# XR-1097

September 1996-4

7-Channel Graphic Equalizer Filter with A/D Converter

# FEATURES

- Internal R/C Oscillator
- Provides Seven Filters In One 14-pin Package
- Dual Inputs for Summing Left and Right Channels

**XPEXAR** ... the analog plus company<sup>TM</sup>

- Provides 30dB of Gain
- Two Auxiliary Inputs
- Microprocessor Bus Interface
- On Chip A/D Converter

# APPLICATIONS

- Graphic Equalizers
- Tape Recorders
- Receivers
- Portable Systems

## **GENERAL DESCRIPTION**

The XR-1097 is a 7-point switched capacitor filter dedicated for use in audio applications. The 7 filters are spaced 1 1/2 octaves apart starting at 63Hz. The two filter inputs allow the left and right channels to be summed. This reduces the display space and prevents redundant audio information from being displayed. The 7 filter outputs, along with the peak value of all filters each go into a peak hold circuit with a slow decay time constant

(330ms). The eight filter outputs and 2 auxiliary inputs are multiplexed into an A/D converter which produces the digital output that is used by the system microprocessor.

The XR-1097 is fabricated in a low noise 2 micron double poly-silicon CMOS process and comes in a 14-pin plastic package. The device may be operated off of either  $\pm 5V$  or  $\pm 6V$  supplies. The chip oscillator operates at 400kHz and requires only an external resistor and capacitor.

#### **ORDERING INFORMATION**

| Part No.  | Package              | Operating<br>Temperature Range |
|-----------|----------------------|--------------------------------|
| XR-1097CP | 14 Lead 300 Mil PDIP | -30°C to +75°C                 |





#### **BLOCK DIAGRAM**

•

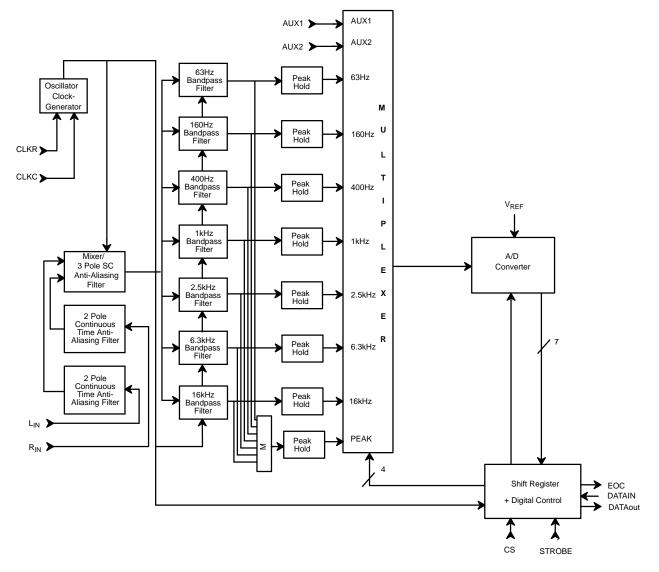
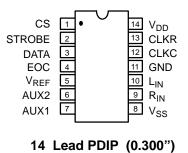




Figure 1. 7-Band Graphic Equalizer Display Filter with A/D Converter





#### **PIN CONFIGURATION**



#### **PIN DESCRIPTION**

| Pin # | Symbol           | Description                                                    |
|-------|------------------|----------------------------------------------------------------|
| 1     | CSB              | Chip Select Pin                                                |
| 2     | STROBE           | Clock Pin To Shift In/Out Data Through the Serial Port         |
| 3     | DATA             | Serial Port For Digital Signals to and from Microprocessor     |
| 4     | EOC              | (A/D) End of Conversion Pin                                    |
| 5     | V <sub>REF</sub> | A/D Converter Reference Voltage Input                          |
| 6     | AUX2             | Auxiliary Input 2                                              |
| 7     | AUX1             | Auxiliary Input 1                                              |
| 8     | V <sub>SS</sub>  | Negative Supply Voltage                                        |
| 9     | R <sub>IN</sub>  | Right Channel Input                                            |
| 10    | L <sub>IN</sub>  | Left Channel Input                                             |
| 11    | GND              | Ground                                                         |
| 12    | CLKC             | Clock Capacitor from this Pin to GND (Cnom = 1nF)              |
| 13    | CLKR             | Clock Resistor from this Pin to CLCC (Rnom = 14.6 k $\Omega$ ) |
| 14    | V <sub>DD</sub>  | Positive Supply Voltage                                        |





