

PRELMINARY CUSTOMERPROCUREMENTSPECIFICATION

Z86C04/C08 & C05/C07 CMOSZ8® 8-BITLOW-COST 1K/2K-ROMMICROCONTROLLERS

FEATURES

Part Number	ROM (Kbytes)			Auto Latch	Permanent WDT
Z86C04	1	125	8	Optional	Optional
Z86C08	2	125	12	Optional	Optional
Z86C05	1	125	8	None	Enabled
Z86C07	2	125	12	None	Enabled
* General	Durnose				

* General-Purpose

- 18-Pin DIP and SOIC Packages
- 3.0V to 5.5V Operating Range
- 14 Input / Output Lines
- Six Vectored, Prioritized Interupts from Six Different Sources
- Two On-Board Comparators
- ROM Mask Options:
 - Low Noise
 - ROM Protect
 - Auto Latch
 - Permanent Watch-Dog Timer (WDT)
 - RC Oscillator
 - 32 KHz Operation

GENERAL DESCRIPTION

Zilog's Z86C04/C08 and Z86C05/C07 Microcontrollers (MCU) are members of the Z8 $^{\odot}$ single-chip microcontroller family which offer easy software/hardware system expansion.

For applications demanding powerful I/O capabilities, the Z86C04/C08 and Z86C05/C07's dedicated input and output lines are grouped into three ports, and are configurable under software control to provide timing, status signals, or parallel I/O.

Two on-chip counter/timers, with a large number of user selectable modes, offload the system of administering real-time tasks such as counting/timing and I/O data

with 6-Bit Programmable PrescalerPower-On Reset (POR) Timer

Two Programmable 8-Bit Counter/Timers, Each

- On-Chip Oscillator that Accepts RC, Crystal, Ceramic Resonance, LC, or External Clock Drive
- Clock-Free WDT Reset
- Low-Power Consumption (50mw)
- Fast Instruction Pointer
 (1.5μs @ 8 MHz, 1.0 μs @ 12 MHz)
- Fourteen Digital Inputs at CMOS Levels; Schmitt-Triggered
- Software Enabled Watch-Dog Timer
- Programmable Interrupt Polarity
- Two Standby Modes: STOP and HALT
- Low-Voltage Protection

communications. Additionally, two on-board comparators process analog signals with a common reference voltage (Figure 1).

Note: All Signals with a preceding front slash, "/", are active Low, e.g.: B//W (WORD is active Low); /B/W (BYTE is active Low, only).

Power connections follow conventional descriptions below:

Connection	Circuit	Device
Power	V _{cc}	V _{DD}
Ground	GND	V _{SS}

GENERAL DESCRIPTION (Continued)

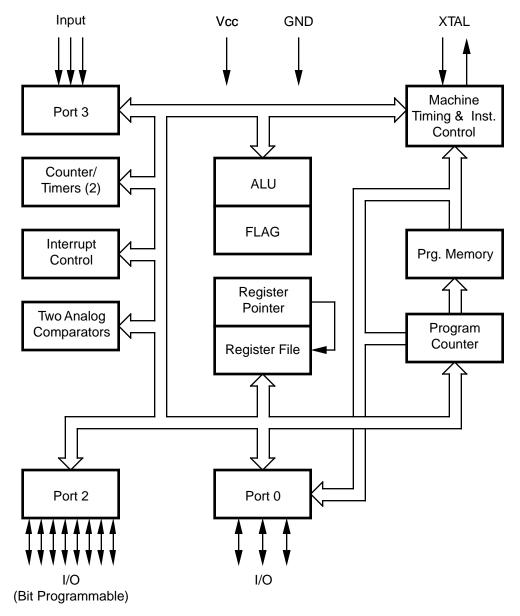
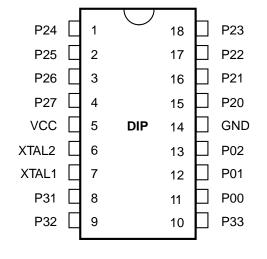



Figure 1. Z86C04/C08 and Z86C05/C07 Functional Block Diagram

PIN DESCRIPTIONS

Table 1. 1	18-Pin DIP	and SOIC Pin	Identification
------------	------------	--------------	----------------

