

UM97Z8X0105 7-1

7

U

SER

’

S

 M

ANUAL

C

HAPTER

 7

I

NTERRUPTS

7.1 INTRODUCTION

The Z8

®

 MCU allows 6 different interrupts from a variety of
sources; up to four external inputs, the on-chip
Counter/Timer(s), software, and serial I/O peripherals.
These interrupts can be masked and their priorities set by
using the Interrupt Mask and the Interrupt Priority Regis-
ters. All six interrupts can be globally disabled by resetting
the master Interrupt Enable, bit 7 in the Interrupt Mask
Register, with a Disable Interrupt (DI) instruction. Interrupts
are globally enabled by setting bit 7 with an Enable Inter-
rupt (EI) instruction.

There are three interrupt control registers: the Interrupt Re-
quest Register (IRQ), the Interrupt Mask register (IMR),
and the Interrupt Priority Register (IPR). Figure 7-1 shows
addresses and identifiers for the interrupt control registers.
Figure 7-2 is a block diagram showing the Interrupt Mask
and Interrupt Priority logic.

The Z8 MCU family supports both vectored and polled in-
terrupt handling. Details on vectored and polled interrupts
can be found later in this chapter.

Note:

See the selected Z8 MCU's product specification for
the exact interrupt sources supported.

Figure 7-1. Interrupt Control Registers

Register HEX

 Interrupt Mask

 Interrupt Request

 Interrupt Priority

Identifier

FBH

FAH

F9H

IMR

IRQ

IPR

Figure 7-2. Interrupt Block Diagram

 IRQ

IRQ0 - IRQ5

Vector Select

Interrupt
Request

 IMR

 IPR

Priority Logic

6Global
Interrupt
Enable

6

Z8 Microcontrollers

Interrupts Zilog

7-2 UM97Z8X0105

7.2 INTERRUPT SOURCES

Table 7-1 presents the interrupt types, sources, and vectors available in the Z8

®

 family of processors.

7.2.1 External Interrupt Sources

External sources involve interrupt request lines IRQ0-
IRQ3. IRQ0, IRQ1, and IRQ2 can be generated by a tran-
sition on the corresponding Port 3 pin (P32, P33, and P31
correspond to IRQ0, IRQ1, and IRQ2, respectively).

Figure 7-3 is a block diagram for interrupt sources IRQ0,
IRQ1, and IRQ2.

Note:

The interrupt sources and trigger conditions are
device dependent. See the device product specification to
determine available sources (internal and external),
triggering edge options, and exact programming details.

Table 7-1. Interrupt Types, Sources, and Vectors *

Name Sources Vector Location Comments

IRQ

0

DAV

0

, IRQ

0

, Comparator 0,1 External (P3

2

), Edge Triggered; Internal

IRQ

1

DAV

1

, IRQ

1

2,3 External (P3

3

), Edge Triggered; Internal

IRQ

2

DAV

2

, IRQ

2

, TIN, Comparator 4,5 External (P3

1

), Edge Triggered; Internal

IRQ

3

6,7 External (P3

0

) or (P3

2

), Edge Triggered;
Internal

Serial In 6,7 Internal
T

0

8,9 Internal

Serial Out 8,9 Internal
IRQ

5

T

1

10,11 Internal

Figure 7-3. Interrupt Sources IRQ0-IRQ2 Block Diagram

P3n

IRQm

System Clock

Multiple Input

n = 2, 3, 1

and Signal
QS

R

Conditioning
Circuitry

m = 0,1,2

 (Internal)

QD QD

Z8 Microcontrollers

Zilog Interrupts

UM97Z8X0105 7-3

7

When the Port 3 pin (P31, P32, or P33) transitions, the first
flip-flop is set. The next two flip-flops synchronize the re-
quest to the internal clock and delay it by two internal clock
periods. The output of the last flip-flop (IRQ0, IRQ1, or
IRQ2) goes to the corresponding Interrupt Request Regis-
ter.

