

UM97Z8X0104 2-1

2

U

SER

’

S

 M

ANUAL

C

HAPTER

 2

A

DDRESS

 S

PACE

2.1 INTRODUCTION

Four address spaces are available for the Z8

®

 MCU:

■

The Z8 Standard Register File contains addresses for
peripheral, control, all general-purpose, and all I/O port
registers. This is the default register file specification.

■

The Z8 Expanded Register File (ERF) contains
addresses for control and data registers for additional
peripherals/features.

■

Z8 External Program Memory contains addresses for all
memory locations having executable code and/or data.

■

Z8 External Data Memory contains addresses for all
memory locations that hold data only, whether internal or
external.

2.2 Z8 MCU STANDARD REGISTER FILE

The Z8 Standard Register File totals up to 256 consecutive
bytes (Registers). The register file consists of 4 I/O ports
(00H-03H), 236 General-Purpose Registers (04H-EFH),
and 16 control registers (F0H-FFH). Table 2-1 shows the
layout of the register file, including register names, loca-
tions, and identifiers.

Table 2-1. Z8 Standard Register File

Hex Register Register
Address Description Identifier

FF Stack Pointer Low Byte SPL
FE Stack Pointer High Byte SPH
FD Register Pointer RP
FC Program Control Flags FLAGS
FB Interrupt Mask Register IMR
FA Interrupt Request Register IRQ
F9 Interrupt Priority Register IPR
F8 Port 0-1 Mode Register P01M
F7 Port 3 Mode Register P3M
F6 Port 2 Mode Register P2M
F5 T0 Prescaler PRE0
F4 Timer/Counter 0 T0
F3 T1 Prescaler PRE1
F2 Timer/Counter 1 T1
F1 Timer Mode TMR

F0 Serial I/O SIO
EF R239
. General-Purpose .
. Registers (GPR) .
. .

04 R4
03 Port 3 P3
02 Port 2 P2
01 Port 1 P1
00 Port 0 P0

Table 2-1. Z8 Standard Register File

Hex Register Register
Address Description Identifier

Z8 Microcontrollers

Address Space Zilog

2-2 UM97Z8X0104

2.2 Z8 MCU STANDARD REGISTER FILE

(Continued)

Registers can be accessed as either 8-bit or 16-bit
registers using Direct, Indirect, or Indexed Addressing. All
236 general-purpose registers can be referenced or
modified by any instruction that accesses an 8-bit register,
without the need for special instructions. Registers
accessed as 16 bits are treated as even-odd register pairs
(there are 118 valid pairs). In this case, the data’s Most
Significant Byte (MSB) is stored in the even numbered
register, while the Least Significant Byte (LSB) goes into
the next higher odd numbered register (Figure 2-1).

By using a logical instruction and a mask, individual bits
within registers can be accessed for bit set, bit clear, bit
complement, or bit test operations. For example, the in-
struction AND R15, MASK performs a bit clear operation.
Figure 2-2 shows this example.

When instructions are executed, registers are read when
defined as sources and written when defined as destina-
tions. All General-Purpose Registers function as accumu-
lators, address pointers, index registers, stack areas, or
scratch pad memory.

2.2.1 General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the
device is powered up. The registers keep their last value
after any reset, as long as the reset occurs in the V

CC

 volt-
age-specified operating range. It will not keep its last state
from a V

LV

 reset if V

CC

 drops below 1.8v.

Note:

Registers in Bank E0-EF may only be accessed
through the working register and indirect addressing
modes. Direct access cannot be used because the 4-bit
working register address mode already uses the format [E
| dst], where dst represents the working register number
from 0H to FH.

2.2.2 RAM Protect

The upper portion of the register file address space 80H to
EFH (excluding the control registers) may be protected
from reading and writing. The RAM Protect bit option is
mask-programmable and is selected by the customer
when the ROM code is submitted. After the mask option is
selected, the user activates this feature from the internal
ROM code to turn off/on the RAM Protect by loading either
a 0 or 1 into the IMR register, bit D6. A 1 in D6 enables
RAM Protect. Only devices that use registers 80H to EFH
offer this feature.

2.2.3 Working Register Groups

Z8

®

 instructions can access 8-bit registers and register
pairs (16-bit words) using either 4-bit or 8-bit address
fields. 8-bit address fields refer to the actual address of the
register. For example, Register 58H is accessed by calling
upon its 8-bit binary equivalent, 01011000 (58H).