Pin #	Symbol	Function	Direction			
1-4	P24-P27	Port 2, Pins 4, 5, 6, 7	In/Output			
5	V _{cc}	Power Supply				
6	XTAL2	Crystal Oscillator Clock	Output			
7	XTAL1	Crystal Oscillator Clock	Input			
8	P31	Port 3, Pin 1, AN1	Input			
9	P32	Port 3, Pin 2, AN2	Input			
10	P33	Port 3, Pin 3, REF	Input			
11-13	P00-P02	Port 0, Pins 0, 1, 2	In/Output			
14	GND	Ground				
15-18	P20-P23	Port 2, Pins 0, 1, 2, 3	In/Output			

Figure 2. 18-Pin DIP Configuration

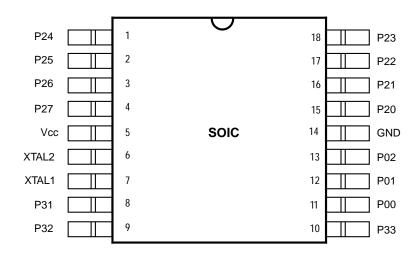


Figure 3. 18-Pin SOIC Pin Configuration

ABSOLUTE MAXIMUM RATINGS

Parameter	Min	Max	Units
Ambient Temperature under Bias	-40	+105	С
Storage Temperature	-65	+150	С
Voltage on any Pin with Respect to V _{ss} [Note 1]	-0.6	+12	V
Voltage on V_{DD} Pin with Respect to V_{ss}	-0.3	+7	V
Voltage on Pin 7 with Respect to V _{ss} [Note 2]	-0.6	$V_{DD}+1$	V
Total Power Dissipation		462	mW
Maximum Current out of V _{ss}		84	mA
Maximum Current into V _{DD}		84	mA
Maximum Current into an Input Pin [Note 3]	-600	+600	μA
Maximum Current into an Open-Drain Pin [Note 4]	-600	+600	μA
Maximum Output Current Sinked by Any I/O Pin		12	mA
Maximum Output Current Sourced by Any I/O Pin		12	mA
Total Maximum Output Current Sinked by Port 2		70	mA
Total Maximum Output Current Sourced by Port 2		70	mA

Notice:

Stresses greater than those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at any condition above those indicated in the operational sections of these specifications is not implied. Exposure to absolute maximum rating conditions for an extended period may affect device reliability. Total power dissipation should not exceed 462 mW for the package. Power dissipation is calculated as follows:

Notes:

- [1] This applies to all pins except where otherwise noted. Maximum current into pin must be $\pm 600 \mu A.$
- [2] There is no input protection diode from pin to V_{DD} .
- [3] This excludes Pin 6 and Pin 7.
- [4] Device pin is not at an output Low state.

Total Power dissipation = $V_{DD} x [I_{DD} - (sum of I_{OH})] + sum of [(V_{DD} - V_{OH}) x I_{OH}] + sum of (V_{0L} x I_{OL})$

STANDARD TEST CONDITIONS

The characteristics listed below apply for standard test conditions as noted. All voltages are referenced to Ground. Positive current flows into the referenced pin (Figure 4).

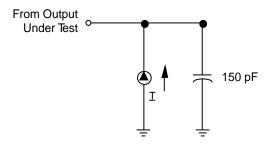


Figure 4. Test Load Diagram

CAPACITANCE

 $T_A = 25^{\circ}C$, $V_{CC} = GND = 0V$, f = 1.0 MHz, unmeasured pins returned to GND.

Parameter	Min	Max
Input capacitance Output capacitance	0 0	15 pF 20 pF
I/O capacitance	0	25 pF