IRQ3 can be generated from an external source only if Se-
rial In is not enabled. Otherwise, its source is internal. The
external request is generated by a Low edge signal on P30
as shown in Figure 7-4. Again, the external request is syn-
chronized and delayed before reaching IRQ3. Some Z8

®

products replace P30 with P32 as the external source for
IRQ3. In this case, IRQ3 interrupt generation follows the
logic as illustrated in Figure 7-3.

Note:

Although interrupts are edge triggered, minimum
interrupt request Low and High times must be observed for
proper operation. See the device product specification for
exact timing requirements on external interrupt requests
(T

W

IL, T

W

IH).

7.2.2 Internal Interrupt Sources

Internal sources involve interrupt requests IRQ0, IRQ2,
IRQ3, IRQ4, and IRQ5. Internal sources are ORed with the
external sources, so either an internal or external source
can trigger the interrupt. Internal interrupt sources and trig-
ger conditions are device dependent.

See the device product specification to determine avail-
able sources, triggering edge options, and exact program-
ming details. For more details on the internal interrupt
sources, refer to the chapters describing the Counter/Tim-
er, I/O ports, and Serial I/O.

Figure 7-4. Interrupt Source IRQ3 Block Diagram

Q
PIN D

Serial Receiver

P3M6

IRQ3

Clock

IRQ3

IRQ3 External Source

(IRQ3
Serial In)

Internal Source

D Q

Z8 Microcontrollers

Interrupts Zilog

7-4 UM97Z8X0105

7.3 INTERRUPT REQUEST (IRQ) REGISTER LOGIC AND TIMING

Figure 7-5 shows the logic diagram for the Interrupt Re-
quest (IRQ) Register. The leading edge of the request will
set the first flip-flop, that will remain set until interrupt re-
quests are sampled.

Requests are sampled internally during the last clock cycle
before an opcode fetch (Figure 7-6). External requests are
sampled two internal clocks earlier, due to the synchroniz-
ing flip-flops shown in Figures 7-3 and 7-4.

At sample time the request is transferred to the second flip-
flop in Figure 7-5, that drives the interrupt mask and priority
logic. When an interrupt cycle occurs, this flip-flop will be
reset only for the highest priority level that is enabled.

The user has direct access to the second flip-flop by read-
ing and writing the IRQ Register. IRQ is read by specifying
it as the source register of an instruction and written by
specifying it as the destination register.

Figure 7-5. IRQ Register Logic

Q

S

From

To Mask

IRQ0 - IRQ5

R

Q

R

Priority
Logic

and
Priority
Logic

Sample
Clock

Figure 7-6. Interrupt Request Timing

T1 T2 T3 T1 T2 T3 T1 T2 T3

 External Interrupt

 Interrupt Request
 Sampled Internally

 Request Sampled

Mn M1 M2

Z8 Microcontrollers

Zilog Interrupts

UM97Z8X0105 7-5

7

7.4 INTERRUPT INITIALIZATION

After reset, all interrupts are disabled and must be initial-
ized before vectored or polled interrupt processing can be-
gin. The Interrupt Priority Register (IPR), Interrupt Mask
Register (IMR), and Interrupt Request Register (IRQ) must
be initialized, in that order, to start the interrupt process.
However, IPR need not be initialized for polled proce7.4.1
Interrupt Priority Register (IPR) Initialization.

7.4.1 Interrupt Priority Register (IPR) Initial-
ization

IPR (Figure 7-7) is a write-only register that sets priorities
for the vectored interrupts in order to resolve simultaneous

interrupt requests. (There are 48 sequence possibilities for
interrupts.) The six interrupt levels IRQ0-IRQ5 are divided
into three groups of two interrupt requests each. One
group contains IRQ3 and IRQ5. The second group con-
tains IRQ0 and IRQ2, while the third group contains IRQ1
and IRQ4.

Priorities can be set both within and between groups as
shown in Tables 7-2 and 7-3. Bits 1, 2, and 5 define the pri-
ority of the individual members within the three groups.
Bits 0, 3, and 4 are encoded to define six priority orders be-
tween the three groups. Bits 6 and 7 are reserved.

