December 1995-1

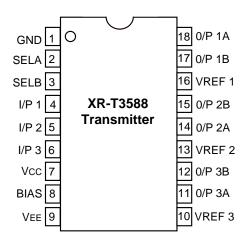
V.35 Interface Receiver / Transmitter

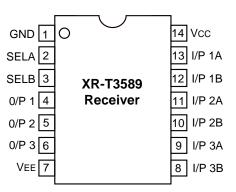
GENERAL DESCRIPTION

The V.35 chip set consists of two bipolar chips, one performing a receive function, the other a transmit function according to the specification requirements laid down in Appendix II of the V.35 CCITT Recommendation and Bell 306 modem interface specification.

Typical applications require three transmit and receive pairs to establish the link between distant DTE's at data rates ranging from 48Kbps to 10Mbps. To conserve power (especially in the case of the transmitter, which requires approximately 22mA for each output stage to meet CCITT specifications), power-down functions are included in both devices, allowing any of the three receive/transmit circuits to be disabled. All inputs and outputs are TTL compatible and designed to offer maximum versatility and performance.

Both the transmitter and receiver require termination resistors external to each device, to meet the V.35 specification tolerance.


FEATURES


- Compatible with CCITT V.35 and Bell 306 Interface Requirements
- TTL Input Compatibility
- High Common Mode Output Voltage Range
- Excellent Stability over Supply and Temperature Range
- High Speed Operation (up to 10Mbps)
- Individual Receive/Transmit Power-down capability

APPLICATIONS

High Speed Data Transmission Systems Short Haul Modems Signal Converters and Adapters Network and Diagnostic Systems Matrix Switches Modem Emulators

PIN DESCRIPTION

ORDERING INFORMATION

Part Number	Package	Operating Temperature
XR-T3588CN	CDIP	0°C to 70°C
XR-T3588CP	PDIP	0°C to 70°C
XR-T3589CN	CDIP	0°C to 70°C

ABSOLUTE MAXIMUM RATINGS

Supply Voltages	±7V
Storage Temperature	-65°C to +150°C
Power Dissipation	
XR-T3588CN	1000mW
XR-T3589CN	300mW