DC ELECTRICAL CHARACTERISTICS

Sym	Parameter	V _{CC} [4]	T _A =0°C Min	Cto+70°C Max	T _A =-40°C Min	to+105°C Max	Typical @ 25°C		Conditions	Notes
V _{CH}	ClockInputHigh Voltage	3.0V	0.8V _{CC}	V _{CC} +0.3	0.8V _{CC}	V _{CC} +0.3	1.7	V	DrivenbyExternal ClockGenerator	
		55V	0.8V _{CC}	V _{CC} +0.3	0.8V _{CC}	V _{CC} +0.3	28	V	DrivenbyExternal ClockGenerator	
Val	ClockInputLow Voltage	3.0V	V _{SS} -0.3	0.2/ _{CC}	V _{SS} -0.3	0.2V _{CC}	0.8	V	DrivenbyExternal ClockGenerator	
	, acgo	5.5V	V _{SS} -0.3	0.2/ _{CC}	V _{SS} -0.3	0.2V _{CC}	1.7	V	Drivenby External Clock Generator	
V _H	InputHighVoltage	3.0V	0.7V _{CC}	V _{CC} +0.3	0.7V _{CC}	V _{cc} +0.3	1.8	V		[1]
••		5.5V	0.7V _{CC}	V _{CC} +0.3	0.7V _{CC}	V ₀₀ +03	28	V		[1]
VL	InputLowVoltage	3.0V	V _{SS} -0.3	0.2/ _{CC}	V _{SS} 0.3	0.2V _{CC}	0.8	V		[1]
		5.5V	V _{SS} -0.3	0.2/ _{CC}	V _{SS} -0.3	0.2V _{CC}	1.5	V		[1]
V _{OH}	OutputHighVoltage	3.0V	V _{cc} -0.4		V _{CC} 0.4		3.0	V	I _{OH} =-2.0mA	[5]
		5.5V	V _{cc} -0.4		V _{cc} -0.4		4.8	V	I _{OH} =-2.0mA	[5]
		3.0V	V _{cc} -0.4		V _{CC} 0.4		3.0	V	LowNoise@I _{OH} =-0.5m/	4
		5.5V	V _{CC} 0.4		V _{CC} 0.4		4.8	V	LowNoise@I _{OH} =-0.5mA	4
V _{QL1}	OutputLowVoltage	3.0V		0.8		0.8	02	V	I _{OL} =+4.0mA	[5]
		5.5V		0.4		0.4	0.1	V	I _{OI} =+4.0 mA	[5]
		3.0V		0.4		0.4	02	V	LowNoise@I _{OL} =1.0mA	
		5.5V		0.4		0.4	0.1	V	LowNoise@I _{OL} =1.0mA	
Vaz	OutputLowVoltage	3.0V		1.0		1.0	0.8	V	I _{OL} =+12mA	[5]
		5.5V		0.8		0.8	0.3	V	I _{OL} =+12mA	[5]
VOFFSET	ComparatorInput	3.0V		25		25	10	۳V		
	OffsetVoltage	5.5V		25		25	10	mV		
VLV	V _{CC} LowVoltage		22	28			26	V	Int.CLKFreq@6MHzMa	
	AutoReset				20	3.0	26		Int.CLKFreq@4MHzMa	κ.
IL.	InputLeakage	3.0V	-1.0	1.0	-1.0	1.0		μA	V _{IN} =OV,V _{CC}	
	(InputBias	5.5V	-1.0	1.0	-1.0	1.0		μA	V _{IN} =OV,V _{CC}	
	Currentof Comparator)									
لم_	OutputLeakage	3.0V	-1.0	1.0	-1.0	1.0		μA	V _{IN} =OV,V _{CC}	
		5.5V	-1.0	1.0	-1.0	1.0		μÂ	V _{IN} =OV,V _{CC}	
V _{VCR}	ComparatorInput CommonMode VoltageRange		0	V _{CC} -1.0	0	V _{CC} -1.5		V		