Figure 7-7. Interrupt Priority Register

D7 D6 D5 D4 D3 D2 D1 D0

(Write-Only)

Interrupt Priority Register (IPR)
Register F9H

 Interrupt Group Priority
 Bits Priority

 000 Reserved
 001 C > A > B

 010 A > B > C
 011 A > C > B

 100 B > C > A
 101 C > B > A

 110 B > A > C
 111 Reserved

 0 = IRQ1 > IRQ4
 1 = IRQ4 > IRQ1

 Group C (IRQ1 and IRQ4 Priority)

 Reserved (Must be 0)

 0 = IRQ2 > IRQ0
 1 = IRQ0 > IRQ2

 Group B (IRQ0 and IRQ2 Priority)

 0 = IRQ5 > IRQ3
 1 = IRQ3 > IRQ5

 Group A (IRQ3 and IRQ5 Priority)

Table 7-2. Interrupt Priority

Priority
Group Bit Value Highest Lowest

C Bit 1 0 IRQ1 IRQ4
1 IRQ4 IRQ1

B Bit 2 0 IRQ2 IRQ0
1 IRQ0 IRQ2

A Bit 5 0 IRQ5 IRQ3
1 IRQ3 IRQ5

Table 7-3. Interrupt Group Priority

Bit Pattern Group Priority
Bit 4 Bit 3 Bit 0 High Medium Low

0 0 0 Not Used
0 0 1 C A B
0 1 0 A B C
0 1 1 A C B
1 0 0 B C A
1 0 1 C B A
1 1 0 B A C
1 1 1 Not Used

Z8 Microcontrollers

Interrupts Zilog

7-6 UM97Z8X0105

7.4 INTERRUPT INITIALIZATION

(Continued)

7.4.2 Interrupt Mask Register (IMR) Initialization

IMR individually or globally enables or disables the six in-
terrupt requests (Figure 7-8). When bit 0 to bit 5 are set to
1, the corresponding interrupt requests are enabled. Bit 7
is the master enable and must be set before any of the in-
dividual interrupt requests can be recognized. Resetting
bit 7 globally disables all the interrupt requests. Bit 7 is set
and reset by the EI and DI instructions. It is automatically
reset during an interrupt service routine and set following
the execution of an Interrupt Return (IRET) instruction.

Note:

Bit 7 must be reset by the DI instruction before the
contents of the Interrupt Mask Register or the Interrupt
Priority Register are changed except:

■

Immediately after a hardware reset.

■

Immediately after executing an interrupt service routine
and before IMR bit 7 has been set by any instruction.

Note:

The RAM Protect option is selected at ROM mask
submission time or at EPROM program time. If not
selected or not an available option, this bit is reserved and
must be 0.

Figure 7-8. Interrupt Mask Register

D7 D6 D5 D4 D3 D2 D1 D0

(Read/Write)

Interrupt Request Register (IMR)
Register FBH

 0 = Disables IRQ0
 1 = Enables IRQ0

 0 = Disables IRQ1
 1 = Enables IRQ1

 0 = Disables IRQ2
 1 = Enables IRQ2

 0 = Disables IRQ3
 1 = Enables IRQ3

 0 = Disables IRQ4
 1 = Enables IRQ4

 0 = Disables IRQ5
 1 = Enables IRQ5

 0 = Disables RAM Protect
 1 = Enables RAM Protect

 0 = Disables Interrupt
 1 = Enables Interrupt

Z8 Microcontrollers

Zilog Interrupts

UM97Z8X0105 7-7

7

7.4.3 Interrupt Request (IRQ) Register Initialization

IRQ (Figure 7-9) is a read/write register that stores the in-
terrupt requests for both vectored and polled interrupts.
When an interrupt is made on any of the six, the corre-
sponding bit position in the register is set to 1. Bit 0 to bit 5
are assigned to interrupt requests IRQ0 to IRQ5, respec-
tively.

Whenever Power-On Reset (POR) is executed, the IRQ
resister is reset to 00H and disabled. Before the IRQ reg-
ister will accept requests, it must be enabled by executing
an ENABLE INTERRUPTS (EI) instruction.