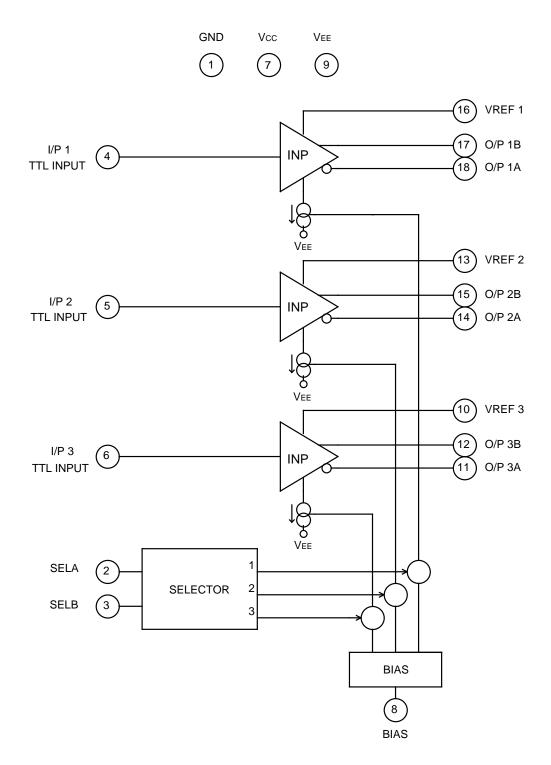


Figure 1. XR-T3588 Block Diagram

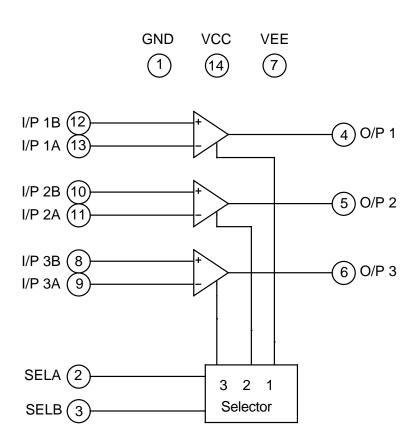


Figure 2. XR-T3589 Block Diagram

XR-T3588/89

PIN DESCRIPTIONS for T3588

PIN#	SYMBOL	TYPE	DESCRIPTION				
1	GND	-	Ground (0V).				
2	SELA	ı	Channel enable select A input. TTL compatible input used in conjunction with SELB to power down individual transmitter channels. (see table 1).				
3	SELB	ı	Channel enable select B input. TTL compatible input used in conjunction with SELA to power down individual transmitter channels (see table 1).				
4	I/P1	ı	Channel 1 input. TTL compatible.				
5	I/P2	ı	Channel 2 input. TTL compatible.				
6	I/P3	ı	Channel 3 input. TTL compatible.				
7	Vcc	-	Positive Supply (5V).				
8	BIAS	I	Bias current input. DC level 1.1V nominal. Connect external resistor from pin to ground to define transmitter output current levels (Rbias 3.9k for lout=22mA).				
9	VEE	-	Negative Supply (-5V).				
10	VREF3	0	Channel 3 Voltage regulator. Provides 3.3V regulated supply for connection of channel 3 transmit termination network (see figure 6). If the driver is disabled, the voltage output at this pin will be Vcc - 0.7V.				
11	O/P3A	0	Channel 3 differential output A. Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF3 provides an output voltage with inverse phase to I/P3. DC level with TX and RX termination +/-0.275V nominal.				
12	O/P3B	0	Channel 3 differential output B . Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF3 provides an output voltage in phase with I/P3. DC level with TX and RX termination +/-0.275V nominal.				
13	VREF2	0	Channel 2 Voltage regulator. Provides 3.3V regulated supply for connection of channel 2 transmit termination network (see figure 6). If the driver is disabled, the voltage output at this pin will be Vcc - 0.7V.				
14	O/P2A	0	Channel 2 differential output A. Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF2 provides an output voltage with inverse phase to I/P2. DC level with TX and RX termination +/-0.275V nominal.				

PIN DESCRIPTIONS for T3588 (cont.)

PIN#	SYMBOL	TYPE	DESCRIPTION
15	O/P2B	0	Channel 2 differential output B. Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF2 provides an output voltage in phase with I/P2. DC level with TX and RX termination +/-0.275V nominal.
16	VREF1	0	Channel 1 Voltage regulator. Provides 3.3V regulated supply for connection of channel 1 transmit termination network (see figure 6). If the driver is disabled, the voltage output at this pin will be Vcc - 0.7V.
17	O/P1B	0	Channel 1 differential output B. Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF1 provides an output voltage in phase with I/P2. DC level with TX and RX termination +/-0.275V nominal.
18	O/P1A	0	Channel 1 differential output A. Open collector current output. Current sink capability 22mA nominal (defined by Rbias). When terminated with network to VREF2 provides an output voltage with inverse phase to I/P1. DC level with TX and RX termination +/-0.275V nominal.

XR-T3588/89

PIN DESCRIPTIONS for T3589

PIN#	SYMBOL	TYPE	DESCRIPTION
1	GND	-	Ground (0V).
2	SELA	I	Channel enable select A input. TTL compatible input used in conjunction with SELB to power down individual receiver channels. (see table 2).
3	SELB	I	Channel enable select B input. TTL compatible input used in conjunction with SELA to power down individual receiver channels (see table 2).
4	O/P1	o	Channel 1 output. TTL compatible.
5	O/P2	O	Channel 2 output. TTL compatible.
6	O/P3	O	Channel 3 output. TTL compatible.
7	VEE	-	Negative Supply (-5V).
8	I/P3B	I	Channel 3 differential input B. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
9	I/P3A	I	Channel 3 differential input A. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
10	I/P2B	I	Channel 2 differential input B. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
11	I/P2A	I	Channel 2 differential input A. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
12	I/P1B	I	Channel 1 differential input B. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
13	I/P1A	I	Channel 1 differential input A. Rin $4k\Omega$ nominal. Should be terminated with an external network to GND (see figure 8).
14	Vcc	-	Positive Supply (5V).