& Sirue

Sym	Parameter	V _{CC} [4]	T _A =0°Cto+70°C Min Max	T _A =-40°Cto+105°C Min Max	Typical @ 25°C	Units	Conditions	Notes
ά	SupplyCurrent	32V			80	βų	AlloutputandI/OPins Floating@32kHz	[7]
		3.0V	35	35	1.5	mA	AllOutputandI/OPins	
		55V	7.0	7.0	3.8	mA	Floating@2MHz AllOutputandI/OPins	[5]
		3.0V	8.0	8.0	20	m1	Floating@2MHz	[5]
		3.00	0.0	0.0	3.0	n⁄A	AllOutputandI/OPins Floating@8MHz	[5]
		55V	11.0	11.0	4 <u>4</u>	n⁄A	AllOutputandI/OPins Floating@8MHz	[5]
		3.0V	10	10	36	n⁄A	AllOutputandI/OPins	
		5.5V	15	15	9.0	mA	Floating@12MHz AllOutputandI/OPins Floating@12MHz	[5,6] [5,6]
I _{CC1}	StandbyCurrent	3.0V	25	25	0.7	n⁄A	HALTmodeV _{IN} =0V,	
		55V	4.0	4.0	25	mA	V _{CC} @2MHz HALTmodeV _{IN} =0V,	[5]
		3.0V	4.0	4.0	1.0	n⁄A	V _{CC} @2MHz HALTmodeV _{IN} =OV,	[5]
		55V	5.0	5.0	3.0	mA	V _{CC} @8MHz HALTmodeV _{IN} =OV, V _{CC} @8MHz	[5]
		3.0V	45	4.5	1.5	n⁄A	V _{CC} @0IVII12 HALTmodeV _{IN} =OV, V _{CC} @12MHz	[5] [5,6]
		55V	7.0	7.0	40	n⁄A	V _{CC} @1210112 HALTmodeV _{IN} =OV, V _{CC} @12MHz	[5,6]
ω	SupplyCurrent (LowNoiseMode)	3.0V	3.5	35	1.5	mA	AllOutputandI/OPins Floating@1MHz	
		55V	7.0	7.0	3.8	mA	AllOutput and I/OPins Floating@1MHz	
		3.0V	5.8	5.8	25	mA	AllOutput and I/OPins Floating @2MHz	
		55V	9.0	9.0	4.0	mA	AllOutput and I/OPins Floating @2MHz	
		3.0V	8.0	80	3.0	mA	AllOutput and I/OPins Floating@4MHz	
		55V	11.0	11.0	44	n⁄A	AllOutputandl/OPins Floating@4MHz	

DC ELECTRICAL CHARACTERISTICS (Continued)

Sym	Parameter	V _{CC} [4]	T _A =0°Cto+70°C Min Max	T _A =-40°Cto+105°C Min Max	Typical @ 25°C	Units	Conditions
	StandbyCurrent (LowNoiseMode)	3.0V	25	25	0.7	n⁄A	HALTmodeV _{IN} =0V, V _{CC} @1MHz
	, , , , , , , , , , , , , , , , , , ,	5.5V	40	4.0	25	n⁄A	HALTmodeV _{IN} =0V, V _{CC} @1MHz
		3.0V	3.0	3.0	0.9	n⁄A	HALTmodeV _{IN} =0V, V _{CC} @2MHz
		5.5V	4.5	45	28	n⁄A	HALTmodeV _{IN} =0V, V _{CC} @2MHz
		3.0V	4 <u>0</u>	40	1.0	n⁄A	HALTmodeV _{IN} =0V, V _{CC} @4MHz
		55V	5.0	5.0	3.0	n⁄A	V _{CC} @41M12 HALTmodeV _{IN} =0V, V _{CC} @4MHz
l ₀₀₂	StandbyCurrent	3.0V	10	20	1.0	μA	STOPmodeV _{IN} =OV, V _{CC} WDTisnotRunning
		5.5V	10	20	1.0	μA	STOPmodeV _{IN} =OV, V_{CC} WDTisnotRunning
I _{ALL}	AutoLatchLow Current	3.0V	12	8.0	3.0	μA	OV <v<sub>IN<v<sub>CC</v<sub></v<sub>
		5.5V	32	30	16	μA	$OV < V_{IN} < V_{CC}$
I _{ALH}	AutoLatchHigh Current	3.0V	-8	-5.0	-1.5	μA	OV <v<sub>IN<v<sub>CC</v<sub></v<sub>
		5.5V	-16	-20	-8.0	μA	$OV < V_{IN} < V_{CC}$

Notes:

[1] Port 0, 2, and 3 only.

[2] $V_{ss} = 0V = GND.$

[3] The device operates down to V_{LV} . The minimum operational V_{CC} is determined on the value of the voltage V_{LV} at the ambient tempera ture. The V_{LV} increases as the temperature decreases.

[4] $V_{CC} = 3.0V$ to 5.5V, typical values measured at $V_{CC} = 3.3V$ and $V_{CC} = 5.0V$.

[5] Standard Mode (not Low EMI mode).

[6] Z86C07/C08 only.