With 4-bit addressing, the register file is logically divided
into 16 Working Register Groups of 16 registers each, as
shown in Table 2-2. These 16 registers are known as
Working Registers. A Register Pointer (one of the control
registers, FDH) contains the base address of the active
Working Register Group. The high nibble of the Register
Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit
address of the Working Register is combined within the up-
per four bits (high nibble) of the Register Pointer, thus
forming the 8-bit actual address. Figure 2-3 illustrates this
operation. Since working registers are typically specified
by short format instructions, there are fewer bytes of code
needed, which reduces execution time. In addition, when
processing interrupts or changing tasks, the Register
Pointer speeds context switching. A special Set Register
Pointer (SRP) instruction sets the contents of the Register
Pointer.

Figure 2-1. 16-Bit Register Addressing

Figure 2-2. Accessing Individual Bits (Example)

MSB LSB

Rn Rn+1

n = Even Address

0 1 0 1 0 0 0 0

R150 1 1 1 0 0 0 0

1 1 0 1 1 1 1 1 MASK

R15

AND R15, DFH ;Clear Bit 5 of Working Register 15

Z8 Microcontrollers

Zilog Address Space

UM97Z8X0104 2-3

2

Table 2-2. Working Register Groups

Register Pointer Working Actual
(FDH) Register Group Registers

High Nibble (HEX) (HEX)

1111(B) F F0–FF
1110(B) E E0–EF
1101(B) D D0–DF
1100(B) C C0–CF
1011(B) B B0–BF
1010(B) A A0–AF
1001(B) 9 90–9F
1000(B) 8 80–8F
0111(B) 7 70–7F
0110(B) 6 60–6F
0101(B) 5 50–5F
0100(B) 4 40–4F
0011(B) 3 30–3F
0010(B) 2 20–2F
0001(B) 1 10–1F
0000(B) 0 00–0F

Figure 2-3. Working Register Addressing Examples

0 1 1 1 0 1 1 0

Register Pointer (FHD), Standard Register File0 1 1 1 0 0 0 0

1 1 0 1 1 1 1 1 INC R6 (Instruction, Short Format)

Actual Register Address (76H)

Z8 Microcontrollers

Address Space Zilog

2-4 UM97Z8X0104

2.2 Z8 MCU STANDARD REGISTER FILE

(Continued)

Note:

The full register file is shown. Please refer to the selected device product specification for actual file size.

2.2.4 Error Conditions

Registers in the Z8

®

 Standard Register File must be cor-
rectly used because certain conditions produce inconsis-
tent results and should be avoided.

■

Registers F3H and F5H-F9H are write-only registers. If
an attempt is made to read these registers, FFH is
returned. Reading any write-only register will return
FFH.

■

When register FDH (Register Pointer) is read, the least
significant four bits (lower nibble) will indicate the current
Expanded Register File Bank. (Example: 0000 indicates
the Standard Register File, while 1010 indicates
Expanded Register File Bank A.)

■

When Ports 0 and 1 are defined as address outputs,
registers 00H and 01H will return 1s in each address bit
location when read.

■

Writing to bits that are defined as timer output, serial
output, or handshake output will have no effect.

■

The Z8 instruction DJNZ uses any general-purpose
working register as a counter.

■

Logical instructions such as OR and AND require that
the current contents of the operand be read. They
therefore will not function properly on write-only
registers.

■

The WDTMR register must be written within the first 60
internal system clocks (SCLK) of operation after a reset.

Figure 2-4. Register Pointer

FF

 F0

R7 R6 R5 R4 R3 R2 R1 R0

Specified Working Register Group

R253

I/O Ports

Working Register Group 1

Working Register Group 0

Working Register Group F

EF
80
7F
70
6F
60
5F
50
4F
40
3F
30
2F
20
1F
10
0F

00

The lower nibble
of the register
file address,
provided by the
instruction, points
to the specified
register

The upper nibble of the register file address,
provided by the register pointer, specifies
the active working-register group.