## **ELECTRICAL CHARACTERISTICS**

Test Conditions:  $V_{DD}$  = +5V,  $V_{SS}$  = -5V,  $V_{REF}$  = 2.55V,  $T_A$  = 25°C

| Symbol                  | Parameter             | Min.                 | Тур.                 | Max.                 | Units        | Conditions                                 |
|-------------------------|-----------------------|----------------------|----------------------|----------------------|--------------|--------------------------------------------|
| General Characteristics |                       |                      |                      |                      |              |                                            |
| V <sub>DD</sub>         | Positive Supply       | 4.75                 |                      | 6                    | V            |                                            |
| V <sub>SS</sub>         | Negative Supply       | -6                   |                      | -4.75                | V            |                                            |
| I <sub>DD5</sub>        | Supply Current        |                      | 8                    | 15                   | mA           |                                            |
| Digital Pins            |                       |                      |                      |                      |              |                                            |
| VIL                     | Input Voltage Low     |                      |                      | 0.5                  | V            |                                            |
| VIH                     | Input Voltage High    | 4.5                  |                      |                      | V            |                                            |
| VOL                     | Output Voltage Low    |                      |                      | 0.5                  | V            |                                            |
| VOH                     | Output Voltage High   | 4.5                  |                      |                      | V            |                                            |
| Analog and Dig          | gital Inputs          |                      |                      |                      |              |                                            |
| IIL                     | Input Leakage Current | -2.0                 |                      | +2.0                 | μA           |                                            |
| Oscillator Cha          | racteristics          |                      |                      |                      |              | •                                          |
| TCLKRP                  | Clock Frequency       | 380                  | 400                  | 420                  | kHz          | R=1.46kΩ<br>C= 1nF                         |
| A/D Characteri          | stics                 |                      |                      |                      | •            | •                                          |
|                         | Accuracy              |                      |                      | 8                    | bit          |                                            |
|                         | Error                 |                      |                      | ±1                   | LSB          |                                            |
| V <sub>REF</sub>        | Reference Voltage     |                      | 2.5                  |                      | V            |                                            |
| TCONV                   | Conversion Time       | 400                  | 80                   | 440                  | μS           |                                            |
| Filter Characte         | eristics              |                      |                      | •                    |              | •                                          |
| FOS                     | Filter Offset         | 0                    |                      | +200                 | mV           |                                            |
| FG63                    | Filter Gain 63Hz      | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=63Hz<br>INPUT=80mVpk   |
| FG160                   | Filter Gain 160Hz     | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=160Hz<br>INPUT=80mVpk  |
| FG400                   | Filter Gain 400Hz     | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=400Hz<br>INPUT=80mVpk  |
| FG1K                    | Filter Gain 1kHz      | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=1kHz<br>INPUT=80mVpk   |
| FG2.5K                  | Filter Gain 2.5kHz    | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=2.5kHz<br>INPUT=80mVpk |
| FG6.3K                  | Filter Gain 6.3kHz    | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=6.3kHz<br>INPUT=80mVpk |



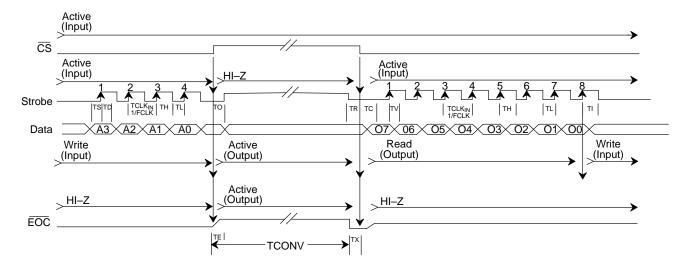


#### **ELECTRICAL CHARACTERISTICS (CONT'D)**

| Symbol | Parameter         | Min.                 | Тур.                 | Max.                 | Units        | Conditions                                |
|--------|-------------------|----------------------|----------------------|----------------------|--------------|-------------------------------------------|
| FG16K  | Filter Gain 16kHz | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=16kHz<br>INPUT=80mVpk |
| GPK    | Peak Gain         | 1.08<br>28.5<br>2.15 | 1.28<br>30.0<br>2.55 | 1.52<br>31.5<br>2.55 | V<br>dB<br>V | INPUT=40mVpk<br>fIN=1kHz<br>INPUT=80mVpk  |

Specifications are subject to change without notice

#### **ABSOLUTE MAXIMUM RATINGS**


| Power Supply Voltage $\dots \dots \pm 7V$ | Storage Temperature60 to +150°C |
|-------------------------------------------|---------------------------------|
|-------------------------------------------|---------------------------------|

#### SYSTEM DESCRIPTION

The XR-1097 generates its clocks with an internal oscillator and does not require an external clock source. This allows the designer to place the XR-1097 on any application where an active filter design is in place. The XR-1097 provides badness filters with center frequencies at 63Hz, 160Hz, 400Hz, 1kHz, 2.5kHz, 6.3kHz, and 16kHz. These frequencies are standards in the consumer audio industry. The peak detector outputs referenced to 0V are multiplexed into an A/D converter.

The digital interface allows the system microprocessor to control the multiplexer and the A/D externally. All digital I/O (including A/D output) goes through a serial port. All digital inputs are TTL compatible, and all digital outputs swing from GND to  $V_{DD}$ .