[7] CL1 = 100 pF, CL2 = 220 pF, RF = 30 kOhm

AC ELECTRICAL CHARACTERISTICS

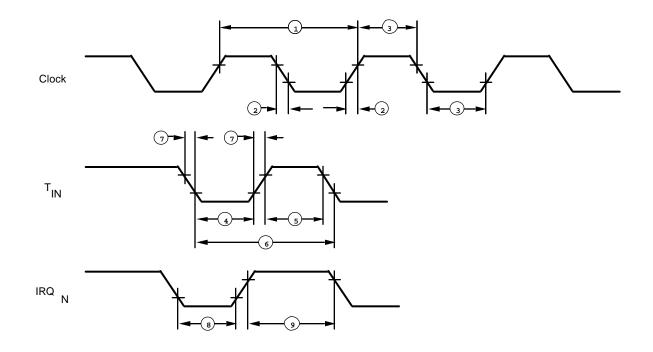


Figure 5. AC Electrical Timing Diagram

AC ELECTRICAL CHARACTERISTICS

Timing Table (Standard Mode for SCLK/TCLK = XTAL/2)

					T _A =0°C	to+70°0	C	-	Γ ₄ =-40°C	Cto+105	5°C		
No	Symbol	Parameter	Vcc	8MHz Min	(C04/05) Max)12 MHz Min	(C07/08) Max	8MHz Min	(C04/05) Max	12 MH Min	z(C07/0 Max	8) Units	Notes
1	TpC	InputClockPeriod	3.0V 5.5V	125 125	DC DC	83 83	20 20	125 125	DC DC	83 83	DC DC	an an	[1] [1]
2	TiC,TIC	ClockInputRise andFallTimes	3.0V 5.5V		25 25		15 15		ය න		15 15	an an	[1]
3	TwC	InputClockWidth	3.0V 5.5V	62 62		41 41			62 62		41 41	ns	[1] [1]
4	TwTnL	TimerInputLowWidth	3.0V 5.5V	100 70		100 70		100 70		100 70		an an	[1] [1]
5	TwTnH	TimerInputHighWidth	3.0V 5.5V	5TpC 5TpC		5TpC 5TpC		5TpC 5TpC		5TpC 5TpC			[1] [1]
6	TpTin	TimerInputPeriod	3.0V 5.5V	8TpC 8TpC		8ТрС 8ТрС		8TpC 8TpC		8ТрС 8ТрС			[1] [1]
7	TrTn, TtTn	TimerInputRise andFallTimer	3.0V 5.5V		100 100		100 100		100 100		100 100	an an	[1] [1]
8	TwL	Int.RequestInput LowTime	3.0V 5.5V	100 70		100 70		100 70		100 70		an an	[1,2] [1,2]
9	TwH	Int.RequestInput HighTime	3.0V 5.5V	5TpC 5TpC		5TpC 5TpC		5TpC 5TpC		5TpC 5TpC			[1] [1,2]
10	Twdt	Watch-DogTimer DelayTime	3.0V 5.5V		25 12		25 12		25 10		25 10	ms ms	[1] [1]
11	Tpor		3.0V 5.5V	24 12		24 12		24 12		24 12		ms ms	[1] [1]

Notes:

[1] Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0. [2] Interrupt request through Port 3 (P33-P31).

AC ELECTRICAL CHARACTERISTICS

Low Noise Mode

				T _A =0°Cto+70°C			T _A =-40°Cto+105°C						
No	Symbol	Parameter	V _{cc}	1M⊦ Min	iz Max	4 Mi Min	Hz Max	1 M Min	Hz Max	4M⊦ Min	lz Max	Units	Notes
	Oymbol	rarameter	• 00		IVICIA		IVICA		IVICIA		IVICIA		10003
1	TFC	InputClockPeriod	3.0V	1000	DC	250	DC	1000	DC	250	DC	ns	[1]
			5.5V	1000	DC	250	DC	1000	DC	250	DC	ns	[1]
2	TiC	ClockInputRise	3.0V		25		25		25		25	ns	[1]
	TIC	andFallTimes	5.5V		25		25		25		25	ns	[1]
3	TwC	InputClockWidth	3.0V	500		125		500		125		ns	[1]
			5.5V	500		125		500		125		ns	[1]
4	TwTnL	TimerInputLowWidth	3.0V	100		100		100		100		ns	[1]
			5.5V	70		70		70		70		ns	[1]
5	TwTnH	TimerInputHighWidth	3.0V	25TpC		25Tp	С	25TpC	;	25TpC			[1]
			5.5V	25TpC		25Tp	С	25TpC	;	25TpC			[1]
6	TpTin	TimerInputPeriod	3.0V	4TpC		4ТрС		4TpC		4TpC			[1]
			5.5V	4TpC		4TpC		4TpC		4TpC			[1]
7	TrTin,	TimerInputRise	3.0V		100		100		100		100	ns	[1]
	TtTin	andFallTimer	5.5V		100		100		100		100	ns	[1]
8	TwL	Int.RequestInput	3.0V	100		100		100		100		ns	[1,2]
		LowTime	5.5V	70		70		70		70		ns	[1,2]
9	TwiH	Int.RequestInput	3.0V	25TpC		25Tp	С	25TpC	;	2.5TpC			[1]
		HighTime	5.5V	25TpC		25Tp	C	25TpC	;	25TpC			[1,2]
10	Twat	Watch-DogTimer	3.0V		25		25		25		25	ms	[1]
		DelayTime	5.5V		12		12		10		10	ms	[1]