(Register Pointer)

R15 to R0

R15 to R4

R3 to R0

Z8 Microcontrollers

Zilog Address Space

UM97Z8X0104 2-5

2

2.3 Z8 EXPANDED REGISTER FILE

The standard register file of the Z8

®

 has been expanded to
form 16 Expanded Register File (ERF) Banks (Figure 2-5).
Each ERF Bank consists of up to 256 registers (the same
amount as in the Standard Register File) that can then be

divided into 16 Working Register Groups. This expansion
allows for access to additional feature/peripheral control
and data registers.

Note:

The fully implemented register file is shown. Please refer to the specific product specification for actual register file architecture
implemented.

Figure 2-5. Expanded Register File Architecture

Z8 Register File

(F) 0F WDTMR

Expanded Register

FF

0F

 7F

F0

00

Expanded Register File
Bank (F)

(F) 0E Reserved

(F) 0D Reserved

(F) 0C Reserved

(F) 0B SMR

 (F) 0A Reserved
(F) 09 Reserved

(F) 08 Reserved

(F) 07 Reserved

(F) 06 Reserved

(F) 05 Reserved

(F) 04 Reserved

(F) 03 Reserved

(F) 0E Reserved

(F) 02 Reserved

(F) 01 Reserved

(F) 00 PCON

(0) 0F GPR

Expanded Register File
Bank (0)

(0) 0E GPR

(0) 0D GPR

(0) 0C GPR

(0) 0B GPR

(0) 0A GPR

(0) 09 GPR

(0) 08 GPR

(0) 07 GPR

(0) 06 GPR

(0) 05 GPR

(0) 04 GPR

(0) 03 P3

(0) 02 P2

(0) 01 P1

(0) 00 P0

(C) 0F Reserved

Expanded Register File
Bank (C)

(C) 0E Reserved

(C) 0D Reserved

(C) 0C Reserved

(C) 0B Reserved

(C) 0A Reserved

(C) 09 Reserved

(C) 08 Reserved

(C) 07 Reserved

(C) 06 Reserved

(C) 05 Reserved

(C) 04 Reserved

(C) 03 Reserved

(C) 02 SCON

(C) 01 RXBUF

(C) 00 SCOMP

D7 D6 D5 D4 D3 D2 D1 D0

Working Register
Group Pointer Group Pointer

Register Pointer

Z8 Microcontrollers

Address Space Zilog

2-6 UM97Z8X0104

2.3 Z8 EXPANDED REGISTER FILE

(Continued)

Currently, three out of the possible sixteen Z8

®

 ERF Banks
have been implemented. ERF Bank 0, also known as the
Z8 Standard Register File, has all 256 bytes defined (Fig-
ure 2-1). Only Working Register Group 0 (register address-
es 00H to 0FH) have been defined for ERF Bank C and
ERF Bank F (Table 2-4). All other working register groups
in ERF Banks C and F, as well as the remaining thirteen
ERF Banks, are not implemented. All are reserved for fu-
ture use.

When an ERF Bank is selected, register addresses 00H to
0FH access those sixteen ERF Bank registers – in effect
replacing the first sixteen locations of the Z8 Standard
Register File.

For example, if ERF Bank C is selected, the Z8 Standard
Registers 00H through 0FH are no longer accessible. Reg-
isters 00H through 0FH are now the 16 registers from ERF
Bank C, Working Register Group 0. No other Z8 Standard
Registers are effected since only Working Register Group
0 is implemented in ERF Bank C.

Access to the ERF is accomplished through the Register
Pointer (FDH). The lower nibble of the Register Pointer de-
termines the ERF Bank while the upper nibble determines
the Working Register Group within the register file (Figure
2-6).

The value of the lower nibble in the Register Pointer (FDH)
corresponds to the ERF Bank identification. Table 2.3
shows the lower nibble value and the register file assigned
to it.

Figure 2-6. Register Pointer (FDH) Example

0 1 1 1 1 1 0 0

Working

Select ERF Bank C(H)

Register
Group

Expanded
Register
Bank

Working Register Group 7(H)

Table 2-3. ERF Bank Address

Register Pointer
(FDH)

Low Nibble Hex Register File

0000(B) 0 Z8

®

 Standard Register File *
0001(B) 1 Expanded Register File Bank 1
0010(B) 2 Expanded Register File Bank 2
0011(B) 3 Expanded Register File Bank 3
0100(B) 4 Expanded Register File Bank 4
0101(B) 5 Expanded Register File Bank 5
0110(B) 6 Expanded Register File Bank 6
0111(B) 7 Expanded Register File Bank 7
1000(B) 8 Expanded Register File Bank 8
1001(B) 9 Expanded Register File Bank 9
1010(B) A Expanded Register File Bank A
1011(B) B Expanded Register File Bank B
1100(B) C Expanded Register File Bank C
1101(B) D Expanded Register File Bank D
1110(B) E Expanded Register File Bank E
1111(B) F Expanded Register File Bank F

Note:

The Z8 Standard Register File is equivalent to Expand-
ed Register File Bank 0.