Note:

Setting the Global Interrupt Enable bit in the
Interrupt Mask Register (IMR, bit 7) will not enable the
IRQ. Execution of the EI instruction is required (Figure 7-
10).

For polled processing, IRQ must still be initialized by an EI
instruction.

To properly initialize the IRQ register, the following code is
provided:

Note:

 IRQ is always cleared to 00Hex and is read only un-
til the 1st EI instruction which enables the IRQ to be
read/write.

CLR IMR //make sure disabled vectored interrupts
EI //enable IRQ register otherwise read

only.
//not needed if interrupts were
previously enabled.

DI //disable interrupt heading.

Figure 7-9. Interrupt Request Register

D7 D6 D5 D4 D3 D2 D1 D0

(Read/Write)

 Reserved /Int Edge Select

Interrupt Request Register (IRQ)
Register FAH

 0 = IRQ0 RESET
 1 = IRQ0 SET

 0 = IRQ1 RESET
 1 = IRQ1 SET

 0 = IRQ2 RESET
 1 = IRQ2 SET

 0 = IRQ3 RESET
 1 = IRQ3 SET

 0 = IRQ4 RESET
 1 = IRQ4 SET

 0 = IRQ5 RESET
 1 = IRQ5 SET

Z8 Microcontrollers

Interrupts Zilog

7-8 UM97Z8X0105

7.4 INTERRUPT INITIALIZATION

(Continued)

IMR is cleared before the IRQ enabling sequence to insure
no unexpected interrupts occur when EI is executed. This
code sequence should be executed prior to programming
the application required values for IPR and IMR.

Note:

IRQ bits 6 and 7 are device dependent. When
reserved, the bits are not used and will return a 0 when
read. When used as the Interrupt Edge select bits, the
configuration options are as show in Table 7-4.

The proper sequence for programming the interrupt edge
select bits is (assumes IPR and IMR have been previously
initialized):

Table 7-4. IRQ Register Configuration

IRQ Interrupt Edge
D7 D6 P31 P32

0 0 F F
0 1 F R
1 0 R F
1 1 R/F R/F

Notes:

F = Falling Edge
R = Rising Edge

DI ;Inhibit all interrupts
until input edges are
configured

OR IRQ,#XX 000000B ;Configure interrupt
do not disturb
edges as needed -
IRQ 0-5.

EI ;Re-enable interrupts.

Figure 7-10. IRQ Reset Functional Logic Diagram

S

Interrupt Request Register
 (IRQ, FAH)

Reset

El Instruction

Power-On Reset (POR)

R

Z8 Microcontrollers

Zilog Interrupts

UM97Z8X0105 7-9

7

7.5 IRQ SOFTWARE INTERRUPT GENERATION

IRQ can be used to generate software interrupts by spec-
ifying IRQ as the destination of any instruction referencing
the Z8

®

 Standard Register File. These Software Interrupts
(SWI) are controlled in the same manner as hardware gen-
erated requests (in other words, the IPR and the IMR con-
trol the priority and enabling of each SWI level).

To generate a SWI, the desired request bit in the IRQ is set
as follows:

where the immediate data, NUMBER, has a 1 in the bit po-
sition corresponding to the level of the SWI desired. For
example, if an SWI is desired on IRQ5, NUMBER would
have a 1 in bit 5:

With this instruction, if the interrupt system is globally en-
abled, IRQ5 is enabled, and there are no higher priority
pending requests, control is transferred to the service rou-
tine pointed to by the IRQ5 vector.

7.6 VECTORED PROCESSING

Each Z8 interrupt level has its own vector. When an inter-
rupt occurs, control passes to the service routine pointed
to by the interrupt’s vector location in program memory.
The sequence of events for vectored interrupts is as fol-
lows:

■

PUSH PC Low Byte on Stack

■

PUSH PC High Byte on Stack

■

PUSH FLAGS on Stack

■

Fetch High Byte of Vector

■

Fetch Low Byte of Vector

■

Branch to Service Routine specified by Vector

Figures 7-11 and 7-12 show the vectored interrupt opera-
tion.