TRANSMITTER: XR-T3588 SYSTEM DESCRIPTION

The function of the transmitter is to take a TTL input signal at a maximum bit rate of 10Mbps and output a balanced differential signal with a peak amplitude of 0.55V and a maximum DC offset of 0.6V. An internal buffer provides the regulated output voltage to set the mean level of the transmitters to less than 0.6V. Figure 5 shows a simplified circuit for the output stage.

To meet the pulse shape and offset requirements laid down in the V.35 specification, the transmitter employs an internal temperature compensated voltage generator to provide reference voltages for both offset control and output current generation. Load resistors for the output stage, which provide the required source impedance for the transmitter, are external to the IC and are required to meet the V.35 specified tolerance.

To generate well defined output pulses, device current is set using an external resistor, which should be of the same type as the transmitter load resistors. Each device contains three independent transmit circuits.

Individual transmitters may be shut down to achieve power savings for applications not requiring three channels. Two TTL compatible inputs provide four combinations of transmitter configurations, as defined in table 1. If either of the select pins is left open a high state is adopted, hence with no inputs applied, all channels are powered up. However it is recommended to tie all select inputs to either GND or Vcc.

Transmitte	7	SEL A	SEL B
1-2-3	ON	HIGH	HIGH
1-2	ON	HIGH	LOW
1	ON	LOW	HIGH
ALL	OFF	LOW	LOW
/	Ori	LOW	LOW

TABLE 1. TRANSMITTER SELECTORS

XR-T3588 DC ELECTRICAL CHARACTERISTICS

Test Conditions: $Vcc = 5V \pm 5\%$, $Vee = -5V \pm 5\%$, $TA = 0^{\circ}C$ to $70^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Vcc	Positive Supply Voltage	4.75	5	5.25	V	
VEE	Negative Supply Voltage	-4.75	-5	-5.25	V	
Icc	Input Current		86	124	mA	See Note 1
IEE	Input Current	-132	-92		mA	See Note 1
IPCC	Power Down ICC	0.2		10.2	mA	See Note 2
I PEE	Power Down IEE	-1.0		-14.0	mA	See Note 2
VDIH	High Level Input Voltage	2		VCC	V	Data Inputs
VDIL	Low Level Input Voltage	0		0.8	V	Data Inputs
IDIH	Input Current High			1.0	μA	Data Inputs
Idil	Input Current Low	-2.1			mA	Data Inputs
VsiH	Selector High Level Voltage	2		VCC	V	
Vsil	Selector Low Level Voltage	0		0.6	V	
IsiL	Selector Input Current Low	-0.6			mA	
IsiH	Selector Input Current High			50	μA	
Vol	Output Low Voltage	-0.91			V	See Note 3
Vон	Output High Voltage			0.85	V	See Note 3
ZS	Source Impedance	90	100	110	Ohm	Per CCITT V.35, see note 4
RGND	Resistance to Ground	135	150	165	Ohm	Per CCITT V.35, see note 4
IODIFF	Output Current Differential	20.2	22.0	23.8	mA	With 3.9K bias resistor
VREF	Transmitter Reference Voltage	3.0	3.3	3.6	V	Voltage Output

- Note 1: With external transmit network (figure 6) connected to each transmitter output and select A, select B both high.
- Note 2: All transmitter outputs open-circuit and select A, select B both low.
- Note 3: With external transmit network terminated with 100 Ohm (figure 7).
- Note 4: Differential impedance between O/P A and O/P B. external transmit network (figure 6) connected to transmitter output.
- Note 5: O/P A's and O/P B's connected together, resistance measured to ground, external transmit network (figure 6) present.

