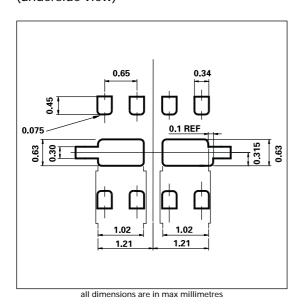

MPPS™ Miniature Package Power Solutions COMBINATION DUAL DIE MLP EVALUATION BOARD THERMAL **SPECIFICATION SHEET**

EVALUATION BOARD DIAGRAM



DEVICE	PIN CONNECTIONS					
	1	2	3	4	5	6
Dual Transistor	C1	В1	E1	В2	E2	C2
Dual MOSFET	D1	S1	G1	S2	G2	D2

Note: Designers needing to evaluate electrical performance using the thermal evaluation boards must be aware that the device(s) pass the the datasheet limits but the resistance paths of the PCB contribute significant series resistance.

This should be taken into account when measuring higher current VCE(sat) , VBE(sat) and VBE(on) parameters.

RECOMMENDED FOOTPRINT 3mm x 2mm MLP (underside view)

3mm x 2mm (Dual die) MLP

SHORTFORM TABLES (see page 3)

ZETEX

ZXTD**M832EV ZXM***M832EV

${\rm P_D}$ & THERMAL DATA

PARAMETER	SYMBOL	LIMIT	UNIT	
Power Dissipation at TA=25°C				
Power Dissipation at TA=25°C (a)(f) Linear Derating Factor	PD	1.5 12	W mW/°C	
Power Dissipation at TA=25°C (b)(f) Linear Derating Factor	P _D	2.45 19.6	W mW/°C	
Power Dissipation at TA=25°C (c)(f) Linear Derating Factor	PD	1 8	W mW/°C	
Power Dissipation at TA=25°C (d)(f) Linear Derating Factor	PD	1.13 9	W mW/°C	
Power Dissipation at TA=25°C (d)(g) Linear Derating Factor	P _D	1.7 13.6	W mW/°C	
Power Dissipation at TA=25°C (e)(g) Linear Derating Factor	P _D	3 24	W mW/°C	
Operating and Storage Temperature Range	T _j :T _{stg} -55 to +150		°C	
THERMAL RESISTANCE				
Junction to Ambient (a)(f)	$R_{\theta JA}$	83.3	°C/W	
Junction to Ambient (b)(f)	$R_{\theta JA}$	51	°C/W	
Junction to Ambient (c)(f)	$R_{\theta JA}$	125	°C/W	
Junction to Ambient (d)(f)	$R_{\theta JA}$	111	°C/W	
Junction to Ambient (d)(g)	$R_{\theta JA}$	73.5	°C/W	
Junction to Ambient (e)(g)	$R_{\theta JA}$	41.7	°C/W	

Notes

(a) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(b) Measured at t<5 secs for a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

(c) For a dual device surface mounted on 8 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with minimal lead connections only.

(d) For a dual device surface mounted on 10 sq cm single sided 1oz copper on FR4 PCB, in still air conditions with all exposed pads attached attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.

- (e) For a dual device surface mounted on 85 sq cm single sided 2oz copper on FR4 PCB, in still air conditions with all exposed pads attached. The copper area is split down the centre line into two separate areas with one half connected to each half of the dual device.
- (f) For a dual device with one active die.
- (g) For dual device with 2 active die running at equal power.
- (i) The minimum copper dimensions required for mounting are no smaller than the exposed metal pads on the base of the device as shown in the package dimensions data. The thermal resistance for a dual device mounted on 1.5mm thick FR4 board using minimum copper 1 oz weight, 1mm wide tracks and one half of the device active is Rth = 250°C/W giving a power rating of Ptot = 500mW.

ZXTD**M832EV ZXM***M832EV

Notes

ZXTD**M832EV ZXM***M832EV

SHORTFORM TABLE (Transistor)

Dual Transistor	Part		V _{CEO}	I _C	Combination Dual	Part	Polarity	V _{CEO}	Ic
Device Type	Code		V	Α	Device Type	Code		v	Α
			#ZXTDA1M832EV	DA1	NPN	15	4.5		
#ZXTDAM832EV	ZXTDBM832EV DBB NPN &		4.5	#ZXIDATIVIO3ZEV	JAI	PNP	-12	-4	
#ZXTDBM832EV		NPN	20 50	4.5 4	#ZXTDB2M832EV	DB2	NPN	20	4.5
							PNP	-20	-3.5
#ZXTD2M832EV					# 7 VTD02M022EV	DC3	NPN	50	4
	D11	PNP &	-12	-4	#ZXTDC3M832EV	DC3	PNP	-40	-3
	D22 D33	PNP	-20 -40	-3.5 -3	#ZXTDE4M832EV	DE4	NPN	80	3.5
					# L A I DE 4 IVI 8 3 2 E V	DE4	PNP	-70	-2.5

SHORTFORM TABLE (MOSFET)

Dual Transistor	Part Code	Polarity	BV _{DSS}	טי	Combination Dual	Part Pola	Polarity	BV _{DSS}	I _D
Device Type	Couc		V	Α	Device Type	Couc		V	Α
#ZXMN2AM832EV	DNA	N-Channel	20	2.9			N-Channel	30	2.9
#ZXMN3AM832EV	DNB	N-Channel	30	2.9	#ZXMC3AM832EV	C01			
#ZXMP62M832EV	DPA	P-Channel	-20	-1.3			P-Channel	-30	-2.1

[#] Prefix is an internal ordering requirement only.

© Zetex plc 2002

Europe Americas Asia Pacific Zetex plc Fields New Road Zetex (Asia) Ltd 3701-04 Metroplaza, Tower 1 Hing Fong Road Kwai Fong Zetex Inc 700 Veterans Memorial Hwy Zetex GmbH Streitfeldstraße 19 Fields New Road Chadderton Oldham, OL9 8NP United Kingdom Telephone (44) 161 622 4422 Fax: (44) 161 622 4420 D-81673 München Hauppauge, NY11788 Germany Telefon: (49) 89 45 49 49 0 Fax: (49) 89 45 49 49 49 Hong Kong Telephone: (852) 26100 611 Fax: (852) 24250 494 Telephone: (631) 360 2222 Fax: (631) 360 8222 europe.sales@zetex.com usa.sales@zetex.com asia.sales@zetex.com

These offices are supported by agents and distributors in major countries world-wide.

This publication is issued to provide outline information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose or form part of any order or contract or be regarded as a representation relating to the products or services concerned. The Company reserves the right to alter without notice the specification, design, price or conditions of supply of any product or service.

For the latest product information, log on to $\boldsymbol{www.zetex.com}$

ISSUE 1 - SEPTEMBER 2002

SCMPPSTMEV