ORIRQ, #NUMBER

OR IRQ, #00100000B

Figure 7-11. Effects of an Interrupt on the STACK

SP Top of Stack

PC LOW Byte

PC HIGH Byte

FLAGS

 SP and Stack after an interrupt

SP

 SP and Stack before an interrupt

Z8 Microcontrollers

Interrupts Zilog

7-10 UM97Z8X0105

7.6 VECTORED PROCESSING (Continued)

Figure 7-12. Interrupt Vectoring

PC HIGH Byte

FLAGS

Vector Selected

000CH

 Program Memory

Interrupt
Service
Routine

By Priority Logic

Interrupt
Vector Table

0000H

XXFFH

Z8 Microcontrollers
Zilog Interrupts

UM97Z8X0105 7-11

7

7.6.1 Vectored Interrupt Cycle Timing
The interrupt acknowledge cycle time is 24 internal clock
cycles and is shown in Figure 7-13. In addition, two internal
clock cycles are required for the synchronizing flip-flops.
The maximum interrupt recognition time is equal to the
number of clock cycles required for the longest executing
instruction present in the user program (assumes worst
case condition of interrupt sampling, Figure 7-6, just prior
to the interrupt occurrence). To calculate the worst case in-
terrupt latency (maximum time required from interrupt gen-

eration to fetch of the first instruction of the interrupt ser-
vice routine), sum these components:

Worst Case Interrupt Latency ≈ 24 INT CLK (interrupt ac-
knowledge time) + # TPC of longest instruction present in
the user's application program + 2TPC (internal synchroni-
zation time).

Figure 7-13. Z8 Interrupt Acknowledge Timing

PC

For Stack External Only

PC+1PC PCLSP-1 SP-2 PCH SP-3 FLAGS VECT VECT+1

Even Vector Address

Odd Vector Address

OpCode (Discarded)
VECTH VECTL

First Instruction Of Interrupt Service Routine

For Stack External Only

A0-A7 IN

Internal Clock

/AS

/DS

A0-A7 OUT

M3M1 M2 M1 M2Stack Push
Fetch
Vector High

Fetch
Vector LowStack Push Stack Push

R/W

Z8 Microcontrollers
Interrupts Zilog

7-12 UM97Z8X0105

7.6.2 Nesting of Vectored Interrupts
Nesting of vectored interrupts allows higher priority re-
quests to interrupt a lower priority request. To initiate vec-
tored interrupt nesting, do the following during the interrupt
service routine:

■ Push the old IMR on the stack.

■ Load IMR with a new mask to disable lower priority
interrupts.

■ Execute EI instruction.

■ Proceed with interrupt processing.

■ After processing is complete, execute DI instruction.

■ Restore the IMR to its original value by returning the
previous mask from the stack.

■ Execute IRET.

Depending on the application, some simplification of the
above procedure may be possible.

7.7 POLLED PROCESSING

Polled interrupt processing is supported by masking off the
IRQ to be polled. This is accomplished by clearing the cor-
responding bits in the IMR.

To enable any interrupt, first the interrupt mechanism must
be engaged with an EI instruction. If only polled interrupts
are to be serviced, execute:

EI ;Enable interrupt mechanism
DI ;Disable vectored interrupts.

To initiate polled processing, check the bits of interest in
the IRQ using the Test Under Mask (TM) instruction. If the
bit is set, call or branch to the service routine. The service
routine services the request, resets its Request Bit in the
IRQ, and branches or returns back to the main program.
An example of a polling routine is as follows:

In this example, if IRQ2 is being polled, MASKA will be
00000100B and MASKB will be 11111011B.

7.8 RESET CONDITIONS

Upon reset, all bits in IPR are undefined.

In IMR, bit 7 is 0 and bits 0-6 are undefined. The IRQ reg-
ister is reset and held in that state until an enable interrupt
(EI) instruction is executed.

TM IRQ, #MASKA ;Test for request
JR Z, NEXT ;If no request go to

NEXT
CALL SERVICE ;If request is there, then

;service it
NEXT:

.

.

.
SERVICE: ;Process Request

.

.

.
AND IRQ, #MASKB ;Clear Request Bit
RET ;Return to next