Notes:

[1] Timing Reference uses 0.7 V_{CC} for a logic 1 and 0.2 V_{CC} for a logic 0. [2] Interrupt request through Port 3 (P33-P31).

⊗ Zilæ

LOW NOISE VERSION

Low EMI Emission

The $Z8^{\oplus}$ can be programmed to operate in a Low EMI emission mode by means of a mask ROM bit option. Use of this feature results in:

- All pre-driver slew rates reduced to 10 ns typical.
- Internal SCLK/TCLK operation limited to a maximum of 4 MHz 250 ns cycle time.
- Output drivers have resistances of 200 ohms (typical).
- Oscillator divide-by-two circuitry eliminated.

The Low EMI mode is mask-programmable to be selected by the customer at the time the ROM code is submitted.

EMI Characteristics

The Z8 operating in the Low EMI mode generates EMI as measured in the following chart:

The measurements, shown in Figure 6, were made while operating the Z8 in three states: (1) idle condition; (2) static output; (3) switched output.

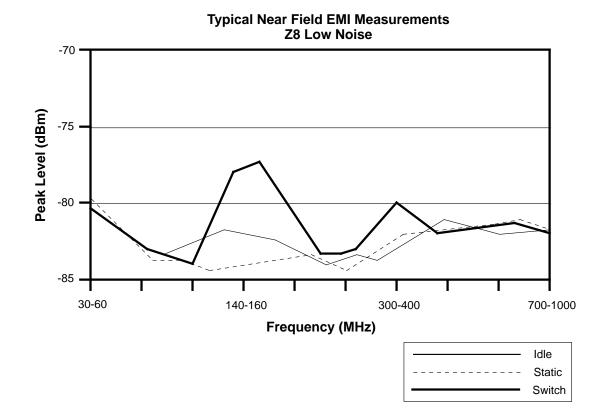


Figure 6. Typical Low Noise Measurements

DS96DZ80500

Pre-Characterization Product:

The product represented by this CPS is newly introduced and Zilog has not completed the full characterization of the product. The CPS states what Zilog knows about this product at this time, but additional features or non-conformance with some aspects of the CPS may be found,

© 1996 by Zilog, Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Zilog, Inc. The information in this document is subject to change without notice. Devices sold by Zilog, Inc. are covered by warranty and patent indemnification provisions appearing in Zilog, Inc. Terms and Conditions of Sale only. Zilog, Inc. makes no warranty, express, statutory, implied or by description, regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Zilog, Inc. makes no warranty of merchantability or fitness for any purpose. Zilog, Inc. shall not be responsible for any errors that may appear in this document. Zilog, Inc. makes no commitment to update or keep current the information contained in this document. either by Zilog or its customers in the course of further application and characterization work. In addition, Zilog cautions that delivery may be uncertain at times, due to start-up yield issues.

Zilog's products are not authorized for use as critical components in life support devices or systems unless a specific written agreement pertaining to such intended use is executed between the customer and Zilog prior to use. Life support devices or systems are those which are intended for surgical implantation into the body, or which sustains life whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

Zilog, Inc. 210 East Hacienda Ave. Campbell, CA 95008-6600 Telephone (408) 370-8000 FAX 408 370-8056 Internet: http://www.zilog.com