linearity error	ED	$V_{RT} - V_{RB} = 2.0V$		- 0.25	±0.65	LSB
Maximum conversion rate	F _{CMAX}		50			MHz
Maximum conversion rate				2		V _{p-p}
Equivalent input impedance *1	R _{IN}	V _{IN} =4V		50		kΩ
Input capacitance *1	C _{IN}	V _{IN} =4V		15		pF
Quantization noise *2	SINAD	f _{CLK} =35MHz, f _{IN} =5MHz		45		dB
		f _{CLK} =35MHz, f _{IN} =10MHz		43		dB
Input band *1	BW _F	V _{IN} =2V _{p-p} , -3dB		60		MHz
Clock duty *1	DTY	f _{CLK} =50MHz		50		%
Digital output delay *1	τ_{d}			20		ns

*1 Design reference value but not guaranteed one

*2 Total harmonics distortion included

■ Timing Chart

Output Code

	Input signal	Digital output		
Step		MINV L	MINV=H	
	2.000VFS 7.8125mV STEP	M L OVF 76543210	M L OVF 76543210	
000	3.00000	0 00000000	0 10000000	
001	3.00781	0 00000001	0 10000001	
•			•	
•		•	•	
•		•	•	
127	3.99218	0 01111111	0 11111111	
128	4.00000	0 10000000	0 00000000	
129	4.00781	0 10000001	0 00000001	
•		•	•	
•		•	•	
•		•	•	
255	4.99218	0 11111111	0 01111111	
256	5.00000	1 11111111	1 01111111	

Pin No.	Symbol	Pin name	Standard waveform	Voltage level	Description
29	VIN	Analogue input		3 to 5V	It is an input pin of analogue signal for A/D conversion circuit.
7, 18 26, 31	AGND	Analogue ground		0V	Connect AGND and DGND with the possible lowest impedance at one point as near as possible to the chip.
28 30	AV _{CC}	Analogue power supply pin		5V	It is a power supply pin for analogue. Connect tantalum capacitor of several μ F and ceramic capacitor of 0.1μ F as near as possible to this pin between this pin and AGND.
5 21	DV _{cc}	Digital power supply pin		5V	It is a power supply pin for digital. Connect tantalum capacitor of several μ F and ceramic capacitor of 0.1 μ F as near as possible to this pin between this pin and DGND.
32 25	V _{RT} V _{RB}	Reference voltage high level, Reference voltage low level		5V 3V	It is used to set the reference voltage for comparator. Normally, V_{RT} is given 5V and V_{RB} is given 3V. Connect tantalum capacitor of several μ F and ceramic capacitor of 0.1 μ F in parallel between each pin and analogue ground.
4 22	DGND	Digital ground		0V	Connect AGND and DGND with the possible lowest impedance at one point as near as possible to the chip.
2	CLK	Clock input	Refer to the timing chart.	TTL	It is a clock for sampling. For their timing, refer to the timing chart.
6 9 10 11 12 13 14 15 16	OVF D7 D6 D5 D4 D3 D2 D1 D0	Overflow output, Digital output (LSB), Digital output, Digital output, Digital output, Digital output, Digital output, Digital output, Digital output, Digital output,	Refer to the timing chart.	TTL	It is an output pin of TTL Level.
19	MINV	Output code setting pin	Refer to the output code table.	TTL	Setting the MINV pin to "H" level sets the digital output code to 2's complement code and setting it to "L" level sets the digital output code to binary code. The output is reversed synchronously with clock.
23	ENB	Output enabling pin		TTL	Setting the ENB pin to "H" level enters the digital output pins (D0 - D7) into high impedance mode and setting it to "L" level enters them into enabling mode in which the digital data is outputted.
20 27	V _{RO} V _{RVCC}	Reference voltage output, Power supply pin for reference power supply		V_{CC} -2.0V V_{CC}	It is a power supply output pin for A/D ref- erence voltage. It is V_{CC} pin for reference power supply.

■ Pin Descriptions

Pin No. 1, 3, 8, 17, 24 : NC