

Low Distortion 1.2GHz Differential Amplifier

Preliminary Technical Data

AD8350

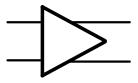
FEATURES

High Dynamic Range

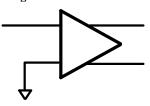
Output IP3: +24 dBm @250 MHz 6.1 dB @250 MHz Low Noise Figure:

TwoGain Versions:

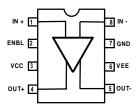
AD8350-15 15 dB AD8350-20 20 dB 1.2 GHz -3 dB Bandwidth: Performance Bandwidth: 500 MHz


Single/Dual Supply Operation: +5 to +10V, +/-5V

Supply Current: 28 mA Input/Output Impedance: 200 ohms Single Ended or Differential Input Drive 8 Pin SOIC & microSO Packages


APPLICATIONS

Cellular Base Stations Communications Receivers RF/IF Gain Block Differential A to D Buffer **SAW Filter Interface High Performance Video High Speed Data Transmission**


Differential Input/Output

Single In/Differential Out

RECHINICAL 8 Pin SOIC and Micro-SO Package (with enable)

PRODUCT DESCRIPTION

The AD8350 series are high performance fully-differential amplifiers useful in RF and IF circuits up to 1200 MHz. The amplifier has excellent noise figure of 6.1 dB at 250 MHz. It offers a high output third order intercept (OIP3) of +24dBm at 250 MHz. Gain versions of 15 and 20 dB are offered.

The AD8350 is designed to meet the demanding performance requirements of communications transceiver applications. It enables a high dynamic range differential signal chain, with exceptional linearity and increased common-mode rejection. The device can be used as a general purpose gain block, an A-to-D buffer, and high speed data interface driver, among other functions. The AD8350 input can also be used in a single ended mode, providing a low distortion single-ended to differential conversion.

The amplifier can be operated down to 5 volt with an OIP3 is +22 dBm at 250 MHz and slightly reduced distortion performance. The wide bandwidth, high dynamic range and temperature stability make

Rev PrH

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties which may result from it use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

this product ideal for the various RF and IF frequencies required in cellular, PCS, wireless local loop and other applications.

The AD8350 is offered in two small SMT packages: an 8 pin SOIC and a microSO package. It operates from ± -5 or 0 to ± 10 volt power supplies in the SOIC package, drawing 28mA typical. Alternatively, the amplifier can be operated from a single +5 volt supply in the microSO package. The SOIC version offers a power enable function for power-sensitive applications. The AD8350 is fabricated using Analog Devices' proprietary high speed complementary bipolar process. The device is available in the industrial $(-40^{\circ} \text{ to } +85^{\circ}\text{C})$ temperature range.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, USA Tel.: 781/329-4700 World Wide Web Site: http://www.analog.com Fax: 781/326-8703 Analog Devices, Inc. 1998

AD8350 SPECIFICATIONS

SINGLE ENDED AND DIFFERENTIAL OPERATION

 $(Unless \ otherwise \ noted \ T_A=+25; \ Freq=250MHz, 200\Omega \ source \ \& \ load, \ 20dB \ gain \ version)$

PARAMETER	CONDITION/NOTE	+10V (or +/-5V)	+5V	UNITS
AC PERFORMANCE				
Operating Frequency		1200		MHz
Gain		20		dB
Output 2rd Order Intercept	@ 250 MHz	+30	+27	dBm
Output 3rd Order Intercept	@250 MHz	+24	+22	dBm
Input 1 dB Gain Compression		-0.5 6.1	-7 6.1	dBm dB
Noise Figure Spectral Input Noise Voltage		1.7	1.7	ав nV/√Hz
Isolation	Input to Output	-22	1.7	dB
CMRR	input to Output	TBD		dB
PSRR		TBD		dB
		1		
INPUT CHARACTERISTICS		200		0
Input Impedance	lans marks as offerts	200		Ω
Input Capacitance Input Return Loss	less package effects	1.7 22		pF dB
input Return Loss		22		uБ
		DV		
OUTPUT CHARACTERISTICS				
Output Impedance	OF All	200		Ω
Output Return Loss	06 -141	19		dB
	X , < C.Y , < b			
DOWED CLIDDLIES	less package effects			
POWER SUPPLIES Positive Supply (Vs)	1 / A A A A A A A A A A	10	5	V
Supply Current	, ()	32	28	mA
supply Current		32	20	11111
ABSOLUTE MAXIMUM RAT	INGS			
Power Supply		11	0	VDC
Input Power	-40		8 +85	dBm ° C
Operating Temperature	-40	ı	+85	C

Rev PrH 11/98

PINFUNCTIONDESCRIPTIONS

TINTUNCTION DESCRIPTIONS				
PIN	NAME	DESCRIPTION		
1,8	IN+,IN-	Differential Inputs. IN+ and IN-		
		should be ac-coupled (pins have a		
		dc bias level of mid-supply).		
		Differential input impedance is		
		200Ω . To drive the input single-		
		ended, one input should be ac-		
		coupled to ground. Single-ended		
		input impedance is equal to		
		175Ω.		
2	ENBL	Power up pin. A high level (Vcc)		
		enables the device; a low level		
		(0V) puts the device in sleep mode.		
3,6	VCC, VEE	Power supply. For dual supply		
3,0	VCC, VEE	operation, +/-5V can be used. For		
		single supply operation a supply		
		voltage of +5V to +10V on VCC		
		(VEE = 0V) is recommended		
4,5	OUT+ OUT-	Differential Ouput. OUT+ and		
.,.	0011,001	OUT- should be ac-coupled (pins		
		have a dc bias level of mid-supply).		
		Differential output impedance is		
		200Ω.		
7	GND	Ground Reference for ENBL		
	I			

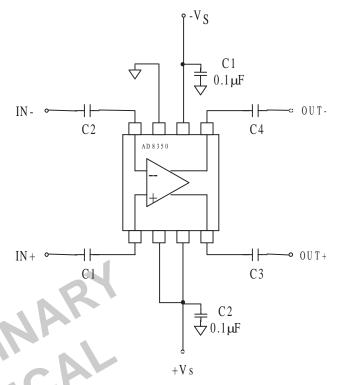


Figure 1. AD8350 Basic Connections for dual supply operation

Basic Connections

Figure 1 shows the basic connections for operating the AD8350. Ā power supply in the range +/-2.5 V to +/-5 V

is required. Both power supply pins should be decoupled using 0.1uF capacitors. Figure 2 shows the recommended connections for operation on a single supply. Vee is now grounded and a voltage of between +5V and +10V is applied to the Vcc pin. The ENBL pin is tied to the positive supply for normal operation and should be pulled to ground to put the device in sleep mode. Both the inputs and the outputs have dc bias levels at mid-supply and should normally be ac-coupled.

Figure 2. Basic Connections for single supply operation

Evaluation Board

Figure 3 shows the schematic of the AD8350 evaluation board as it is shipped from the factory. The board is configured to allow easy evaluation using single-ended 50Ω test equipment. The input and output transformers have a 4 to 1 impedance ratio and transform the AD8350's 200 Ω input and output impedances to 50 Ω .



Figure 3. AD8350 Evaluation Board