ZiLOG

Totally Logical

28PLUS
USER’S MIANUAL

UMOO01000-28X0199

© 1999 by ZIiLOG, Inc. All rights reserved. No part of this document may be copied or reproduced in any
form or by any means without the prior written consent of ZiLOG, Inc. The information in this document is
subject to change without notice. Devices sold by ZiLOG, Inc. are covered by warranty and paten
indemnification provisions appearing in ZiLOG, Inc. Terms and Conditions of Sale only.

ZiLOG, Inc. makes no warranty, express, statutory, implied or by description, regarding the information se
forth herein or regarding the freedom of the described devices from intellectual property infringement.
ZiLOG, Inc. makes no warranty of merchantability or fithess for any purpose.

The software described herein is provided on an as-is basis and without warranty. ZiLOG accepts no liabilit
for incidental or consequential damages arising from use of the software.

ZiLOG, Inc. shall not be responsible for any errors that may appear in this document. ZiLOG, Inc. makes n
commitment to update or keep current the information contained in this document.

ZiLOG's products are not authorized for use as critical components in life support devices or systems unle
a specific written agreement pertaining to such intended use is executed between the customer and ZiLC
prior to use. Life support devices or systems are those which are intended for surgical implantation into th
body, or which sustains life whose failure to perform, when properly used in accordance with instructions fol
use provided in the labeling, can be reasonably expected to result in significant injury to the user.

ZiLOG, Inc.

910 East Hamilton Ave., Suite 110
Campbell, CA 95008

Telephone: (408) 558-8500

FAX: (408) 558-8300

Internet: http://www.zilog.com

Z8PLUSUSER’S MIANUAL

ZiLOG

Totally Logical

PREFACE

The following conventions have been adopted to provide clarity and ease of use:
» Courier Font For Executables

Commands, variables, icon names, entry field names, selection buttons, code examples, and other
executable items are distinguished by the use of the Courier font. Where the use of the font is not
possible, like in the Index, the name of the entity is capitalized. For example, a procedure may contain
an instruction which appears as: Click on Fi | e. However, an Index entry would appear as FILE.

» Grouping of Actions Within A Procedure Step

Actions in a procedure step are all performed on the same window or dialog box. Actions performed on
different windows or dialog boxes appear in separate steps.

* Sequencing Words Within A Procedure Step

When an item in a procedure contains a series of actions, the second action is preceded by the word zbex,
and the third and subsequent actions are preceded by the word axd. For example: Click on Vi ew, then
Menory,and Z8 Code Menory.

+ Unavailable menu items are presented in gray.

UMOO01000-28X0199 v

Z8PLUS User’s Manual
Preface ZiLOG

ADDITIONAL SOURCES OF INFORMATION

In addition to this manual, you should have access to and be familiar with the following documentation:
e Z8 Microcontrollers User’s Manual, UM95Z800103

» Data Sheet for each product with which you work.

vi UMOO0O1000-28X0199

Z8PLUS User’s MIANUAL

O
o
—
N
Totally Logical TABLE OF CONTENTS
Chapter Title and Subsections Page

Chapter 1. Address Space

10T Vo3 1o RO PR PR 1-1
dC Lo 1S3 G 1[I o = Lo RS 1-1
GENEral-PUrpoSE REQISIEIS uiiiiiiiiieee e i iie s tir et e e e s et s s rr e e e e e e s e e s s s aeeeeeeaaeeesesannnens 1-5
WOrKiNG REGISIEr GIOUPS ...eveeiieiiieiieieiee e e et e e s s s s sttt e e e e e e e e s e s e st eaeraaeeeeasansnsnnnnnneaeaaaeanas 1-6
LT o= TU L1 0] o1 TSP 1-8
Control and Peripheral REQISIEISuvuiiiiiiiieiii e er e e e e e r e e e e e e e e an 1-10
[OT0] a1 (0TI = L= 1] 1T PP 1-10
Peripheral REQISIEISuuiiiiiiiiie i r e e e e e e s s s e e e eae e e s s s snnennreneeeeees 1-10
Program MEIMOIY ...t e et e e et e e eat s e e e e eeetbt e e e e e eetbaa e e e aeeenb e eee 1-11
53 - Lo PP PP 1-13

Chapter 2. Addressing Modes

Y (o | =11 1T TN 1Yo Lo [R 2-1
g To 1S CoT AN [0 [=TT [o T P 2-2
Indirect Register AAAressing (IR) ...coovicoceiieiiiiieee e e e e e e e e e e s e r e e e e e e e 2-3
[aTo (=3 T X (o [=EST] T I 0, TS 2-5
(DT =Tod AN (o [T STST] T g T (2 2-7
Relative AddreSSING (RA) ..o iiie e e e e e e e e e e e s e e s e e e e e e e e e s e st e e aaeeeaeeeesesaannsnnreneeees 2-8
Immediate Data AAAreSSing (IM)eeeieeeiiiie e e e e s e e e e e e e e s e s annrenrraeeees 2-9

UMOO01000-28X0199 vii

Z8P'YSuser’'s Manual
Table of Contents ZiLOG

Chapter Title and Subsections Page

Chapter 3. Instruction Set

(T aTed o] g F= U0 o] o 4= LY/ S 3-1
o Tod =TT o] gl = Vo SR 3-5
(0o g To [11Te] o I @FeTe [T PP PP 3-7
[N[o) 7=\ do] o AN [0 J 271 0 F= U V0 =X 1 oo To 1o [SRS 3-10
AsSEMDBIY LaNQUage SYNTAXccoiiiiiiiieiiiiceee e et e e e e e e s e st e e e e e s e e s s s nreeeeeaaeeas 3-12
Z8PIUS INSTrUCLION SUMMATY ...ciiieiiiiieieeeeeeee e e es sttt e e e e e e e e s s s s st e e e e aeeeesesassnnteeanneeeaeeesaneannns 3-12
(@ oo o [0 1V = o SRR, 3-18
Instruction Description and FOIMALScccuiiiiiiiiie e e e e e e e e s e 3-19
ADC—AAA WIth CAITY .oereiiiiiie i e e e e e e e s e e e e e e e e s s s s snntanraneeeeeaeeseeans 3-20
ADC—AAA WIth CAITY .eeviiiiiiie it e e e e e e e s e r e e e e e e e e e e asnnranbrneeeeaaeeseeanns 3-22
ADD =AU ... e b e e e e e e e ee e e e b 3-23
N I Yo [o= LY N 0 PP 3-25
CALL—Call PrOCEAUIEoiieiieiiiiee ittt ettt s e e nne e nnnee e 3-27
CCF-Complement Carry FIag ... s e e e e e e e e e e e e e s nnenneees 3-29
(O 1 [T T OO USSP 3-30
(1@ 11 B @] 1 4] 0] [T 1 41T o | PSSR 3-31
(08 = o1] 0= 1 =R 3-32
D LYol g = LA |1] 3-34
DEC—DECIEIMENT ...ttt e ettt e et et e e e e e et a e e e et e e e e e e e sabnnn e reereeeeaeeanns 3-37
DECW-—DECIeMENT WOIToeiiiiiiiiiiiiiiiie ettt st e e e et ae e e et e e e e eneee 3-38
(DR BT o] (o] (= 0] o £ PP 3-39
DJINZ-Decrement And Jump If NON-ZEIOooviiiiiiiiiiiiiie e 3-40
EI—ENADIE INTEITUPLS ..oeiiiiiiiiiie ettt ee e e e e e 3-42
L R I - 1 OSSP 3-43
INCINCIEIMENT ...ttt e e e e e e e e et e e e e s s s bbb e e e eeeeeens 3-44
INCW—INCIEMENT WOTT ...ttt e e s e e e e e 3-46
IRET=INTEITUPT RETUIN ...ttt e 3-47
8L 1 o o PP PRN 3-48

viii UMOO0O1000-28X0199

ZiLOG

Z28P'USyser’'s Manual
Table of Contents

Chapter Title and Subsection

Page

JR-Jump Relative

LD—L0Ad ...oooiiiiiieeeiiieeee e
LDC-Load Constant
LDCl-Load Constant Auto Increment
NOP-No Operation
OR-Logical ORceeeiiiiiiiiiiiiiiiieeee e

RCF-Reset Carry Flag
RET-RetUrncooociiiceen
RL—Rotate Leftccoveeiiiieiiiieeee e
RLC—-Rotate Left Through Carry
RLC—-Rotate Left Through Carry
RR—Rotate Right ...,
RRC-Rotate Right Through Carry
RRC-Rotate Right Through Carry
SBC-Subtract with Carry
SCF-Set Carry Flag
SRA-Shift Right Arithmetic
SRP-Set Register Pointer
STOP—=SIOP eeevviiieiiiiiiiiiiiiirir e
SUB=SUDIIactccccoevvvvveiiiiiiieeeeeee e
SWAP-Swap Nibbles
TCM-Test Complement Under Mask
TM-Test Under Mask
WDT-Watch-Dog Timer
XOR-Logical Exclusive OR

UMOO1000-28X0199

28PLUSyser’'s Manual
Table of Contents ZiLOG

Chapter Title and Subsections Page

Chapter 4. Interrupts

10T Vo3 1o o RO U TR PPR PR 4-1
LTS 0 U o 00T 10 o =SS 4-3
EXternal INtEITUPL SOUICES ..oiiiiiiiiii ittt e e e e e s e s e e e e e e e e e s e e ennnrn e e e eeeaeeas 4-3
INternal INTEITUPE SOUMCES ...vvviiiiieieei i ittt et e e e e e e s s s e e e e e e e s e e e et areeaaeeeesessnnsnnreeneees 4-4
Interrupt Request (IREQ) Register Logic ANd TiMIiNGccccvvviieiiiieee e e e e 4-4
Interrupt Mask Register (IMASK) Initializationcccccveeieiee e 4-5
Interrupt Request (IREQ) Register Initializationccccvveeeieie s 4-7
IREQ Software Interrupt GENEIatioNcccccuviiiiiieiie e er e e e e s s e e e e e e e e e s enerrraeeees 4-9
RV = Tor (0] =0 o 0ot 1T Vo R 4-9
Nesting of Vectored INTEITUPLScoooiiiiiiiiieiie e e e er e e e e e e s e e e aeees 4-11
[0 1= To I o 0Tt E7] 1 o SRR 4-12
RESEL CONAILIONSeeiiiiiiiiiee ettt e e nn e nn e e nnnnee e 4-12

Appendix A. Accessing the ZBBS/Internet
Bulletin Board Information

How to Access the ZBBS
ZiLOG On The Internet

Problem/Suggestion Report Form

Index

X UMOO0O1000-28X0199

Z8PLUS User’s MIANUAL

ZiLOG

Totally Logical LiIST OF FIGURES

Chapter Title and Subsections Page

Chapter 1. Address Space

Figure 1-1. Complete Register File RAM Space 1-2
Figure 1-2. 16-Bit Register Addressing e e 1-5
Figure 1-3. Accessing Individual Bits (Example) 1-5
Figure 1-4. Working Register Addressing (Example) 1-7
Figure 1-5. Register PoOINter e 1-8
Figure 1-6. Program Memory Map 1-12
Figure 1-7. Stack PoINter 1-13
Figure 1-8. Stack Operations i e e 1-14
Chapter 2. Addressing Modes

Figure 2-1. 8-Bit Register Addressingt 2-2
Figure 2-2. 4-Bit Register Addressingt 2-3
Figure 2-3. Indirect Addressing of Register File Memory 2-4
Figure 2-4. Indirect Register Addressing to Program Memory 2-5
Figure 2-5. Indexed Register Addressing 2-6
Figure 2-6. Direct ADdresSingot 2-7
Figure 2-7. Retrieve Adressing 2-8
Figure 2-8. Immedate Data Addressingttt 2-9
Chapter 3. Instruction Set

Figure 3-1. Flag Register o e e e e 3-5
Figure 3-2. Op Code Mapttt e e 3-18
Chapter 4. Interruupts

Figure 4-1. Interrupt Control Register Addresses and Identifiers 4-1
Figure 4-2. Interrupt Block Diagram 4-2
Figure 4-3. Interrupt SErvice SEQUENCEottt e e et e e e 4-4
Figure 4-4. Interrupt Mask Register e e 4-5
Figure 4-5. Interrupt Mask 2 Register i e e e 4-6

UMOO01000-28X0199 Xi

28PLUSyser’'s Manual

List of Figures ZiLOG
Figure 4-6. Interrupt Request Register. i e e e e 4-7
Figure 4-7. Interrupt Request Register 2 i e e e e 4-8
Figure 4-8. Stacks Before and After Interrupt 4-10
Figure 4-9. Interrupt Vector Table Location 4-11

Xii UMOO0O1000-28X0199

Z8PLUS User’s MIANUAL

O
o
—
N
Totally Logical LIST OF TABLES
Chapter Title and Subsections Page

Chapter 1. Address Space
Table 1-1 Z8P'US Core Control REGISIEISottt ettt et e e e e e 1-3
Table 1-1 Page 0 Register File Organization —........... 1-4

Chapter 3. Instruction Set

Table 3-1 Load INStruCtioNSot e e e 3-2
Table 3-2 Arithmetic INStruCtions e 3-2
Table 3-3 Logical INStruCtioONS e e e 3-2
Table 3-4 Program Control INStructions e e 3-3
Table 3-5 Bit Manipulation INStruCtions i e 3-3
Table 3-6 Block Transfer INStructions. e 3-3
Table 3-7 Rotate and Shift Instructions i i i 3-4
Table 3-8 CPU Control INStrUCtioNS o e e e e e 3-4
Table 3-9 Flag Definitions e 3-7
Table 3-10 Flag Settings Definitions i e 3-8
Table 3-11 Condition Codes i e e e 3-8
Table 3-12 Notational Shorthand e e 3-10
Table 3-13 Additional Symbols e 3-11
Table 3-14 InStruction SUMMANYt et e e e e 3-13
Table 3-15 Lower Nibble Values 3-17
Table 3-16 DA Operation Reference e e e e 3-34
Table 3-17 Register Pointers, Working Register Groups, and Actual Registers 3-79

Chapter 4. Interrupts
Table 4-1 Z8EOO1 Interrupt Types, Sources, and VECtorsc.uueiiiinnn... 4-3

UMOO01000-28X0199 Xiii

78PLUS User’s ManuAL

ZiLOG

CHAPTER 1

Totally Logical ADDRESS SPACE

INTRODUCTION
Two address spaces are available for the Z8™YS MCU:

* Regider file RAM contains addresses for al the control registers and all the general purpose registers.

« Program memory contains addresses for all memory |ocations where executable code and/or data are stored.

REGISTER FILE SPACE

Theon-chipregister file RAM isorganized into 16 pages, where each page has 256 addressable memory loca-
tions. Thefirst page (page 0) contains both control registers and general purpose registers. All the remaining
pages (pages 1 through 15) contain only general purpose registers. Figure 1-1 illustrates the complete register
file RAM space. As shown, control registers are located in the upper half of page 0. Any specific implemen-
tation of the Z8™-YS core may use only a subset of the complete register file RAM space.

Table 1-1 describes the Core Control Registers and Table 1-2 shows the Page 0 Register File organization.

All registers on the Z8™YS-family products are fully read/writable. Hardware may write lock certain registers
or bits under some conditions. The TCTLHI register is one such example.

UMOO01000-28X0199 1-1

Z8PLUs User’'s Manual
Address Space ZiLOG

PAGES 1 THROUGH 15
CONTAIN GENERAL
PURPOSE REGISTERS
256 THROUGH 4095

|] 15
14
13
12
11
255 | 10
9
Control Registers 8 Q&
@Q/
7 S
S
128 6 <«
Y
127 5 ¥
| 4
3
General Purpose Registers >
(GPRs)
1
0 0

Figure 1-1. Complete Register File RAM Space

1-2 UMOO0O1000-28X0199

Z8PLUS User’s Manual

Address Space ZiLOG
Table 1-1. Z8P'YS Core Control Registers
Hex Address Register Name Register Description Comments

OFFH STKPTR (SPL) Stack Pointer Low LSB of Stack Pointer
OFEH SPH Stack Pointer High MSB of Stack Pointer
OFDH REGPTR(RP) Register Pointer

OFCH FLAGS Flags

OFBH IMASK Interrupt Mask 1 Ints.0-6
OFAH IREQ Interrupt Request 1 Ints.0-6
OF9H IMASK?2 Interrupt Mask 2 Ints. 7-14
OF8H IREQ2 Interrupt Request 2 Ints. 7- 14
OF7H Reserved
OF6H Reserved
OF5H Reserved
OH4H Reserved
OF3H Reserved
OF2H Reserved
OF1H Reserved
OFOH Reserved

The Stack Pointer High register (OFEH), the interrupt mask register 2 (OF9H), and the interrupt request
register 2 (OF8H) are optional and are reserved if not implemented.

1-3

UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

Table 1-2. Page 0 Register File Organization

Hex Address Range Register Description

FO - FF Core Control Registers

EO - EF Virtual Copy of the Current Working Register Set
DO - DF Port Logic Control Registers

CO -CF Timer Peripherals Control Registers
BO - BF Reserved for Future Extensions
A0 - AF Reserved for Future Extensions
90 - 9F Reserved for Future Extensions
80 - 8F Reserved for Future Extensions
70 - 7F General Purpose Registers

60 - 6F General Purpose Registers

50 - 5F General Purpose Registers

40 - 4F General Purpose Registers

30 - 3F General Purpose Registers

20 - 2F General Purpose Registers

10 -1F General Purpose Registers

00 - OF General Purpose Registers

Registers can be accessed as either 8-bit or 16-bit registers using Direct, Indirect, or Indexed Addressing. All
genera -purpose registers can be referenced or modified by any instruction that accesses an 8-bit register,
without the need for special instructions. Registers accessed as 16 bits are treated as even-odd register pairs.

In this case, the data’s Most Significant BW&R) is stored in the even numbered register, while the Least
Significant Byte [SB) goes into the next higher odd numbered register (Figure 1-2).

1-4 UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

MSB | LSB

Rn Rn+1

n = Even
Address

Figure 1-2. 16-Bit Register Addressing

By using alogical instruction and amask, individual bitswithin registers can be accessed for bit set, bit clear,
bit complement, or bit test operations. For example, the instruction AND R15, MASK performs a bit clear
operation. Figure 1-3 shows this example.

0 1 1 1 0 0 0 0 R15

1 1 0 1 1 1 1 1 MASK
AND R15, DFH ;Clear Bit 5 of Working Register 15

0 1 0 1 0 0 0 0 R15

Figure 1-3. Accessing Individual Bits (Example)

When instructions are executed, registers are only read, not written, when defined as sources; and read and/or
written when defined as destinations. All General-Purpose Registers function as accumulators, address
pointers, index registers, stack areas, or scratch pad memory.