RECEIVER: XR-T3589 SYSTEM DESCRIPTION

The XR-T3589 Line Receiver contains three identical receive circuits to complement the XR-T3588 Line Transmitter. Received differential signals are converted into a single TTL compatible output. The input stage is designed to meet the full V.35 noise and common mode input specification.

Individual receivers may be shut down to achieve power savings for applications not requiring three channels. Two TTL compatible inputs provide four combinations of transmitter configurations, as defined in table 2. If either of the select pins is left open a high state is adopted, hence with no inputs applied, all channels are powered up. However it is recommended to tie all select inputs to either GND or Vcc.

RECEIVE	:R	SEL A	SEL B
1-2-3	ON	HIGH	HIGH
1-2	ON	HIGH	LOW
1	ON	LOW	HIGH
ALL	OFF	LOW	LOW

TABLE 2. Receiver Selectors

XR-T3589 DC ELECTRICAL CHARACTERISTICS

Test Conditions: $Vcc = 5V \pm 5\%$, $Vee = -5V \pm 5\%$, $TA = 0^{\circ}C$ to $70^{\circ}C$

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
Vcc	Supply Voltage	4.75	5	5.25	V	
VEE	Supply Voltage	-5.25	-5	-4.75	V	
Icc	Input Current		40	60	mA	Select A, Select B, both high
IEE	Input Current		7	9	mA	Select A, Select B, both high
Іон	Output High Level Current	-1.6			μA	VOH ≥ 2.4 <u>V</u>
IOL	Output Low Level Current			40	mA	VOL < 0.4 <u>V</u>
Voн	High Level Output	2.4			V	at IOH < 40µA
Vol	Low Level Output			0.4	V	at IOL < 1.6mA
Vin	Input Sensitivity	400			mV	Differential, see note 2
ZINO	Input Impedance	8			kOhm	Differential, see note 2
ZINT	Input Impedance	90	100	110	Ohm	per CCITT V.35, see note 1,2
RGND	Resistance to GND	135	150	165	Ohm	per CCITT V.35, see note 1,2
VsiH	Select High Level Voltage	2		Vcc	V	
Vsil	Select Low Level Voltage			0.8	V	
IPCC	Power Down I _{CC} Current		1.1		mA	Select A, Select B, both low
IPEE	Power Down I _{EE} Current	-0.3			mA	

Note 1: I/P terminated to circuit 102 (see figure 8)

Note 2: Pins 8-9, 10-11, 12-13

XR-T3588 AC CHARACTERISTICS

Test Conditions: $Vcc = 5V \pm 5\%$, $Vee = -5V \pm 5\%$, TA = 0°C to 70°C (see figure 3)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
^t PLHT	Input to Output		25	50	nsec	see note 1
tPHLT	Input to Output		25	50	nsec	see note 1
t _{RT}	TX Rise Time		10	20	nsec	see note 1
t _{FT}	TX Fall Time		10	20	nsec	see note 1

Note 1: O/P terminated with external transmit network terminated with 100 Ohms (See Figure 7)

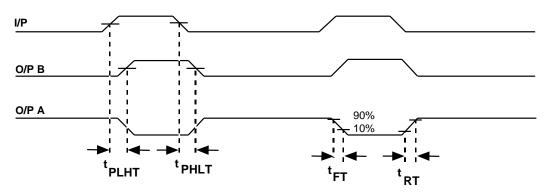


Figure 3. Transmitter Waveforms

XR-T3589 AC CHARACTERISTICS

Test Conditions: $Vcc = 5V \pm 5\%$, $Vee = -5V \pm 5\%$, TA = 0°C to 70°C (see figure 4)

SYMBOL	PARAMETER	MIN	TYP	MAX	UNITS	CONDITIONS
t _{PLHR}	Input to Output		50	70	nsec	
t _{PHLR}	Input to Output		50	70	nsec	
t _{RR}	RX Rise Time		18	40	nsec	
t _{FR}	RX Fall Time		12	30	nsec	