The XR-1097 contains a continuous time anti-aliasing filter with a corner frequency of 80kHz. This prevents most signals from affecting the performance of the filters.







| Symbol | Parameter                              | Min.                       | Max. | Units |
|--------|----------------------------------------|----------------------------|------|-------|
| FCLK   | STROBE Frequency <sup>1</sup>          | Frequency <sup>1</sup> 2.5 |      | MHz   |
| TH     | STROBE High Pulse Width                | 160                        |      | ns    |
| TL     | STROBE Low Pulse Width                 | 160                        |      | ns    |
| TS     | DATA Set-Up Time                       | 100                        |      | ns    |
| TD     | DATA Hold Time                         | 100                        |      | ns    |
| ТО     | STROBE Hold Time <sup>2</sup>          | 100                        |      | ns    |
| TE     | EOC Delay Time <sup>3</sup>            | 100                        |      | ns    |
| TCONV  | A/D Conversion Time <sup>4</sup>       | 400 440                    |      | μs    |
| TR     | STROBE Set-Up Time <sup>5</sup>        | 100                        |      | ns    |
| ТК     | EOC to CSB                             | 100                        |      | ns    |
| тс     | CSB to Q7                              | 150                        |      | ns    |
| ΤV     | STROBE to Q6-Q0                        | 150                        |      | ns    |
| TI     | STROBE to DATA Write Mode <sup>6</sup> | 150                        |      | ns    |

**XPEXAR** 

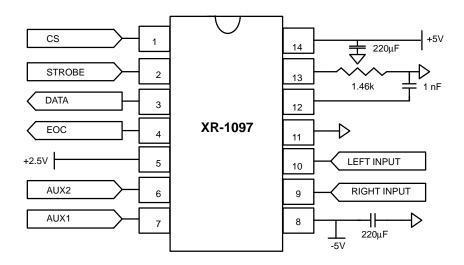
#### **Table 1. Timing Characteristics**

#### Notes

<sup>1</sup> TCLK=400ns. minimum.

<sup>2</sup> STROBE needs to be held low for TO after CSB goes high. After TO, STROBE becomes hi-z and DATA becomes an output port. <sup>3</sup> After TE, EOC becomes a logical high. <sup>4</sup> After TCONV, EOC goes low, signaling the end of conversion.

<sup>5</sup> STROBE needs to be held low for TR before CSB goes low.


<sup>6</sup> After TI, DATA goes back to an input port.

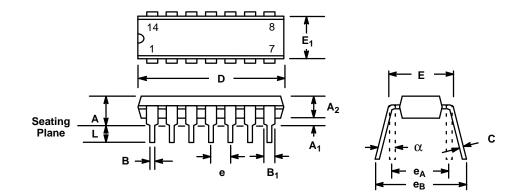




| A3 | A2 | A1 | A0 | SELECTION |
|----|----|----|----|-----------|
| 0  | 0  | 0  | 0  | 63Hz      |
| 0  | 0  | 0  | 1  | 160Hz     |
| 0  | 0  | 1  | 0  | 400Hz     |
| 0  | 0  | 1  | 1  | 1kHz      |
| 0  | 1  | 0  | 0  | 2.5kHz    |
| 0  | 1  | 0  | 1  | 6.3kHz    |
| 0  | 1  | 1  | 0  | 16kHz     |
| 0  | 1  | 1  | 1  | PEAK      |
| 1  | 0  | 0  | 0  | AUX1      |
| 1  | 0  | 0  | 1  | AUX2      |
| 1  | 0  | 1  | 0  | NONE      |
| 1  | 0  | 1  | 1  | NONE      |
| 1  | 1  | 0  | 0  | NONE      |
| 1  | 1  | 0  | 1  | NONE      |
| 1  | 1  | 1  | 0  | NONE      |
| 1  | 1  | 1  | 1  | NONE      |

Table 2. Multiplexer Selection




**Figure 3. Typical Application Schematic** 





# 14 LEAD PLASTIC DUAL-IN-LINE (300 MIL PDIP)

Rev. 1.00



|                | INC       | HES             | MILLIMETERS |       |  |
|----------------|-----------|-----------------|-------------|-------|--|
| SYMBOL         | MIN       | MAX             | MIN         | MAX   |  |
| А              | 0.145     | 0.210           | 3.68        | 5.33  |  |
| A <sub>1</sub> | 0.015     | 0.070           | 0.38        | 1.78  |  |
| A <sub>2</sub> | 0.115     | 0.195           | 2.92        | 4.95  |  |
| В              | 0.014     | 0.024           | 0.36        | 0.56  |  |
| B <sub>1</sub> | 0.030     | 0.070           | 0.76        | 1.78  |  |
| С              | 0.008     | 0.014           | 0.20        | 0.38  |  |
| D              | 0.725     | 0.795           | 18.42       | 20.19 |  |
| E              | 0.300     | 0.325           | 7.62        | 8.26  |  |
| E <sub>1</sub> | 0.240     | 0.280           | 6.10        | 7.11  |  |
| е              | 0.1       | 00 BSC          | 2.5         | 4 BSC |  |
| e <sub>A</sub> | 0.300 BSC |                 | 7.62 BSC    |       |  |
| e <sub>B</sub> | 0.310     | 0.430           | 7.87        | 10.92 |  |
| L              | 0.115     | 0.160           | 2.92        | 4.06  |  |
| α              | 0°        | 15 <sup>°</sup> | 0°          | 15°   |  |

Note: The control dimension is the inch column





Notes





Notes





Notes





#### NOTICE

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 1992 EXAR Corporation Datasheet September 1996 Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.