Z8 Microcontrollers

Zilog Address Space

UM97Z8X0104 2-7

2

The upper nibble of the register pointer selects which
group of 16 bytes in the Register File, out of the full 256,
will be accessed as working registers.

For example:

(See Figure 2-4)

Note that since enabling an ERF Bank (C or F) only chang-
es register addresses 00H to 0FH, the working register
pointer can be used to access either the selected ERF
Bank (Bank C or F, Working Register Group 0) or the Z8
Standard Register File (ERF Bank 0, Working Register
Groups 1 through F).

Note:

When an ERF Bank other than Bank 0 is enabled,
the first 16 bytes of the Z8 Standard Register File (I/O ports
0 to 3, Groups 4 to F) are no longer accessible (the
selected ERF Bank, Registers 00H to 0FH are accessed
instead). It is important to re-initialize the Register Pointer
to enable ERF Bank 0 when these registers are required
for use.

The SPI register is mapped into ERF Bank C. Access is
easily done using the following example:

Please refer to the specific product specification to deter-
mine the above registers are implemented.

R253 RP = 00H ;ERF Bank 0, Working Reg. Group 0.
R0 = Port 0 = 00H
R1 = Port 1 = 01H
R2 = Port 2 = 02H
R3 = Port 3 = 03H
R11 = GPR 0BH
R15 = GPR 0FH

If:
R253 RP = 0FH ;ERF Bank F, Working Reg. Group 0.

R0 = PCON = 00H
R1 = Reserved = 01H
R2 = Reserved = 02H
R11 = SMR = 0BH
R15 = WDTMR = 0FH

If:
R253 RP = FFH ;ERF Bank F, Working Reg. Group F.

00H = PCON
R0 = SI0 01H= Reserved
R1 = TMR 02H= Reserved

...
R2 = T1 0BH = SMR

...
R15 = SPL 0FH = WDTMR

LD RP, #0CH ;Select ERF Bank C working
;register group 0 for access.

LD R2,#xx ;access SCON
LD R1, #xx ;access RXBUF
LD RP, #00H ;Select ERF Bank 0 so I/O ports

;are again accessible.

Table 2-4. Z8 Expanded Register File Bank Layout

Expanded
Register File

Bank ERF

F(H) PCON, SMR, WDT,
(00H, 0BH, 0FH),

Working Register Group 0
only implemented.

E(H) Not Implemented
(Reserved)

D(H) Not Implemented
(Reserved)

C(H) SPI Registers: SCOMP,
RXBUF,

SCON (00H, 01H, 02H),
Working Register Group 0

only implemented.
B(H) Not Implemented

(Reserved)
A(H) Not Implemented

(Reserved)
9(H) Not Implemented

(Reserved)
8(H) Not Implemented

(Reserved)
7(H) Not Implemented

(Reserved)
6(H) Not Implemented

(Reserved)
5(H) Not Implemented

(Reserved)
4(H) Not Implemented

(Reserved)
3(H) Not Implemented

(Reserved)
2(H) Not Implemented

(Reserved)
1(H) Not Implemented

(Reserved)
0(H) Z8 Ports 0, 1, 2, 3,

and General-Purpose Registers
04H to EFH, and control registers

F0H to FFH.

Z8 Microcontrollers

Address Space Zilog

2-8 UM97Z8X0104

2.4 Z8 CONTROL AND PERIPHERAL REGISTERS

2.4.1 Standard Z8 Registers

The standard Z8

®

 control registers govern the operation of
the CPU. Any instruction which references the register file
can access these control registers. Available control regis-
ters are:

■

Interrupt Priority Register (IPR)

■

Interrupt Mask Register (IMR)

■

Interrupt Request Register (IRQ)

■

Program Control Flags (FLAGS)

■

Register Pointer (RP)

■

Stack Pointer High-Byte (SPH)

■

Stack Pointer Low-Byte (SPL)

The Z8 uses a 16-bit Program Counter (PC) to determine
the sequence of current program instructions. The PC is
not an addressable register.