General-Purpose Registers

General-Purpose Registers (GPR) are undefined after the device is powered up. The registers keep their last
value after any reset, aslong asthe reset occursin the V - voltage-specified operating range. It does not keep
its last statefroma V| \, reset if V- dropsbelow 1. 8V.

1-5 UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

Working Register Groups

Instructions can access 8-bit registers and register pairs (16-bit words) using either 4-, 8-, or 12-bit address
fields. Eight-bit address fields refer to the actual address of the register within the current page. For example,
Register 58H is accessed by calling upon its 8-bit address, 01011000 (58H) . The lower nibble of the
Register Pointer specifies the current RAM page.

With 4-bit addressing, the register fileis logically divided into 16 Working Register Groups of 16 registers
each, as shown in Table 1-3. These 16 registers are known as Working Registers. A Register Pointer (one of
the control registers, FDH) contains the base address of the active Working Register Group. The High nibble
of the Register Pointer determines the current Working Register Group.

When accessing one of the Working Registers, the 4-bit address of the Working Register is combined with
the upper four bits (High nibble) of the Register Pointer, thus forming the 8-bit actual address. Figure 1-4
illustratesthis operation. Since working registers are typically specified by short format instructions, there are
fewer bytes of code needed. In addition, when processing interrupts or changing tasks, the Register Pointer
(see Figure 1-5) speeds context switching. A special Set Register Pointer (SRP) instruction sets the contents
of the Register Pointer.

Datatransfer across RAM page boundaries can be accomplished via 12-bit addressing. Using certain instruc-
tion modes, data can be moved from the current page and working group into any register on the chip by spec-
ifying the absolute 12-bit address, including page. Not all family members support 12-bit addressing. See the
applicable product specification for specific information.

Table 1-3. Working Register Groups

Register Pointer (FDH) Working Register Group
High Nibble (Binary) (HEX) Actual Registers (HEX)
1111 F FO - FF
1110 E EO- EF
1101 D DO- DF
1100 C CO-CF
1011 B BO- BF
1010 A AO0-AF
1001 9 90- 9F
1000 8 80 - 8F
0111 7 70-7F

1-6 UMOO0O1000-28X0199

Z8P'YS User’s Manual
Address Space

ZiLOG

Table 1-3. Working Register Groups (Continued)

Register Pointer (FDH) Working Register Group
High Nibble (Binary) (HEX) Actual Registers (HEX)
0110 6 60 - 6F
0101 5 50 - 5F
0100 4 40- 4F
0011 3 30-3F
0010 2 20- 2F
0001 1 10- 1F
0000 0 00- OF

0 [|Register Pointer (FDH), = 70H

0| 1] 1]1 |0 |INCRG6 (Instruction, Short Format)

0 | Actual Register Address (76H)

Figure 1-4. Working Register Addressing (Example)

1-7

UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

The upper nibble of the register file address,

provided by the register pointer, specifies The lower nibble specifies the
the active working-register group. current page of RAM.
| |
R253
|R7 |R6 | RS | R4| R3| R2| Rll RO| (Register Pointer)
| - ===
| -- - -1
| ~|—|— — — — 1
FF
- — — — ->(Fo Working Register Group F -
EF T
- - "(80 |
7F
C T T T "(70
6F
60
_ SF The lower nibble
i > 50 of the register
| _ _ _ = 4F file address,
40 provided by the
> 3F - instruction, points
| 30 - to the specified
_— = 2F register
F——— > %g Working Register Group 1
[OF R15 T
L — — = Working Register I
00 Group 0 RO [

Figure 1-5. Register Pointer

Precautions

Registers in the Standard Register File must be correctly used or certain conditions produce inconsistent
results.

« Thewatch-dog timer can only be disabled via software if the first instruction out of RESET performs this
function. During the execution of the first instruction after the Z8™US |eaves RESET, the upper five bits of
the TCTLHI register can be written. After the first instruction, hardware does not alow the upper five bits
of thisregister to be written.

« Some control registers, including the port inputs and timer count registers, may be updated by hardware.
Writing these registers from software always overrides the hardware update from the same cycle, but with
unpredictable results. For example, writing into the count value register of a running timer can cause

1-8 UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

unexpected results if the hardware was in the process of decrementing the timer for the terminal count and
generating an interrupt.

» Theregister space from OEOH- OEFH is specid. The MCU uses these addresses to flag accesses via 4-bit
addressing mode to the current working register group. There are no physical registers at that location. Care
must be taken that the Register Pointer never points at G- oup E on the first page (be loaded with EOH).
Thisis an undefined case. Also, indirect addressing does not redirect a second time and find the working
registers. Thisis also an undefined case. As an example, in the code below, RO does not find the datain
register 08. It returns garbage. R2 correctly contains a copy of register 08.

SRP #%©0

LD R1, #%&8
LD RO, @Rl
LD R2, %&E8

1-9 UMOO0O1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

CONTROL AND PERIPHERAL REGISTERS

Control Registers

The standard control registers govern the operation of the CPU. Any instruction which references the register
file can access these control registers. Available control registers are:

« Stack Pointer Low (SPL or STKPTR)

« Stack Pointer High (SPH)

* Regiger Pointer (RP or REGPTR)

« Flags(FLAGS)

* Interrupt Mask 1 (IMASK)

« Interrupt Request 1 (IREQ)

* Interrupt Mask 2 (IMASK?2)

* Interrupt Request 2 (IREQ2)

A 16-bit Program Counter (PC) to determine the sequence of current program instructions. The PC isnot an

addressable register.

Peripheral Registers

Peripheral registers are used to transfer data, configure the operating mode, and control the operation of the
on-chip peripherals. Any instruction that references the register file can access the peripheral registers.
Possible peripheral registers can include:

« Timer Count Vaue Register for Ti mer n

« Auto-Initidization Value Register(s) for Ti mer n
« Timer Control Registers (High and Low Byte)

» Watch-Dog Timer Registers (High and Low Byte)

In addition, the port registers are considered to be peripheral registers. Ports generally have at least the
following four dedicated registers which are readabl e and writable by software:

« Port Input Value Register

« Port Output Vdue Register

« Port Control Register

« Port Specia Function Register

1-10 UM001000-Z8X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

PROGRAM MEMORY

The program memory map is shown in Figure 1-6. The first two bytes of program memory are reserved for
the PC rollover vector. When the PC wraps around to 0000H, bytes 0000H and 0001H are executed as
instructions, enabling a user defined behavior for this occurrence. For example, a JR instruction in 0000H
and a corresponding displacement in 0001 H could be defined for the PC rollover vector. The next 30 bytes
of Program Memory are reserved for the interrupt vectors. These locations contain 16-bit vectors that corre-
spond to the avail ableinterrupts. Address 002 0H through the end of the populated memory (OFFFFh, 64 KB
maximum) consists of on-chip mask-programmable ROM or EPROM or Flash. The first byte of program
memory executed following aRESET islocated at 0020H. See the product data sheet for the exact program,
data, register memory size, and address range available.

The internal program memory may be one-time programmable (OTP) or mask programmable dependent on
the specific device. A ROM protect feature prevents dumping of the ROM contents. The ROM Protect option
is mask-programmable and is selected by the customer when the ROM code is submitted. For programmable
memory devices, the ROM Protect option is an OTP programming option.

1-11 UM001000-Z8X0199

Z8P'YS User's Manual
Address Space ZiLOG

Address On-chip ROM or
EPROM Program Memory
Decimal Hex

65535 FFFF
A
User Code Space
Location of First
Byte of Instruction
Executed After
] RESET
33 021 J
32 020
31 01F
! | IRQs-1RQy
14 00E T
13 00D | IRQs (Available for
12 00C | IRQs Devices With Fewer
11 0ooB IRQ,4 Than 15 interrupts.)
10 00A | IRQq
9 009 IRQ3
8 008 IRQ3
7 007 IRQ; Interrupt Vector (Lower Byte)
6 006 IRQ; Interrupt Vector (Upper Byte)
5 005 IRQq
4 004 IRQq
3 003 IRQq
2 002 | IRQ
1 001 PC Rollover Vector (Displacement)
0 000 PC Rollover Vector (JR Instruction)

Figure 1-6. Program Memory Map

1-12 UMOO1000-Z8X0199

Z8PLUs User’'s Manual
Address Space ZiLOG

STACK

The stack always resides in the general purpose registers of the on-chip register file RAM. The stack pointer
register (SP) contains an address into the standard register file that is the address of the operand that is
currently on the top of the stack. The register OFFH is the 8-bit stack pointer (SP), that is used for al stack
operations (see Figure 1-7).

Some devices prepend the lower nibble of register OFEH to form a 12-bit stack pointer. Otherwise, register
OFEH s reserved.

OFEH OFFH

I I
Stack Address

Figure 1-7. Stack Pointer

The stack addressis decremented prior to a PUSH operation and incremented after a POP operation. The stack
address always points to the data stored on the top of the stack. The stack is areturn stack for CALL instruc-
tions and interrupts, as well as a data stack.

During a CALL instruction, the contents of the Program Counter are saved on the stack. The PC is restored
during a RET instruction. Interrupts cause the contents of the PC and FLAGS registers to be saved on the
stack. The | RET instruction restores them (see Figure 1-8).

An overflow or underflow can occur when the stack address is incremented or decremented during normal
stack operations. The programmer must prevent this occurrence or unpredictable operation may result. The
stack must not encroach into the control registers.

1-13 UMOO0O1000-28X0199

Z8PLUS User’s Manual
Address Space

ZiLOG

Prior value of
Stack Pointer

Top of Stack —»

PCL

PCH

Stack Contents
After a Call
Instruction

Prior value of
Stack Pointer

Top of Stack —=

Figure 1-8. Stack Operations

PCL

PCH

FLAGS

Stack Contents
After an
Interrupt Cycle

UMOO0O1000-28X0199

78PLUSyser’s ManuaL

ZiLOG

CHAPTER 2

Totally Logical ADDRESSING MODES

ADDRESSING MODES

The z8™YS microcontroller provides six addressing modes:

* Regiger (R)

e Indirect Regigter (IR)

* Indexed (X)

» Direct Address (DA)

+ Reddive Address (RA)
¢ Immediate Data (IM)

With the exception of immediate data and condition codes, al operands are expressed as register file or
Program Memory addresses. Registers are accessed using 12-bit addresses in the range of 000H- FFFH. The
Program Memory is accessed using 16-bit addresses (or register pairs) in the range of 0000H- FFFFH.

Generally, registers are accessed, within the current page, by specifying an 8-bit address. The upper 4 bits of
the absolute address is specified by pre-pending the lower 4 bits of the Register Pointer (OFDH) (the Page
Pointer) to the 8-bit address to form a 12-bit address.

Working Registers are accessed using 4-bit addresses in the range of 0-15 (OH- FH) . The address of the
register being accessed is formed by the combination of the lower 4 bits of the RP (Page Pointer), the upper
four bitsin the Register Pointer (Group Pointer) and the 4-bit working register address supplied by theinstruc-
tion.

Registers can be used in pairs to designate 16-bit values or memory addresses. A Register Pair must be spec-
ified as an even-numbered address in the range of 0—14 for Working Registers, or 0-4094 for general purpc
registers.

UMOO01000-28X0199 2-1

Z8P'YS User’'s Manual
Addressing Modes ZiLOG

In the following definitions of Z8™YS Addressing Modes, the use of register can also imply register pair,
working register, or working register pair, depending on the context.

NOTE: Seethe product data sheet for exact program and register memory types and address ranges
available.

REGISTER ADDRESSING (R)

In 8-bit Register Addressing mode, the operand value is equivalent to the contents of the specified register or
register pair.

In the Register Addressing (see Figure 2-1), the destination and/or source address specified corresponds to
the actual register in the current page of the register file.

Program Memory Register File

8-Bit Register o

File Address dst) > Operand
Points to
One Register

One Operand in the

Instrucﬁon — OpCode Register

(Example) File

Figure 2-1. 8-Bit Register Addressing

2-2 UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Addressing Modes

Register File

RP >—

Program Memory

Points to
Origin of
Working
Register
- Operand Group
4-Bit Working
Registers —» Ot src _
Operand
Points to
Two O d)
m";'?rucﬁce,.rqan — OpCode _Onﬁ Register
in the
(Example) Register —
File

Figure 2-2. 4-Bit Register Addressing

In 4-bit Register Addressing (see Figure 2-2), the destination and/or source addresses point to the Working
Register within the current Working Register Group. This 4-bit addressis combined with the Register Pointer
to form the actual 12-bit address of the affected register.

INDIRECT REGISTER ADDRESSING (IR)

In the Indirect Register Addressing Mode, the contents of the specified register are equivalent to the address
of the operand (see Figure 2-3 and Figure 2-4).

Depending upon the instruction selected, the specified register contents points to a Register or Program
Memory location.

When accessing program memory, register pairs or Working Register pairs are used to hold the 16-bit
addresses.

UMOO1000-28X0199 2-3

Z8P'YS User’'s Manual
Addressing Modes ZiLOG

Program Memory Register File

Address of the Operanc
Used by the Instruction

8-Bit Register _/
File Address — dst . . Address
Points to One
One Operand Register in the
Instruction ! OpCode Register File
(Example)

Points to the
Register of the
Operand

Value Used in
Instruction —= Operand -
Execution

Figure 2-3. Indirect Addressing of Register File Memory

2-4 UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Addressing Modes

Program Memory

4-Bit Working
Registers Address

dst src

——
Points to the

Instruction Example _.
References

OpCode

Working
Register

Program Memory

Pair (Even
Address)

Value Used in

the Instruction —

Register File

RP

Register
Pair LSB

Points to the Origin
of the Working
| Register Group

Register
Pair MSB

16-Bit Address
Points to Program

Program
Memory

Operand

L Memory

Figure 2-4. Indirect Register Addressing to Program Memory

INDEXED ADDRESSING (X)

The Indexed Addressing Mode is used only by the Load (LD) instruction. An indexed address consists of a
register address offset by the contents of a designated Working Register (the Index). This offset is added to
the register address to obtain the address of the operand. Figure 2-5 illustrates this addressing convention.

UMOO1000-28X0199

Z8P'YS User's Manual
Addressing Modes

ZiLOG

Points to the
Working Register

Program Memory

Address

Two Operand
Instruction —|

dst/
src

X

Register File

OpCode

Address

.

RP

Points to the Origin
of Working

| Register Group

Offset

Value Used in

Operand

l«—— the Instruction

Figure 2-5. Indexed Register Addressing

2-6

UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Addressing Modes

DIRECT ADDRESSING (DA)

The Direct Addressing mode, as shown in Figure 2-6, specifies the address of the next instruction to be
executed. Only the Conditional Jump (JP) and Call (CALL) instructions use this addressing mode.

Program Memory

Program Memory
Address Used

Lower Addr. Byte

Upper Addr. Byte

OpCode

Figure 2-6. Direct Addressing

UMOO1000-28X0199 2-7

Z8P'YS User’'s Manual
Addressing Modes ZiLOG

RELATIVE ADDRESSING (RA)

In the Relative Addressing mode, illustrated in Figure 2-7, the instruction specifies a two’s-complement
signed displacement in the range-@28 to +127. Thisis added to the contents of the Program Counter to

obtain the address of the next instruction to be executed. The PC (prior to the add) consists of the address of
theinstruction following the Jump Relative (JR) or Decrement and Jump if Non-Zero (DI NZ) instruction. JR

and DJINZ are the only instructions which use this addressing mode.

Program Memory

Program Memory
Address Used

Current
PC Value
Next OpCode - @

Displacement 41

JR or DINZ —— OpCode

Figure 2-7. Retrieve Addressing

2-8 UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Addressing Modes

IMMEDIATE DATA ADDRESSING (IM)

Immediate data is considered to be an addressing mode for the purposes of this discussion. It is the only
addressing mode that does not indicate aregister or memory address as the source operand. The operand value
used by theinstruction is the value supplied in the operand field itself. Because an immediate operand is part
of theinstruction, it is always located in the Program Memory address space (see Figure 2-8).

Program Memory

Immediate Data

OpCode

Figure 2-8. Inmedate Data Addressing

UMOO1000-28X0199 2-9

Z8PLUSUSER’S MIANUAL

ZiLOG

CHAPTER 3
INSTRUCTION SET

Totally Logical

FUNCTIONAL SUMMARY

Z8™US instructions can be divided into the following eight functional groups:

e Load
« Arithmetic
 Logicd

e Program Control
« Bit Manipulation
+ Block Transfer

* Rotate and Shift

- CPU Contral

Table 3-1 through Table 3-8 show the instructions belonging to each group and the number of operands
required for each. The source operand issr ¢, the destination operand isdst , and a condition codeiscc.

When instructions are executed, registers defined as sources are read only. All General-Purpose Registers
function as:

« accumulators

+ addresspointers
e index registers
« stack areas

e scratch pad memory

UMOO01000-28X0199 3-1

Z8PLUS User’s Manual

Instruction Set

ZiLOG

Table 3-1. Load Instructions

Mnemonic Operands Instruction
CLR dst Clear
LD dst, src Load
LDC dst, src Load Constant
POP dst Pop
PUSH src Push

Table 3-2. Arithmetic Instructions

Mnemonic Operands Instruction
ADC dst, src Add with Carry
ADD dst, src Add
CP dst, src Compare
DA dst Decimal Adjust
DEC dst Decrement
DECW dst Decrement Word
INC dst Increment
INCW dst Increment Word
SBC dst, src Subtract with Carry
SUB dst, src Subtract
Table 3-3. Logical Instructions
Mnemonic Operands Instruction
AND dst, src Logical AND
COM dst Complement
OR dst, src Logical OR
XOR dst, src Logica Exclusive OR

UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual

Instruction Set

Table 3-4. Program Control Instructions

Mnemonic | Operands | Instruction
CALL dst Call Procedure
DJINZ dst, src Decrement and Jump Non-Zero
IRET Interrupt Return

JP cc, dst Jump
JR cc, dst Jump Relative
RET Return

Table 3-5. Bit Manipulation Instructions

Mnemonic | Operands | Instruction

TCM dst, src Test Complement
Under Mask
™ dst, src Test Under Mask
AND dst, src Bit Clear
OR dst, src Bit Set
XOR dst, src Bit Complement

Table 3-6. Block Transfer

Instructions

Mnemonic

Operands

Instruction

LDCI

dst, src

Load Constant
Auto Increment

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set ZiLOG

Table 3-7. Rotate and Shift Instructions

Mnemonic | Operands | Instruction
RL dst Rotate L eft
RLC dst Rotate Left Through Carry
RR dst Rotate Right
RRC dst Rotate Right Through Carry
SRA dst Shift Right Arithmetic
SWAP dst Swap Nibbles

Table 3-8. CPU Control Instructions

Mnemonic | Operands | Instruction
CCF Complement Carry Flag
DI Disable Interrupts
El Enable Interrupts
HALT Halt
NOP No Operation
RCF Reset Carry Flag
SCF Set Carry Flag
SRP src Set Register Pointer
STOP Stop
WDT Refresh WDT

3-4 UMOO0O1000-28X0199

Z8PLUS User’s Manual
Instruction Set ZiLOG

PROCESSOR FLAGS

The Flag Register (FCH) informs the user of the processor’sbcurrent status. The flags and their bit positions
in the Flag Register are shown in Figure 3-1.