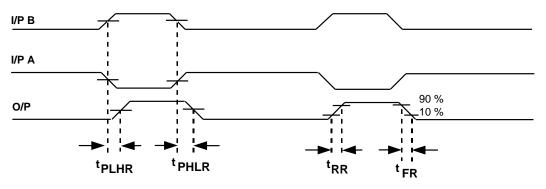


Figure 4. Receiver Waveforms

XR-T3588/89

TYPICAL APPLICATIONS

Figure 9 shows a schematic for a typical application of the XR-T3588/T3589. In this application the termination resistor network is fed from the chip on-board regulator. The regulator provides a voltage of 3.3V.

The major issue is the power dissipation of the XR-T3588. Following is a discussion of the power that is dissipated by the XR-T3588 when all three drivers are active simultaneously. The power used by the XR-T3588 is given by;

$$Pd = (Vcc \cdot Icc + Vee \cdot Iee) - 3 \cdot (Rterm \cdot (Iterm)^2)$$

Where: Vcc, lcc, Vee and lee are the positive and negative supply voltages and currents, whose values may be found in the typical column of the DC Characteristics.

R_{term} is the equivalent impedance of the termination network,

Iterm is the current flow through the termination network.

In the case of the three drivers enabled and terminated, the typical power dissipation is;

Pd =
$$(5 \cdot 0.086 + (5 \cdot 0.092)) - 3 \cdot (150 \cdot (0.022)^2)$$

= 672.2mW

The junction temperature of the part is given by;

Tjunction= Tambient +
$$(\theta_{IA} \cdot Pd)$$

where: Tjunction is junction temperature,

Tambient is ambient temperature,

 θ_{JA} is package thermal impedance.

For reliable operation, the absolute maximum junction temperature must be maintained below 150°C. With a θ JA for the ceramic package of 80°C/W, and a maximum ambient temperature of 70°C the junction temperature is;

If the device is used in an enclosure without forced cooling where the ambient temperature could approach or exceed 70°C, the power dissipation of the part should be reduced for improved reliability.

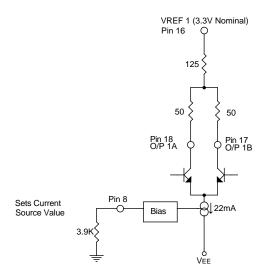
Figure 10 shows an implementation using an external reference voltage made with two resistors of values 180 Ohm and 360 Ohm. This implementation offers the advantage of eliminating the feeding current to the termination network from the on chip reference, thereby reducing the dissipation in the XR-T3588.

The formula to calculate the on chip power dissipation is now;

Pd =
$$(Vcc \cdot Icc + Vee \cdot Iee) - 3 \cdot ((Vcc - 3.3) \cdot Iterm + Rterm \cdot (Iterm)^2)$$

Where the term "3 \cdot (Vcc - 3.3) \cdot (Iterm)" is the power previously dissipated in the XR-T3588 internal voltage regulator.

The revised value of power dissipation is;


Pd =
$$(5 \cdot 0.086) + (5 \cdot 0.092) - 3 \cdot ((5 - 3.3) \cdot 0.022 + 150 \cdot (0.022)^2) = 560$$
mW

The total on chip power saving is; $3 \cdot (5 - 3.3) \cdot 0.022$, i.e. 112.2 mW.

Figure 11 shows the demo board schematic.

To obtain a demo board, call your local representative.