Peripheral registers are used to transfer data, configure
the operating mode, and control the operation of the on-
chip peripherals. Any instruction that references the regis-
ter file can access the peripheral registers. The peripheral
registers are:

■

Serial I/O (SIO)

■

Timer Mode (TMR)

■

Timer/Counter 0 (T0)

■

T0 Prescaler (PRE0)

■

Timer/Counter 1 (T1)

■

T1 Prescaler (PRE1)

■

Port 0–1 Mode (P01M)

■

Port 2 Mode (P2M)

■

Port 3 Mode (P3M)

In addition, the four port registers (P0–P3) are considered
to be peripheral registers.

2.4.2 Expanded Z8 Registers

The expanded Z8 control registers govern the operation of
additional features or peripherals. Any instruction which
references the register file can access these registers.

The ERF contains the control registers for WDT, Port Con-
trol, Serial Peripheral Interface (SPI), and the SMR func-
tions. Figure 2-4 shows the layout of the Register Banks in
the ERF. Register Bank C in the ERF consists of the reg-
isters for the SPI. Table 2-5 shows the registers within ERF
Bank C, Working Register Group 0.

Table 2-5. Expanded Register File Register Bank C,
WR Group 0

Register Working
Register Function Register

F Reserved R15
E Reserved R14
D Reserved R13
C Reserved R12
B Reserved R11
A Reserved R10
9 Reserved R9
8 Reserved R8
7 Reserved R7
6 Reserved R6
5 Reserved R5
4 Reserved R4
3 Reserved R3
2 SPI Control (SCON) R2
1 SPI Tx/Rx Data (Roxburgh) R1
0 SPI Compare (SCOMP) R0

Z8 Microcontrollers

Zilog Address Space

UM97Z8X0104 2-9

2

Working Register Group 0 in ERF Bank 0 consists of the
registers for Z8 General-Purpose Registers and ports. Ta-
ble 2-6 shows the registers within this group.

Working Register Group 0 in ERF Bank F consists of the
control registers for STOP mode, WDT, and port control.
Table 2-7 shows the registers within this group.

The functions and applications of the control and peripher-
al registers are described in subsequent sections of this
manual.

Table 2-6. Expanded Register File Bank 0,
WR Group 0

Register Working
Register Function Register

F General-Purpose Register R15
E General-Purpose Register R14
D General-Purpose Register R13
C General-Purpose Register R12
B General-Purpose Register R11
A General-Purpose Register R10
9 General-Purpose Register R9
8 General-Purpose Register R8
7 General-Purpose Register R7
6 General-Purpose Register R6
5 General-Purpose Register R5
4 General-Purpose Register R4
3 Port 3 R3
2 Port 2 R2
1 Port 1 R1
0 Port 0 R0

Table 2-7. Expanded Register File Bank F,
WR Group 0

Register Working
Register Function Register

F WDTMR R15
E Reserved R14
D Reserved R13
C Reserved R12
B SMR R11
A Reserved R10
9 Reserved R9
8 Reserved R8
7 Reserved R7
6 Reserved R6
5 Reserved R5
4 Reserved R4
3 Reserved R3
2 Reserved R2
1 Reserved R1
0 PCON R0

Z8 Microcontrollers

Address Space Zilog

2-10 UM97Z8X0104

2.5 PROGRAM MEMORY

The first 12 bytes of Program Memory are reserved for the
interrupt vectors (Figure 2-7). These locations contain six
16-bit vectors that correspond to the six available inter-
rupts. Address 12 up to the maximum ROM address con-
sists of on-chip mask-programmable ROM. See the prod-
uct data sheet for the exact program, data, register
memory size, and address range available. At addresses
outside the internal ROM, the Z8

®

 executes external pro-
gram memory fetches through Port 0 and Port 1 in Ad-
dress/Data mode for devices with Port 0 and Port 1 fea-
tured. Otherwise, the program counter will continue to
execute NOPs up to address FFFFH, roll over to 0000H,
and continue to fetch executable code (Figure 2-7).

The internal program memory is one-time programmable
(OTP) or mask programmable dependent on the specific
device.