The Flag Register contains eight bits of status information which are set or cleared by CPU operations. Fo
of the bits C, V, Z andS) can be tested for use with conditional Jump instructions. Two fthgadD) are

used forBCD arithmetic. The two remaining bits in the Flag Register are the watch-dog timer reset flag and
the stop mode recovery flag. Both of these flag bits may be tested and must be explicitly cleared by softwar

As with bits in the other control registers, the Flag Register bits can be set or reset by instructions; howeve
only those instructions that do not affect the flags as an outcome of the execution should be assigned a val

Figure 3-1. Flag Register
Flag Register (FCH: Read/Write) R252 Flags

Bit 7 6 5 4 3 2 1 0
R/W RW |RIW |RW | RW | RRW | RIWW | RIW | R/W
Reset U u u u u u * *

R = Read W = Write X = Indeterminate U = Unchanged

Bit/Field B.it. R/W Value Description
Position

Carry 7 R/W The Carry Flag is set fowhenever the result of an arithmetic

Flag (C) operation generates a carry out of or a borrow into the high
order bit7. Otherwise, the Carry Flag is clearedto
Following Rot at e andShi f t instructions, the Carry Flag
contains the last value shifted out of the specified register.
An instruction can set (1), reset(O), or complement the Carry
Flag.
The carry flag is not effected BRESET.

Zero 6 R/W For arithmetic and logical operations, the Zero Flag is deiftg

Flag (2) the result i©. Otherwise, the Zero Flag is clearedto
If the result of testing bits in a register is 00H, the Zero Flag is
set tol. Otherwise the Zero Flag is clearedto
If the result of &Rot at e or Shi f t operation i90H, the Zero
Flag is set td..
The Zero Flag is not effected byRESET command.

3-56 UMOO0O1000-28X0199

Z8PLUS User’s Manual
Instruction Set

ZiLOG

SignFlag 5
©)

R/W

The Sign Flag stores the value of the most significant bit of a
result following an arithmetic, logical, rotate, or shift operation.

When performing arithmetic operations on signed numbers,

binary two’s-complement notation is used to represent
process information. A positive number is identified by &

the most significant bit position (bif); therefore, the Sign Fla
is also0.

A negative number is identified byldn the most significant bit
position (bit7); therefore, the Sign Flag is also

The Sign Flag is not effected RESET.

and

Overflow 4

W)

R/W

For signed arithmetic, rotate, and shift operations, the Over
Flag is set td when the result is greater than the maximum
possible number>(L27) or less than the minimum possible

number €—128) that can be represented in two’s-complems
form . The Overflow Flag is cleared @af no overflow occurs.

Following logical operations the Overflow Flag is cleare@.to
The Overflow Flag is not effected BRESET.

Decimal 3
Adjust
Flag (D)

R/W

The Decimal Adjust Flag is used B€D arithmetic. Since the
algorithm for correctin@CD operations is different for additio
and subtraction, this flag specifies what type of instruction
last executed so that the subsequent Decimal Adp$taper-

ation can function properly. Normally, the Decimal Adjust FI
cannot be used as a test condition.

After a subtraction, the Decimal Adjust Flag is set to
Following an addition it is cleared @

The Decimal Adjust Flag is not effected RESET.

Half- 2
Carry
Flag (H)

R/W

The Half Carry Flag is set fowhenever an addition generate
a carry out of bi8 (Overflow) or a subtraction generates a
“borrow into” bit3. The Half Carry Flag is used by the Decim
Adjust (DA) instruction to convert the binary result of a previo
addition or subtraction into the correct decinID) result. As
in the case of the Decimal Adjust Flag, the user does not
normally access this flag.

low

Nt

N
vas

The Half Carry flag is not effected RESET.

3-6

UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Instruction Set
Watch- 1 R/W The Watch-Dog Timer reset flag is set by awatchdog timer
Dog timeout. This permits software to determine if atimeout of the
Timer watchdog timer has occurred.

(WDT) The WDT flagis cleared by the RESET pin. The WDT and
SMR flags are the only flags effected by RESET. This behavior
permits software to determine if aRESET occurred, if aWDT
timeout occurred, or if areturn from STOP mode occurred.
Software must explicitly clear this flag after detecting the
timeout condition.

Failure to clear thisflag may result in undefined behavior.

Stop 0 R/W The Stop Mode Recovery (SMR) flag is set upon the execution

Mode of aSTOP instruction. This permits software to determineif a

Recovery return from stop mode has occurred upon returning to active

Flag status.

(SMR) . .

The SMR flagiscleared by theRESET pin. TheWDT and SMR
flags are the only flags effected by RESET. This behavior
permits software to determine if a RESET occurred, if aWDT
timeout occurred, or if areturn from STOP mode occurred.
Software must explicitly clear thisflag after detecting the SMR
condition.

Failureto clear thisflag may result in undefined behavior.

CONDITION CODES

TheC, Z, S, and V Flags control the operation of the conditional JUMP instructions. Sixteen frequently useful
functions of the flag settings are encoded in a4-bit field called the condition code (c c), which forms bits

4-7 of the conditional instructions.

Flag Definitions, Flag Settings and Condition Codes are summarized in Table 3-9, Table 3-10, and

Table 3-11.

Table 3-9. Flag Definitions

Flag Description
C Carry Flag
Z Zero Flag
S Sign Flag
\% Overflow Flag

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set ZiLOG

Table 3-10. Flag Settings Definitions

Symbol Definition
0 Clearedto O
1 Setto 1l
* Set or cleared according to operation
- Unaffected
X Undefined

Table 3-11. Condition Codes

Binary HEX Mnemonic | Definition Flag Settings
0000 0 F Always False -
1000 8 (blank) Always True -
0111 7 C Carry c=1
1111 F NC No Carry C=0
0110 6 z Zero zZ=1
1110 E NZ Non-Zero Z=0
1101 D PL Plus S=0
0101 5 Mmi Minus S=1
0100 4 oV Overflow v=1
1100 C NOV No Overflow V=0

3-8 UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual
Instruction Set

Table 3-11. Condition Codes (Continued)

Binary HEX Mnemonic | Definition Flag Settings
0110 6 EQ Equal Z=1
1110 E NE Not Equal Z=0
1001 9 GE Greater Than or Equal (SXORV)=0
0001 1 LT Less Than (SXORV)=1
1010 A GT Greater Than (ZOR (SXORV))=0
0010 2 LE Less Than or Equal (ZOR(SXORV)) =1
1111 F UGE Unsigned Greater Than or Equal Cc=0
0111 7 ULT Unsigned Less Than c=1
1011 B UGT Unsigned Greater Than (C=0ANDZz=0)=1
0011 3 ULE Unsigned Less Than or Equal (CORZ)=1

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set

ZiLOG

NOTATION AND BINARY ENCODING

The operands and status flags use a notational shorthand. Operands, condition codes, address modes, and their

notations are described in Table 3-12.

Table 3-12. Notational Shorthand

Notation | Address Mode Operand | Range*
cc Condition Code See Table 3-11, condition codes
r Working Register Rn n=0-15
R Register Reg Reg. represents a number in the range ¢f
or OOH to FFH
Working Register Rn n=0-15
RR Indirect Register Pair Reg p=0,24,6,8,10,12,0r 14
or
Working Register Pair RRp
Ir Indirect Working Register @Rn n=0 -15
IR Indirect Register @Reg Reg. represents a number in the range ¢f
or OOH to FFH
Indirect Working Register @RnN n=0-15
Irr Indirect Working Register @RRp p=0,246,8,10, 12, 0or 14
Pair
IRR Indirect Register Pair @Reg Reg. represents an even number in the
or range OOH to FFH
Working Register Pair @RRp p=0, 2, 4, 6, 8, 10, 12, or 14
X Indexed Reg (Rn) | Reg. represents a number in the range gf
O0H to FFH
n=0-15
DA Direct Address Addrs | Addr s. represents a number in the range
of 0000H to FFFFH
RA Relative Address Addrs | Addr s. represents a number in the rande
of +127 to —128 which is an offset relatije
to the address of the next instruction
IM Immediate #Data Data is a number between 00H to FFH

by the device type.

* See the device product specification to determine the exact register file range available. The register file size varies

UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual
Instruction Set

Table 3-13, which follows, describes additional symbols used.

Table 3-13. Additional Symbols

Symbol Definition
dst Destination Operand
src Source Operand
@ Indirect Address Prefix
SP Stack Pointer
PC Program Counter
FLAGS Flag Register (FCH)
RP Register Pointer (FDH)
IMR Interrupt Mask Register (FBH)
Immediate Operand Prefix
% Hexadecimal Number Prefix
H Hexadecimal Number Suffix
B Binary Number Suffix
OPC op code

Assignment of avalueisindicated by the symbol —, for example:

dst « dst + src

indicates the source data is added to the destination data and the result is stored in the destination | ocation.

The notation addr (n) isused to refer to bit 'n’ of agiven location. The following example refersto bit 7 of

the destination operand.

dst (7)

Some instructions operate with several addressing modes. This situation is indicated by an op code number
written like X[] . The brackets are filled by a nibble indicating the addressing mode in use. For example,
ADD 0O[] indicates that the ADD instruction works identically for more than one addressing mode.

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set ZiLOG

Assembly Language Syntax

For proper instruction execution, assembly language syntax requires that the destination and source be spec-
ifiedasdst, src (inthat order). Thefollowing instruction descriptions show the format of the object code
produced by the assembler. This binary format should be followed by users who prefer manual program
coding or who intend to implement their own assembler. Other third party assemblers can differ. Please
consult the software user's manual for detailed information.

Example: The contents of registed8H and08H are added, and the result is stored 3il. The assembly
syntax and resulting object code are:

ASM ADD 43H, 08H (ADD dst, src)
OoBJ: 04 08 43 (OPC src, dst)

In general, whenever an instruction format requires an 8-bit register address, that address can specify a
register location in the range 0 - 255. When using working registers (R0-R15), a 4-bit address is used. If
working register is used and an 8-bit address is required by the assembler, an E is pre-pended to the 4-
working register address. If, in the above example, the source register is a working register, the assemt
syntax and resulting object code are:

ASM ADD 43H, R8 (ADD dst, src)
oBJ: 04 E8 43 (OPC src, dst)
NOTES:

1. Note that the 4-bit address R8 was expanded to 8-bits by pre-pé&dinbis expansion occurs any
time a 4-bit address isspecified for an instruction that takes 8-bit operands.

2. See the device product specification to determine the exact register file range available. The regist
file size varies by device type

78PLUS INSTRUCTION SUMMARY

The instructions marked with this symbol (1) have an identical set of addressing modes, which are encods
for brevity. The upper nibble is described in Table 3-14, and the lower nibble is represepied biye
second nibble’s value is described in Table 3-15, and is found beside the applicable addressing mode pe
For example, the op code of an ADC instruction using the addressing mfdiestination) andlr (source)

is13H.

3-12 UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual
Instruction Set

Table 3-14. Instruction Summary

Address
Mode Flags Affected
op code

Instruction and Operation dst src | Byte (Hex) S \% D H
ADC d¢t, src T 1] * * 0 *
dst — dst +src+C
ADD dst, src t o[] * * |0 *
dst — dst + src
AND dst, src T 5[] * 0 - _
dst — dst AND src
CALL src DA D6 - - - -
SP- SP-2
PC — src
CALL src IRR D4 - - - -
SP- SP-2
PC — @src
CCF EF - - - -
C «NOTC
CLR dst R BO - - - —
dst— 0 IR B1
COM dst R 60 * 0 - -
dst — NOT dst IR 61
CP dst, src t Al] * LA -
dst- src
DA dst R 40 * - - -
dst — DA dst IR 41
DEC dst R 00 * * - -
dst— dst-1 IR 01
DECW dst RR 80 * * - -
dst— dst-1 IR 81

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set

ZiLOG

Table 3-14. Instruction Summary (Continued)

then PC—~ PC + src
Range: -12& src< 127

]] Address Mode op code Elags Affected
Instruction and Operation dst e Byte (Hex) a S v) H

DI 8F - — — - —
IMR(7) - O
DJNZ, dst, src r RA RA rA — - — _ _
dst — dst—1 (r=0-F)
if dstz 0
then PC~ PC + src
Range: -12& src< 127
El oF — - — — -
IMR(7) « 1
HALT 7F - - - - -
INC dst rE * * * _ _
dst — dst+1 r (r=0-F)

R 20

IR 21
INCW dst RR A0 * * * _ _
dst— dst+1 IR Al
IRET BF * * * * *
FLAGS - @SP;
SP-SP+1
PC - @SP;
SP ~ SP + 2,
IMR(7) « 1
JP cc, src DA ccD — — — — _
if cc is true, (cc=0-F)
then PC- src
JP src IRR 30 - — — — _
PC - @src
JR cc, src RA ccB - - — - _
if cc is true, c=0-F

UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual

Instruction Set

Table 3-14. Instruction Summary (Continued)

]] Address Mode op code Elags Affected
Instruction and Operation dst P Byte (Hex) v S v 5 m
LD dst, src r Im rc — — _ — _
dst — src r R r8
R r ro
(r=0-F)
r X C7
X r D7
r Ir E3
Ir r F3
R R E4
R IR E5
R IM E6
IR IM E7
IR R F5
LDC dst, src r Irr Cc2 — — — _ _
dst — src Irr r D2
LDCI dst, src Ir Irr C3 - — — — _
@dst~ @src Irr r D3
dst— dst+1
Src~src+1
NOP FF - - - - -
OR dst, src t 4] * * 0 _ _
dst — dst OR src
POP dst R 50 — - — _ _
dst - @SP IR 51
SP- SP+1
PUSH src R 70 — — — _ _
SP-SP-1 IR 71
@SP - src
RCF CF — — — _ _
C-0
RET AF - — — _ _
PC - @SP;
SP~ SP+2
RL dst R 90 * * * _ _
R o

UMOO1000-28X0199

Z8PLUS User’s Manual
Instruction Set

ZiLOG

Table 3-14. Instruction Summary (Continued)

]] Address Mode op code Elags Affected
Instruction and Operation dst sre Byte (Hex) S v D m
RLC dst R 10 * * - -
R 1
RR dst R EO * * - -
IR E1l
RRC dst R (0] * * - -
I IR cl
SBC dst, src T 3] * * 1 *
dst — dst—src —
C
SCF DF - - - -
C-~1
SRA dst R DO * 0 - -
IR D1
(i
SRP src Im 31 - — — —
RP < src
STOP 6F - - - -
SUB dst, src T 2[] * * 1 *
dst — dst—src
SWAP dst R FO * — - -
S IR Fl
1
TCM dst, src T 6[] * 0 - -
(NOT dst) AND src
TM dst, src T 7[] * 0 - _
dst AND src
WDT 5F - - - -
XOR dst, src T 71] * 0 - -
dst — dst XOR src

UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual
Instruction Set

Table 3-15. Lower Nibble Values

Address Mode

Lower

dst src op code Nibble
r r [2]
r Ir [3]
R R [4]
R IR [5]
R IM [6]
IR IM [7]

Figure 3-2, which follows, illustrates the Op Code map.

UMOO1000-28X0199

Z8PLUS User’s Manual

Instruction Set ZiLOG
LOWER NIBBLE (HEX)
0 1 2 3 4 5 6 7 8 9 A B c D E F
of DEC | DEC | ADD | ADD | ADD | ADD | ADD | ADD LD LD | DINZ | JR LD P INC
R1 IRL | ri,r2 | r1,Ir2 | R2,R1|IR2,R1 [R1,IM |[IRL,IM | r1,R2 | r2,R1 | r1,RA | cc,RA | r1,IM | cc,DA | 11
.| RLC | RLC | ADC | ADC | ADC | ADC | ADC | ADC
R1 IRL | ri,r2 | r,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, M
S| we INC | SUB | SUB | SuB | suB | suB | suB
R1 IRL | ri,r2 | r,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, M
s 9P SRP | SBC | SBC | SBC | SBC | SBC | SBC
IRR1 M ri,r2 | ri,Ir2 | R2,R1 | IR2,R1 | RL,IM | IR, IM
A DA OR OR OR OR OR OR
R1 IRL | ri,r2 | r1,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, IM
5| PoP | POP | AND | AND | AND | AND | AND | AND WDT
R1 IRL | ri,r2 | r1,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, IM
gl com | com | Tcm | TCm | TCM | TCM | TCM | TCM STOP
R1 IRL | ri,r2 | r,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, IM
< S| PusH | PUsH | ™ ™ ™ ™ ™ ™ HALT
¢ R2 IR2 | ri,r2 | r,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, M
w o | DECW | DECW bi
a RRL | IR1
g RL RL
Z 9 El
x R1 IR1
o | mew | inew | cp cP cP cP cP cP RET
g RR1 IRL | ri,r2 | r1,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, IM
g] ctr | ctr | xorR | xOR | XOR | XOR | XOR | XOR IRET
R1 IRL | ri,r2 | r,Ir2 | R2,R1|IR2,R1 | RL,IM [IRL, IM
RRC | RRC | LDC | LDCI LD
Cl Rt IRL | rL,In2 | Ir, 12 rLx,R2 RCF
ol srA | sra | Lbc | Lbct | caLcx CALL | LD scr
R1 IR1 Irrl, r2 | Irrl, Ir2 | |RR1 DA r2,x,R1
o RR LD LD LD LD LD ccF
R1 IR1 r1,IR2 | R2,R1 [IR2,R1 | R1,IM | IR1, IM
SWAP | SWAP LD LD
Fl r1 IRL IrL, r2 R2, IR1 V V V V V V V NOP
| I I I I
I I I
2 3 1
BYTES PER INSTRUCTION
Notes: Legend: Lower op code Nibble
R = 8-bit Addr
All Z8PLUS instructions execute in ten XTAL clock r = 4-bit Addr i
cycles, (1 pS at 10 MHz). R1 or rl = Dst Addr Upper
R2 or 2 = Src Addr op code 4
Blank areas are reserved and execute as NOP. s Nibble
equence:)
)) .) p d \ CP ~«f}——— Mnemonic
* 2-byte instruction appears as a 3-byte instruction. op code, A
First Operand, R2, R1

Second Operand

Figure 3-2. Op Code Map

First Operand

Second Operand

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

INSTRUCTION DESCRIPTION AND FORMATS

The following section lists each instruction set, and describes the:

* Ingtruction Format

» Operation performed

» Hag Conditions

« Examples of the code

The format for the instruction uses the following conventions:

4 Bits 8 Bits 12 Bits 16 Bits

' l

NOTE: The bytes shown in the boxes are in machine code order. The ZiLOG assembler always requires
theformat OPC, dst, src.