Tjunction = $70 + 80 \cdot 0.672 = 134$ °C

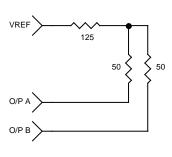
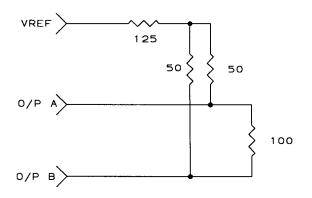



Figure 5. XR-T3588 Output Stage Simplified Circuit

Figure 6. External Transmit Network

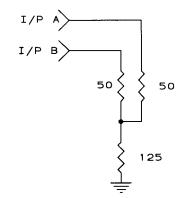


Figure 7. External Transmit Network Terminated with 100 Ohms

Figure 8. CCITT Circuit 102 Input Termination

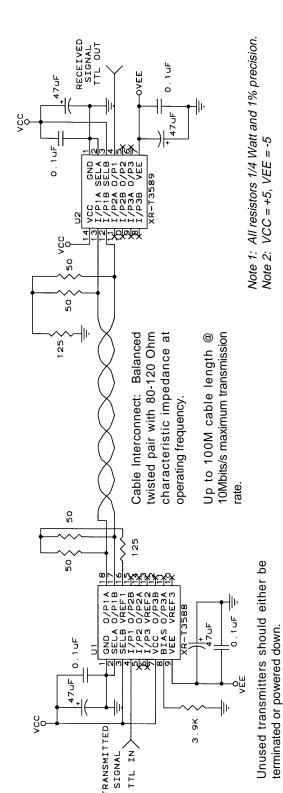


Figure 9. Application Circuit XR-T3588, XR-T3589

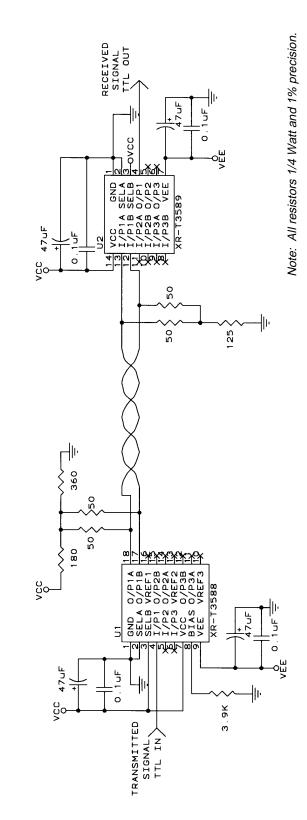


Figure 10. Typical Low Power Dissipation

T௵M

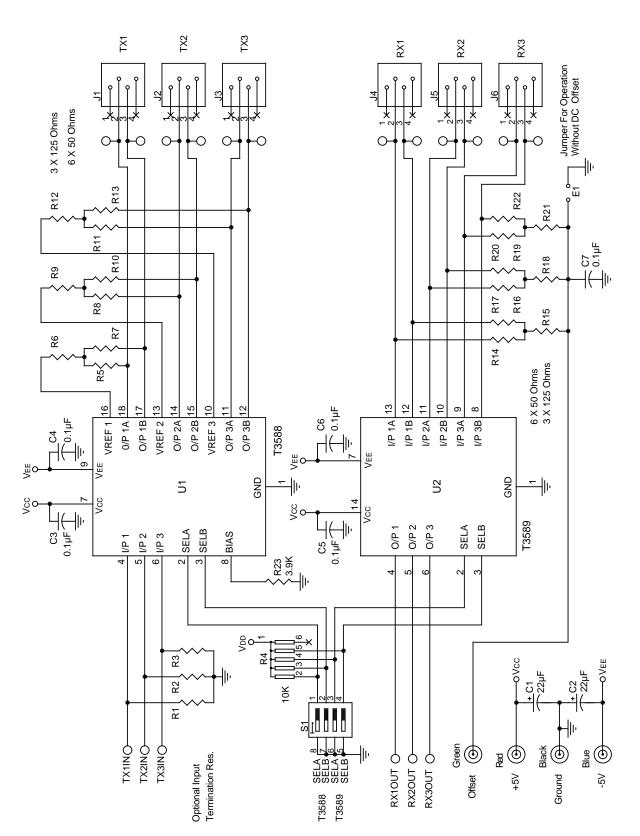


Figure 11. Demo Board Schematic