A ROM protect feature prevents “dumping” of
the ROM contents by inhibiting execution of the LDC,
LDCI, LDE, and LDEI instructions to Program Memory
in all modes. ROM look-up tables cannot be used with
this feature.

The ROM Protect option is mask-programmable, to be se-
lected by the customer when the ROM code is submitted.
For the OTP ROM, the ROM Protect option is an OTP pro-
gramming option.

Figure 2-7. Z8 Program Memory Map

Interrupt

 External

On - Chip

65535

ROM and RAM

 ROM

IRQ5

4096

Interrupt

Location of

IRQ0

IRQ0

IRQ1

IRQ1

IRQ2

IRQ2

IRQ3

IRQ3

IRQ4

IRQ4

IRQ5

4095

12

1

 2

 3

 4

 5

 6

 7

 8

 9

10

11

0

First Byte of
Instruction
Executed
After RESET

Vector
(Lower Byte)

Vector
(Upper Byte)

Z8 Microcontrollers
Zilog Address Space

UM97Z8X0104 2-11

2

2.6 Z8 EXTERNAL MEMORY

The Z8®, in some cases, has the capability to access ex-
ternal program memory with the 16-bit Program Counter.
To access external program memory the Z8 offers multi-
plexed address/data lines (AD7-AD0) on Port 1 and ad-
dress lines (A15-A8) on Port 0. This feature only applies to
devices that offer Port 0 and Port 1. The maximum external
address is FFFF. This memory interface is supported by
the control lines /AS (Address Strobe), /DS (Data Strobe),
and R/W (Read/Write). The origin of the external program
memory starts after the last address of the internal ROM.
Figure 2-8 shows an example of external program memory
for the Z8.

2.6.1 External Data Memory (/DM)
The Z8, in some cases, can address up to 60 Kbytes of ex-
ternal data memory beginning at location 4096. External
Data Memory may be included with, or separated from, the
external Program Memory space. /DM, an optional I/O
function that can be programmed to appear on pin P34, is
used to distinguish between data and program memory
space. The state of the /DM signal is controlled by the type
of instruction being executed. An LDC opcode references
Program (/DM inactive) Memory, and an LDE instruction
references Data (/DM active Low) Memory. The user must
configure Port 3 Mode Register (P3M) bits D3 and D4 for
this mode.

Note: For additional information on using external memory, see Chapter 10 of this manual. For exact memory addressing options
available, see the device product specification.

Figure 2-8. External Memory Map

 External

65535

 Memory

4096

Not Addressable

4095

0

Z8 Microcontrollers
Address Space Zilog

2-12 UM97Z8X0104

2.7 Z8 STACKS

Stack operations can occur in either the Z8® MCU Stan-
dard Register File or external data memory. Under soft-
ware control, Port 0–1 Mode register (F8H) selects the
stack location. Only the General-Purpose Registers can
be used for the stack when the internal stack is selected.

The register pair FEH and FFH form the 16-bit Stack Point-
er (SP), that is used for all stack operations. The stack ad-
dress is stored with the MSB in FEH and LSB in FFH (Fig-
ure 2-9).

The stack address is decremented prior to a PUSH opera-
tion and incremented after a POP operation. The stack ad-
dress always points to the data stored on the top of the
stack. The Z8® stack is a return stack for CALL instructions
and interrupts, as well as a data stack.

During a CALL instruction, the contents of the PC are
saved on the stack. The PC is restored during a RETURN
instruction. Interrupts cause the contents of the PC and
Flag registers to be saved on the stack. The IRET instruc-
tion restores them (Figure 2-10).

When the Z8 is configured for an internal stack (using the
Z8 Standard Register File), register FFH serves as the
Stack Pointer. The value in FEH is ignored. FEH can be
used as a general-purpose register in this case only.

An overflow or underflow can occur when the stack ad-
dress is incremented or decremented during normal stack
operations. The programmer must prevent this occurrence
or unpredictable operation will result.

Figure 2-9. Stack Pointer

UPPER Byte

LOWER Byte

Stack Pointer High

FFH
Stack Pointer Low

FEH

Figure 2-10. Stack Operations

PCL

 Top of Stack

Stack Contents

PCH

PCL

PCH

FLAGS

After an
Interrupt Cycle

Stack Contents
After a Call
Instruction

 Top of Stack