Addressmodes R or | R can be used to specify a 4-bit working register. In this format, the source or destina-
tion working-register operand is specified by adding 1110B (EH) to the High nibble of the operand. For
example, if working register R12 (CH) isthe destination operand, then ECHisused as the destination operand
in the Op Code.

E src or E dst

Addressmode| RRcan be used to specify a4-bit working register Pair. In thisformat, the destination working
register Pair operand is specified by adding 1110B (EH) to the High nibble of the operand. For example, if
working register Pair RR12 (CH) is the destination operand, then ECH is used as the destination operand in
the Op Code.

UMOO1000-28X0199 3-19

Z8PLUS User’s Manual

Address Space

ZiLOG

ADC
Add with Carry

Instruction Format:
ADC dst, src

Address Mode

OPC dst src

OPC src dst

OPC dst src
Operation:

dst « dst + src + C

OPC (Hex) dst src
12 r r
13 r Ir
14 R R
15 R IR
16 R M
17 IR M

The source operand, along with the setting of the Carry (C) Flag, is added to the destination operand. Two’s

complement addition is performed. The sum is stored in the destination operand. The contents of the sour
operand are not changed. In multiple precision arithmetic, this instruction permits the carry from the additior
of low order operands to be carried into the addition of high order operands.

Flags:

When the instruction is executed, the flags are set as follows:

C:
Z:
S:
V:
sign; otherwise, 0.
D: 0.
H:

0.

1 if a value is carried from the most signigicant bit of the result; otherwise, O.

1 if the result i9; otherwise, 0.

1 if the result is a negative value; otherwise, 0.

1 if an arithmetic overflow occurs (both operands have the same sign and the result has the opposite

1 if a value is carried from the most significant bit of the low-order four bits of the result; otherwise,

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

ADC
Add with Carry

Example: Working register R3 contains 16H. The Cflagissetto 1. Working register R11 contains20H. The
following statement leavesthevalue 37Hin working register R3, andthe C, Z, S, V, D, and Hflags are set to 0.

ADC R3, RI1
Op Code: 12 3B.

Example: Working register R16 contains 16H. The Cflag is not set. Working register R10 contains 20H.
Register 20Hcontains 1 1H. Thefollowing statements leave the value 27Hin working register R16; the C, Z,
S,V, D, and Hflags are set to O.

ADC R16, @R10
O Code: 13 FA

Example: Register 34H contains 2EH. The Cflag is set. Register 12H contains 1BH. The following state-
ment leaves the value 4AH in register 34H. The Hflagisset, andtheC, Z, S, V, and Dflags are set to 0.

ADC 34H, 12H
O» Code: 14 12 34

Example: Register 4BH contains 82H. The Cflag is set. Working register R3 contains 10H. Register 10H
contains 01 H. The following statement leaves the value 84Hin register 4BH. The S flag is set to 1, and the
C Z,V,D and Hflagsare set to O.

ADC 4BH, @r3
Op Code: 15 E3 4B

UMOO1000-28X0199 3-21

Z8PLUs User’'s Manual
Address Space ZiL.OG

ADC
Add with Carry

Example: Register 6CH contains 2AH. The Cflag is not set. The following statement leaves the value 2DH
inregister 6CH. TheC, Z, S, V, D, and Hflags are set to 0.

ADC 6CH, #03H
O Code: 16 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The Cflag is set. The following state-
ment leaves the value 4FHinregister 5SFH. The C, Z, S, V, D, and Hflags are set to 0.

ADC @4H, #02H
Op Code: 17 D4 02

3-22 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

ADD
Add

Instruction Format:

ADD dst, src

Address Mode

OPC (Hex) dst src
02 r r
OPC dst src 03 r Ir
04 R R
OPC src dst 05 R IR
06 R M
OPC dst src 07 IR IM
Operation:

dst « dst + src

The source operand is added to the destination operand. Two’s complement addition is performed. The su
is stored in the destination operand. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

C: 1lifavalueis carried from the most significant bit of the result; otherwise, 0.

Z. letif the result i®; otherwise, 0.

S: 1ifthe result is negative; otherwise, 0.

V: 1if an arithmetic overflow occurs(both operands have the same sign and the result has the
opposite sign); otherwise, O.

D: 0.

H: 1 if a value is carried from the most significant bit of the result’s low-order four bits;
otherwise, 0.

UMOO1000-28X0199 3-23

Z8PLUs User’'s Manual
Address Space ZiL.OG

ADD
Add

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
leaves the value 36H in working register R3. The C, Z, S, V, D, and H flags are set to 0.

ADD R3, R11
O Code: 02 3B

Example: Working register R16 contains 16H. Working register R10 contains 20H. Register 20H contains
11H. The following statement |eaves the value 27H in working register R1L6. The C, Z, S, V, D, and Hflags
aresetto 0.

ADD R16, @10
Op Code: 03 FA

Example: Register 34Hcontains 2EH. Register 12H contains 1BH. Thefollowing statement |eavesthevalue
49Hin register 34H. TheHflagissetto 1, andtheC, Z, S, V, and Dflags are set to O.

ADD 34H, 12H
o Code: 04 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains01H. The
following statement leaves the value 83H in register 4BH. The Sflagis set, and the C, Z, V, D, and Hflags
aresetto 0.

ADD 3EH, @R3
Op Code: 05 E3 4B

Example: Register 6 CH contains 2AH. The following statement |eaves the value 2DH in register 6CH. The
C Z,S,V,D, and Hflagsare set to 0.

ADD 6CH, #O03H
Op Code: 06 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4 CH. Thefollowing statement leavesthevalue
4EHinregister 5FH. The C, Z, S, V, D, and Hflags are set to 0.

ADD @4H, #02H
Op Code: 07 D4 02

3-24 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

AND
Logical AND

Instruction Format:

AND dst, src
Address Mode

OPC (Hex) dst src

52 r r

OPC dst src 53 r Ir

54 R R
OPC src dst 55 R IR
OPC dst src 96 R IM
57 IR IM

Operation:

dst ~ dst AND src

The source operand and the destination operandare processed with alogical AND operation. Theresultis a
1 stored whenever the corresponding bitsin the two operands are both 1; otherwise, a0 is stored. Theresult
is stored in the destination operand. The contents of the source register are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1if theresultisO; otherwise, 0.

1if bit 7 of the result is 1; otherwise, 0.

0

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<®mONO

Example: Working register R1 contains 34H (00111000B) and working register R14 contains 4 DH
(10001101). Thefollowing statement leavesthe value 04H(00001000) inworking register R1. The Z, V,
and Sflagsare set to 0.

AND R1, R14
O Code: 52 1E

UMOO1000-28X0199 3-25

Z8PLUs User’'s Manual
Address Space ZiL.OG

AND
Logical AND

Example: Working register R4 containsF9H (11111001B). Working register R13 contains 7BH. Register
7BH contains 6AH (01101010B). The following statement leaves the value 68H (01101000B) in
working register R4. The Z, V, and S flags are set to O.

AND R4, @R13
O Code: 53 4D

Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH
(00001010). Thefollowing statement leaves the value 00H (00000000B) inregister 3AH. The Z flag is
setto 1, and the V and S flags are cleared.

AND 3AH, 42H
Op Code: 54 42 3A

Example: If working register R5 contains FOH (11110000B). Register 45H contains 3AH. Register 3AH
contains 7FH (01111111B). Thefollowing statement leaves the value 70H (01110000B) in working
register R5. TheZ, V, and Sflagsare set to O.

AND R5, @5H
Op Code: 55 45 E5

Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value
FOH (11110000B) inregister 7AH. The S flag is set to 1, and the Z and V flags are set to 0.

AND 7AH, #FOH
Op Code: 56 7A FO

Example: Working register R3 contains the value 3EH. Register 3EH contains the value ECH
(11101100B). Thefollowing statement leavesthe value 04H(00000100B) inregister 3EH. The Z, V, and
Sflagsaresetto 0.

AND @r3, #O05H
Op Code: 57 E3 05

3-26 UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Address Space

Instruction Format:

CALL dst

OPC dst

CALL
Call Procedure

Address Mode

OPC dst

Operation:

SP - SP - 2
@GP —~ PC
PC — dst

OPC (Hex) dst
D6 DA
D4 IRR

The Stack pointer (SP) is decremented by 2. The current contents of the program counter (PC) (the address
of thefirst instruction following the CALL instruction) are pushed onto the top of the Stack. The specified
destination address is then loaded into the PC, which points to the first instruction of the procedure.

At the end of the procedure areturn (RET) instruction can be used to return to the original program flow. RET
pops the top of the Stack and replaces the original value into the PC.

Flags:

When the instruction is executed, the flags are set as follows:

TOoO<SeNO

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

UMOO1000-28X0199

3-27

Z8PLUs User’'s Manual
Address Space ZiL.OG

CALL
Call Procedure

Example: The contents of the PCare 1 A47Hand the contents of the SP (registers FEHand FFH) are 3002H.
The following statements cause the SP to be decremented to 3000H, 1A4AH. The address following the
CALL instructionis stored in external data memory at addresses 3000 and 3001H. The PCisloaded with
3521Hand now points to the address of the first statement in the procedure to be executed.

CALL 3521H
o Code: D6 35 21

Example: The contents of the PC are 1A47H. The contents of the SP (register FFH) are 72H. The contents
of register A4Hare 34H. The contents of register pair 34Hare 3521H. The following statements cause the
SP to be decremented to 70H, 1A4AH. The address following the CALL instructionis stored in R70H and
71H. The PC isloaded with 3521 Hand now points to the address of the first statement in the procedure to
be executed

CALL @4H
Op Code: D4 A4

3-28 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

CCF
Complement Carry Flag

Instruction Format:

CCF
OPC (Hex)
oPC EF
Operation:
C -« NOT C

The Cflag is complemented. If C=1, thenitischangedto C=0; or, if C= 0, thenitischangedto C= 1.
Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction is complemented.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<ONO

Example: The Cflag contains a0. The following statement changesthe CflagfromC=0to C=1.

CCF
O Code: EF

UMOO1000-28X0199 3-29

Z8PLUs User’'s Manual
Address Space ZiL.OG

CLR
Clear

Instruction Format:

CLR dst
Address Mode
OPC (Hex) dst
BO R
OPC dst B1 IR
Operation:
dst - O

The destination operand is set to O0H.
Flags

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Working register R6 contains AFH. The following statement leaves the value 00H in working
register R6.

CLR R6
Op Code: BO E6

Example: Register A5H contains the value 23H. Register 23H contains the value FCH. The following state-
ment leaves the value OOH in register 23H.

CLR @\5H
Op Code: Bl A5

3-30 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

COM
Complement

Instruction Format:

COM dst
Address Mode
OPC (Hex) dst
60 R
OPC dst 61 IR
Operation:

dst « NOT dst

The contents of the destination operand are complemented (one’s compleménb)ité\tire changed @,
and allO bits are changed tb.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1 if the result i9; otherwise, 0.

1 if result bit7 is set; otherwise, 0.

0

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<®ONO

Example: Registel08H contains24H (00100100B). The following statement leaves the valiH
(11011011) in register08H. TheS flag is set to 1, and tieandV flags are set to 0.

COM 08
Op Code: 60 08

Example: Registet08H contain24H, and registe24H containd=FH (11111111B). The following state-
ment leaves the vall@H (00000000B) in register24H. TheZ flag is set to 1, and théandsS flags are
set to 0.

CoM @8H
O Code: 61 08

UMOO1000-28X0199 3-31

Z8PLUS User’s Manual
Address Space

ZiLOG

CP
Compare

Instruction Format:

Address Mode

CP dst, src
OPC dst src
OPC sc dst
OPC dst src
Operation:
dst - src

OPC (Hex) dst src
A2 r r
A3 r Ir
A4 R R
A5 R IR
A6 R IM
A7 IR IM

The source operand is compared to (subtracted from) the destination operand, and the appropriate flags are
set accordingly. The contents of both operands are unchanged.

Flags:

When the instruction is executed, the flags are set as follows:

TO<SONO

1if avalueiscarried from the most significant bit of the result, otherwise, O.
1if theresult is O; otherwise, O.

1if bit 7 of the result is 1 (negative); otherwise, O.

1if arithmetic overflow occurs; otherwise, O.

The value set by the preceding instruction.

The value set by the preceding instruction.

3-32

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

CP
Compare

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
setsthe Cand Sflagsto 1, and the Z and V flags are set to O.

CP R3, Rl
O Code: A2 3B

Example: Working register R15 contains 16H. Working register R1L0 contains 20H. Register 20H contains
11H. Thefollowing statement setsthe C, Z, S, and V flagsto 0.

CP R16, @R10
Op Code: A3 FA

Example: Register 34Hcontains 2EH. Register 12H contains 1BH. The following statement setsthe C, Z, S,
and V flagsto 0.

CP 34H, 12H
o Code: A4 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains01H. The
following statement setsthe S flagto 1, and the C, Z, and V flags are set to O.

CP 4BH, @R3
Op Code: A5 E3 4B

Example: Register 6CH contains 2AH. The following statement setsthe Z flag to 1, and the C, S, and V flags
aresetoO.

CP 6CH, #2AH
Op Code: A6 6C 2A

Example: Register D4H contains FCH. Register FCH contains 8FH. The following statement setsthe V flag
tol,andtheC, Z, and Sflagsare set to 0.

CP @4H, 7FH
Op Code: A7 D4 FF

UMOO1000-28X0199 3-33

Z8PLUS User’s Manual
Address Space

ZiLOG

DA
Decimal Adjust

Instruction Format:

DA dst

OPC

dst

Operation:

dst ~ DA dst

Address Mode

OPC (Hex) dst
40 R
41 IR

The destination operand is adjusted to two 4-bit BCD digits following a binary addition or subtraction opera-
tion on BCD-encoded bytes. For addition (ADD and ADC) or subtraction (SUB and SBC), Table 3-14 indicates

the operation performed.

Table 3-16. DA Operation Reference

Prior Flags Before DA] Result Before Adjustment Result After C Flag
Instruction | C H D [7...4] [3...0] Added [7...4] [3...0] After
ADDor ADC| O 0 0 0-9 0-9 00 0-9 0-9 0
0 0 0 0-8 A-F 06 1-9 0-5 0
0 1 0 1-9 0-3 06 1-9 6-9 0
0 0 0 A-F 0-9 60 0-5 0-9 1
1 0 0 0-2 0-9 60 6-8 0-9 1
0 0 0 9-F A-F 66 0-5 0-5 1
0 1 0 A-F 0-3 66 0-5 6-9 1
1 0 0 0-2 A-F 66 6-9 0-5 1
1 1 0 0-3 0-3 66 6-9 6-9 1
SUBorSBC| O 0 1 0-9 0-9 00 0-9 0-9 0
0 1 1 0-8 6-F FA 0-8 0-9 0
1 0 1 7-F 0-9 AO 1-9 0-9 1
1 1 1 6-F 6-F %A 0-9 0-9 1

Note: |If the destination operand isnot the result of avalid addition or subtraction of BCDdigits, the result is meaningless.

3-34

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

DA
Decimal Adjust

Flags:

When the instruction is executed, the flags are set as follows:

1if avalueiscarried or borrowed during the prior addition or subtaction.
1if theresult isO; otherwise, O.

1if bit 7 of theresult is 1 (negative); otherwise, 0.

The value set by the preceding instruction.

The value set by the preceding instruction.

The value set by the preceding instruction.

TO<SONO

Example: Addition isperformed using the BCDvalues 15 and 27, the result should be 42. The sum actually
obtained isincorrect, however, when the binary representations are added in the destination location using
standard binary arithmetic.

0001 0101 = 15H
+ 0010 0111 = 27H
0011 1100 = 3CH

When the result of the addition is stored in Register 5FH, the following statement adjusts this result so the
correct BCD representation is obtained.

DA 5FH
o Code: 41 45

0011 1100 = 3CH
+ 0000 0110 = O6H
0100 0010 = 42H

Register 5F now contains the value 42H. The C, Z, and S flags are set to 0.

UMOO1000-28X0199 3-35

Z8PLUs User’'s Manual
Address Space ZiL.OG

DA
Decimal Adjust

Example: A subtraction isperformed on BCD valuesto subtract 17 from 25, theresult should be 8. Theresult
isincorrect when standard binary subtraction is performed on the binary representations of the BCD numbers.

0010 0101 = 25H
+ 0001 0111 = 17H
0000 1110 = OEH

Register 45H containsthe value 5FH. Theresult of the subtraction is stored in 5FH. The following statements
adjust the result so the correct BCD representation is obtained.

DA @5H
o Code: 40 45

0000 1110 = OEH
+ 1111 1010 = FAH
0000 1000 = 0O8H

Register 5FH now contains the value 08H. The C, Z, and S flags are set to O.

3-36 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

DEC
Decrement

Instruction Format:

DEC dst
Address Mode
OPC (Hex) dst
00 R
OPC dst o1 IR
Operation:

dst —~dst - 1
The contents of the destination operand are decremented by one.
Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.

1if theresultis O; otherwise, 0.

1if bit 7 of theresult is 1 (negative); otherwise, 0.
1if arithmetic overflow occurs; otherwise, 0.

The value set by the preceding instruction.

The value set by the preceding instruction.

TO<SONO

Example: Working register R10 contains 2AH. The following statement |eaves the value 29H in working
register R10. The Z, V, and Sflags are set to 0.

DEC R10
o Code: 00 EA

Example: Register B3H contains CBH. Register CBH contains 01H. Thefollowing statement leavesthevalue
00Hin Register CBH. The Z flag isset to 1, and the VV and S flags are set to 0.

DEC @B3H
O Code: 01 B3

UMOO1000-28X0199 3-37

Z8PLUs User’'s Manual
Address Space ZiL.OG

DECW
Decrement Word

Instruction Format:

DECW dst
Address Mode
OPC (Hex) dst
80 RR
OPC dst 81 IR
Operation:

dst « dst - 1

The contents of the destination (which must be an even address) operand are decremented by one. The desti-
nation operand can be a Register Pair or aworking register Pair.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.

1if theresult isO; otherwise, O

1if bit 7 of theresult is 1 (negative); otherwise, 0
1if arithmetic overflow occurs; otherwise, O

The value set by the preceding instruction.

The value set by the preceding instruction.

TO<SONO

Example:Register pair 30H and 31H contain the value 0AF2H. The statement leaves the value 0AF1Hin
register pair 30Hand 31H. The Z, V, and S flags are set to 0.

DECW 30H
Op Code: 80 30

Example: Working register RO contains 30H. Register Pair 30H and 31H contain the value FAF3H. The
following statement leaves the value FAF2Hin Register Pair 30Hand 31H. The Sflagis set, and the Z and
V flags are cleared.

DECW @RO
Op Code: 81 EO

3-38 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

DI
Disable Interrupts

Instruction Format:

DI

OPC (Hex)
8F

OPC

Operation:
IMASK (7) < O

Bit 7 of control register FBH (the Interrupt Mask Register) isreset to 0. All interrupts are disabled, although
they remain potentially enabled. For example, the Global Interrupt Enable is cleared, but not the individual
interrupt level enables.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SeONO

Example: Control register FBH contains 8AH(10001010B) (interrupts| RQL and | R are enabled). The
following statement sets control register FBHto 0AH (00001010B) and disables all interrupts.

DI
Op Code: 8F

UMOO1000-28X0199 3-39

Z8PLUs User’'s Manual
Address Space ZiL.OG

DJINZ
Decrement And Jump If Non-zero

Instruction Format:

DINZ r, dst
Address Mode
OPC (Hex) dst
OPC q rA RA
r st (r=0to F)
Operation:

ro < r - 1,
If r #0, PC ~ PC+ dst

The specified working register serves asacounter and isdecremented. If the contents of the specified working
register are not O after decrementing, then the relative address is added to the Program Counter (PC) and
control passes to the statement whose addressis now in the PC. The range of the relative addressis +127 to
—128. Theoriginal value of the PC isthe address of theinstruction byte following the DI NZ statement. When
the specified working register counter reaches 0, control falls through to the statement following the DIJNZ
instruction.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SOeNO

Example: DINZ istypically used to control aloop of instructions. In this example, 12 bytes are moved from
one buffer areain the register file to another. The stepsinvolved are:

1. Load 12 into the counter (working register R6).
2. Set up theloop to perform the moves.
3. End theloop with a DINZ instruction.

3-40 UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Address Space

The assembly listing required for this routine is as follows:

Assembly Op Code
LD R6, #12 6E 0C
LOOP: LD R9 9%20(R6) C7 56 30

LD %44(R6), RO D7 56 10

DINZ R6, LOCP 6A F8

DJNZ
Decrement And Jump If Non-zero

UMOO1000-28X0199

Z8PLUs User’'s Manual
Address Space ZiL.OG

El
Enable Interrupts

Instruction Format:

El
OPC (Hex)

9F

OPC

Operation:
I MASK (7) < 1

Bit 7 of Control Register FBH (the Interrupt Mask Register) isset to 1. Thisallows potentially enabled inter-
rupts to become enabled.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<ONO

Example: Control Register FBH contains 0AH (00001010) (interrupts| RQL and | RQ3 are selected). The
following statement sets Control Register FBHto 8AH (10001010B) enabling | RQL and | RB.

El
Op Code: 9F

3-42 UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Address Space
HALT
Halt
Instruction Format:
HALT
OPC (Hex)
oPC TF
Operation:

The HALT instruction turns off the internal CPU clock, but not the X TAL oscillation. The peripherals and
interrupt logic remain active. Operation can be restarted by an interrupt or a reset.

Flags:

When the instruction is executed, the flags are set as follows

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Assuming the Z8 isin normal operation, the following statements place the Z8 into HALT mode.

HALT
Op Codes: 7F

NOTE: Unlike the Z8, the Z8™YS does not require a NOP before the HAL T instruction.

UMOO1000-28X0199 3-43

Z8PLUS User’s Manual
Address Space

ZiLOG

INC
Increment

Instruction Format:

I NC dst
Address Mode
OPC (Hex) dst
re r
dst | OPC r=0-15
20 R
OPC dst 21 IR
Operation:

dst ~ dst + 1
The contents of the destination operand are incremented by one.
Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.

1if theresult is O; otherwise, O.

1if bit 7 of theresult is 1 (negative); otherwise, O.
1if arithmetic overflow occurs; otherwise, 0.

The value set by the preceding instruction.

The value set by the preceding instruction.

TO<SONO

3-44

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

INC
Increment

Example: Working register R10 contains 2AH. The following statement |eaves the value 2BH in working
register R10. The Z, V, and Sflags are set to 0.

I NC R10
o Code: AE

Example: Register B3H contains CBH. The following statement leaves the value CCH in register CBH. The
Sflagissettol, and theZ and V flags are set to 0.

I NC B3H
Op Code: 20 B3

Example: Register B3H contains CBH. Register CBH contains FFH The following statement leavesthe value
OOHinregister CBH. The Z flagisset to 1, and the V and S flags are set to 0.

I NC @B3H
o Code: 21 B3

UMOO1000-28X0199 3-45

Z8PLUs User’'s Manual
Address Space ZiL.OG

INCW
Increment Word

Instruction Format:

| NCW dst
Address Mode
OPC (Hex) dst
A0 RR
OPC dst Al IR
Operation:

dst « dst + 1

The contents of the destination (which must be an even address) operand isincremented by one. The destina-
tion operand can be a Register Pair or aworking register Pair.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.

1if theresult isO; otherwise, O.

1if bit 7 of theresult is 1 (negative); otherwise, 0.
1if arithmetic overflow occurs; otherwise, O.

The value set by the preceding instruction.

The value set by the preceding instruction.

TO9O<ONO

Example: Register pairs 30H and 31H contain the value 0AF2H. The following statement leaves the value
OAF3Hinregister pair 30Hand 31H. The Z, V, and S flags are set to 0.

I NCW 30H
O Code: A0 30

Example: Working register RO contains 30H. Register pairs 30H and 31H contain the value FAF3H. The
following statement leaves the value FAF4H in register pair 30Hand 31H. The Sflagisset, andtheZ and V
flags are set to 0.

I NCW @0
o Code: Al EO

3-46 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

IRET
Interrupt Return

Instruction Format:

| RET

OPC (Hex)
BF

OPC

Operation:

FLAGS ~ @BP
SP - SP + 1
PC - @BP

SP « SP + 2
IMR (7) < 1

Thisinstruction isissued at the end of an interrupt service routine. It restores the Flag Register (Control
Register FCH) and the PC. It also re-enables any interrupts that are potentially enabled.

Flags:

When the instruction is executed, the flags are set as follows:

The value prior to the issuance of the interrupt.
The value prior to the issuance of the interrupt.
The value prior to the issuance of the interrupt.
The value prior to the issuance of the interrupt.
The value prior to the issuance of the interrupt.
The value prior to the issuance of the interrupt.

TO<SONO

Example: Stack Pointer Low (register FFH) currently contains the value 45H. Register 45H contains the
value 00H. Register 46H contains 6 FH. Register 47 Contains E4H. The following statement restores the
Flags Register (FCH) with the value O0H, restores the PC with the value 6 FE4H, re-enables the interrupts,
and sets the Stack Pointer Low to 48H. The next instruction to be executed is at location 6 FE4H.

| RET
Op Code: BF

UMOO1000-28X0199 3-47

Z8PLUS User’s Manual
Address Space

ZiLOG

JP
Jump

Instruction Format:

JP cc, dst

Address Mode

OPC dst

Operation:

If condition codeistrue, then PC ~ dst

OPC (Hex) dst
ccD DA
(cc=0toF)
30 IRR

A conditional jump (JP) transfers program control to the destination addressif the condition specified by cc
istrue. Otherwise, theinstruction following the J P instruction is executed. See page 3-8 for alist of condition

codes.

NOTE: OpCode30H(JP I RR)isunconditional only.

An unconditional jump simply replaces the contents of the Program Counter with the contents of the register
pair specified by the destination operand. Program Control then passesto the instruction addressed by the PC.

Flags:

When the instruction is executed, the flags are set as follows:

TOoO<SeNO

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

3-48

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

JP
Jump

Example: The Carry flag is 1. The following statement replaces the contents of the Program Counter with
1520H and transfers program control to that location. If the Carry flag had not been 1, control would have
fallen through to the statement following the J P instruction.

JP C, 1520H
o Code: 7D 15 20

Example:Working register pair RR2 contains the value 3F45H. The following statement replaces the
contents of the PC with the value 3F45H and transfers program control to that location.

JP @RR2
Op Code: 30 E2

UMOO1000-28X0199 3-49

Z8PLUs User’'s Manual
Address Space ZiL.OG

JR
Jump Relative

Instruction Format:

JR cc, dst
Address Mode
OPC (Hex) dst
ccB RA
cc OPC dst
(cc=0to F)
Operation:

If ccis true, PC - PC + dst

If the condition specified by the cc istrue, the relative address is added to the PC and control passesto the
instruction located at the address specified by the PC (See page 3-8 for alist of condition codes). Otherwise,
the instruction following the JR instruction is executed. The range of the relative addressis +127 to

- 128, and the original value of the PC istaken to be the address of thefirst instruction bytefollowing the JR
instruction.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The result of the last arithmetic operation executed is negative. The next nine bytes are skipped
with the following statement. If the result is not negative, execution continues with the instruction following
the JRinstruction.

JRM, 9
Op Code: 5B 09

Example: A short form of ajump - 45 is:

JR -45
Op Code: 8B D3

Theinstruction jumps backwards 45 bytes, unconditionally. The condition code is blank in thiscase, and is
assumed to be always true.

3-50 UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Address Space

Instruction Format:

LD
Load

Address Mode

LD dst, src

dst | OPC sc

sc | OPC dst
OPC dst src
OPC sc dst
OPC dst src
OPC src dst
OPC dst X src
OPC src X dst

OPC (Hex) dst src
rc r IM
r8 r R
r9 R* r

r=0to F

E3 r Ir
F3 Ir r

E4 R R
E5 R IR
E6 R IM
E7 IR IM
F5 IR R
Cc7 r X
D7 X r

*For OPC r9H, only afull 8-bit register can be
used. The ZiLOG assember automatically uses
ther 8 Op Code for an instruction like:

LD RO, R1.

UMO01000-Z8X0199

3-561

Z8PLUs User’'s Manual
Address Space ZiL.OG

LD
Load

Operation:
dst < src

The contents of the source operand are loaded into the destination operand. The contents of the source
operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The following statement |oads the value 34H into working register R15.

LD R15, #34H
Op Code: FC 34

Example: Register 34H contains the value FCH. The following statement |oads the value FCH into working
register R14. The contents of register 34H are not changed.

LD R14, 34H
O Code: F8 34

Example: Working register R14 contains the value 45H. The following statement loads the value 45H into
register 34H. The contents of working register R14 are not changed.

LD 34H, R14
O Code: E9 34

Example: Working register R12 contains the value 34H. Register 34H contains the value FFH. The
following statement loads the value FFH into working register R13. The contents of working register R12
and register 34H are not changed.

LD R13, @R12
Op Code: E3 DC

3-562 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

LD
Load

Example: Working register R13 containsthe value 45H. Working register R12 containsthe value 00H. The
following statement loads the value 00H into register 45H. The contents of working register R12 and
working register R13 are not changed.

LD @13, R12
Op Code: F3 DC

Example: Register 45H contains the value CFH. The following statement |oads the value CFHinto register
34H. The contents of register 45H are not changed.

LD 34H, 45H
o Code: E4 45 34

Example: Register 45H contains the value CFH. Register CFH contains the value FFH. The following state-
ment loads the value FFH into register 34H. The contents of register 45H and register CFH are not changed.

LD 34H, @5H
Op Code: E5 45 34

Example: The following statement loads the value A4H into Register 34 H.

LD 34H, #0A4H
Op Code: E6 34 A4

Example: Working register R14 contains the value 7FH. The following statement loads the value FCH into
Register 7FH. The contents of working register R14 are not changed.

LD @14, #OFCH
Op Code: E7 EE FC

UMOO1000-28X0199 3-563

Z8PLUs User’'s Manual
Address Space ZiL.OG

LD
Load

Example: Register 34H contains the value CFH. Register 45H contains the value FFH. The following state-
ment loads the value FFH into register CFH. The contents of register 34H and register 45H are not changed.

LD @4H, 45H
Op Code: F5 45 34

Example: Working register RO containsthe value 08H. Register 2CH (24H+ 08H= 2CH) containsthevalue
4FH. The following statement loads working register R1L0 with the value 4FH. The contents of working
register RO and Register 2CH are not changed.

LD R10, 24H(RO)
Op Code: C7 A0 24

Example: Working register RO containsthe value 0BH. Working register R1LO contains 03H. Thefollowing
statement |oads the value 03H into register FBH (FOH + OBH = FBH). Since this is the Interrupt Mask
Register, the LOAD statement has the effect of enabling | RQD and | RQL. The contents of working registers
RO and R10 are unchanged by the load.

LD FOH(RO), RI0
Op Code: D7 A0 FO

3-54 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

LDC
Load Constant

Instruction Format:

LDC dst, src
OPC Address Mode

(Hex) dst src
OPC dst | sc c2 r Irr
OPC dst src D2 rr r

Operation:
dst ~ src

Thisinstruction is used to load a byte constant from program memory into aworking register, or vice versa.
The address of the program memory location is specified by aworking register pair. The contents of the
source operand are not changed.

Flags

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Working register pairs R6 and R7 contain the value 30A2Hand program memory location 30A2H
contains the value 22H. The following statement loads the value 22Hinto working register R2. The value of
program memory location 30A2H is unchanged by the load.

LDC R2, @RR6
O Code: C2 26

UMOO1000-28X0199 3-55

Z8PLUs User’'s Manual
Address Space ZiL.OG

LDC
Load Constant

Example: Working register R2 containsthe value 22H. Working register pair R6 and R7 containsthe value
10A2H. The following statement loads the value 22H into program memory location 10A2H. The value of
working register R2 is unchanged by the load.

LDC @RR6, R2
O Code: D2 26

NOTE: Thisinstruction format isvalid only for MCUs which can write to program memory.

3-56 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

LDCI
Load Constant Auto Increment

Instruction Format:

LDCI dst, src
OPC Address Mode

(Hex) dst src

OPC dst src C3 Ir Irr
D3 I I

OPC dst src " '

Operation:

dst — src
r «r +1
rr —«rr +1

Thisinstruction is used for block transfers of data between program memory and the Register File. The
address of the program memory location is specified by aworking register Pair, and the address of the
Register Filelocation is specified by working register. The contents of the source location are |oaded into the
destination location. Both addresses in the working registers are then incremented automatically. The
contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

UMOO1000-28X0199 3-57

Z8PLUs User’'s Manual
Address Space ZiL.OG

LDCI
Load Constant Auto-increment

Example: Working register pair R6-R7 contains 30A2H, program memory location 30A2H and 30A3H
contain 22H and BCHrespectively, and working register R2 contains 20H. The following statement loads the
value 22Hinto Register 20H. working register Pair RR6 is incremented to 30A3H and working register R2
isincremented to 21H.

LDCl @R2, @RR6
O Code: C3 26

A second statement |oads the value BCH into register 21H. working register pair RR6 isincremented to
30A4H and working register R2 isincremented to 22H.

LDC @2, @RR6
Op Code: C3 26

Example: Working register R2 contains 20H. Register 20H contains 22H. Register 21H contains BCH.
Working register pair R6- R7 contains 30A2H. The following statement |oads the value 22H into program
memory location 30A2H. working register R2 isincremented to 21H and working register Pair R6- R7 is
incremented to 30A3H.

LDCl @RR6, @R2
o Code: D3 26

A second statement |oads the value BCH into program memory location 30A3H. working register R2 isincre-
mented to 22H and working register pair R6- R7 isincremented to 30A4H.

LDCl @RR6, @R2
o Code: D3 26

3-568 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

NOP
No Operation

Instruction Format:

NOP

OPC (Hex)
FF

OPC

Operation:
No action is performed by thisinstruction. It istypically used for timing delays or clearing the pipeline.
Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TOoO<SeNO

UMOO1000-28X0199 3-569

Z8PLUS User’s Manual

Address Space ZiL.OG
OR
Logical OR
Instruction Format:
OR dst, src
Address Mode
OPC (Hex) dst src
42 r r
OPC dst src 43 r Ir
44 R R
OPC src dst 45 R IR
OPC dst src 46 R IM
47 IR IM
Operation:

dst ~ dst OR src

The source operand is logically ORed with the destination operand and the result is stored in the destination
operand. The contents of the source operand are not changed. The OR operation storesa 1 bit whenever either
of the corresponding bits in the two operandsisa 1. Otherwise, a0 hit is stored.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1if theresultis O; otherwise, O.

1if bit 7 of theresult is 1; otherwise, 0.

0.

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

3-60 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

OR
Logical OR

Example: Working register R1 contains 34H (00111000B). Working register R14 contains 4DH
(10001101). Thefollowing statement leaves the value BDH (10111101B) in working register R1. The S
flagissetto 1, and the Z and V flags are set to O.

OR R1, R14
o Code: 42 1E

Example: Working register R4 contains FOH(11111001B). Working register R13 contains 7BH. Register
7B contains 6AH (01101010B). The following statement leaves the value FBH(11111011B) in working
register R4. The Sflag isset to 1, and the Z and V flags are set to 0.

OR R4, @R13
Op Code: 43 4D

Example: Register 3AH contains the value F5H (11110101B. Register 42H contains the value 0AH
(00001010B). Thefollowing statement leavesthevalue FFH(11111111B) inregister 3AH. The Sflagis
setto 1, and the Z and V flags are set to 0.

OR 3AH, 42H
Op Code: 44 42 3A

Example: Working register RS contains 70H (01110000B). Register 45H contains 3AH. Register 3AH
contains 7FH (01111111B). The following statement leaves the value 7FH (01111111B) in working
register R5. The Z, V, and Sflags are set to 0.

OR R5, @5H
Op Code: 45 45 E5

Example: Register 7 AH contains the value F3H (11110111B). The following statement leaves the value
F3H(11110111B) inregister 7AH. The S flag is set to 1, and the Z and V flags are set to 0.

OR 7AH, #FOH
Op Code: 46 7A FO

Example: Working register R3 contains the value 3EH. Register 3EH contains the value 0CH
(00001100B). Thefollowing statement leavesthe value 0DH(00001101B) inregister 3EH. The Z, V, and
Sflagsaresetto 0.

OR @RrR3, #O05H
Op Code: 57 E3 05

UMOO1000-28X0199 3-61

Z8PLUS User’s Manual

Address Space ZiL.OG
POP
Pop
Instruction Format:
POP dst
Address Mode
OPC (Hex) dst
OPC dst 50 R
51 IR
Operation:
dst ~ @BP
SP « SP + 1

The contents of the location specified by the Stack Pointer (SP) are loaded into the destination operand. The
SPis then incremented automatically.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The SP (Control Registers FEH and FFH) contains the value 70H. Register 70H contains 44 H.
The following statement |oads the value 44H into register 34H. After the POP operation, the SP contains
71H. The contents of register 70 are not changed.

POP 34H
Op Code: 50 34

Example: The SP (Control Registers FEH and FFH) contains the value 1000H. Memory location 1000H
contains 55H. Working register R6 contains 22H. The following statement |oads the value 55H into register
22H. After the POP operation, the SP contains 1001 H. The contents of working register R6 are not changed.

POP @6
Op Code: 51 E6

3-62 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

PUSH
Push

Instruction Format:

PUSH src
Address Mode
OPC (Hex) dst
OPC dst 70 R
71 IR
Operation:
SP - SP -1
@BP ~ src

The contents of the SP (stack pointer) are decremented by one. Then, the contents of the source operand are
loaded into the location addressed by the updated SP, adding a new element to the stack.

Flags

‘When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The SP contains 1001H. The following statement stores the contents of Register FCH (the Flag
Register) in location 1000H. After the PUSH operation, the SP contains 1000H.

PUSH FCH
O Code: 70 FC

Example: The SP contains 6 1H. Working register R4 contains FCH. The following statement stores the
contents of register FCH (the Flag Register) in location 60H. After the PUSH operation, the SP contains 60H.

PUSH @R4
Op Code: 71 E4

UMOO1000-28X0199 3-63

Z8PLUs User’'s Manual
Address Space ZiL.OG

RCF
Reset Carry Flag

Instruction Format:

RCF
OPC (Hex)
oPC CF
Operation:
C-0

The Cflag isreset to 0, regardless of its previous value.
Flags:

When the instruction is executed, the flags are set as follows:

0

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The Cflagis currently set to 1. The following statement resets the Carry flag to 0.

RCF
Op Code: CF

3-64 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

RET
Return

Instruction Format:

RET
OPC (Hex)
oPC AF
Operation:
PC - @P
SP ~ SP + 2

Thisinstructionisusedto return from aprocedure entered by a CALL instruction. The contents of thelocation
addressed by the stack pointer (SP) are popped into the Program Control. The next statement executed is the
one addressed by the new contents of the PC. The stack pointer is also incremented by 2.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

NOTE: Each PUSHinstruction executed within the subroutine should be countered with a POP instruction
in order to guarantee the SP is at the correct location when the RET instruction is executed.
Otherwise the wrong address is |oaded into the PC and the program does not operate as desired.

Example: SP contains 200H. Memory location 200H contains 18H. Location 201 H contains BSH. The
following statement leaves the value 202Hin the SP, and the PC contains 18B5H, the address of the next
instruction to be executed.

RET
Op Code: AF

UMOO1000-28X0199 3-65

Z8PLUs User’'s Manual
Address Space ZiL.OG

RL
Rotate Left

Instruction Format:

RL dst
Address Mode
OPC (Hex) dst
90 R
OPC dst o1 IR
Operation:
C ~ dst(7)

dst (0) « dst(7)
dst(1) « dst(0)
dst(2) « dst(1)
dst(3) < dst(2)
dst(4) « dst(3)
dst (5) « dst(4)
dst(6) « dst(5)
dst(7) « dst(6)

The contents of the destination operand are rotated left by one bit position. The value from bit 7 ismoved to
the bit O position and also into the Carry flag.

El= D7|D6|D5|D4(D3|D2|D1|D0 J

Flags:

When the instruction is executed, the flags are set as follows:

C:. 1if thebit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to
1).

Z: 1liftheresultisO; otherwise, O.

S. 1if bit 7 of theresultis 1; otherwise, 0.

V: 1lif arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

D: Thevalue set by the preceding instruction.
H: Thevalue set by the preceding instruction.

3-66 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

RL
Rotate Left

Example: The contents of register C6Hare 88H (10001000B). The following statement leaves the value
11H(00010001B) inregister C6H. The Cand V flags are setto 1, and the S and Z flags are set to O.

RL C6H
O Code: 80 C6

Example: The contents of register C6Hare 88H. The contents of register 88Hare 44H(01000100B). The
following statement leaves thevalue 88Hin register 88H(10001000B). TheSand V flagsare set to 1, and
theCand Z flagsare set to 0.

RL @®%H
Op Code: 81 C6

UMOO1000-28X0199 3-67

Z8PLUS User’s Manual
Address Space

ZiLOG

RLC
Rotate Left Through Carry

Instruction Format:

RLC dst
OPC dst

Operation:

C «~ dst(7)
dst(0) ~ C
dst(1) ~ dst(O0)
dst(2) ~ dst(1)
dst(3) ~ dst(2)
dst(4) ~ dst(3)
dst(5) ~ dst(4)
dst(6) ~ dst(5)
dst(7) ~ dst(6)

Address Mode

OPC (Hex) dst
10 R
11 IR

The contents of the destination operand along with the C flag are rotated |eft by one bit position. Theinitial
value of bit 7 becomesthevalue of the Cflag and the previous value of the Cflag becomesthevalue of bitO0.

D7

D6

DS

D4

D3|D2|D1(D0

UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Address Space

Flags:

RLC
Rotate Left Through Carry

When the instruction is executed, the flags are set as follows:

C:

Z:

D:
H:

1if the bit rotated from the most significant bit position was 1 (that is, bit 7 was previously set to
1).

1if theresult is O; otherwise, 0.

1if bit 7 of theresult is 1; otherwise, O.

1if arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

The value set by the preceding instruction.
The value set by the preceding instruction.

Example: The Cflagisreset. Register C6 contains 8F (10001111B). The following statement leaves
register C6 with thevalue 1EH (00011110B). TheCand V flagsare set to 1, and S and Z flags are set to O.

RLC C6
O Code: 10 C6

Example: The Cflagisreset. Working register R4 contains C6H. Register C6 contains 8F (10001111B).
The following statement |eaves register C6 with the value 1EH (00011110B). The Cand V flags are set to
1, and S and Z flags are set to 0.

RLC @4
O Code: 11 E4

UMOO1000-28X0199 3-69

Z8PLUs User’'s Manual
Address Space ZiL.OG

RR
Rotate Right

Instruction Format:

RR dst
Address Mode
OPC (Hex) dst
OPC dst EO R
El IR
Operation:
C «~ dst(0)

dst(0) « dst(1)
dst(1) « dst(2)
dst(2) « dst(3)
dst(3) « dst(4)
dst(4) « dst(5)
dst(5) « dst(6)
dst(6) « dst(7)
dst(7) « dst(0)

The contents of the destination operand are rotated to the right by one bit position. Theinitia value of bit 0
becomes the value of bit 7 and the Cflag.

|—> D7|D6|D5|D4(D3|D2|D1|D0 =IE|

Flags:

When the instruction is executed, the flags are set as follows:

C. 1if thevaluerotated from the least significant bit position (bit 1) was 1.

Z: 1if theresult is0; otherwise, 0.

S 1if bit 7 of theresult is 1; otherwise, O.

V: 1lif arithmetic overflow occurred (if the sign of the destination operand changed during rotation);
otherwise, 0.

D: Thevalue set by the preceding instruction.

H: Thevalue set by the preceding instruction.

3-70 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

RR
Rotate Right

Example: The contents of working register R6 are31H(00110001B). The following statement |eaves the
value 98H (10011000B) in working register R6. The C, V, and Sflagsare set to 1, and the Z flag is set to 0.

RR R6
o Code: EO E6

Example: The contents of register C6 are 31H. The contents of register 31Hare 7EH (01111110B). The
following statement leavesthevalue4FH(00111111B)inregister 31H. TheC, Z, V, and Sflagsare set to 0.

RR @»%
Op Code: E1 C6

UMOO1000-28X0199 3-71

Z8PLUs User’'s Manual
Address Space ZiL.OG

RRC
Rotate Right Through Carry

Instruction Format:

RRC dst
Operation:
Address Mode
OPC (Hex) dst
OPC dst C0 R
C1 IR
C « dst(0)

dst(0) « dst(1)
dst (1) « dst(2)
dst(2) « dst(3)
dst(3) « dst(4)
dst(4) « dst(5)
dst(5) - dst(6)
dst(6) « dst(7)
dst(7) « C

The contents of the destination operand with the Cflag are rotated right by one bit position. The value of the
C flag becomes the value of bit 7; the value of bit 0 becomes the value of the Cflag .

= D7|D6| D5(D4|D3|D2(D1 D0

3-72 UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Address Space

Flags:

RRC
Rotate Right Through Carry

When the instruction is executed, the flags are set as follows:

9

H:

1if the bit rotated from the least significant bit position was 1 (that is, bit 0 was 1).
1if theresult is 0; otherwise, 0.
1if bit 7 of theresult is 1; otherwise, 0.

1if an arithmetic overflow occurs (the sign of the destination operand changed during rotation);
otherwise, 0.

The value set by the preceding instruction.
The value set by the preceding instruction.

Example: The contents of register C6Hare DDH(11011101B). The Cflag is 0. The following statement
leavesthevalue 6EH(01101110B) inregister C6H. The Cand V flagsare set to 1, and the Z and Sflags are
setto 0.

RRC C6H
O Code: Q0 C6

Example: The contents of register 2C are EDH. The contents of register EDHis02H (00000010B. TheC
flagis 0. The following statement |eaves the value 01H (00000001B) inregister EDH. The C, Z, S, and V
flags arereset to O.

RRC @CH
O Code: Cl1 2C

UMOO1000-28X0199 3-73

Z8PLUs User’'s Manual
Address Space ZiL.OG

SBC
Subtract with Carry

Instruction Format:

SBC dst, src

Address Mode

OPC (Hex) dst src

32 r r

OPC dst Src 33 r Ir
34 R R

OPC src dst 35 R IR
OPC dst Src 36 R IM
37 IR IM

Operation:

dst ~ dst - src - C

The val ue of the source operand, and the value of the Cflag, are subtracted from the destination operand. The

result is stored in the destination operand. The contents of the source operand do not change. Subtractionis
performed by adding the two’s complement of the source operand to the destination operand. In multiple
precision arithmetic, this instruction permits the carry (borrow) from the subtraction of low-order operands
to be subtracted from the subtraction of high-order operands.

Flags:

When the instruction is executed, the flags are set as follows:

C: 0ifavalue is carried from the most significant bit of the result; otherwise, 1 (indicating a borrow).

Z: 1ifthe result i9; otherwise, 0.

V: 1if an arithmetic overflow occurs (the operands have opposite signs, and the sign of the result is
the same as the sign of the source); otherwise, 0.

S: 1if bit7 of the result is 1; otherwise, 0.

H: 0ifif a value is carried from the most significant bit of the low-order four bits of the result;
otherwise, 1 (indicating a borrow).

D: 1.

3-74 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

SBC
Subtract with Carry

Example: Working register R3 contains 16H. The Cflagissetto 1. Working register R11 contains 20H.
The following statement leaves the value F5H in working register R3. The C, S, and Dflags are set to 1, and
theZ, V, and Hflags are set to 0.

SBC R3, R11
O Code: 32 3B

Example: Working register R15 contains 16H. The Cflag is not set. Working register R10 contains 20H.
Register 20H contains 11H. The following statement |eaves the value 05H in working register R15. The D
flagissetto 1, andtheC, Z, S, V, and Hflags are set to 0.

SBC R16, @R10
O Code: 33 FA

Example: Register 34Hcontains 2EH. The Cflagisset. Register 12H contains 1 BH. Thefollowing statement
leavesthe value 12Hin register 34H. The Dflag isset, and the C, Z, S, V, and Hflags are cleared.

SBC 34H, 12H
o Code: 34 12 34

Example: Register 4BH contains 82H. The Cflag is set. Working register R3 contains 10H. Register 10H
contains 01H. The following statement leaves the value 80Hin register 4BH. TheDand S flagsaresetto 1,
andtheC, Z, V, and Hflags are set to O.

SBC 4BH, @R3
Op Code: 35 E3 4B

Example: Register 6CH contains 2AH. The Cflag is not set. The following statement leaves the value 27H
inregister 6CH. The Dflagissetto 1, andtheC, Z, S, V, and Hflags are set to 0.

SBC 6CH, #03H
O Code: 36 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4CH. The Cflag is set. Thefollowing statement
leavesthe value 49Hin register 5SFH. The Dflagissetto 1, andtheC, Z, S, V, and Hflags are set to O.

SBC @4H, #02H
Op Code: 37 D4 02

UMOO1000-28X0199 3-75

Z8PLUS User’s Manual
Address Space

ZiLOG

SCF
Set Carry Flag

Instruction Format:

SRC
OPC (Hex)
oPC DF
Operation:
C -1

The Cflag is set to 1, regardless of its previous value.
Flags:

When the instruction is executed, the flags are set as follows:

1

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO< OWLNDO

Example: The Cflagis currently 0. The following statement sets the Carry flag to 1.

SCF
Op Code: DF

UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Address Space

Instruction Format:

SRA dst

SRA
Shift Right Arithmetic

Address Mode

OPC (Hex) dst

OPC

dst

Operation:

C — dst(0)

dst (0)
dst (1)
dst (2)
dst (3)
dst (4)
dst (5)
dst (6)
dst (7)

« dst(1)
< dst(2)
« dst(3)
« dst(4)
« dst(5)
« dst(6)
« dst(7)
« dst(7)

DO R
D1 IR

An arithmetic right shift by one bit position is performed on the destination operand. Bit O replacesthe Cflag.
The value of Bit 7 (the sign hit) is unchanged.Bit 6 becomes the same as the value of hit 7. Theresult is a
signed divide by two holding the half-bit remainder stored in the Carry (C) flag.

Flags:

|:D7 D6

D5

D4

D3

D2

D1

DO

When the instruction is executed, the flags are set as follows:

TOoO<SeNO

1if the value rotated from the least-significant bit (bit 0) position was 1.

1if theresult is O; otherwise, 0.

1if bit 7 of theresult is 1; otherwise, 0.

0.

The value set by the preceding instruction.
The value set by the preceding instruction.

UMOO1000-28X0199

3-77

Z8PLUs User’'s Manual
Address Space ZiL.OG

SRA
Shift Right Arithmetic

Example: The contents of working register R6 are 31H(00110001B). The following statement leaves the
value 98H (00011000B) in working register R6. The Cflagissetto 1, andthe Z, V, and S flags are set to 0.

SRA R6
O Code: DO E6

Example: Register C6 contains the value DFH. Register DFH contains the value BBH(10111000B). The
following statement leaves the value DCH (11011100B) in Register DFH. The C, Z, and V flags are reset to
0, and the Sflagisset to 1.

SRA @»%
Op Code: D1 C6

3-78 UMOO0O1000-28X0199

ZiLOG

Z8P'YS yser's Manual
Address Space

Instruction Format:

SRP src

OPC (Hex)

OPC

SRP

Set Register Pointer

Address Mod
dst

dSt 31

Operation:

RP — src

M

The specified value is loaded into the Register Pointer (RP) Control Register (FDH). Bits 7-4 determine the
working register group. Bits 3-0 selectsthe Memory Page. Addressing non-existent working register groups
and memory pages results in undefined behavior.

Table 3-17. Register Pointers, Working Register Groups, and Actual Registers

Register Pointer (FDH)

Working Register Group

Actual Registers

Contents (Bin) (Hex) (Hex)
1111 0000 F FO-FF
1110 0000 E EO-EF
1101 0000 D DO-DF
1100 0000 C CO-CF
1011 0000 B BO-BF
1010 0000 A AO-AF
1001 0000 9 90-9F
1000 0000 8 80-8F
0111 0000 7 70-7F
0110 0000 6 60-6F
0101 0000 5 50-5F
0100 0000 4 40-4F
0011 0000 3 30-3F
0010 0000 2 20-2F
0001 0000 1 10-1F
0000 0000 0 00-0F

UMOO1000-28X0199

3-79

Z8PLUS User’s Manual
Address Space

ZiLOG

SRP

Set Register Pointer

Flags:

When the instruction is executed, the flags are set as follows:

TO<ONO

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

Example: The following statement SRP %0 assigns registers 070H through 07FHto be the current
working register group, and, therefore, accessable as RO through R15 in four bit addressing modes. The
active memory pageis set to page 0, and all eight-bit addressed register accesses are on page 0.

SRP %70
O Code: 31 FO

3-80

UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Address Space
STOP
Stop
Instruction Format:
STOP
OPC (Hex)
OPC 6F
Operation:

Thisinstruction turns off theinternal system clock (SCLK) and external crystal (XTAL) oscillator, and draws
only standby current. The STOP modeisterminated by a RESET or Stop Mode Recovery (SVR) which causes
the processor to restart the application program at address 0020H. The waken up source can be determined
by reading the FLAGS register, specifically the SMRand VDT flags (see page 3-5 for more information).

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<®ONO

Example: The following statements place the Z8 if¥6OP mode.

STOP
o Codes: 6F

NOTE: Unlike the Z8, the Z&YS does not require MOP before theSTOP instruction.

UMOO1000-28X0199 3-81

Z8PLUS User’s Manual
Address Space

ZiLOG

SUB
Subtract

Instruction Format:

SUB dst, src

Address Mode

OPC dst src

OPC src dst

OPC dst src
Operation:

dst ~ dst - src

OPC (Hex) dst src
22 r r
23 r Ir
24 R R
25 R IR
26 R M
27 IR M

The source operand is subtracted from the destination operand and the result is stored in the destination
operand. The contents of the source operand are not changed. Subtraction is performed by adding the twc
complement of the source operand to the destination operand.

Flags:

When the instruction is executed, the flags are set as follows:

C: 0 if a value is carried from the most significant bit of the result; otherwise, 1, indicating a borrow.

Z: 1 if the result i9; otherwise, 0.

V: 1 if arithmetic overflow occurred (if the operands have opposite sign and the sign of the result has

the same as the source); reset otherwise.
S: 1 if the result is negative; otherwise, 0.

H: 0 if there is a carry from the most significant bit of the low-order four bits of the result; otherwise,
1, indicating a borrow.

D: 1.

3-82

UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

SUB
Subtract

Example: Working register R3 contains 16H. Working register R11 contains 20H. The following statement
leaves the value F6H in working register R3. The C, S, and Dflags are set to 1, and the Z, V, and Hflags are
setto 0.

SUB R3, R11
o Code: 22 3B

Example: Working register R15 contains 16H. Working register R10 contains 20H. Register 20H contains
11H. The following statement |eaves the value 05H in working register R15. The Dflagis set to 1, and the
C Z,S,V,and Hflags are set to O.

SUB R16, @R10
O Code: 23 FA

Example: Register 34Hcontains 2EH. Register 12H contains 1BH. Thefollowing statement leavesthevalue
13Hinregister 34H. The Dflagissetto 1, and the C, Z, S, V, and Hflags are set to O.

SUB 34H, 12H
Op Code: 24 12 34

Example: Register 4BH contains 82H. Working register R3 contains 10H. Register 10H contains01H. The
following statement leavesthevalue 81Hin register 4BH. The Dand Sflagsaresetto 1, and the C, Z, V, and
Hflags are set to 0.

SUB 4BH, @R3
Op Code: 25 E3 4B

Example: Register 6CH contains 2AH. The following statement leavesthe value 27Hin register 6CH. The D
flagissettol,andtheC, Z, S, V, and Hflags are set to 0.

SUB 6CH, #03H
O Code: 26 6C 03

Example: Register D4H contains 5FH. Register 5FH contains 4 CH. Thefollowing statement leavesthevalue
4AHin register 5SFH. The Dflagissetto 1, and the C, Z, S, V, and Hflags are set to O.

SUB @4H, #02H
Op Code: 17 D4 02

UMOO1000-28X0199 3-83

Z8PLUS User’s Manual

Address Space ZiL.OG
SWAP
Swap Nibbles
Instruction Format:
SWAP dst
Address Mode
OPC (Hex) dst
FO R
OPC dst F1 IR
Operation:

dst(7-4) o dst(3-0)
The contents of the lower four bits and upper four bits of the destination operand are swapped.
Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1if theresult is O; otherwise, O.

1if bit 7 of theresult is 1; otherwise, O.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Register BCH contains B3H (1011001 1B). The following statement |eaves the value 3BH
(00111011B) inregister BCH. The Z and S flags are set to 0.

SWAP B3H
Op Code: FO B3

Example: Working register R5 contains BCH and register BCH contains B3H (10110011B). The following
statement leaves the value 3BH (00111011B) inregister BCH. The Z and S flags are set to O.

SWAP @R5H
Op Code: F1 E5

3-84 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

TCM
Test Complement Under Mask

Instruction Format:

TCM dst, src
Address Mode

OPC (Hex) dst src

62 r r

OPC dst Src 63 r Ir

64 R R
OPC sc dst 65 R IR
OPC dst src 66 R IM
67 IR IM

Operation:

(NOT dst) AND src

This instruction tests selected bits in the destination operand for alogical 1 value. The bitsto be tested are
specified by setting a 1 bit in the corresponding bit position in the source operand (the mask). The TCM
instruction complements the destination operand, and then perforoms alogingal AND operation using ANDs
with the mask (source operand). The Zero (Z) flag can then be read to check the result. If the Z flag is set,
then the tested bits were 1. When the TCMoperation is compl ete, the destination and source operands still
contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows::

The value set by the preceding instruction.
1if theresult isO; otherwise, O.

1if bit 7 of the result is 1; otherwise, 0.

0.

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Working register R3 contains 45H (01000101B). Working register R7 contains the value 01H
(00000001B) (bit 0 isbeing tested if itis1). The following statement setsthe Z flag indicating bit O in the
destination operandis 1. The V and S flags are set to 0.

TCM R3, R7
Op Code: 62 37

UMOO1000-28X0199 3-85

Z8PLUs User’'s Manual
Address Space ZiL.OG

TCM
Test Complement Under Mask

Example: Working register R14 containsthevalue F3H(11110011B). Working register R5 contains CBH.
Register CBH contains88H(10001000B) (bit 7 and bit 3 are tested if they are 1). The following statement
resets the Z flag to 0, because bit 3 in the destination operandisnot al. TheV and S flags are also set to 0.

TCM R14, @®5
o Code: 63 E5

Example: Register D4 H contains the value 04H (000001000B). Working register RO contains the value
80H (10000000B) (hit 7 istested if it is 1). The following statement resets the Z flag to 0, because bit 7 in
the destination operandisnot al. The Sflagissetto 1, and the V flagisset to 0.

TCM D4H, RO
O» Code: 64 EO D4

Example: Register DFH contains the value FFH (11111111B). Register 07H contains the value 1FH.
Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit O are tested if
they are 1), The following statement setsthe Z flag to 1 indicating the tested bitsin the destination operand
arel. TheSandVflagsare set to 0.

TCM DFH, @7H
Op Code: 65 07 DF

Example: Working register R13 containsthevalue F2H(11110010B). Thefollowing statement tests bit 1
of the destination operand for 1. The Z flag is set to 1 indicating bit 1 in the destination operand was 1. The
SandVflagsare set to 0.

TCM R13, #02H
Op Code: 66 ED, 02

Example: Register 5DH contains AOH. Register AOH contains OFH (0000111 1B). The statement tests bit 4
of the Register AOHfor 1. The Z flag isreset to O indicating bit 1 in the destination operand was not 1. The
Sand Vflagsareset to 0.

TCM @D, #10H
Op Code: 67 5D 10

3-86 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

™
Test Under Mask

Instruction Format:

TM dst, src
Address Mode
OPC (Hex) dst src
72 r r
OPC dst src 73 r Ir
74 R R
OPC src dst 75 R IR
76 R IM
OPC dst Se 77 IR IM

Operation: dst AND src

This instruction tests selected bits in the destination operand for alogical O value. The bitsto be tested are
specified by settingal bit in the corresponding bit position in the source operand (the mask). The TMinstruc-
tion ANDs the destination operand with the mask (the source operand). The Zero (Z) flag can then be read to
check the result. If the Z flag is set, then the tested bits were 0. When the TMoperation is complete, the desti-
nation and source operands still contain their previous values.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1if theresult isO; otherwise, O.

1if bit 7 of theresult is 1; otherwise, 0.

0.

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: Working register R3 contains 45H (01000101B. Working register R7 contains the value 02H
(00000010B) (bit 1 istested if itis0). The following statement sets the Z flag to 1 indicating bit 1 in the
destination operand is 0. The V and S flags are set to 0.

TM R3, R7
Op Code: 72 37

UMOO1000-28X0199 3-87

Z8PLUs User’'s Manual
Address Space ZiL.OG

™
Test Under Mask

Example: Working register R14 containsthevalue F3H(11110011B). Working register R5 contains CBH.
Register CBH contains 88H (10001000B) (bit 7 abit 3 are tested if they are 0). The following statement
resets the Z flag to 0, because bit 7 in the destination operand isnot a0. The Sflagisset to 1, and the V flag
issettoO.

TM R14, @»5
O Code: 73 E5

Example: Register D4Hcontainsthevalue 08H(00001000B). Working register RO containsthe value 04H
(00000100B) (bit 2 istested if it is0). The statement setsthe Z flag to 1, because bit 2 in the destination
operandisa0. TheSand V flagsare set to 0.

T™M D4H, RO
o Code: 74 EO D4

Example: Register DFH contains the value 00H (00000000B). Register 07H contains the value 1FH.
Register 1FH contains the value BDH (10111101B) (bit 7, bit 5, bit 4, bit 3, bit 2, and bit O are tested if
they are 0). The following statement setsthe Z flag to 1, indicating the tested bitsin the destination operand
are0. TheSissetto 1, andtheVflagisset to 0.

T™M DFH, @7H
o Code: 75 07 DF

Example: Working register R13 containsthevalue F1H(11110001B). Thefollowing statement tests bit 1
of the destination operand for 0. The Z flagisset to 1, indicating bit 1 in the destination operand was 0. The
SandVflagsare set to 0.

T™M R13, #02H
Op Code: 76 ED, 02

Example: Register 5DH contains AOH. Register AOH contains OFH (0000111 1B). The following statement
tests hit 4 of the register AOHfor 0. The Z flag is set to 1, indicating bit 4 in the destination operand was 0.
TheSandV flagsare set to 0.

™ @D, #10H
Op Code: 77 5D 10

3-88 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

WDT
Watch-Dog Timer

Instruction Format:

WDT

OPC (Hex)
5F

OPC

Operation:

The Watch-Dog Timer (MDT) is aretriggerable one-shot timer that resets the deviceif it reachesits terminal
count. Each execution of the WDT instruction refreshes the timer and prevents the WDT from timing out.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

Example: The WDT is enabled. The following statement refreshes the Watch-Dog Timer.

WDOT
Op Code: 5F

UMOO1000-28X0199 3-89

Z8PLUs User’'s Manual
Address Space ZiL.OG

XOR
Logical Exclusive OR

Instruction Format:

XOR dst, src
Address Mode

OPC (Hex) dst src
B2 r r
B4 R R
OPC src dst B5 R IR
B6 R IM
OPC dst src B7 IR IM
Operation:

dst ~ dst XOR src

The source operand performs alogical EXCLUSI VE ORed operation, which storesa 1 in the destination
operand whenever the corresponding bits in the two operands are different. The destination operand is set to
1; otherwise, a0 is stored. The contents of the source operand are not changed.

Flags:

When the instruction is executed, the flags are set as follows:

The value set by the preceding instruction.
1if theresult isO; otherwise, O.

1if bit 7 of theresult is 1; otherwise, 0.

0.

The value set by the preceding instruction.
The value set by the preceding instruction.

TO<SONO

3-90 UMOO0O1000-28X0199

Z8P'US User’s Manual
ZiLOG Address Space

XOR
Logical Exclusive OR

Example: Working register R1 contains 38H (00111000B). Working register R14 contains 8 DH
(10001101B). The following statement leaves the value BSH(10110101B) in working register R1. The
Z,and V flags are set to O, and the S flag is set to 1.

XOR R1, R14
o Code: B2 1E

Example: Working register R4 contains FOH(11111001B). Working register R13 contains 7BH. Register
7B contains 6AH (01101010B). The following statement leaves the value 93H (1001001 1B) in working
register R4. The Sflag isset to 1, and the Z and V flags are set to 0.

XOR R4, @R13
Op Code: B3 4D

Example: Register 3AH contains the value F5H (11110101B). Register 42H contains the value 0AH
(00001010B). Thefollowing statement leavesthevalue FFH(11111111B) inregister 3AH. The Sflagis
setto 1, andtheCand V flags are set to O.

XOR 3AH, 42H
Op Code: B4 42 3A

Example: Working register R5 contains FOH (11110000B). Register 45H contains 3AH. Register 3A
contains 7F (01111111B). The statement leavesthevalue 8FH(10001111B) in working register R5. The
Sflagissetto 1, andtheCand V flags are set to O.

XOR R5, @5H
Op Code: B5 45 E5

Example: Register 7AH contains the value F7H (11110111B). The following statement leaves the value
07H(00000111B) inregister 7AH. The Z, V, and S flags are set to 0.

XOR 7AH, #FOH
Op Code: B6 7A FO

Example: Working register R3 contains the value 3EH. Register 3EH contains the value 6 CH
(01101100B). Thefollowing statement leavesthevalue 69H(01101001B) inregister 3EH. The Z, V, and
Sflagsaresetto 0.

XOR @Rr3, #O05H
Op Code: B7 E3 05

UMOO1000-28X0199 3-91

USER’S MIANUAL

ZiLOG

CHAPTER 4
INTERRUPTS

Totally Logical

INTRODUCTION

The z8™YS core allows 15 different interrupts from a variety of sources:
e external inputs

e on-chip peripherds

+ Software

Interrupts can be masked by using the Interrupt Mask Register. All interrupts can be globally disabled by
setting the master Interrupt Enable, bit 7 in the Interrupt Mask Register, to 0, with a Disable Interrupt (DI)
instruction. Interrupts are globally enabled by setting bit 7 to 1 with an Enable Interrupt (EI) instruction.

There are four interrupt control registers: the Interrupt Request Registers (| REQand | REQR?) and the Inter-
rupt Mask registers (I MASK and | MASK2). Figure 4-1 shows addresses and identifiers for the interrupt
control registers. Figure 4-2 is a block diagram showing the Interrupt Mask and Interrupt Priority logic.

Register HEX Identifier
Interrupt Mask OFBH IMASK
Interrupt Request OFAH IREQ

Interrupt Mask 2 OF9H IMASK2

Interrupt Request 2 OF8H IREQ2

Figure 4-1. Interrupt Control Register Addresses and ldentifiers

UMOO01000-28X0199 4-1

Z8PLUS User’s Manual
Interrupts

ZiLOG

Thez8™YSMcuU family supports both vectored and polled interrupt handling. Details on vectored and polled
interrupts can be found later in this chapter.

Register Hex Identifier
Interrupt Mask OFBH IMASK
Interrupt Request OFAH IREQ
Interrupt Mask 2 OF9H IMASK?2
Interrupt Request 2 OF8H IREQ2
Interrupt Edge Select | ODEH PTBEDG

IRQ7-IRQ14! | 8

7
% ; IRQO-IRQ6

IREQ2 X| IREQ
LT LT
R eooe :D—
LU LI
IMASK?2 7(IMASK
Global 15
Interrupt
Enable
Interrupt
Request
{ Fixed Priority LOQIC |

_\I I; Vector Select

Figure 4-2. Interrupt Block Diagram

NOTE: Seethe selected Z8™-YS MCU's product specification for the exact interrupt sources supported.

UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Interrupts

INTERRUPT SOURCES

Table 4-1 presents the interrupt types, sources, and vectors available in the Z8E00L. Other processors from
the Z8™-YS family may define the interrupts differently.

Table 4-1. ZBEQOO1 Interrupt Types, Sources, and Vectors

Vector Fixed
Name Sources Location Comments Priority
IREQq Timer0 Time-out 2,3 Internal 1 (Highest)
IREQq PB4 High-to-Low 45 External (PB4), Edge Triggered | 2
Transition
IREQ, Timerl Time-out 6,7 Internal
IREQ3 PB2 High-to-Low 8,9 External (PB2), Edge Triggered
Transition
IREQy, PB4 Low-to-High AB External (PB4), Edge Triggered | 5
Transition
IREQsg Timer2 Time-out CD Internal 6 (Lowest)
IREQg - Reserved Reserved for future expansion
IREQq5

External Interrupt Sources

External sources can be generated by a transition on the corresponding Port pin. The interrupt may detect a
rising edge, afalling edge, or both.

NOTES:
1. The interrupt sources and trigger conditions are device dependent. See the device product
specification to determine available sources (internal and external), triggering edge options, and
exact programming details.

2. Although interrupts are edge triggered, minimum interrupt request Low and High times must be
observed for proper operation. See the device product specification for exact timing requirementson
external interrupt requests (TyIL, TyIH).

UMOO1000-28X0199 4-3

Z8P'YS User’s Manual
Interrupts ZiLOG

Internal Interrupt Sources

Internal interrupt sources and trigger conditions are device dependent. On-chip peripherals may set interrupt
under various conditions. Some peripherals always set their corresponding | REQ bit while others must be
specifically configured to do so.

See the device product specification to determine available sources, triggering edge options, and exact
programming details. For more details on the interrupt sources, refer to the chapters describing the timers,
comparators, 1/0 ports, and other peripherals.

INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING

The z8P-YS core responds to interrupts as it retires each instruction. If an unmasked interrupt is detected as
an instruction is being retired, the Z8™-YS core does not execute an instruction during the next instruction
cycle. The Z8™US MCU instead selects the highest priority outstanding interrupt to be serviced. The program
counter and flags register are pushed to the stack during the next instruction cycle. The appropriate | REQbit
is cleared, the master enable is cleared and the MCU fetches the interrupt vector from program memory. It
then jumps to the user’s interrupt routine during the following cycle (See Figure 4-3).

Inst O Inst 1 Inst 2 Inst 3 Inst 4

U HUT UYL

© @ @ O O,

Figure 4-3. Interrupt Service Sequence

NOTES:
1. There are no outstanding, unmasked interrupts.

2. Interrupt source sets an IREQ bit during this interval. This bit is highest priority, has an unmasked

IREQ, and is bit-sampled.
3. PC and flags are pushed, IREQ bit cleared, IMASK (7) cleared, and vector fetched.
4. JUMP to interrupt vector.

5. This portion is the first instruction of user’s interrupt service routine.

4-4 UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Interrupts

Interrupt Mask Register (IMASK) Initialization

The | MASK register individually or globally enables or disables the interrupts (see Figure 4-4). When bits 0
through bit 6 are set to 1, the corresponding interrupt requests are enabled. The | MASK2 register, bits 0
through 7, enable and disable | RQ7 through | RQL4, respectively. Bit 7 isthe master enable bit and must be
set before any of theindividual interrupt requests can be recognized. Resetting bit 7 disables all the interrupt
requests. Bit 7 is set and reset by the EI and DI instructions. It is automatically set to O during an interrupt
service routine and set to 1 following the execution of an Interrupt Return (I RET) instruction. The | MASK
registers are reset to 00H, disabling all interrupts.

NOTE:

1. Itisnot good programming practice to directly agssign a value to the master enable bit. A value
change should always be accomplished by issuing the EI and DI instructions.

2. Care should be taken not to set or clear | MASK bits while the master enableis set.

UMOO1000-28X0199 4-5

Z8PLUS User’s Manual

Interrupts

ZiLOG

Figure 4-4. Interrupt Mask Register
Interrupt Mask Register—IMASK (FBH)

Bit 7 6 5 4 3 2 1 0
R/W RW |RW |RW | R'W | R'W |RW |RW | RIW
Reset 0 0 0 0 0 0 0 0

R = Read W = Write X = Indeterminate U = Undefined/Undetermined

Bit -
Position R/W Value Description
7 0 Disables Interrupts
1 Enables Interrupts
6 0 Disables IRQ5
1 Enables IRQ5
5 0 Disables IRQ5
1 Enables IRQ5
4 0 Disables IRQ4
1 Enables IRQ4
3 0 Disables IRQ3
1 Enables IRQ3
2 0 Disables IRQ2
1 Enables IRQ2
1 0 Disables IRQ1
1 Enables IRQ1
0 0 Disables IRQO
1 Enables IRQO

UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Interrupts
Figure 4-5. Interrupt Mask 2 Register
Interrupt Mask 2 Register—IMASK2 (F9H)
Bit 7 6 4 3 2 1 0
R/W RW |RW |[RW | R'W | RW |RW | RW | RIW
Reset 0 0 0 0 0 0 0
R = Read W = Write X = Indeterminate U = Undefined/Undetermined
Bit R/W Value Description
Position P
7 R/W 0 Disables IRQ14
1 Enables IRQ14
6 R/W 0 Disables IRQ13
1 Enables IRQ13
5 R/W 0 Disables IRQ12
1 Enables IRQ12
4 R/W 0 Disables IRQ11
1 Enables IRQ11
3 R/W 0 Disables IRQ10
1 Enables IRQ10
2 R/W 0 Disables IRQ9
1 Enables IRQ9
1 R/W 0 Disables IRQ8
1 Enables IRQ8
0 R/W 0 Disables IRQ7
1 Enables IRQ7
UMOO01000-28X0199 4-7

Z8P'YS User’s Manual
Interrupts ZiLOG

Interrupt Request (IREQ) Register Initialization

| REQ (see Figure 4-6) is aregister that stores the interrupt requests for both vectored and polled interrupts.
When aninterrupt isissued, the corresponding bit positionintheregister issetto 1. Bit 0 to bit 5 are assigned
to interrupt requests | REQD to | REQB, respectively.

Whenever RESET is executed, the | REQ resister is set to O0H.

Figure 4-6. Interrupt Request Register.
Interrupt Request Register—IREQ (FAH)

Bit 7 6 5 4 3 2 1 0
R/W RW |RW |R'W | RRW | R'W |R/W | RW | RIW
Reset 0 0 0 0 0 0 0 0
R = Read W = Write X = Indeterminate U = Undefined/Undetermined
Bit R/W Value Description
Position P
7 R/W 0 Reserved,must be 0
6 R/W 0 IRQ6 reset
1 IRQ6 set
5 R/W 0 IRQ5 reset
1 IRQ5 set
4 R/W 0 IRQ4 reset
1 IRQ4 set
3 R/W 0 IRQ3 reset
1 IRQ3 set
2 R/W 0 IRQ2 reset
1 IRQ2 set
1 R/W 0 IRQ1 reset
1 IRQ1 set
0 R/W 0 IRQO reset
1 IRQO set

4-8 UMOO0O1000-28X0199

ZiLOG

Z8PLUS User’s Manual

Interrupts

Figure 4-7. Interrupt Request Register 2

Interrupt Request Register 2—-IREQ2 (F8H)

Bit 7 6 5 4 3 2 1 0
R/IW RW |RW |[RWW | R'W | R'W |RW |RW |RW
Reset 0 0 0 0 0 0 0 0
R = Read W = Write X = Indeterminate U = Undefined/Undetermined
Bit R/W Value Description
Position P
7 R/W 0 IRQ14 reset
IRQ14 set
6 R/IW 0 IRQ13 reset
1 IRQ13 set
5 R/W 0 IRQ12 reset
1 IRQ12 set
4 R/W 0 IRQ11 reset
1 IRQ11 set
3 R/W 0 IRQ10 reset
1 IRQ10 set
2 R/W 0 IRQO reset
1 IRQ9 set
1 R/W 0 IRQ8 reset
1 IRQ8 set
0 R/W 0 IRQ7 reset
1 IRQ7 set

UMOO1000-28X0199

Z8P'YS User’s Manual
Interrupts ZiLOG

IREQ SOFTWARE INTERRUPT GENERATION

| REQ can be used to generate software interrupts by specifying | REQ as the destination of any instruction
referencing the Z8™YS Standard Register File. These software interrupts (SW) are controlled in the same
manner as hardware generated requests. In other words, the | MASK controls the enabling of each SW .

To generate a SW , the request bit in | REQis set by the following statement:

OR | REQ, #NUMBER

Theimmediate data variable, NUVBER, hasa 1 in the bit position corresponding to the required level of SWI.
For example, an SW must be issued when an IREQ5S occurs. Bit 5 of NUMBER must have avalue of 1.

OR | REQ #00100000B

If the interrupt system is globally enabled, | REQb is enabled, and there are no higher priority requests
pending , control istransferred to the service routine pointed to by the | RECbH vector.

NOTE: Notethat software may modify the | REQregister at any time. Care should be taken when using
any instruction that modifies the | REQregister while interrupt sources are active. The software
writeback always takes precedence over the hardware. If a software writeback takes place on the
same cycle as an interrupt source triesto set an | REQ bit, the new interrupt is lost.

VECTORED PROCESSING

Each Z8™YS interrupt level hasits own vector. When an interrupt occurs, control passes to the service routine
pointed to by the interrupt’s vector location in program memory. The sequence of events for vectored intel
rupts is as follows:

+ PUSHthe PC Low Byte on the Stack

PUSH the PC High Byte on the Stack

+ PUSHthe FLAGS on the Stack

« Di sabl e Global Interrupts (bit 7 of IMASK)

« Fet ch the High Byte of the Vector

+ Fet ch the Low Byte of the Vector

« Branch to the Service Routine specified by Vector

Figure 4-8 and Figure 4-9 show vectored interrupt operation.

4-10 UMOO0O1000-28X0199

Z8PLUS User’s Manual

ZiLOG Interrupts
Stack Pointer and Stack Stack Pointer and Stack
Before an Interrupt After an Interrupt
SP > Old Top of Stack SP-3 Top of Stack
PC LOW Byte
PC HIGH Byte
FLAGS
Figure 4-8. Stacks Before and After Interrupt
UMOO1000-Z28X0199 4-11

Z8P'YS User’s Manual
Interrupts ZiLOG

Program Memory

FFFFH
- <« Interrupt Service Routine
. Old PC Value
0020H
<} Vector Selected By Priority Logic
— Interrupt Vector Table
0000H

Figure 4-9. Interrupt Vector Table Location

Nesting of Vectored Interrupts

Nesting vectored interrupts allows higher priority requests to interrupt a lower priority request. To initiate
vectored interrupt nesting, perform the following steps during the interrupt service routine:

+ PUSHtheold | MASK on the stack.

« Load | MASK with anew mask to disable lower priority interrupts.

+ Executean El instruction.

» Proceed with interrupt processing.

+ ExecuteaDl instruction after processing is complete.

* Redorethel MASK to its origina vaue by POPing the previous mask from the stack.
+ Executel RET.

Depending on the application, some simplification of the above procedure may be possible.

4-12 UMOO0O1000-28X0199

Z8P'YS yser's Manual
ZiLOG Interrupts

POLLED PROCESSING

Polled interrupt processing is supported by masking off the | REQto be polled. This process is accomplished
by setting the corresponding bitsin the | MASK to O.

Toinitiate polled processing, check the appropriate bitsin the | REQusing the Test Under Mask (TM) instruc-
tion. If the bit is set to 1, call or branch to the service routine. The service routine services the request, resets
its Request Bit in the | REQ, and branches or returns back to the main program. An example of a polling
routine is as follows:

TM | REQ #MASKA; Test for request
JR Z, NEXT;If no request go to NEXT

CALL SERVICE; If request is there,then
;service it

NEXT:

SERVI CE: ; Process Request

AND | REQ #MASKB ; Cl ear Request Bit
RET; Return to next

In thisexample, if | REQ2 isbeing polled, MASKA is00000100B and MASKB is11111011B.

RESET CONDITIONS
Thel MASK and | REQregistersinitialize to 00H on RESET.

UMOO1000-28X0199 4-13

O Z8PLUSUsER’s MANUAL
o
w—
N APPENDIX A
. ACCESSING ZBBS/I
Tomlly Logzm/ ESSING THE /INTERNET

BULLETIN BOARD INFORMATION

The ZiLOG Bulletin Board Service (ZBBS) currently provides basic information on ZiLOG products and
includes a ROM CODE upload area. In addition, the ZBBS provides valuable information on items of
interest, such as ZiL OG specialty software and documentation.

How to Access the ZBBS

The ZBBS can be reached by dialing 1-408-558-8890. The ZBBS supports speeds up to 28.8K Baud with
connections 8-N-1 (8 bits, No parity, 1 stop bit). We recommend that you use an ANSI/BBS terminal emula-
tion setup.

To preview information or download files, follow the on-screen instructions.

The latest production released version of the Z8 GUI software can be downloaded from this site.

ZiLOG ON THE INTERNET
ZiLOG has aHome Page on the Internet. The Home Page address is:

http://www.zilog.com

The ZiLOG Home Page includes valuable information about hardware and software development tools. The
latest production released version of the Z8 GUI software can be downloaded from this site.

UMOO01000-28X0199 A-1

ZiLOG

Totally Logical

Z8PLUSUSER’S MIANUAL

PROBLEM/SUGGESTION REPORT FORM

If you experience any problems while operating this product, or if you note any inaccuracies while reading
the User's Manual, please copy thisform, fill it out, then mail or fax it to ZiLOG (see “Return Information”).

We also welcome your suggestions!

Customer Information

Name Country
Company Telephone
Address Fax Number

City/State/ZIP

E-Mail Address

Product Information
Serial # or Board Fab #/Rev. #

Software Version
Manual Number
Host Computer Description/Type

Problem Description or Suggestion

Return Information
ZiLOG, Inc.

System Test/Customer Support
910 E. Hamilton Ave., Suite 110, MS 4-3
Campbell, CA 95008
Fax Number: (408) 558-8536
Email: tools@zilog.com

Provide a complete description of the problem or your suggestion. If you are reporting a specific problem
include all steps leading up to the occurrence of the problem. Attach additional pages as necessary.

UMOO01000-28X0199

ZiLOG

Totally Logical
A

add (ADD) 3-23
add with carry (ADC) 3-20
addressing
12-bit 2-1
16-bit 2-1
4-bit address 2-1
8-bit address 2-1
direct 2-7
immediate data 2-9
indexed 2-5
indirect register 2-3
modes 2-1
register 2-2
relative 2-8
arithmetic instructions
add (ADD) 3-2, 3-23
add with carry (ADC) 3-2, 3-20
compare (CP) 3-2, 3-32
decimal adjust (DA) 3-2, 3-34
decrement (DEC) 3-2, 3-37
decrement word (DECW) 3-2, 3-38
increment (INC) 3-2, 3-44
increment word (INCW) 3-2, 3-46
subtract (SUB) 3-2, 3-82
subtract with carry (SBC) 3-2, 3-74
assembly language syntax 3-12

B

binary encoding 3-10
bit manipulation instructions
bit clear (AND) 3-3
bit complement (XOR) 3-3

Z8PLUSUSER’S MIANUAL

INDEX

bit set (OR) 3-3
test complement under mask (TCM) 3-3, 3-85
test under mask (TM) 3-3, 3-87

block diagram, interrupt 4-2

C

call procedure (CALL) 3-27

carry flag (C) 3-5

clear (CLR) 3-30

compare (CP) 3-32

complement (COM) 3-31
complement carry flag (CCF) 3-29
condition codes (cc) 3-7, 3-8
control

core registers 1-3
peripheral registers 1-10
registers 1-10

CPU control instructions 3-4

complement carry flag (CCF) 3-4, 3-29
disable interrupts (DI) 3-4, 3-39
enable interrupts (E1) 3-4

halt (HALT) 3-4, 3-43

no operation (NOP) 3-4, 3-59

reset carry flag (RCF) 3-4, 3-64
set carry flag (SCF) 3-4

set carry flag(SCF) 3-76

set register pointer (SRP) 3-4, 3-79
stop (STOP) 3-4, 3-81

watch-dog timer (WDT) 3-4, 3-89

UMOO01000-28X0199

28PLUSyser’'s Manual

Index ZiLOG
D H
decimal adjust half-carry flag (H) 3-6
DA instruction 3-2, 3-34 halt (HALT) 3-43
flag 3-6 high nibble 1-6
decrement

and jump if non-zero (DINZ) 3-40
DEC ingtruction 3-37
word (DECW) 3-38
definitions
flag 3-7
flag settings 3-8
destination operand (dst) 3-1
direct addressing mode (DA) 2-7
disable interrupts (DI) 3-39

E

enable interrupts (El) 3-42
encoding notation and binary 3-10
external interrupt sources 4-3

F

flag
carry (C) 3-5
decimal adjust 3-6
definitions 3-7
half-carry 3-6
overflow 3-6
processor 3-5
register 3-5
settings definitions 3-8
sign 3-6
stop mode recovery 3-7
watch-dog timer 3-7
zero 3-5

G

general purpose registers 1-5

immediate data addressing (IM) 2-9
increment (INC) 3-44
increment word (INCW) 3-46
indexed addressing (X) 2-5
indirect register addressing (IR) 2-3
instructions
arithmetic 3-2
bit manipulation 3-3
block transfer 3-3
CPU control 3-4
load 3-2
logical 3-2
program control 3-3
rotate and shift 3-4
summary 3-12
internal interrupt sources 4-4
interrupt
block diagram 4-2
control registers 4-1
external sources 4-3
internal sources 4-4
mask register initialization 4-5
mask registers (IMASK) 4-1
polled 4-2
request register (IREQ) 4-1
request register initialization 4-7
request register logic and timing 4-4
return (IRET) 3-47
sources 4-3
vectored 4-2

J

jump (JP) 3-48
jump relative (JR) 3-50

Index-2

UMOO0O1000-28X0199

Z28P'USyser’'s Manual

ZiLOG Index
L source 3-1

sc 3-1
load 3-51 overflow flag 3-6

constant (LDC) 3-55
constant auto increment (LDCI) 3-3, 3-57
load instructions
clear (CLR) 3-2, 3-30
load (LD) 3-2, 3-51
load constant (LDC) 3-2, 3-55
pop (POP) 3-2, 3-62
push (PUSH) 3-2, 3-63
logical
AND (AND) 3-25
exclusive OR (XOR) 3-90
logical instructions 3-2
complement 3-2
complement (COM) 3-31
logical AND (AND) 3-2
logical and (AND) 3-25
logical exclusive OR (XOR) 3-2, 3-90
logical OR (OR) 3-2, 3-60
lower nibble values 3-17

M

memory
map 1-12
program 1-11

N

nibble
high 1-6
lower values 3-17
no operation (NOP) 3-59
notation and binary encoding 3-10
notational shorthand 3-10

O

opcode map 3-18
operand
destination 3-1
dst 3-1

P

peripheral registers 1-10

polled interrupt 4-2

pop (POP) 3-62

processor flags 3-5

program control inctructions
IRET instruction 3-47

program control instructions
call procedure (CALL) 3-3, 3-27
decrement and jump if non-zero (DINZ) 3-40
decrement and jump non-zero (DINZ) 3-3
interrupt return (IRET) 3-3
jump (JP) 3-3, 3-48
jump relative (JR) 3-3, 3-50
return (RET) 3-3, 3-65

program memory 1-11

program memory map 1-12

R

register
addressing (R) 1-5, 2-2
control 1-10
control and peripheral 1-10
core control 1-3
file organization 1-4
file space 1-1
flag 3-5
general purpose 1-5
peripheral 1-10
pointer 1-6
stack pointer 1-13
working groups 1-6
relative addressing (RA) 2-8
reset carry flag (RCF) 3-64
return (RET) 3-65
rotate and shift instructions 3-4
rotate left (RL) 3-4, 3-66

UMOO1000-28X0199

Index—-3

28PLUSyser’'s Manual
Index

ZiLOG

rotate left through carry (RLC) 3-4, 3-68
rotate right (RR) 3-4, 3-70

rotate right through carry (RRC) 3-4, 3-72
shift right arithmetic (SRA) 3-4, 3-77
swap nibbles (SWAP) 3-4, 3-84

S

set

set carry flag (SCF) 3-76

set register pointer (SRP) 3-79
shift right arithmetic (SRA) 3-77
shorthand, notational 3-10
signflag (S) 3-6
source operand (src) 3-1
stack pointer register (SP) 1-13
stop (STOP) 3-81
stop mode recovery flag (SMR) 3-7
subtract (SUB) 3-82
subtract with carry (SBC) 3-74
swap nibbles (SWAP) 3-84
syntax assembly language 3-12

T

test complement under mask (TCM) 3-85
test under mask (TM) 3-87
timer, watch-dog (WDT) 1-8, 3-89

Vv

vectored interrupt 4-2

w

watch-dog timer 1-8

watch-dog timer (WDT) 3-89
watch-dog timer flag (WDT) 3-7
working register groups 1-6

Z
zeroflag (2) 3-5

Index—4

UMOO0O1000-28X0199

	Z8Plus
	User’s Manual
	Additional Sources of Information

	Chapter 1 Address Space
	Introduction
	REGISTER FILE SPACE
	General-Purpose Registers
	Working Register Groups
	Precautions

	CONTROL AND PERIPHERAL REGISTERS
	Control Registers
	Peripheral Registers

	Program Memory
	STACK

	Chapter 2 Addressing Modes
	Addressing Modes
	REGISTER ADDRESSING (R)
	Indirect Register Addressing (IR)
	INDEXED ADDRESSING (X)
	DIRECT ADDRESSING (DA)
	RELATIVE ADDRESSING (RA)
	IMMEDIATE DATA ADDRESSING (IM)

	Chapter 3 Instruction Set
	FUNCTIONAL SUMMARY
	PROCESSOR FLAGS
	CONDITION CODES
	NOTATION AND BINARY ENCODING
	Assembly Language Syntax

	Z8Plus Instruction Summary
	OP CODE MAP

	INSTRUCTION DESCRIPTION AND FORMATS
	ADC Add with Carry
	ADC Add with Carry
	ADD Add
	AND Logical AND
	CALL Call Procedure
	CCF Complement Carry Flag
	CLR Clear
	COM Complement
	CP Compare
	DA Decimal Adjust
	DA Decimal Adjust
	DEC Decrement
	DECW Decrement Word
	DI Disable Interrupts
	DJNZ Decrement And Jump If Non-zero
	EI Enable Interrupts
	HALT Halt
	INC Increment
	INCW Increment Word
	IRET Interrupt Return
	JP Jump
	JR Jump Relative
	LD Load
	LDC Load Constant
	LDCI Load Constant Auto Increment
	NOP No Operation
	OR Logical OR
	POP Pop
	PUSH Push
	RCF Reset Carry Flag
	RET Return
	RL Rotate Left
	RLC Rotate Left Through Carry
	RLC Rotate Left Through Carry
	RR Rotate Right
	RRC Rotate Right Through Carry
	RRC Rotate Right Through Carry
	SBC Subtract with Carry
	SCF Set Carry Flag
	SRA Shift Right Arithmetic
	SRP Set Register Pointer
	STOP Stop
	SUB Subtract
	SWAP Swap Nibbles
	TCM Test Complement Under Mask
	TM Test Under Mask
	WDT Watch-Dog Timer
	XOR Logical Exclusive OR

	Chapter 4 Interrupts
	Introduction
	Interrupt SourCes
	External Interrupt Sources
	Internal Interrupt Sources

	INTERRUPT REQUEST (IREQ) REGISTER LOGIC AND TIMING
	Interrupt Mask Register (IMASK) Initialization
	Interrupt Request (IREQ) Register Initialization

	IREQ SOFTWARE INTERRUPT GENERATION
	VECTORED PROCESSING
	Nesting of Vectored Interrupts

	POLLED PROCESSING
	RESET CONDITIONS

	Appendix A Accessing the ZBBS/Internet
	Bulletin Board Information
	How to Access the ZBBS

	ZiLOG ON THE INTERNET

	Problem/Suggestion Report Form
	Index

